
The Java™
Language Specification

The Java™ Series
Lisa Friendly, Series Editor
Bill Joy, Technical Advisor

The Java™ Programming Language
Ken Arnold and James Gosling
ISBN 0-201-63455-4

The Java™ Language Specification
James Gosling, Bill Joy, and Guy Steele
ISBN 0-201-63451-1

The Java™ Virtual Machine Specification
Tim Lindholm and Frank Yellin
ISBN 0-201-63452-X

The Java™ Application Programming Interface,
Volume 1: Core Packages
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63453-8

The Java™ Application Programming Interface,
Volume 2: Window Toolkit and Applets
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63459-7

The Java™ Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

The Java™ Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

The Java™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

The Java™
Language Specification

James Gosling
Bill Joy

Guy Steele

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts● Harlow, England● Menlo Park, California
Berkeley, California● Don Mills, Ontario● Sydney

Bonn● Amsterdam● Tokyo ● Mexico City

Copyright 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under SUN's
intellectual property rights that are essential to practice this specification. This license
allows and is limited to the creation and distribution of clean room implementations of this
specification that (i) include a complete implementation of the current version of this spec-
ification without subsetting or supersetting, (ii) implement all the interfaces and function-
ality of the standardjava.* packages as defined by SUN, without subsetting or
supersetting, (iii) do not add any additional packages, classes or methods to thejava.*
packages (iv) pass all test suites relating to the most recent published version of this spec-
ification that are available from SUN six (6) months prior to any beta release of the clean
room implementation or upgrade thereto, (v) do not derive from SUN source code or
binary materials, and (vi) do not include any SUN binary materials without an appropriate
and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun
Microsystems Computer Corporation logo, Java, JavaSoft, JavaScript and HotJava are
trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® is a registered
trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. Apple and Dylan are trademarks of Apple Computer, Inc. All other prod-
uct names mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Credits and permissions for quoted material appear in a separate section on page 823.

Text printed on recycled and acid-free paper

ISBN 0-201-63451-1
1 2 3 4 5 6 7 8 9-MA-99989796
First printing, August 1996

“When I use a word,” Humpty Dumpty said,
in rather a scornful tone, “it means just what I
choose it to mean—neither more nor less.”

“The question is,” said Alice, “whether you
can make words mean so many different things.”

“The question is,” said Humpty Dumpty,
“which is to be master—that’s all.”

—Lewis Carroll, Through the Looking Glass

 xxi

xxiii

 . 1
. . . 5
 . . . 6

. . 7

. . . 7
 . . 7
. . . 8
 . . 8

 11
. . 11
 . 12
 . . 12
 . 13
. . 14
. . 15
. . 15
 . 17
 . 18
. . 19
. 19
22

. 23
 . 24
. 25
. . 26
27

 . . 27
. . 28
Table of Contents

Series Foreword .

Preface .

1 Introduction. .
1.1 Example Programs .
1.2 References .

2 Grammars .
2.1 Context-Free Grammars .
2.2 The Lexical Grammar. .
2.3 The Syntactic Grammar .
2.4 Grammar Notation .

3 Lexical Structure. .
3.1 Unicode.
3.2 Lexical Translations .
3.3 Unicode Escapes. .
3.4 Line Terminators .
3.5 Input Elements and Tokens.
3.6 White Space .
3.7 Comments.
3.8 Identifiers .
3.9 Keywords .
3.10 Literals .

3.10.1 Integer Literals .
3.10.2 Floating-Point Literals .
3.10.3 Boolean Literals .
3.10.4 Character Literals .
3.10.5 String Literals.
3.10.6 Escape Sequences for Character and String Literals
3.10.7 The Null Literal .

3.11 Separators .
3.12 Operators .
vii

viii

 29
. . 30
. . 30
. . 31
. . 31
 . 33
 . 34
6
. . . 37
. . 38
40
41
 . . 42
 . . 42
 . . 43
. 44
. . 44
 . 44
. 46
 . . 47

 51
. . 54
 . 54
. 54
. 55
. . 58
. . 59
. . 60
. . 60
 . . 61
. . 66
 . . 67
 . . 67
. . 72
 . 73
. 74

 . 77
 . . 78
 . . 79
 . . 81
 . 83
 . . 85
. . 85
. . 86
4 Types, Values, and Variables. .
4.1 The Kinds of Types and Values .
4.2 Primitive Types and Values .

4.2.1 Integral Types and Values .
4.2.2 Integer Operations .
4.2.3 Floating-Point Types and Values. .
4.2.4 Floating-Point Operations .
4.2.5 Theboolean Type andboolean Values. 3

4.3 Reference Types and Values .
4.3.1 Objects.
4.3.2 The ClassObject .
4.3.3 The ClassString .
4.3.4 When Reference Types Are the Same.

4.4 Where Types Are Used .
4.5 Variables .

4.5.1 Variables of Primitive Type .
4.5.2 Variables of Reference Type .
4.5.3 Kinds of Variables .
4.5.4 Initial Values of Variables .
4.5.5 Variables Have Types, Objects Have Classes

5 Conversions and Promotions .
5.1 Kinds of Conversion .

5.1.1 Identity Conversions .
5.1.2 Widening Primitive Conversions.
5.1.3 Narrowing Primitive Conversions .
5.1.4 Widening Reference Conversions .
5.1.5 Narrowing Reference Conversions .
5.1.6 String Conversions .
5.1.7 Forbidden Conversions .

5.2 Assignment Conversion. .
5.3 Method Invocation Conversion .
5.4 String Conversion .
5.5 Casting Conversion .
5.6 Numeric Promotions .

5.6.1 Unary Numeric Promotion .
5.6.2 Binary Numeric Promotion .

6 Names .
6.1 Declarations .
6.2 Names and Identifiers .
6.3 Scope of a Simple Name .

6.3.1 Hiding Names .
6.4 Members and Inheritance .

6.4.1 The Members of a Package .
6.4.2 The Members of a Class Type.

. 87
. 88
 . 89
90
91

 . 93
. 93
. 93
. 93
93
94

. 95
95
96

. 98
98
98

. . 99
99
0

100

102
03
4
5
105
106

. 107
108
108
109
109
110

. 113
 . 114
. 115
115

. 117
117

 . 118
. 118
. 119

120
. 120

120
121
6.4.3 The Members of an Interface Type .
6.4.4 The Members of an Array Type .

6.5 Determining the Meaning of a Name .
6.5.1 Syntactic Classification of a Name According to Context.
6.5.2 Reclassification of Contextually Ambiguous Names.
6.5.3 Meaning of Package Names. .

6.5.3.1 Simple Package Names .
6.5.3.2 Qualified Package Names.

6.5.4 Meaning of Type Names .
6.5.4.1 Simple Type Names .
6.5.4.2 Qualified Type Names .

6.5.5 Meaning of Expression Names .
6.5.5.1 Simple Expression Names .
6.5.5.2 Qualified Expression Names

6.5.6 Meaning of Method Names .
6.5.6.1 Simple Method Names .
6.5.6.2 Qualified Method Names .

6.6 Qualified Names and Access Control.
6.6.1 Determining Accessibility .
6.6.2 Details onprotected Access . 10
6.6.3 An Example of Access Control .
6.6.4 Example: Access topublic and Non-public Classes 101
6.6.5 Example: Default-Access Fields, Methods, and Constructors. .
6.6.6 Example:public Fields, Methods, and Constructors 1
6.6.7 Example:protected Fields, Methods, and Constructors 10
6.6.8 Example:private Fields, Methods, and Constructors 10

6.7 Fully Qualified Names .
6.8 Naming Conventions .

6.8.1 Package Names .
6.8.2 Class and Interface Type Names .
6.8.3 Method Names .
6.8.4 Field Names .
6.8.5 Constant Names .
6.8.6 Local Variable and Parameter Names .

7 Packages.
7.1 Package Members. .
7.2 Host Support for Packages .

7.2.1 Storing Packages in a File System .
7.2.2 Storing Packages in a Database .

7.3 Compilation Units .
7.4 Package Declarations .

7.4.1 Named Packages .
7.4.2 Unnamed Packages .
7.4.3 Scope and Hiding of a Package Name .
7.4.4 Access to Members of a Package.

7.5 Import Declarations .
7.5.1 Single-Type-Import Declaration .
ix

x

122
122
. 123
 . 124
. . 125

 127
 . 128
 . 130
130

31
33
. . 133
. 135
. 138
 . 138
. 139
40

142
 . 143
144
5

46
7
7
49
49
50
151
51
52
3
54

 . 155
 . 156
. 157
157
8
0

60
1

1
163
164
165
65
7.5.2 Type-Import-on-Demand Declaration. .
7.5.3 Automatic Imports. .
7.5.4 A Strange Example .

7.6 Type Declarations .
7.7 Unique Package Names .

8 Classes .
8.1 Class Declaration .

8.1.1 Scope of a Class Type Name. .
8.1.2 Class Modifiers .

8.1.2.1 abstract Classes. 1
8.1.2.2 final Classes . 1

8.1.3 Superclasses and Subclasses .
8.1.4 Superinterfaces .
8.1.5 Class Body and Member Declarations

8.2 Class Members. .
8.2.1 Examples of Inheritance .

8.2.1.1 Example: Inheritance with Default Access 1
8.2.1.2 Inheritance withpublic andprotected. 141
8.2.1.3 Inheritance withprivate . 141
8.2.1.4 Accessing Members of Inaccessible Classes.

8.3 Field Declarations .
8.3.1 Field Modifiers .

8.3.1.1 static Fields . 14
8.3.1.2 final Fields . 1
8.3.1.3 transient Fields . 14
8.3.1.4 volatile Fields . 14

8.3.2 Initialization of Fields . 1
8.3.2.1 Initializers for Class Variables 1
8.3.2.2 Initializers for Instance Variables 1

8.3.3 Examples of Field Declarations .
8.3.3.1 Example: Hiding of Class Variables 1
8.3.3.2 Example: Hiding of Instance Variables 1
8.3.3.3 Example: Multiply Inherited Fields. 15
8.3.3.4 Example: Re-inheritance of Fields 1

8.4 Method Declarations .
8.4.1 Formal Parameters. .
8.4.2 Method Signature .
8.4.3 Method Modifiers .

8.4.3.1 abstract Methods. 15
8.4.3.2 static Methods. 16
8.4.3.3 final Methods . 1
8.4.3.4 native Methods. 16
8.4.3.5 synchronized Methods. 16

8.4.4 Method Throws .
8.4.5 Method Body. .
8.4.6 Inheritance, Overriding, and Hiding .

8.4.6.1 Overriding (By Instance Methods) 1

65
66
66
167
168
68
8

69
70
71
72
74
175

. 176
177
177

177
178
178
180
180
180

183
. 184
184

184
4
185

185
186

. 186
186
87
188
88

88
189

189
190
190
90
91

193
194
194
8.4.6.2 Hiding (By Class Methods) 1
8.4.6.3 Requirements in Overriding and Hiding 1
8.4.6.4 Inheriting Methods with the Same Signature 1

8.4.7 Overloading .
8.4.8 Examples of Method Declarations. .

8.4.8.1 Example: Overriding . 1
8.4.8.2 Example: Overloading, Overriding, and Hiding . . . 16
8.4.8.3 Example: Incorrect Overriding. 1
8.4.8.4 Example: Overriding versus Hiding 1
8.4.8.5 Example: Invocation of Hidden Class Methods 1
8.4.8.6 Large Example of Overriding. 1
8.4.8.7 Example: Incorrect Overriding because of Throws . 1

8.5 Static Initializers. .
8.6 Constructor Declarations .

8.6.1 Formal Parameters .
8.6.2 Constructor Signature .
8.6.3 Constructor Modifiers .
8.6.4 Constructor Throws .
8.6.5 Constructor Body .
8.6.6 Constructor Overloading .
8.6.7 Default Constructor .
8.6.8 Preventing Instantiation of a Class. .

9 Interfaces .
9.1 Interface Declarations.

9.1.1 Scope of an Interface Type Name .
9.1.2 Interface Modifiers .

9.1.2.1 abstract Interfaces . 18
9.1.3 Superinterfaces. .
9.1.4 Interface Body and Member Declarations
9.1.5 Access to Interface Member Names .

9.2 Interface Members .
9.3 Field (Constant) Declarations. .

9.3.1 Initialization of Fields in Interfaces . 1
9.3.2 Examples of Field Declarations .

9.3.2.1 Ambiguous Inherited Fields 1
9.3.2.2 Multiply Inherited Fields . 1

9.4 Abstract Method Declarations .
9.4.1 Inheritance and Overriding .
9.4.2 Overloading .
9.4.3 Examples of Abstract Method Declarations

9.4.3.1 Example: Overriding . 1
9.4.3.2 Example: Overloading . 1

10 Arrays.
10.1 Array Types .
10.2 Array Variables. .
xi

xii

. 195
 . 195
. 196
. 196
 . 197
199
9
 . 199

 201
. . 202
203

. 203
203
. 204
 . 205
205
. 206
. 208

208
210
11
11
12

215
215
6
6
7

18
. . 218
. 219
219
 . 220
220
. 221
221
22

 . 223
223
225
27
 . 228
 . 231
232
10.3 Array Creation .
10.4 Array Access .
10.5 Arrays: A Simple Example .
10.6 Arrays Initializers .
10.7 Array Members .
10.8 Class Objects for Arrays .
10.9 An Array of Characters is Not aString . 19
10.10 Array Store Exception .

11 Exceptions. .
11.1 The Causes of Exceptions .
11.2 Compile-Time Checking of Exceptions .

11.2.1 Why Errors are Not Checked .
11.2.2 Why Runtime Exceptions are Not Checked

11.3 Handling of an Exception .
11.3.1 Exceptions are Precise. .
11.3.2 Handling Asynchronous Exceptions .

11.4 An Example of Exceptions .
11.5 The Exception Hierarchy.

11.5.1 The ClassesException andRuntimeException 208
11.5.1.1 Standard Runtime Exceptions
11.5.1.2 Standard Checked Exceptions

11.5.2 The ClassError . 2
11.5.2.1 Loading and Linkage Errors 2
11.5.2.2 Virtual Machine Errors . 2

12 Execution .
12.1 Virtual Machine Start-Up .

12.1.1 Load the ClassTest . 21
12.1.2 LinkTest: Verify, Prepare, (Optionally) Resolve 21
12.1.3 InitializeTest: Execute Initializers . 21
12.1.4 InvokeTest.main. 2

12.2 Loading of Classes and Interfaces .
12.2.1 The Loading Process .
12.2.2 Loading: Implications for Code Generation

12.3 Linking of Classes and Interfaces .
12.3.1 Verification of the Binary Representation
12.3.2 Preparation of a Class or Interface Type
12.3.3 Resolution of Symbolic References .
12.3.4 Linking: Implications for Code Generation 2

12.4 Initialization of Classes and Interfaces .
12.4.1 When Initialization Occurs .
12.4.2 Detailed Initialization Procedure. .
12.4.3 Initialization: Implications for Code Generation 2

12.5 Creation of New Class Instances .
12.6 Finalization of Class Instances .

12.6.1 Implementing Finalization .

234
. 235
. 235
235

7
. 238
240
. 242
. 242
242
242
243
 . 243
245
248
249

250
53
53
53
253

. 254
254
54
55
56
56

56
256
257
257
258
259
259
59
260
260
260
261

263
264

. 265
265
266
267
12.6.2 Finalizer Invocations are Not Ordered .
12.7 Finalization of Classes .
12.8 Unloading of Classes and Interfaces .
12.9 Virtual Machine Exit .

13 Binary Compatibility . 23
13.1 The Form of a Java Binary .
13.2 What Binary Compatibility Is and Is Not. .
13.3 Evolution of Packages .
13.4 Evolution of Classes .

13.4.1 abstract Classes .
13.4.2 final Classes .
13.4.3 public Classes .
13.4.4 Superclasses and Superinterfaces. .
13.4.5 Class Body and Member Declarations.
13.4.6 Access to Members and Constructors .
13.4.7 Field Declarations .
13.4.8 final Fields and Constants. .
13.4.9 static Fields . 2
13.4.10 transient Fields . 2
13.4.11 volatile Fields . 2
13.4.12 Method and Constructor Declarations .
13.4.13 Method and Constructor Parameters .
13.4.14 Method Result Type .
13.4.15 abstract Methods . 2
13.4.16 final Methods . 2
13.4.17 native Methods . 2
13.4.18 static Methods . 2
13.4.19 synchronized Methods . 2
13.4.20 Method and Constructor Throws .
13.4.21 Method and Constructor Body. .
13.4.22 Method and Constructor Overloading .
13.4.23 Method Overriding. .
13.4.24 Static Initializers .

13.5 Evolution of Interfaces .
13.5.1 public Interfaces . 2
13.5.2 Superinterfaces. .
13.5.3 The Interface Members .
13.5.4 Field Declarations .
13.5.5 Abstract Method Declarations .

14 Blocks and Statements .
14.1 Normal and Abrupt Completion of Statements .
14.2 Blocks .
14.3 Local Variable Declaration Statements .

14.3.1 Local Variable Declarators and Types .
14.3.2 Scope of Local Variable Declarations .
xiii

xiv

268
269
. . 269
 . 271
. . 271
. . 272
. 273
73

73
274
277
278
. 278
279
80

. 280
81
81
2
283
285
286
287
89

. 290
1

. . 295

 301
 . 301
 . 302
 . 302
 . 302
304
 . 305
305

 . 307
 . . 308
309
310
 . 311
. 312
313
 . 313
. . 314
. 314
15
14.3.3 Hiding of Names by Local Variables .
14.3.4 Execution of Local Variable Declarations.

14.4 Statements .
14.5 The Empty Statement .
14.6 Labeled Statements .
14.7 Expression Statements .
14.8 Theif Statement .

14.8.1 Theif–then Statement . 2
14.8.2 Theif–then–else Statement . 2

14.9 Theswitch Statement. .
14.10 Thewhile Statement. .

14.10.1 Abrupt Completion .
14.11 Thedo Statement .

14.11.1 Abrupt Completion .
14.11.2 Example ofdo statement . 2

14.12 Thefor Statement .
14.12.1 Initialization offor statement. 2
14.12.2 Iteration offor statement . 2
14.12.3 Abrupt Completion offor statement . 28

14.13 Thebreak Statement. .
14.14 Thecontinue Statement. .
14.15 Thereturn Statement. .
14.16 Thethrow Statement. .
14.17 Thesynchronized Statement. 2
14.18 Thetry statement .

14.18.1 Execution oftry–catch . 29
14.18.2 Execution oftry–catch–finally. 292

14.19 Unreachable Statements.

15 Expressions .
15.1 Evaluation, Denotation, and Result .
15.2 Variables as Values .
15.3 Type of an Expression .
15.4 Expressions and Run-Time Checks .
15.5 Normal and Abrupt Completion of Evaluation .
15.6 Evaluation Order .

15.6.1 Evaluate Left-Hand Operand First .
15.6.2 Evaluate Operands before Operation .
15.6.3 Evaluation Respects Parentheses and Precedence.
15.6.4 Argument Lists are Evaluated Left-to-Right.
15.6.5 Evaluation Order for Other Expressions

15.7 Primary Expressions .
15.7.1 Literals.
15.7.2 this. .
15.7.3 Parenthesized Expressions .

15.8 Class Instance Creation Expressions .
15.8.1 Run-time Evaluation of Class Instance Creation Expressions .
15.8.2 Example: Evaluation Order and Out-of-Memory Detection. . . . 3

. 315
316
318
19

 . 319
320

. 323
324
325
25

327
27
328
29
332
333
333
334
34
35

336
37
337
38
38

. 341
341
342
. 344
. 344
5
5
. 346
7
8
8
9

 . 350
351
1
2
3
355
15.9 Array Creation Expressions .
15.9.1 Run-time Evaluation of Array Creation Expressions.
15.9.2 Example: Array Creation Evaluation Order.
15.9.3 Example: Array Creation and Out-of-Memory Detection 3

15.10 Field Access Expressions .
15.10.1 Field Access Using a Primary .
15.10.2 Accessing Superclass Members usingsuper 322

15.11 Method Invocation Expressions .
15.11.1 Compile-Time Step 1: Determine Class or Interface to Search .
15.11.2 Compile-Time Step 2: Determine Method Signature

15.11.2.1 Find Methods that are Applicable and Accessible . . 3
15.11.2.2 Choose the Most Specific Method
15.11.2.3 Example: Overloading Ambiguity 3
15.11.2.4 Example: Return Type Not Considered
15.11.2.5 Example: Compile-Time Resolution 3

15.11.3 Compile-Time Step 3: Is the Chosen Method Appropriate? . . .
15.11.4 Runtime Evaluation of Method Invocation

15.11.4.1 Compute Target Reference (If Necessary)
15.11.4.2 Evaluate Arguments .
15.11.4.3 Check Accessibility of Type and Method. 3
15.11.4.4 Locate Method to Invoke . 3
15.11.4.5 Create Frame, Synchronize, Transfer Control
15.11.4.6 Implementation Note: Combining Frames 3
15.11.4.7 Example: Target Reference and Static Methods. . . .
15.11.4.8 Example: Evaluation Order 3
15.11.4.9 Example: Overriding . 3
15.11.4.10 Example: Method Invocation usingsuper. 340

15.12 Array Access Expressions .
15.12.1 Runtime Evaluation of Array Access. .
15.12.2 Examples: Array Access Evaluation Order

15.13 Postfix Expressions.
15.13.1 Names.
15.13.2 Postfix Increment Operator++ . 34
15.13.3 Postfix Decrement Operator-- . 34

15.14 Unary Operators .
15.14.1 Prefix Increment Operator++. 34
15.14.2 Prefix Decrement Operator-- . 34
15.14.3 Unary Plus Operator+ . 34
15.14.4 Unary Minus Operator- . 34
15.14.5 Bitwise Complement Operator~ . 349
15.14.6 Logical Complement Operator! . 349

15.15 Cast Expressions. .
15.16 Multiplicative Operators. .

15.16.1 Multiplication Operator*. 35
15.16.2 Division Operator/ . 35
15.16.3 Remainder Operator% . 35

15.17 Additive Operators .
15.17.1 String Concatenation Operator+ . 355
xv

xvi

355
56
356

 . 359
 . 360

 . 362

. 365

6
66
67
 . 369
9
. 374
. . 381
. . 381

83
 . 386
 . 386
. 386
6
7
7
7
8
8
9
9
9
0
. 390
. 391
2

 . 392
 . 393
. 393
. 393
393

 . 394
 . 394
15.17.1.1 String Conversion .
15.17.1.2 Optimization of String Concatenation 3
15.17.1.3 Examples of String Concatenation

15.17.2 Additive Operators (+ and-) for Numeric Types 358
15.18 Shift Operators. .
15.19 Relational Operators .

15.19.1 Numerical Comparison Operators<, <=, >, and>=. 361
15.19.2 Type Comparison Operatorinstanceof 361

15.20 Equality Operators .
15.20.1 Numerical Equality Operators== and!= 363
15.20.2 Boolean Equality Operators== and!=. 364
15.20.3 Reference Equality Operators== and!= 364

15.21 Bitwise and Logical Operators .
15.21.1 Integer Bitwise Operators&, ^, and| . 365
15.21.2 Boolean Logical Operators&, ^, and| . 365

15.22 Conditional-And Operator&& . 36
15.23 Conditional-Or Operator||. 3
15.24 Conditional Operator? : . 3
15.25 Assignment Operators .

15.25.1 Simple Assignment Operator= . 36
15.25.2 Compound Assignment Operators .

15.26 Expression .
15.27 Constant Expression .

16 Definite Assignment . 3
16.1 Definite Assignment and Expressions .

16.1.1 Boolean Constant Expressions .
16.1.2 Boolean-valued Expressions .
16.1.3 The Boolean Operator&& . 38
16.1.4 The Boolean Operator|| . 38
16.1.5 The Boolean Operator! . 38
16.1.6 The Boolean Operator& . 38
16.1.7 The Boolean Operator| . 38
16.1.8 The Boolean Operator^ . 38
16.1.9 The Boolean Operator== . 38
16.1.10 The Boolean Operator!= . 38
16.1.11 The Boolean Operator? : . 38
16.1.12 The Conditional Operator? :. 39
16.1.13 Boolean Assignment Expressions .
16.1.14 Other Assignment Expressions .
16.1.15 Operators++ and-- . 39
16.1.16 Other Expressions .

16.2 Definite Assignment and Statements .
16.2.1 Empty Statements .
16.2.2 Blocks .
16.2.3 Local Variable Declaration Statements .
16.2.4 Labeled Statements .
16.2.5 Expression Statements. .

394
395
395
395
396
96
397

97
398

399
401

. 403
. 404

. 406
407
407

. 408

. 408
 . 409
413

 . 415
. 415

416

19
419

420
 . 420
 . 420
21
21
22
22
22
22
. 423

3
433
433

435
437
438
16.2.6 if Statements. .
16.2.7 switch Statements. .
16.2.8 while Statements. .
16.2.9 do Statements. .
16.2.10 for Statements. .

16.2.10.1 Initialization Part . 3
16.2.10.2 Incrementation Part. .

16.2.11 break, continue, return, andthrow Statements. 397
16.2.12 synchronized Statements . 3
16.2.13 try Statements. .

17 Threads and Locks .
17.1 Terminology and Framework .
17.2 Execution Order .
17.3 Rules about Variables .
17.4 Nonatomic Treatment ofdouble andlong . 405
17.5 Rules about Locks .
17.6 Rules about the Interaction of Locks and Variables
17.7 Rules for Volatile Variables .
17.8 Prescient Store Actions.
17.9 Discussion.
17.10 Example: Possible Swap. .
17.11 Example: Out-of-Order Writes. .
17.12 Threads .
17.13 Locks and Synchronization .
17.14 Wait Sets and Notification .

18 Documentation Comments. 4
18.1 The Text of a Documentation Comment .
18.2 HTML in a Documentation Comment .
18.3 Summary Sentence and General Description .
18.4 Tagged Paragraphs .

18.4.1 The@see Tag . 4
18.4.2 The@author Tag . 4
18.4.3 The@version Tag . 4
18.4.4 The@param Tag . 4
18.4.5 The@return Tag . 4
18.4.6 The@exception Tag . 4

18.5 Example .

19 LALR(1) Grammar . 43
19.1 Grammatical Difficulties .

19.1.1 Problem #1: Names Too Specific. .
19.1.2 Problem #2: Modifiers Too Specific .
19.1.3 Problem #3: Field Declaration versus Method Declaration. . . .
19.1.4 Problem #4: Array Type versus Array Access
xvii

xviii

 . 438
. 440
. 440
 . 440
 . 441
 . 442
442
 . 443
443
443
444
444
445
 . 445
445
. 446
 . 446
 . 450

55
8

5
6
9
1
7
8

95
3
0

17
1

8
8
1
3

9
6
7

2
11

15
7

19.1.5 Problem #5: Cast versus Parenthesized Expression
19.2 Productions from §2.3: The Syntactic Grammar.
19.3 Productions from §3: Lexical Structure.
19.4 Productions from §4: Types, Values, and Variables.
19.5 Productions from §6: Names .
19.6 Productions from §7: Packages .
19.7 Productions Used Only in the LALR(1) Grammar
19.8 Productions from §8: Classes .

19.8.1 Productions from §8.1: Class Declaration.
19.8.2 Productions from §8.3: Field Declarations
19.8.3 Productions from §8.4: Method Declarations
19.8.4 Productions from §8.5: Static Initializers
19.8.5 Productions from §8.6: Constructor Declarations.

19.9 Productions from §9: Interfaces. .
19.9.1 Productions from §9.1: Interface Declarations

19.10 Productions from §10: Arrays .
19.11 Productions from §14: Blocks and Statements .
19.12 Productions from §15: Expressions. .

20 The Packagejava.lang . 4
20.1 The Classjava.lang.Object . 45
20.2 The Interfacejava.lang.Cloneable . 46
20.3 The Classjava.lang.Class . 46
20.4 The Classjava.lang.Boolean . 46
20.5 The Classjava.lang.Character . 47
20.6 The Classjava.lang.Number . 48
20.7 The Classjava.lang.Integer . 48
20.8 The Classjava.lang.Long . 4
20.9 The Classjava.lang.Float . 50
20.10 The Classjava.lang.Double . 51
20.11 The Classjava.lang.Math . 5
20.12 The Classjava.lang.String . 53
20.13 The Classjava.lang.StringBuffer . 54
20.14 The Classjava.lang.ClassLoader . 55
20.15 The Classjava.lang.Process . 56
20.16 The Classjava.lang.Runtime . 56
20.17 The Classjava.lang.SecurityManager . 569
20.18 The Classjava.lang.System . 57
20.19 The Interfacejava.lang.Runnable . 58
20.20 The Classjava.lang.Thread . 58
20.21 The Classjava.lang.ThreadGroup . 60
20.22 The Classjava.lang.Throwable and its Subclasses 6
20.23 The Class

java.lang.ExceptionInInitializerError614

21 The Packagejava.util . 6
21.1 The Interfacejava.util.Enumeration . 61

8
22
3
5
9
3
5
6

4
1

65
7
4
0
4

3

2
0

8

52

0
1
2

21.2 The Classjava.util.BitSet . 61
21.3 The Classjava.util.Date. 6
21.4 The Classjava.util.Dictionary . 63
21.5 The Classjava.util.Hashtable . 63
21.6 The Classjava.util.Properties . 63
21.7 The Classjava.util.Observable . 64
21.8 The Interfacejava.util.Observer . 64
21.9 The Classjava.util.Random . 64
21.10 The Classjava.util.StringTokenizer . 651
21.11 The Classjava.util.Vector . 65
21.12 The Classjava.util.Stack. 66
21.13 The Classjava.util.EmptyStackException 663
21.14 The Classjava.util.NoSuchElementException 664

22 The Packagejava.io . 6
22.1 The Interfacejava.io.DataInput . 66
22.2 The Interfacejava.io.DataOutput . 67
22.3 The Classjava.io.InputStream . 68
22.4 The Classjava.io.FileInputStream . 68
22.5 The Classjava.io.PipedInputStream . 687
22.6 The Classjava.io.ByteArrayInputStream . 689
22.7 The Classjava.io.StringBufferInputStream 692
22.8 The Classjava.io.SequenceInputStream . 694
22.9 The Classjava.io.FilterInputStream . 696
22.10 The Classjava.io.BufferedInputStream . 699
22.11 The Classjava.io.DataInputStream . 70
22.12 The Classjava.io.LineNumberInputStream 707
22.13 The Classjava.io.PushbackInputStream . 710
22.14 The Classjava.io.StreamTokenizer . 71
22.15 The Classjava.io.OutputStream . 72
22.16 The Classjava.io.FileOutputStream . 722
22.17 The Classjava.io.PipedOutputStream . 725
22.18 The Classjava.io.ByteArrayOutputStream 727
22.19 The Classjava.io.FilterOutputStream . 730
22.20 The Classjava.io.BufferedOutputStream . 732
22.21 The Classjava.io.DataOutputStream . 734
22.22 The Classjava.io.PrintStream . 73
22.23 The Classjava.io.RandomAccessFile . 743
22.24 The Classjava.io.File. 7
22.25 The Interfacejava.io.FilenameFilter. 759
22.26 The Classjava.io.FileDescriptor . 76
22.27 The Classjava.io.IOException . 76
22.28 The Classjava.io.EOFException . 76
22.29 The Classjava.io.FileNotFoundException 763
22.30 The Classjava.io.InterruptedIOException 764
22.31 The Classjava.io.UTFDataFormatException 765
xix

xx

 767

823

825
Index .

Credits .

Colophon .

 pro-
d pub-
orld-

rnet,
st in
f the

d the

d pre-

p at
ditor
ough
ling,
rces it
dual
cenes
s. A
posi-
Series Foreword

THE Java Series books provide definitive reference documentation for Java
grammers and end users. They are written by members of the Java team an
lished under the auspices of JavaSoft, a Sun Microsystems business. The W
Wide-Web allows Java documentation to be made available over the Inte
either by downloading or as hypertext. Nevertheless, the world-wide intere
Java technology led us to write and publish these books to supplement all o
documentation at our Web site

To learn the latest about the Java Platform and Environment or downloa
latest Java release, visit our World Wide Web site athttp://java.sun.com. For
updated information about the Java Series, including sample code, errata, an
views of forthcoming books, visithttp://java.sun.com/Series.

We would like to thank the Corporate and Professional Publishing Grou
Addison-Wesley for their partnership in putting together the Series. Our e
Mike Hendrickson and his team have done a superb job of navigating us thr
the world of publishing. Within Sun Microsystems, the support of James Gos
Jon Kannegaard, and Bill Joy ensured that this series would have the resou
needed to be successful. In addition to the tremendous effort by indivi
authors, many members of the JavaSoft team have contributed behind the s
to bring the highest level of quality and engineering to the books in the Serie
personal note of thanks to my children Christopher and James for putting a
tive spin on the many trips to my office during the development of the Series.

Lisa Friendly
Series Editor
xxi

mer-
 with
ton,
 Java,
f the
uck,

d-

gram-
ncies
 then

cs of

lan-
ccept
isms
ould

ever-
intend
ting
 lan-
sion.
ultan-

 We
s to
everal
near
Preface

JAVA was originally called Oak, and designed for use in embedded consu
electronic applications by James Gosling. After several years of experience
the language, and significant contributions by Ed Frank, Patrick Naugh
Jonathan Payne, and Chris Warth it was retargeted to the Internet, renamed
and substantially revised to be the language specified here. The final form o
language was defined by James Gosling, Bill Joy, Guy Steele, Richard T
Frank Yellin, and Arthur van Hoff, with help from Graham Hamilton, Tim Lin
holm and many other friends and colleagues.

Java is a general-purpose concurrent class-based object-oriented pro
ming language, specifically designed to have as few implementation depende
as possible. Java allows application developers to write a program once and
be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semanti
the Java language and the core packagesjava.lang, java.io, andjava.util of
its Application Programming Interface. We intend that the behavior of every
guage construct is specified here, so that all implementations of Java will a
the same programs. Except for timing dependencies or other non-determin
and given sufficient time and sufficient memory space, a Java program sh
compute the same result on all machines and in all implementations.

We believe that Java is a mature language, ready for widespread use. N
theless, we expect some evolution of the language in the years to come. We
to manage this evolution in a way that is completely compatible with exis
applications. To do this, we intend to make relatively few new versions of the
guage, and to distinguish each new version with a different filename exten
Java compilers and systems will be able to support the several versions sim
nously, with complete compatibility.

Much research and experimentation with Java is already underway.
encourage this work, and will continue to cooperate with external group
explore improvements to Java. For example, we have already received s
interesting proposals for parameterized types. In technically difficult areas,
the state of the art, this kind of research collaboration is essential.
xxiii

PREFACE

xxiv

 this

ded
ven
ler,
nary

 from
ce,
ill,

Gust,
er

cker,
roff,
ffer,

erg,
, Rob
ted

tted

 the
book.
ope

atters
 for

y or
son-
opies
 from
rdy,
ira

and
Jon
y for
We acknowledge and thank the many people who have contributed to
book through their excellent feedback, assistance and encouragement:

Particularly thorough, careful, and thoughtful reviews of drafts were provi
by Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki Ida, David Moon, Ste
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wad
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordi
volunteer efforts.

We are also grateful for reviews, questions, comments, and suggestions
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbuzov, Kim Bru
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David D
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles
Warren Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Rog
Hoover, Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Ka
Peter Kessler, James Larus, Derek Lieber, Bill McKeeman, Steve Na
Evi Nemeth, Robert O’Callahan, Dave Papay, Craig Partridge, Scott Pfe
Eric Raymond, Jim Roskind, Jim Russell, William Scherlis, Edith Schonb
Anthony Scian, Matthew Self, Janice Shepherd, Kathy Stark, Barbara Steele
Strom, William Waite, Greg Weeks, and Bob Wilson. (This list was genera
semi-automatically from our E-mail records. We apologize if we have omi
anyone.)

The feedback from all these reviewers was invaluable to us in improving
definition of the Java language as well as the form of the presentation in this
We thank them for their diligence. Any remaining errors in this book—we h
they are few—are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with m
of typography and layout. We thank Dan Mills of Adobe Systems Incorporated
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped us in one wa
another. Lisa Friendly, our series editor, managed our relationship with Addi
Wesley. Susan Stambaugh managed the distribution of many hundreds of c
of drafts to reviewers. We received valuable assistance and technical advice
Ben Adida, Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Ha
Steve Heller, David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Ak
Tanaka, Greg Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant,
Derek White. We thank Alan Baratz, David Bowen, Mike Clary, John Doerr,
Kannegaard, Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNeal
leadership and encouragement.

PREFACE

f the

s.

great
n.
iting
ters,
l, the
tes,
 our

e who
 work

ález
long

ndex.
 jokes

ort

 with
ars
The on-line Bartleby Library of Columbia University, at URL:

http://www.cc.columbia.edu/acis/bartleby/

was invaluable to us during the process of researching and verifying many o
quotations that are scattered throughout this book. Here is one example:

They lard their lean books with the fat of others’ work
—Robert Burton (1576–1640)

We are grateful to those who have toiled on Project Bartleby, for saving us a
deal of effort and reawakening our appreciation for the works of Walt Whitma

We are thankful for the tools and services we had at our disposal in wr
this book: telephones, overnight delivery, desktop workstations, laser prin
photocopiers, text formatting and page layout software, fonts, electronic mai
World Wide Web, and, of course, the Internet. We live in three different sta
scattered across a continent, but collaboration with each other and with
reviewers has seemed almost effortless. Kudos to the thousands of peopl
have worked over the years to make these excellent tools and services
quickly and reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonz
of Addison-Wesley were very helpful, encouraging, and patient during the
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on a very tight schedule, to create the i
We got into the act at the last minute, however; blame us and not her for any
you may find hidden therein.

Finally, we are grateful to our families and friends for their love and supp
during this last, crazy, year.

In their bookThe C Programming Language, Brian Kernighan and Dennis
Ritchie said that they felt that the C language “wears well as one’s experience
it grows.” If you like C, we think you will like Java. We hope that Java, too, we
well for you.

James Gosling
Cupertino, California

Bill Joy
Aspen, Colorado

Guy Steele
Chelmsford, Massachusetts

July, 1996
xxv

C H A P T E R 1
nts.

ge. It
ncy in
, with
uages
guage,
gn, the

 the
 that
ams
clude
chine

gram

pre-
orage

s of

rt sys-
nsafe
fe con-

rmat

ddi-
Introduction

1.0 If I have seen further it is by standing upon the shoulders of Gia
—Sir Isaac Newton

JAVA is a general-purpose, concurrent, class-based, object-oriented langua
is designed to be simple enough that many programmers can achieve flue
the language. Java is related to C and C++ but is organized rather differently
a number of aspects of C and C++ omitted and a few ideas from other lang
included. Java is intended to be a production language, not a research lan
and so, as C. A. R. Hoare suggested in his classic paper on language desi
design of Java has avoided including new and untested features.

Java is strongly typed. This specification clearly distinguishes between
compile-time errors that can and must be detected at compile time, and those
occur at run time. Compile time normally consists of translating Java progr
into a machine-independent byte-code representation. Run-time activities in
loading and linking of the classes needed to execute a program, optional ma
code generation and dynamic optimization of the program, and actual pro
execution.

Java is a relatively high-level language, in that details of the machine re
sentation are not available through the language. It includes automatic st
management, typically using a garbage collector, to avoid the safety problem
explicit deallocation (as in C’sfree or C++’sdelete). High-performance gar-
bage-collected implementations of Java can have bounded pauses to suppo
tems programming and real-time applications. Java does not include any u
constructs, such as array accesses without index checking, since such unsa
structs would cause a program to behave in an unspecified way.

Java is normally compiled to a bytecoded instruction set and binary fo
defined inThe Java Virtual Machine Specification(Addison-Wesley, 1996). Most
implementations of Java for general-purpose programming will support the a
tional packages defined in the series of books under the general titleThe Java
Application Programming Interface (Addison-Wesley).
1

1 Introduction INTRODUCTION

2

al and

 and
g of

re the

in all
- and

.
 array
s that
n exist.

 val-

s a
fer-

lass of
refer-
of an
 class
class

rsions
sion.
r to a
 in the
afety.
 what
eclared
 and

s on
elps in
 its
 more
This Java Language Specification is organized as follows:
Chapter 2 describes grammars and the notation used to present the lexic

syntactic grammars for Java.
Chapter 3 describes the lexical structure of Java, which is based on C

C++. Java is written in the Unicode character set. Java supports the writin
Unicode characters on systems that support only ASCII.

Chapter 4 describes Java’s types, values, and variables. Java’s types a
primitive types and reference types.

The primitive types are defined to be the same on all machines and
implementations, and are various sizes of two’s-complement integers, single
double-precision IEEE 754 standard floating-point numbers, aboolean type, and
a Unicode characterchar type. Values of the primitive types do not share state

Java’s reference types are the class types, the interface types, and the
types. The reference types are implemented by dynamically created object
are either instances of classes or arrays. Many references to each object ca
All objects (including arrays) support the methods of the standard classObject,
which is the (single) root of the class hierarchy. A predefinedString class sup-
ports Unicode character strings. Standard classes exist for wrapping primitive
ues inside of objects.

Variables are typed storage locations. A variable of a primitive type hold
value of that exact primitive type. A variable of a class type can hold a null re
ence or a reference to an object whose type is that class type or any subc
that class type. A variable of an interface type can hold a null reference or a
ence to an instance of any class that implements the interface. A variable
array type can hold a null reference or a reference to an array. A variable of
typeObject can hold a null reference or a reference to any object, whether
instance or array.

Chapter 5 describes Java’s conversions and numeric promotions. Conve
change the compile-time type and, sometimes, the value of an expres
Numeric promotions are used to convert the operands of a numeric operato
common type where an operation can be performed. There are no loopholes
language; casts on reference types are checked at run time to ensure type s

Chapter 6 describes declarations and names, and how to determine
names mean (denote). Java does not require types or their members to be d
before they are used. Declaration order is significant only for local variables
the order of initializers of fields in a class or interface.

Java provides control over the scope of names and supports limitation
external access to members of packages, classes, and interfaces. This h
writing large programs by distinguishing the implementation of a type from
users and those who extend it. Standard naming conventions that make for
readable programs are described here.

INTRODUCTION Introduction 1

d into
 com-
 and

s have
can be

 (vari-
operate
eated
tances

nta-
from
class

eth-

which
dled.
ts
 state.
ple-

arrays
gram-
ces in

stract
ent the
o any
ed.
cking.
f type

 fully
re are
rrors.
uiring
res it.
aids
Chapter 7 describes the structure of a Java program, which is organize
packages similar to the modules of Modula. The members of a package are
pilation units and subpackages. Compilation units contain type declarations
can import types from other packages to give them short names. Package
names in a hierarchical namespace, and the Internet domain name system
used to form unique package names.

Chapter 8 describes Java’s classes. The members of classes are fields
ables) and methods. Class variables exist once per class. Class methods
without reference to a specific object. Instance variables are dynamically cr
in objects that are instances of classes. Instance methods are invoked on ins
of classes; such instances become the current objectthis during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the impleme
tion of each class is derived from that of a single superclass, and ultimately
the classObject. Variables of a class type can reference an instance of that
or of any subclass of that class, allowing new types to be used with existing m
ods, polymorphically.

Classes support concurrent programming withsynchronized methods.
Methods declare the checked exceptions that can arise from their execution,
allows compile-time checking to ensure that exceptional conditions are han
Objects can declare afinalize method that will be invoked before the objec
are discarded by the garbage collector, allowing the objects to clean up their

For simplicity, Java has neither declaration “headers” separate from the im
mentation of a class nor separate type and class hierarchies.

Although Java does not include parameterized classes, the semantics of
are those of a parameterized class with some syntactic sugar. Like the pro
ming language Beta, Java uses a run-time type check when storing referen
arrays to ensure complete type safety.

Chapter 9 describes Java’s interface types, which declare a set of ab
methods and constants. Classes that are otherwise unrelated can implem
same interface type. A variable of an interface type can contain a reference t
object that implements the interface. Multiple interface inheritance is support

Chapter 10 describes Java arrays. Array accesses include bounds che
Arrays are dynamically created objects and may be assigned to variables o
Object. Java supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes Java’s exceptions, which are nonresuming and
integrated with the language semantics and concurrency mechanisms. The
three kinds of exceptions: checked exceptions, run-time exceptions, and e
The compiler ensures that checked exceptions are properly handled by req
that a method or constructor can result in a checked exception only if it decla
This provides compile-time checking that exception handlers exist, and
3

1 Introduction INTRODUCTION

4

xcep-
hine

ram.
sses

hine,

ome
hat are
 object

bage
 the
s that
ay be
first.

ges
piled.
idely
ood

code
 about

 C and

es
t

or

arent)
ility.
g the
Java
ed in

ture.
l vari-
y ini-
programming in the large. Most user-defined exceptions should be checked e
tions. Invalid operations in the program detected by the Java Virtual Mac
result in run-time exceptions, such asNullPointerException. Errors result
from failures detected by the virtual machine, such asOutOfMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a Java prog
A Java program is normally stored as binary files representing compiled cla
and interfaces. These binary files can be loaded into a Java Virtual Mac
linked to other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. S
classes may be instantiated to create new objects of the class type. Objects t
class instances also contain an instance of each superclass of the class, and
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the gar
collector. If an object declares a finalizer, the finalizer is executed before
object is reclaimed to give the object a last chance to clean up resource
would not otherwise be released. When a class is no longer needed, it m
unloaded; if a class finalizer is declared, it is given a chance to clean up
Objects and classes may be finalized on exit of the Java Virtual Machine.

Chapter 13 describes binary compatibility, specifying the impact of chan
to types on other types that use the changed types but have not been recom
These considerations are of interest to developers of types that are to be w
distributed, in a continuing series of versions, often through the Internet. G
program development environments automatically recompile dependent
whenever a type is changed, so most programmers need not be concerned
these details.

Chapter 14 describes Java’s blocks and statements, which are based on
C++. Java has nogoto, but includes labeledbreak andcontinue statements.
Unlike C, Java requiresboolean expressions in control-flow statements, and do
not convert types toboolean implicitly, in the hope of catching more errors a
compile time. Asynchronized statement provides basic object-level monit
locking. A try statement can includecatch and finally clauses to protect
against non-local control transfers.

Chapter 15 describes Java’s expressions. Java fully specifies the (app
order of evaluation of expressions, for increased determinism and portab
Overloaded methods and constructors are resolved at compile time by pickin
most specific method or constructor from those which are applicable.
chooses which method or constructor by using the same basic algorithm us
languages with richer dispatching, such as Lisp’s CLOS and Dylan, for the fu

Chapter 16 describes the precise way in which Java ensures that loca
ables are definitely set before use. While all other variables are automaticall

INTRODUCTION Example Programs 1.1

s in

 based
am-
oces-

nta-

s the
dy of

ndard
 in all

all

e Java

tor.
t
es.
ook,

 Java
tialized to a default value, Java does not automatically initialize local variable
order to avoid masking programming errors.

Chapter 17 describes the semantics of Java threads and locks, which are
on the monitor-based concurrency originally introduced with the Mesa progr
ming language. Java specifies a memory model for shared-memory multipr
sors that supports high-performance implementations.

Chapter 18 describes the facilities for automatically generating docume
tion from special comments in Java source code.

Chapter 19 presents a LALR(1) syntactic grammar for Java, and describe
differences between this grammar and the expository grammar used in the bo
the language specification that precedes it.

Chapters 20 through 22 are the reference manual for the core of the sta
Java Application Programming Interface. These packages must be included
general purpose Java systems.

Chapter 20 describes the packagejava.lang. The types defined in
java.lang are automatically imported to be available without qualification in
Java programs. They include the primordial classObject, which is a superclass of
all other classes; classes such asInteger andFloat, which wrap the primitive
types inside objects; exceptions and errors defined by the language and th
Virtual Machine; Thread support; metalinguistic classes such asClass and
ClassLoader; and the classSystem, which abstracts the host system.

Chapter 21 describes the packagejava.util, which defines a few basic util-
ity classes, such as a hashtable class and a pseudo-random number genera

Chapter 22 describes the packagejava.io, which defines basic input/outpu
facilities, including random access files and streams of values of primitive typ

The book concludes with an index, credits for quotations used in the b
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed by a
system and are similar in form to:

class Test {
public static void main(String[] args) {

for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i] : " " + args[i]);

System.out.println();
}

}

5

1.2 References INTRODUCTION

6

.

gor

tober

N

ted in
cia-

olo-

,
92-6.

g,
01-

96.)
On a Sun workstation, this class, stored in the fileTest.java, can be com-
piled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.2 References

Apple Computer.Dylan™ Reference Manual.Apple Computer Inc., Cupertino, California
September 29, 1995. See alsohttp://www.cambridge.apple.com.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gre
Kiczales, and David A. Moon.Common Lisp Object System Specification, X3J13
Document 88-002R, June 1988; appears as Chapter 28 of Steele, Guy.Common Lisp:
The Language, 2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770–864.

Ellis, Margaret A., and Bjarne Stroustrup.The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1990, reprinted with corrections Oc
1992, ISBN 0-201-51459-1.

Harbison, Samuel.Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISB
0-13-596396.

Hoare, C. A. R.Hints on Programming Language Design.Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprin
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Asso
tion for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Avail-
able from Global Engineering Documents, 15 Inverness Way East, Englewood, C
rado 80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie.The C Programming Language,2nd ed.
Prentice Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Møller-Pedersen, and Kristen Nygaard.Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet.The Mesa Programming
Language, Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne.The C++ Progamming Language,2nd ed. Addison-Wesley, Reading
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-539

Unicode Consortium, The.The Unicode Standard: Worldwide Character Encodin
Version 1.0. Addison-Wesley, Reading, Massachusetts, Volume 1, 1991, ISBN 0-2
56788-1, and Volume 2, 1992, ISBN 0-201-60845-6. (Version 2, forthcoming, 19

C H A P T E R 2
 . .

on to

f

inal,

result
 side

m-
tions,
i-

5).
 dis-
 are
.9),

ge.
Grammars

Grammar, which knows how to control even kings .
—Molière, Les Femmes Savantes(1672), Act II, scene vi

THIS chapter describes the context-free grammars used in this specificati
define the lexical and syntactic structure of a Java program.

2.1 Context-Free Grammars

A context-free grammar consists of a number ofproductions. Each production has
an abstract symbol called anonterminal as itsleft-hand side, and a sequence o
one or more nonterminal andterminal symbols as itsright-hand side. For each
grammar, the terminal symbols are drawn from a specifiedalphabet.

Starting from a sentence consisting of a single distinguished nonterm
called thegoal symbol, a given context-free grammar specifies alanguage,
namely, the infinite set of possible sequences of terminal symbols that can
from repeatedly replacing any nonterminal in the sequence with a right-hand
of a production for which the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammar for Java is given in §3. This grammar has as its terminal sy
bols the characters of the Unicode character set. It defines a set of produc
starting from the goal symbolInput (§3.5), that describe how sequences of Un
code characters (§3.1) are translated into a sequence of input elements (§3.

These input elements, with white space (§3.6) and comments (§3.7)
carded, form the terminal symbols for the syntactic grammar for Java and
called Javatokens (§3.5). These tokens are the identifiers (§3.8), keywords (§3
literals (§3.10), separators (§3.11), and operators (§3.11) of the Java langua
7

2.3 The Syntactic Grammar GRAMMARS

8

his
bols.

t Java

The
ar

l
ext is
gram

l
lon.

suc-

ult
ch

i-
ol
t and
2.3 The Syntactic Grammar

The syntactic grammar for Java is given in Chapters 4, 6–10, 14, and 15. T
grammar has Java tokens defined by the lexical grammar as its terminal sym
It defines a set of productions, starting from the goal symbolCompilationUnit
(§7.3), that describe how sequences of tokens can form syntactically correc
programs.

A LALR(1) version of the syntactic grammar is presented in Chapter 19.
grammar in the body of this specification is very similar to the LALR(1) gramm
but more readable.

2.4 Grammar Notation

Terminal symbols are shown infixed width font in the productions of the lexica
and syntactic grammars, and throughout this specification whenever the t
directly referring to such a terminal symbol. These are to appear in a pro
exactly as written.

Nonterminal symbols are shown initalic type. The definition of a nontermina
is introduced by the name of the nonterminal being defined followed by a co
One or more alternative right-hand sides for the nonterminal then follow on
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if (Expression) Statement

states that the nonterminalIfThenStatementrepresents the tokenif, followed by a
left parenthesis token, followed by anExpression, followed by a right parenthesis
token, followed by aStatement. As another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList , Argument

states that anArgumentList may represent either a singleArgument or an
ArgumentList, followed by a comma, followed by anArgument. This definition of
ArgumentList is recursive, that is to say, it is defined in terms of itself. The res
is that anArgumentList may contain any positive number of arguments. Su
recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterm
nal, indicates anoptional symbol. The alternative containing the optional symb
actually specifies two right-hand sides, one that omits the optional elemen
one that includes it. This means that:

GRAMMARS Grammar Notation 2.4

stan-
BreakStatement:
break Identifieropt ;

is a convenient abbreviation for:

BreakStatement:
break ;
break Identifier ;

and that:

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt) Statement

is a convenient abbreviation for:

ForStatement:
for (; Expressionopt ; ForUpdateopt) Statement
for (ForInit ; Expressionopt ; ForUpdateopt) Statement

which in turn is an abbreviation for:

ForStatement:
for (; ; ForUpdateopt) Statement
for (; Expression ; ForUpdateopt) Statement
for (ForInit ; ; ForUpdateopt) Statement
for (ForInit ; Expression ; ForUpdateopt) Statement

which in turn is an abbreviation for:

ForStatement:
for (; ;) Statement
for (; ; ForUpdate) Statement
for (; Expression ;) Statement
for (; Expression ; ForUpdate) Statement
for (ForInit ; ;) Statement
for (ForInit ; ; ForUpdate) Statement
for (ForInit ; Expression ;) Statement
for (ForInit ; Expression ; ForUpdate) Statement

so the nonterminalForStatement actually has eight alternative right-hand sides.
A very long right-hand side may be continued on a second line by sub

tially indenting this second line, as in:

ConstructorDeclaration:
ConstructorModifiersopt ConstructorDeclarator

Throwsopt ConstructorBody
9

2.4 Grammar Notation GRAMMARS

10

des,

ig-
rna-
tion:

sents
ition:

an-
 the

e in
which defines one right-hand side for the nonterminalConstructorDeclaration.
(This right-hand side is an abbreviation for four alternative right-hand si
because of the two occurrences of “opt”.)

When the words “one of ” follow the colon in a grammar definition, they s
nify that each of the terminal symbols on the following line or lines is an alte
tive definition. For example, the lexical grammar for Java contains the produc

ZeroToThree: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in a lexical production appears to be a token, it repre
the sequence of characters that would make up such a token. Thus, the defin

BooleanLiteral: one of
true false

in a lexical grammar production is shorthand for:

BooleanLiteral:
t r u e
f a l s e

The right-hand side of a lexical production may specify that certain exp
sions are not permitted by using the phrase “but not” and then indicating
expansions to be excluded, as in the productions forInputCharacter (§3.4) and
Identifier (§3.8):

InputCharacter:
UnicodeInputCharacter but notCR or LF

Identifier:
IdentifierName but not aKeyword or BooleanLiteral or NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phras
roman type in cases where it would be impractical to list all the alternatives:

RawInputCharacter:
any Unicode character

C H A P T E R 3
e.

 pro-
icode
 sup-
sis-

d to a
ents

erals
mar.

rma-

s-
.0.
 and
 are
lt in
or-
oding
Lexical Structure

Lexicographer: A writer of dictionaries, a harmless drudg
—Samuel Johnson,Dictionary (1755)

THIS chapter specifies the lexical structure of Java.
Java programs are written in Unicode (§3.1), but lexical translations are

vided (§3.2) so that Unicode escapes (§3.3) can be used to include any Un
character using only ASCII characters. Line terminators are defined (§3.4) to
port the different conventions of existing host systems while maintaining con
tent line numbers.

The Unicode characters resulting from the lexical translations are reduce
sequence of input elements (§3.5), which are white space (§3.6), comm
(§3.7), and tokens. The tokens are the identifiers (§3.8), keywords (§3.9), lit
(§3.10), separators (§3.11), and operators (§3.12) of the Java syntactic gram

3.1 Unicode

Java programs are written using the Unicode character set, version 2.0. Info
tion about this encoding may be found at:

http://www.unicode.org and ftp://unicode.org

Versions of Java prior to 1.1 used Unicode version 1.1.5 (seeThe Unicode Stan-
dard: Worldwide Character Encoding(§1.2) and updates). See §20.5 for a discu
sion of the differences between Unicode version 1.1.5 and Unicode version 2

Except for comments (§3.7), identifiers, and the contents of character
string literals (§3.10.4, §3.10.5), all input elements (§3.5) in a Java program
formed only from ASCII characters (or Unicode escapes (§3.3) which resu
ASCII characters). ASCII (ANSI X3.4) is the American Standard Code for Inf
mation Interchange. The first 128 characters of the Unicode character enc
are the ASCII characters.
11

3.2 Lexical Translations LEXICAL STRUCTURE

12

, using

arac-
form
cter
be

 of

lting
hite

(§3.5)

 result
ation

ation

r-
cters
arac-
3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of Java tokens
the following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (§3.3) in the raw stream of Unicode ch
ters to the corresponding Unicode character. A Unicode escape of the
\uxxxx, wherexxxx is a hexadecimal value, represents the Unicode chara
whose encoding isxxxx. This translation step allows any Java program to
expressed using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream
input characters and line terminators (§3.4).

3. A translation of the stream of input characters and line terminators resu
from step 2 into a sequence of Java input elements (§3.5) which, after w
space (§3.6) and comments (§3.7) are discarded, comprise the tokens
that are the terminal symbols of the syntactic grammar (§2.3) for Java.

Java always uses the longest possible translation at each step, even if the
does not ultimately make a correct Java program, while another lexical transl
would. Thus the input charactersa--b are tokenized (§3.5) asa, --, b, which is
not part of any grammatically correct Java program, even though the tokeniz
a, -, -, b could be part of a grammatically correct Java program.

3.3 Unicode Escapes

Java implementations first recognizeUnicode escapes in their input, translating
the ASCII characters\u followed by four hexadecimal digits to the Unicode cha
acter with the indicated hexadecimal value, and passing all other chara
unchanged. This translation step results in a sequence of Unicode input ch
ters:

UnicodeInputCharacter:
UnicodeEscape
RawInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

LEXICAL STRUCTURE Line Terminators 3.4

har-

e.
s

n

rther

 into
SCII-
in the

he

m. The
rting
de
pe

y

s into
e

RawInputCharacter:
any Unicode character

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The\, u, and hexadecimal digits here are all ASCII characters.
In addition to the processing implied by the grammar, for each raw input c

acter that is a backslash\, input processing must consider how many other\ char-
acters contiguously precede it, separating it from a non-\ character or the start of
the input stream. If this number is even, then the\ is eligible to begin a Unicode
escape; if the number is odd, then the\ is not eligible to begin a Unicode escap
For example, the raw input"\\u2297=\u2297" results in the eleven character
" \ \ u 2 2 9 7 = ⊗ " (\u2297 is the Unicode encoding of the character “⊗”).

If an eligible\ is not followed byu, then it is treated as aRawInputCharacter
and remains part of the escaped Unicode stream. If an eligible\ is followed byu,
or more than oneu, and the lastu is not followed by four hexadecimal digits, the
a compile-time error occurs.

The character produced by a Unicode escape does not participate in fu
Unicode escapes. For example, the raw input\u005cu005a results in the six char-
acters\ u 0 0 5 a, because005c is the Unicode value for\. It does not result in
the characterZ, which is Unicode character005a, because the\ that resulted from
the\u005c is not interpreted as the start of a further Unicode escape.

Java specifies a standard way of transforming a Unicode Java program
ASCII that changes a Java program into a form that can be processed by A
based tools. The transformation involves converting any Unicode escapes
source text of the program to ASCII by adding an extrau—for example,\uxxxx
becomes\uuxxxx—while simultaneously converting non-ASCII characters in t
source text to a\uxxxx escape containing a singleu. This transformed version is
equally acceptable to a Java compiler and represents the exact same progra
exact Unicode source can later be restored from this ASCII form by conve
each escape sequence where multipleu’s are present to a sequence of Unico
characters with one feweru, while simultaneously converting each esca
sequence with a singleu to the corresponding single Unicode character.

Java systems should use the\uxxxx notation as an output format to displa
Unicode characters when a suitable font is not available.

3.4 Line Terminators

Java implementations next divide the sequence of Unicode input character
lines by recognizingline terminators. This definition of lines determines the lin
13

3.5 Input Elements and Tokens LEXICAL STRUCTURE

14

t also

ot
h are

(§3.3)

) are
2.3).
numbers produced by a Java compiler or other Java system component. I
specifies the termination of the// form of a comment (§3.7).

LineTerminator:
the ASCIILF character, also known as “newline”
the ASCIICR character, also known as “return”
the ASCIICR character followed by the ASCIILF character

InputCharacter:
UnicodeInputCharacter but notCR or LF

Lines are terminated by the ASCII charactersCR, or LF, or CR LF. The two
charactersCR immediately followed byLF are counted as one line terminator, n
two. The result is a sequence of line terminators and input characters, whic
the terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing
and then input line recognition (§3.4) are reduced to a sequence ofinput elements.
Those input elements that are not white space (§3.6) or comments (§3.7
tokens. The tokens are the terminal symbols of the Java syntactic grammar (§

This process is specified by the following productions:

Input:
InputElementsopt Subopt

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier
Keyword
Literal
Separator
Operator

LEXICAL STRUCTURE Comments 3.7

that, if
arac-

, the
n

is

, for
de of

rac-
Sub:
the ASCIISUB character, also known as “control-Z”

White space (§3.6) and comments (§3.7) can serve to separate tokens
adjacent, might be tokenized in another manner. For example, the ASCII ch
ters- and= in the input can form the operator token-= (§3.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems
ASCII SUB character (\u001a, or control-Z) is ignored if it is the last character i
the escaped input stream.

Consider two tokensx andy in the resulting input stream. Ifx precedesy,
then we say thatx is to the left ofy and thaty is to the right ofx. For example, in
this simple piece of Java code:

class Empty {
}

we say that the} token is to the right of the{ token, even though it appears, in th
two-dimensional representation on paper, downward and to the left of the{ token.
This convention about the use of the words left and right allows us to speak
example, of the right-hand operand of a binary operator or of the left-hand si
an assignment.

3.6 White Space

White space is defined as the ASCII space, horizontal tab, and form feed cha
ters, as well as line terminators (§3.4).

WhiteSpace:
the ASCIISP character, also known as “space”
the ASCIIHT character, also known as “horizontal tab”
the ASCIIFF character, also known as “form feed”
LineTerminator

3.7 Comments

Java defines three kinds ofcomments:

/* text */ A traditional comment: all the text from the ASCII
characters/* to the ASCII characters*/ is ignored
(as in C and C++).
15

3.7 Comments LEXICAL STRUCTURE

16

)

// text A single-line comment: all the text from the ASCII
characters// to the end of the line is ignored (as in
C++).

/** documentation */ A documentation comment: the text enclosed by
the ASCII characters/** and*/ can be processed
by a separate tool to prepare automatically
generated documentation of the following class,
interface, constructor, or member (method or field
declaration. See §18 for a full description of how
the supplieddocumentation is processed.

These comments are formally specified by the following productions:

Comment:
TraditionalComment
EndOfLineComment
DocumentationComment

TraditionalComment:
/ * NotStar CommentTail

EndOfLineComment:
/ / CharactersInLineopt LineTerminator

DocumentationComment:
/ * * CommentTailStar

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacter but not*
LineTerminator

NotStarNotSlash:
InputCharacter but not* or /
LineTerminator

LEXICAL STRUCTURE Identifiers 3.8

r lit-

lling
3), or

hich
s for
fiers in
CharactersInLine:
InputCharacter
CharactersInLine InputCharacter

These productions imply all of the following properties:

• Comments do not nest.

• /* and*/ have no special meaning in comments that begin with//.

• // has no special meaning in comments that begin with/* or /**.

As a result, the text:

/* this comment /* // /** ends here: */

is a single complete comment.
The lexical grammar implies that comments do not occur within characte

erals (§3.10.4) or string literals (§3.10.5).
Note that/**/ is considered to be a documentation comment, while/* */

(with a space between the asterisks) is a traditional comment.

3.8 Identifiers

An identifier is an unlimited-length sequence ofJava letters andJava digits, the
first of which must be a Java letter. An identifier cannot have the same spe
(Unicode character sequence) as a keyword (§3.9), Boolean literal (§3.10.
the null literal (§3.10.7).

Identifier:
IdentifierChars but not aKeyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter
IdentifierChars JavaLetterOrDigit

JavaLetter:
any Unicode character that is a Java letter (see below)

JavaLetterOrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, w
supports most writing scripts in use in the world today, including the large set
Chinese, Japanese, and Korean. This allows Java programmers to use identi
their programs that are written in their native languages.
17

3.9 Keywords LEXICAL STRUCTURE

18

od

ss pre-

ame

t. For

cters.

va
t
.

d for
A Java letter is a character for which the methodCharacter.isJavaLetter
(§20.5.17) returnstrue. A Java letter-or-digit is a character for which the meth
Character.isJavaLetterOrDigit (§20.5.18) returnstrue.

The Java letters include uppercase and lowercase ASCII Latin lettersA–Z
(\u0041–\u005a), anda–z (\u0061–\u007a), and, for historical reasons, the
ASCII underscore (_, or \u005f) and dollar sign ($, or \u0024). The$ character
should be used only in mechanically generated Java code or, rarely, to acce
existing names on legacy systems.

The Java digits include the ASCII digits0-9 (\u0030–\u0039).
Two identifiers are the same only if they are identical, that is, have the s

Unicode character for each letter or digit.
Identifiers that have the same external appearance may yet be differen

example, the identifiers consisting of the single lettersLATIN CAPITAL LETTER A

(A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL LETTER ALPHA

(A, \u0391), andCYRILLIC SMALL LETTER A (a, \u0430) are all different.
Unicode composite characters are different from the decomposed chara

For example, aLATIN CAPITAL LETTER A ACUTE (Á, \u00c1) could be considered
to be the same as aLATIN CAPITAL LETTER A (A, \u0041) immediately followed
by aNON-SPACING ACUTE (´, \u0301) when sorting, but these are different in Ja
identifiers. SeeThe Unicode Standard, Volume 1, pages 412ff for details abou
decomposition, and see pages 626–627 of that work for details about sorting

Examples of identifiers are:

String i3 αρετη MAX_VALUE isLetterOrDigit

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserve
use askeywords and cannot be used as identifiers (§3.8):

Keyword: one of
abstract default if private throw
boolean do implements protected throws
break double import public transient
byte else instanceof return try
case extends int short void
catch final interface static volatile
char finally long super while
class float native switch
const for new synchronized
continue goto package this

LEXICAL STRUCTURE Integer Literals3.10.1

not
error

lly
t

, the

mal
The keywordsconst andgoto are reserved by Java, even though they are
currently used in Java. This may allow a Java compiler to produce better
messages if these C++ keywords incorrectly appear in Java programs.

While true andfalse might appear to be keywords, they are technica
Boolean literals (§3.10.3). Similarly, whilenull might appear to be a keyword, i
is technically the null literal (§3.10.7).

3.10 Literals

A literal is the source code representation of a value of a primitive type (§4.2)
String type (§4.3.3, §20.12), or the null type (§4.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

3.10.1 Integer Literals

See §4.2.1 for a general discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadeci

(base 16), or octal (base 8):

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral IntegerTypeSuffixopt

HexIntegerLiteral:
HexNumeral IntegerTypeSuffixopt

OctalIntegerLiteral:
OctalNumeral IntegerTypeSuffixopt

IntegerTypeSuffix: one of
l L
19

3.10.1 Integer Literals LEXICAL STRUCTURE

20

-

itive,
epre-

r.
An integer literal is of typelong if it is suffixed with an ASCII letterL or l
(ell); otherwise it is of typeint (§4.2.1). The suffixL is preferred, because the let
terl (ell) is often hard to distinguish from the digit1 (one).

A decimal numeral is either the single ASCII character0, representing the
integer zero, or consists of an ASCII digit from1 to 9, optionally followed by one
or more ASCII digits from0 to 9, representing a positive integer:

DecimalNumeral:
0
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

A hexadecimal numeral consists of the leading ASCII characters0x or 0X fol-
lowed by one or more ASCII hexadecimal digits and can represent a pos
zero, or negative integer. Hexadecimal digits with values 10 through 15 are r
sented by the ASCII lettersa throughf or A throughF, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigit
0 X HexDigit
HexNumeral HexDigit

The following production from §3.3 is repeated here for clarity:

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal numeral consists of an ASCII digit0 followed by one or more of the
ASCII digits0 through7 and can represent a positive, zero, or negative intege

OctalNumeral:
0 OctalDigit
OctalNumeral OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

LEXICAL STRUCTURE Integer Literals3.10.1

r the

tion

ci-

s

r

Note that octal numerals are always consist of two or more digits;0 is always
considered to be a decimal numeral—not that it matters much in practice, fo
numerals0, 00, and0x0 all represent exactly the same integer value.

The largest decimal literal of typeint is2147483648 (). All decimal liter-
als from0 to 2147483647 may appear anywhere anint literal may appear, but
the literal2147483648 may appear only as the operand of the unary nega
operator-.

The largest positive hexadecimal and octal literals of typeint are
0x7fffffff and 017777777777, respectively, which equal2147483647
(). The most negative hexadecimal and octal literals of typeint are
0x80000000 and020000000000, respectively, each of which represents the de
mal value–2147483648 (). The hexadecimal and octal literals0xffffffff
and037777777777, respectively, represent the decimal value-1.

See alsoInteger.MIN_VALUE (§20.7.1) andInteger.MAX_VALUE (§20.7.2).
A compile-time error occurs if a decimal literal of typeint is larger than

2147483648 (), or if the literal2147483648 appears anywhere other than a
the operand of the unary- operator, or if a hexadecimal or octalint literal does
not fit in 32 bits.

Examples ofint literals:

0 2 0372 0xDadaCafe 1996 0x00FF00FF

The largest decimal literal of typelong is 9223372036854775808L ().
All decimal literals from0L to 9223372036854775807L may appear anywhere a
long literal may appear, but the literal9223372036854775808L may appear only
as the operand of the unary negation operator-.

The largest positive hexadecimal and octal literals of typelong are
0x7fffffffffffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (). The literals0x8000000000000000L
and01000000000000000000000L are the most negativelong hexadecimal and
octal literals, respectively. Each has the decimal value –9223372036854775808L
(). The hexadecimal and octal literals0xffffffffffffffffL and
01777777777777777777777L, respectively, represent the decimal value-1L.

See alsoLong.MIN_VALUE (§20.8.1) andLong.MAX_VALUE (§20.8.2).
A compile-time error occurs if a decimal literal of typelong is larger than

9223372036854775808L (), or if the literal9223372036854775808L appears
anywhere other than as the operand of the unary- operator, or if a hexadecimal o
octallong literal does not fit in 64 bits.

Examples oflong literals:

0l 0777L 0x100000000L 2147483648L 0xC0B0L

231

231 1–

231–

231

263

263 1–

263–

263
21

3.10.2 Floating-Point Literals LEXICAL STRUCTURE

22

ci-
xpo-
ter

er a
 are

I

d

n of
nta-
3.10.2 Floating-Point Literals

See §4.2.3 for a general discussion of the floating-point types and values.
A floating-point literal has the following parts: a whole-number part, a de

mal point (represented by an ASCII period character), a fractional part, an e
nent, and a type suffix. The exponent, if present, is indicated by the ASCII lete
or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and eith
decimal point, an exponent, or a float type suffix are required. All other parts
optional.

A floating-point literal is of typefloat if it is suffixed with an ASCII letterF
or f; otherwise its type isdouble and it can optionally be suffixed with an ASCI
letterD or d.

FloatingPointLiteral:
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
. Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt
Digits ExponentPartopt FloatTypeSuffix

ExponentPart:
ExponentIndicator SignedInteger

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f F d D

The Java typesfloat anddouble are IEEE 754 32-bit single-precision an
64-bit double-precision binary floating-point values, respectively.

The details of proper input conversion from a Unicode string representatio
a floating-point number to the internal IEEE 754 binary floating-point represe
tion are described for the methodsvalueOf of classFloat (§20.9.17) and class
Double (§20.10.16) of the packagejava.lang.

The largest positive finitefloat literal is 3.40282347e+38f. The smallest
positive finite nonzero literal of typefloat is 1.40239846e-45f. The largest
positive finitedouble literal is1.79769313486231570e+308. The smallest posi-
tive finite nonzero literal of typedouble is 4.94065645841246544e-324.

LEXICAL STRUCTURE Boolean Literals3.10.3

 so
 754

ime

 so
ro. A
mall
 non-

n the

eci-

. For
SeeFloat.MIN_VALUE (§20.9.1) andFloat.MAX_VALUE (§20.9.2); see also
Double.MIN_VALUE (§20.10.1) andDouble.MAX_VALUE (§20.10.2).

A compile-time error occurs if a nonzero floating-point literal is too large,
that on rounded conversion to its internal representation it becomes an IEEE
infinity. A Java program can represent infinities without producing a compile-t
error by using constant expressions such as1f/0f or -1d/0d or by using the pre-
defined constantsPOSITIVE_INFINITY andNEGATIVE_INFINITY of the classes
Float (§20.9) andDouble (§20.10).

A compile-time error occurs if a nonzero floating-point literal is too small,
that, on rounded conversion to its internal representation, it becomes a ze
compile-time error does not occur if a nonzero floating-point literal has a s
value that, on rounded conversion to its internal representation, becomes a
zero denormalized number.

Predefined constants representing Not-a-Number values are defined i
classesFloat andDouble asFloat.NaN (§20.9.5) andDouble.NaN (§20.10.5).

Examples offloat literals:

1e1f 2.f .3f 0f 3.14f 6.022137e+23f

Examples ofdouble literals:

1e1 2. .3 0.0 3.14 1e-9d 1e137

There is no provision for expressing floating-point literals in other than d
mal radix. However, methodintBitsToFloat (§20.9.23) of classFloat and
method longBitsToDouble (§20.10.22) of classDouble provide a way to
express floating-point values in terms of hexadecimal or octal integer literals
example, the value of:

Double.longBitsToDouble(0x400921FB54442D18L)

is equal to the value ofMath.PI (§20.11.2).

3.10.3 Boolean Literals

The boolean type has two values, represented by the literalstrue andfalse,
formed from ASCII letters.

A boolean literal is always of typeboolean.

BooleanLiteral: one of
true false
23

3.10.4 Character Literals LEXICAL STRUCTURE

24

sed in

g

 write

 the
 is

s

than
fined.
3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence, enclo
ASCII single quotes. (The single-quote, or apostrophe, character is\u0027.)

A character literal is always of typechar.

CharacterLiteral:
' SingleCharacter '
' EscapeSequence '

SingleCharacter:
InputCharacter but not' or \

The escape sequences are described in §3.10.6.
As specified in §3.4, the charactersCR andLF are never anInputCharacter;

they are recognized as constituting aLineTerminator.
It is a compile-time error for the character following theSingleCharacter or

EscapeSequence to be other than a'.
It is a compile-time error for a line terminator to appear after the openin'

and before the closing'.
The following are examples ofchar literals:

'a'
'%'
'\t'
'\\'
'\''
'\u03a9'
'\uFFFF'
'\177'
'Ω'
'⊗'

Because Unicode escapes are processed very early, it is not correct to
'\u000a' for a character literal whose value is linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (§3.3) and
linefeed becomes aLineTerminator in step 2 (§3.4), and so the character literal
not valid in step 3. Instead, one should use the escape sequence'\n' (§3.10.6).
Similarly, it is not correct to write'\u000d' for a character literal whose value i
carriage return (CR). Instead, use'\r'.

In C and C++, a character literal may contain representations of more
one character, but the value of such a character literal is implementation-de
In Java, a character literal always represents exactly one character.

LEXICAL STRUCTURE String Literals 3.10.5

otes.

g
p
ng the

,

 write

 the
ot

class
—
27)—
3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double qu
Each character may be represented by an escape sequence.

A string literal is always of typeString (§4.3.3, §20.12). A string literal
always refers to the same instance (§4.3.1) of classString.

StringLiteral:
" StringCharactersopt "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacter but not" or \
EscapeSequence

The escape sequences are described in §3.10.6.
As specified in §3.4, neither of the charactersCR andLF is ever considered to

be anInputCharacter; each is recognized as constituting aLineTerminator.
It is a compile-time error for a line terminator to appear after the openin"

and before the closing matching". A long string literal can always be broken u
into shorter pieces and written as a (possibly parenthesized) expression usi
string concatenation operator+ (§15.17.1).

The following are examples of string literals:

"" // the empty string
"\"" // a string containing " alone
"This is a string" // a string containing 16 characters

"This is a " + // actually a string-valued constant expression
"two-line string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to
"\u000a" for a string literal containing a single linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (§3.3) and
linefeed becomes aLineTerminator in step 2 (§3.4), and so the string literal is n
valid in step 3. Instead, one should write"\n" (§3.10.6). Similarly, it is not correct
to write "\u000d" for a string literal containing a single carriage return (CR).
Instead use"\r".

Each string literal is a reference (§4.3) to an instance (§4.3.1, §12.5) of
String (§4.3.3, §20.12).String objects have a constant value. String literals
or, more generally, strings that are the values of constant expressions (§15.
are “interned” so as to share unique instances, using the methodString.intern
(§20.12.47).
25

3.10.6 Escape Sequences for Character and String Literals LEXICAL STRUCTURE

26

esent

efer-

sent

mpile

 any

e
kslash
Thus, the test program consisting of the compilation unit (§7.3):

package testPackage;

class Test {
public static void main(String[] args) {

String hello = "Hello", lo = "lo";
System.out.print((hello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"lo")) + " ");
System.out.print((hello == ("Hel"+lo)) + " ");
System.out.println(hello == ("Hel"+lo).intern());

}
}

class Other { static String hello = "Hello"; }

and the compilation unit:

package other;

public class Other { static String hello = "Hello"; }

produces the output:

true true true true false true

This example illustrates six points:

• Literal strings within the same class (§8) in the same package (§7) repr
references to the sameString object (§4.3.1).

• Literal strings within different classes in the same package represent r
ences to the sameString object.

• Literal strings within different classes in different packages likewise repre
references to the sameString object.

• Strings computed by constant expressions (§15.27) are computed at co
time and then treated as if they were literals.

• Strings computed at run time are newly created and therefore distinct.

• The result of explicitly interning a computed string is the same string as
pre-existing literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and stringescape sequences allow for the representation of som
nongraphic characters as well as the single quote, double quote, and bac
characters in character literals (§3.10.4) and string literals (§3.10.5).

LEXICAL STRUCTURE Separators 3.11

pe is

, but
e

EscapeSequence:
\ b /* \u0008: backspaceBS */
\ t /* \u0009: horizontal tabHT */
\ n /* \u000a: linefeed LF */
\ f /* \u000c: form feedFF */
\ r /* \u000d: carriage returnCR */
\ " /* \u0022: double quote" */
\ ' /* \u0027: single quote' */
\ \ /* \u005c: backslash\ */
OctalEscape /* \u0000 to \u00ff: from octal value */

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

ZeroToThree: one of
0 1 2 3

It is a compile-time error if the character following a backslash in an esca
not an ASCIIb, t, n, f, r, ", ', \, 0, 1, 2, 3, 4, 5, 6, or7. The Unicode escape\u is
processed earlier (§3.3). (Octal escapes are provided for compatibility with C
can express only Unicode values\u0000 through\u00FF, so Unicode escapes ar
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the literalnull,
which is formed from ASCII characters. Anull literal is always of the null type.

NullLiteral:
null

3.11 Separators

The following nine ASCII characters are the Javaseparators(punctuators):

Separator: one of
() { } [] ; , .
27

3.12 Operators LEXICAL STRUCTURE

28

el.

;
.

s,
.

,

3.12 Operators

The following 37 tokens are the Javaoperators, formed from ASCII characters:

Operator: one of
= > < ! ~ ? :
== <= >= != && || ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

Give her no token but stones; for she’s as hard as ste
—William Shakespeare,Two Gentlemen of Verona, Act I, scene i

These lords are visited; you are not free
For the Lord’s tokens on you do I see

—William Shakespeare,Love’s Labour’s Lost, Act V, scene ii

Thou, thou, Lysander, thou hast given her rhyme
And interchanged love-tokens with my child

—William Shakespeare,A Midsummer Night’s Dream, Act I, scene i

Here is a letter from Queen Hecuba
A token from her daughter . . .

—William Shakespeare,Troilus and Cressida, Act V, scene i

Are there no other tokens . . . ?
—William Shakespeare,Measure for Measure, Act IV, scene i

C H A P T E R 4

s

,
,

ery
hat a
tions

Strong

ypes

ial null
pe or
es to

 and
eclara-
ssions,

ays

 any

ray
Types, Values, and Variable

I send no agent or medium
offer no representative of value

but offer the value itself.
—Walt Whitman,Carol of Occupations (1855),

in Leaves of Grass

JAVA is astrongly typed language, which means that every variable and ev
expression has a type that is known at compile time. Types limit the values t
variable (§4.5) can hold or that an expression can produce, limit the opera
supported on those values, and determine the meaning of the operations.
typing helps detect errors at compile time.

The types of the Java language are divided into two categories: primitive t
and reference types. The primitive types (§4.2) are theboolean type and the
numeric types. The numeric types are the integral typesbyte, short, int, long,
andchar, and the floating-point typesfloat anddouble. The reference types
(§4.3) are class types, interface types, and array types. There is also a spec
type. An object (§4.3.1) in Java is a dynamically created instance of a class ty
a dynamically created array. The values of a reference type are referenc
objects. All objects, including arrays, support the methods of classObject
(§4.3.2). String literals are represented byString objects (§4.3.3).

Types are the same (§4.3.4) if they have the same fully qualified names
are loaded by the same class loader. Names of types are used (§4.4) in d
tions, in casts, in class instance creation expressions, in array creation expre
and ininstanceof operator expressions.

A variable (§4.5) is a storage location. A variable of a primitive type alw
holds a value of that exact type. A variable of a class typeT can hold a null refer-
ence or a reference to an instance of classT or of any class that is a subclass ofT.
A variable of an interface type can hold a null reference or a reference to
instance of any class that implements the interface. IfT is a primitive type, then a
variable of type “array ofT ” can hold a null reference or a reference to any ar
29

4.1 The Kinds of Types and Values TYPES, VALUES, AND VARIABLES

30

es
red in
imitive

ble of
sible
o any
d just

rved
of type “array ofT ”; if T is a reference type, then a variable of type “array ofT ”
can hold a null reference or a reference to any array of type “array ofS” such that
type S is assignable (§5.2) to typeT. A variable of typeObject can hold a null
reference or a reference to any object, whether class instance or array.

4.1 The Kinds of Types and Values

There are two kinds oftypes in Java: primitive types (§4.2) and reference typ
(§4.3). There are, correspondingly, two kinds of data values that can be sto
variables, passed as arguments, returned by methods, and operated on: pr
values (§4.2) and reference values (§4.3).

Type:
PrimitiveType
ReferenceType

There is also a specialnull type, the type of the expressionnull, which has no
name. Because the null type has no name, it is impossible to declare a varia
the null type or to cast to the null type. The null reference is the only pos
value of an expression of null type. The null reference can always be cast t
reference type. In practice, the Java programmer can ignore the null type an
pretend thatnull is merely a special literal that can be of any reference type.

4.2 Primitive Types and Values

A primitive type is predefined by the Java language and named by its rese
keyword (§3.9):

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

TYPES, VALUES, AND VARIABLES Integer Operations4.2.2

ble
ype.
oper-

and
cters.
t-
nt

sive
Primitive values do not share state with other primitive values. A varia
whose type is a primitive type always holds a primitive value of that same t
The value of a variable of primitive type can be changed only by assignment
ations on that variable.

Thenumeric types are the integral types and the floating-point types.
The integral types arebyte, short, int, andlong, whose values are 8-bit,

16-bit, 32-bit and 64-bit signed two’s-complement integers, respectively,
char, whose values are 16-bit unsigned integers representing Unicode chara

The floating-point types arefloat, whose values are 32-bit IEEE 754 floa
ing-point numbers, anddouble, whose values are 64-bit IEEE 754 floating-poi
numbers.

Theboolean type has exactly two values:true andfalse.

4.2.1 Integral Types and Values

The values of the integral types are integers in the following ranges:

• Forbyte, from –128 to 127, inclusive

• Forshort, from –32768 to 32767, inclusive

• Forint, from –2147483648 to 2147483647, inclusive

• Forlong, from –9223372036854775808 to 9223372036854775807, inclu

• Forchar, from'\u0000' to '\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

Java provides a number of operators that act on integral values:

• The comparison operators, which result in a value of typeboolean:

◆ The numerical comparison operators<, <=, >, and>= (§15.19.1)

◆ The numerical equality operators== and!= (§15.20.1)

• The numerical operators, which result in a value of typeint or long:

◆ The unary plus and minus operators+ and- (§15.14.3, §15.14.4)

◆ The multiplicative operators*, /, and% (§15.16)

◆ The additive operators+ and- (§15.17.2)

◆ The increment operator++, both prefix (§15.14.1) and postfix (§15.13.2)

◆ The decrement operator--, both prefix (§15.14.2) and postfix (§15.13.3)
31

4.2.2 Integer Operations TYPES, VALUES, AND VARIABLES

32

f any

to a
cre-

lasses

nd of
sult

e
rical

ny
teger

 the
◆ The signed and unsigned shift operators<<, >>, and>>> (§15.18)

◆ The bitwise complement operator~ (§15.14.5)

◆ The integer bitwise operators&, |, and^ (§15.21.1)

• The conditional operator? : (§15.24)

• The cast operator, which can convert from an integral value to a value o
specified numeric type (§5.4, §15.15)

• The string concatenation operator+ (§15.17.1), which, when given aString
operand and an integral operand, will convert the integral operand
String representing its value in decimal form, and then produce a newly
atedString that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the c
Integer (§20.7),Long (§20.8), andCharacter (§20.5).

If an integer operator other than a shift operator has at least one opera
typelong, then the operation is carried out using 64-bit precision, and the re
of the numerical operator is of typelong. If the other operand is notlong, it is
first widened (§5.1.2) to typelong by numeric promotion (§5.6). Otherwise, th
operation is carried out using 32-bit precision, and the result of the nume
operator is of typeint. If either operand is not anint, it is first widened to type
int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in a
way. The only numeric operators that can throw an exception (§11) are the in
divide operator/ (§15.16.2) and the integer remainder operator% (§15.16.3),
which throw anArithmeticException if the right-hand operand is zero.

The example:

class Test {
public static void main(String[] args) {

int i = 1000000;
System.out.println(i * i);
long l = i;
System.out.println(l * l);
System.out.println(20296 / (l - i));

}
}

produces the output:

-727379968
1000000000000

and then encounters anArithmeticException in the division byl - i, because
l - i is zero. The first multiplication is performed in 32-bit precision, whereas

TYPES, VALUES, AND VARIABLES Floating-Point Types and Values4.2.3

here

n
s as

gni-

ed
 NaN

zero,

pres-

.

ator

pe.
second multiplication is along multiplication. The value-727379968 is the deci-
mal value of the low 32 bits of the mathematical result,1000000000000, which is
a value too large for typeint.

Any value of any integral type may be cast to or from any numeric type. T
are no casts between integral types and the typeboolean.

4.2.3 Floating-Point Types and Values

The floating-point types arefloat anddouble, representing the single-precisio
32-bit and double-precision 64-bit format IEEE 754 values and operation
specified inIEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign-ma
tude numbers, but also positive and negative zeros, positive and negativeinfinities,
and a specialNot-a-Number(hereafter abbreviated NaN). The NaN value is us
to represent the result of certain operations such as dividing zero by zero.
constants of bothfloat anddouble type are predefined asFloat.NaN (§20.9.5)
andDouble.NaN (§20.10.5).

The finite nonzero values of typefloat are of the form , wheres is
+1 or –1,m is a positive integer less than , ande is an integer between –149
and 104, inclusive. Values of that form such thatm is positive but less than
ande is equal to –149 are said to bedenormalized.

The finite nonzero values of typedouble are of the form , wheres is
+1 or –1,m is a positive integer less than , ande is an integer between –1075
and 970, inclusive. Values of that form such thatm is positive but less than
ande is equal to –1075 are said to bedenormalized.

Except for NaN, floating-point values areordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, negative
positive zero, positive finite nonzero values, and positive infinity.

Positive zero and negative zero compare equal; thus the result of the ex
sion 0.0==-0.0 is true and the result of0.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for example,1.0/0.0 has the
value positive infinity, while the value of1.0/-0.0 is negative infinity. The oper-
ationsMath.min andMath.max also distinguish positive zero and negative zero

NaN is unordered, so the numerical comparison operators<, <=, >, and>=
returnfalse if either or both operands are NaN (§15.19.1). The equality oper
== returnsfalse if either operand is NaN, and the inequality operator!= returns
true if either operand is NaN (§15.20.1). In particular,x!=x istrue if and only if
x is NaN, and(x<y) == !(x>=y) will be false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric ty
There are no casts between floating-point types and the typeboolean.

s m 2e⋅ ⋅
224

223

s m 2e⋅ ⋅
253

2
52
33

4.2.4 Floating-Point Operations TYPES, VALUES, AND VARIABLES

34

e of

and
s),

lasses

ype,

lt of

-
 the

 754.

 of
h to
4.2.4 Floating-Point Operations

Java provides a number of operators that act on floating-point values:

• The comparison operators, which result in a value of typeboolean:

◆ The numerical comparison operators<, <=, >, and>= (§15.19.1)

◆ The numerical equality operators== and!= (§15.20.1)

• The numerical operators, which result in a value of typefloat or double:

◆ The unary plus and minus operators+ and- (§15.14.3, §15.14.4)

◆ The multiplicative operators*, /, and% (§15.16)

◆ The additive operators+ and- (§15.17.2)

◆ The increment operator++, both prefix (§15.14.1) and postfix (§15.13.2)

◆ The decrement operator--, both prefix (§15.14.2) and postfix (§15.13.3)

• The conditional operator? : (§15.24)

• The cast operator, which can convert from a floating-point value to a valu
any specified numeric type (§5.4, §15.15)

• The string concatenation operator+ (§15.17.1), which, when given aString
operand and a floating-point operand, will convert the floating-point oper
to aString representing its value in decimal form (without information los
and then produce a newly createdString by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the c
Float (§20.9),Double (§20.10), andMath (§20.11).

If at least one of the operands to a binary operator is of floating-point t
then the operation is a floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is of typedouble, then
the operation is carried out using 64-bit floating-point arithmetic, and the resu
the numerical operator is a value of typedouble. (If the other operand is not a
double, it is first widened to typedouble by numeric promotion (§5.6).) Other
wise, the operation is carried out using 32-bit floating-point arithmetic, and
result of the numerical operator is a value of typefloat. If the other operand is
not afloat, it is first widened to typefloat by numeric promotion.

Operators on floating-point numbers behave exactly as specified by IEEE
In particular, Java requires support of IEEE 754denormalized floating-point num-
bers andgradual underflow, which make it easier to prove desirable properties
particular numerical algorithms. Floating-point operations in Java do not “flus
zero” if the calculated result is a denormalized number.

TYPES, VALUES, AND VARIABLES Floating-Point Operations4.2.4

oint

result;
st sig-
ode

er
arding
value

 that
es a
duces
lt. As
eration
Java requires that floating-point arithmetic behave as if every floating-p
operator rounded its floating-point result to the result precision.Inexact results
must be rounded to the representable value nearest to the infinitely precise
if the two nearest representable values are equally near, the one with its lea
nificant bit zero is chosen. This is the IEEE 754 standard’s default rounding m
known asround to nearest.

Java usesround toward zero when converting a floating value to an integ
(§5.1.3), which acts, in this case, as though the number were truncated, disc
the mantissa bits. Rounding toward zero chooses at its result the format’s
closest to and no greater in magnitude than the infinitely precise result.

Java floating-point operators produce no exceptions (§11). An operation
overflows produces a signed infinity, an operation that underflows produc
signed zero, and an operation that has no mathematically definite result pro
NaN. All numeric operations with NaN as an operand produce NaN as a resu
has already been described, NaN is unordered, so a numeric comparison op
involving one or two NaNs returnsfalse and any!= comparison involving NaN
returnstrue, includingx!=x whenx is NaN.

The example program:

class Test {

public static void main(String[] args) {

// An example of overflow:
double d = 1e308;
System.out.print("overflow produces infinity: ");
System.out.println(d + "*10==" + d*10);

// An example of gradual underflow:
d = 1e-305 * Math.PI;
System.out.print("gradual underflow: " + d + "\n ");
for (int i = 0; i < 4; i++)

System.out.print(" " + (d /= 100000));
System.out.println();

// An example of NaN:
System.out.print("0.0/0.0 is Not-a-Number: ");
d = 0.0/0.0;
System.out.println(d);

// An example of inexact results and rounding:
System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {

float z = 1.0f / i;
if (z * i != 1.0f)

System.out.print(" " + i);
}
System.out.println();
35

4.2.5 Theboolean Type andboolean Values TYPES, VALUES, AND VARIABLES

36

 can

di-
// Another example of inexact results and rounding:
System.out.print("inexact results with double:");
for (int i = 0; i < 100; i++) {

double z = 1.0 / i;
if (z * i != 1.0)

System.out.print(" " + i);
}
System.out.println();

// An example of cast to integer rounding:
System.out.print("cast to int rounds toward 0: ");
d = 12345.6;
System.out.println((int)d + " " + (int)(-d));

}
}

produces the output:

overflow produces infinity: 1.0e+308*10==Infinity
gradual underflow: 3.141592653589793E-305

3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0
0.0/0.0 is Not-a-Number: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradual underflow
result in a gradual loss of precision.

The inexact results wheni is 0 involve division by zero, so thatz becomes
positive infinity, andz * 0 is NaN, which is not equal to1.0.

4.2.5 Theboolean Type andboolean Values

The boolean type represents a logical quantity with two possible values, in
cated by the literalstrue andfalse (§3.10.3). The boolean operators are:

• The relational operators== and!= (§15.20.2)

• The logical-complement operator! (§15.14.6)

• The logical operators&, ^, and| (§15.21.2)

• The conditional-and and conditional-or operators&& (§15.22) and|| (§15.23)

• The conditional operator? : (§15.24)

• The string concatenation operator+ (§15.17.1), which, when given aString
operand and a boolean operand, will convert the boolean operand to aString
(either"true" or "false"), and then produce a newly createdString that is
the concatenation of the two strings

TYPES, VALUES, AND VARIABLES Reference Types and Values4.3

ts:

n the

s the

s
g

d

Boolean expressions determine the control flow in several kinds of statemen

• Theif statement (§14.8)

• Thewhile statement (§14.10)

• Thedo statement (§14.11)

• Thefor statement (§14.12)

A boolean expression also determines which subexpression is evaluated i
conditional? : operator (§15.24).

Only boolean expressions can be used in control flow statements and a
first operand of the conditional operator? :. An integerx can be converted to a
boolean, following the C language convention that any nonzero value istrue, by
the expressionx!=0. An object referenceobj can be converted to aboolean,
following the C language convention that any reference other thannull is true,
by the expressionobj!=null.

A cast of aboolean value to typeboolean is allowed (§5.1.1); no other cast
on typeboolean are allowed. Aboolean can be converted to a string by strin
conversion (§5.4).

4.3 Reference Types and Values

There are three kinds ofreference types: class types (§8), interface types (§9), an
array types (§10).

ReferenceType:
ClassOrInterfaceType
ArrayType

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
TypeName

InterfaceType:
TypeName

ArrayType:
Type []

Names are described in §6; type names in §6.5 and, specifically, §6.5.4.
37

4.3.1 Objects TYPES, VALUES, AND VARIABLES

38

ssion

per-
type
ray
rface
hen a
The sample code:

class Point { int[] metrics; }

interface Move { void move(int deltax, int deltay); }

declares a class typePoint, an interface typeMove, and uses an array typeint[]
(an array ofint) to declare the fieldmetrics of the classPoint.

4.3.1 Objects

An object is aclass instance or an array.
The reference values (often justreferences) arepointersto these objects, and a

special null reference, which refers to no object.
A class instance is explicitly created by a class instance creation expre

(§15.8), or by invoking thenewInstance method of classClass (§20.3.8). An
array is explicitly created by an array creation expression (§15.8).

A new class instance is implicitly created when the string concatenation o
ator + (§15.17.1) is used in an expression, resulting in a new object of
String (§4.3.3, §20.12). A new array object is implicitly created when an ar
initializer expression (§10.6) is evaluated; this can occur when a class or inte
is initialized (§12.4), when a new instance of a class is created (§15.8), or w
local variable declaration statement is executed (§14.3).

Many of these cases are illustrated in the following example:

class Point {
int x, y;
Point() { System.out.println("default"); }
Point(int x, int y) { this.x = x; this.y = y; }

// A Point instance is explicitly created at class initialization time:
static Point origin = new Point(0,0);

// A String can be implicitly created by a+ operator:
public String toString() {

return "(" + x + "," + y + ")";
}

}

class Test {
public static void main(String[] args) {

// A Point is explicitly created usingnewInstance:
Point p = null;
try {

p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {

System.out.println(e);
}

TYPES, VALUES, AND VARIABLES Objects4.3.1

ssion

o

 state,
s that

to the
rence
nce in
// An array is implicitly created by an array constructor:
Point a[] = { new Point(0,0), new Point(1,1) };

// Strings are implicitly created by+ operators:
System.out.println("p: " + p);
System.out.println("a: { " + a[0] + ", "

+ a[1] + " }");

// An array is explicitly created by an array creation expression:
String sa[] = new String[2];
sa[0] = "he"; sa[1] = "llo";
System.out.println(sa[0] + sa[1]);

}
}

which produces the output:

default
p: (0,0)
a: { (0,0), (1,1) }
hello

The operators on references to objects are:

• Field access, using either a qualified name (§6.6) or a field access expre
(§15.10)

• Method invocation (§15.11)

• The cast operator (§5.4, §15.15)

• The string concatenation operator+ (§15.17.1), which, when given aString
operand and a reference, will convert the reference to aString by invoking
the toString method (§20.1.2) of the referenced object (using"null" if
either the reference or the result oftoString is a null reference), and then
will produce a newly createdString that is the concatenation of the tw
strings

• Theinstanceof operator (§15.19.2)

• The reference equality operators== and!= (§15.20.3)

• The conditional operator? : (§15.24).

There may be many references to the same object. Most objects have
stored in the fields of objects that are instances of classes or in the variable
are the components of an array object. If two variables contain references
same object, the state of the object can be modified using one variable’s refe
to the object, and then the altered state can be observed through the refere
the other variable.
39

4.3.2 The ClassObject TYPES, VALUES, AND VARIABLES

40

the

l

 of
class
The example program:

class Value { int val; }

class Test {
public static void main(String[] args) {

int i1 = 3;
int i2 = i1;
i2 = 4;
System.out.print("i1==" + i1);
System.out.println(" but i2==" + i2);
Value v1 = new Value();
v1.val = 5;
Value v2 = v1;
v2.val = 6;
System.out.print("v1.val==" + v1.val);
System.out.println(" and v2.val==" + v2.val);

}
}

produces the output:

i1==3 but i2==4
v1.val==6 and v2.val==6

becausev1.val andv2.val reference the same instance variable (§4.5.3) in
oneValue object created by the onlynew expression, whilei1 andi2 are differ-
ent variables.

See §10 and §15.9 for examples of the creation and use of arrays.
Each object has an associated lock (§17.13), which is used bysynchronized

methods (§8.4.3) and thesynchronized statement (§14.17) to provide contro
over concurrent access to state by multiple threads (§17.12, §20.20).

4.3.2 The ClassObject

The standard classObject is a superclass (§8.1) of all other classes. A variable
typeObject can hold a reference to any object, whether it is an instance of a
or an array (§10). All class and array types inherit the methods of classObject,
which are summarized here and completely specified in §20.1:

package java.lang;

public class Object {
public final Class getClass() { . . . }
public String toString() { . . . }
public boolean equals(Object obj) { . . . }
public int hashCode() { . . . }
protected Object clone()

throws CloneNotSupportedException { . . . }

TYPES, VALUES, AND VARIABLES The ClassString 4.3.3

e
be
bers,
lass

k

es

-

is

ers.
 are
public final void wait()
throws IllegalMonitorStateException,

InterruptedException { . . . }
public final void wait(long millis)

throws IllegalMonitorStateException,
InterruptedException { . . . }

public final void wait(long millis, int nanos) { . . . }
throws IllegalMonitorStateException,

InterruptedException { . . . }
public final void notify() { . . . }

throws IllegalMonitorStateException
public final void notifyAll() { . . . }

throws IllegalMonitorStateException
protected void finalize()

throws Throwable { . . . }
}

The members ofObject are as follows:

• The methodgetClass returns theClass (§20.3) object that represents th
class of the object. AClass object exists for each reference type. It can
used, for example, to discover the fully qualified name of a class, its mem
its immediate superclass, and any interfaces that it implements. A c
method that is declaredsynchronized (§8.4.3.5) synchronizes on the loc
associated with theClass object of the class.

• The methodtoString returns aString representation of the object.

• The methodsequals andhashCode are declared for the benefit of hashtabl
such asjava.util.Hashtable (§21.7). The methodequals defines a notion
of object equality, which is based on value, not reference, comparison.

• The methodclone is used to make a duplicate of an object.

• The methodswait, notify, andnotifyAll are used in concurrent program
ming using threads, as described in §17.

• The methodfinalize is run just before an object is destroyed and
described in §12.6.

4.3.3 The ClassString

Instances of classString (§20.12) represent sequences of Unicode charact
A String object has a constant (unchanging) value. String literals (§3.10.5)
references to instances of classString.

The string concatenation operator+ (§15.17.1) implicitly creates a new
String object.
41

4.3.4 When Reference Types Are the Same TYPES, VALUES, AND VARIABLES

42

 class
y are

d of
4.3.4 When Reference Types Are the Same

Two reference types thesame type if:

• They are both class or both interface types, are loaded by the same
loader, and have the same fully-qualified name (§6.6), in which case the
sometimes said to be thesame class or thesame interface.

• They are both array types, and have the same component type (§10).

4.4 Where Types Are Used

Types are used when they appear in declarations or in certain expressions.
The following code fragment contains one or more instances of each kin

usage of a type:

import java.util.Random;

class MiscMath {

int divisor;

MiscMath(int divisor) {
this.divisor = divisor;

}

float ratio(long l) {
try {

l /= divisor;
} catch (Exception e) {

if (e instanceof ArithmeticException)
l = Long.MAX_VALUE;

else
l = 0;

}
return (float)l;

}

double gausser() {
Random r = new Random();
double[] val = new double[2];
val[0] = r.nextGaussian();
val[1] = r.nextGaussian();
return (val[0] + val[1]) / 2;

}

}

In this example, types are used in declarations of the following:

TYPES, VALUES, AND VARIABLES Variables 4.5

§8.3),

r for

meter

lled its
.3).
th its
fix or
.1,
• Imported types (§7.5); here the typeRandom, imported from the type
java.util.Random of the packagejava.util, is declared

• Fields, which are the class variables and instance variables of classes (
and constants of interfaces (§9.3); here the fielddivisor in the class
MiscMath is declared to be of typeint

• Method parameters (§8.4.1); here the parameterl of the methodratio is
declared to be of typelong

• Method results (§8.4); here the result of the methodratio is declared to be of
type float, and the result of the methodgausser is declared to be of type
double

• Constructor parameters (§8.6.1); here the parameter of the constructo
MiscMath is declared to be of typeint

• Local variables (§14.3, §14.12); the local variablesr andval of the method
gausser are declared to be of typesRandom anddouble[] (array ofdouble)

• Exception handler parameters (§14.18); here the exception handler para
e of thecatch clause is declared to be of typeException

and in expressions of the following kinds:

• Class instance creations (§15.8); here a local variabler of methodgausser is
initialized by a class instance creation expression that uses the typeRandom

• Array creations (§15.9); here the local variableval of methodgausser is ini-
tialized by an array creation expression that creates an array ofdouble with
size 2

• Casts (§15.15); here thereturn statement of the methodratio uses the
float type in a cast

• The instanceof operator (§15.19.2); here theinstanceof operator tests
whethere is assignment compatible with the typeArithmeticException

4.5 Variables

A variable is a storage location and has an associated type, sometimes ca
compile-time type, that is either a primitive type (§4.2) or a reference type (§4
A variable always contains a value that is assignment compatible (§5.2) wi
type. A variable’s value is changed by an assignment (§15.25) or by a pre
postfix++ (increment) or-- (decrement) operator (§15.13.2, §15.13.3, §15.14
§15.14.2).
43

4.5.1 Variables of Primitive Type TYPES, VALUES, AND VARIABLES

44

the
ssign-
lly at
ade

.

pati-

ce is
iable
 after
leted.

ut

es
 any

 to
ated
is no
Compatibility of the value of a variable with its type is guaranteed by
design of the Java language. Default values are compatible (§4.5.4) and all a
ments to a variable are checked for assignment compatibility (§5.2), usua
compile time, but, in a single case involving arrays, a run-time check is m
(§10.10).

4.5.1 Variables of Primitive Type

A variable of a primitive type always holds a value of that exact primitive type

4.5.2 Variables of Reference Type

A variable of reference type can hold either of the following:

• A null reference

• A reference to any object (§4.3) whose class (§4.5.5) is assignment com
ble (§5.2) with the type of the variable

4.5.3 Kinds of Variables

There are seven kinds of variables:

1. A class variable is a field declared using the keywordstatic within a class
declaration (§8.3.1.1), or with or without the keywordstatic within an inter-
face declaration (§9.3). A class variable is created when its class or interfa
loaded (§12.2) and is initialized to a default value (§4.5.4). The class var
effectively ceases to exist when its class or interface is unloaded (§12.8),
any necessary finalization of the class or interface (§12.6) has been comp

2. An instance variable is a field declared within a class declaration witho
using the keywordstatic (§8.3.1.1). If a classT has a fielda that is an
instance variable, then a new instance variablea is created and initialized to a
default value (§4.5.4) as part of each newly created object of classT or of any
class that is a subclass ofT (§8.1.3). The instance variable effectively ceas
to exist when the object of which it is a field is no longer referenced, after
necessary finalization of the object (§12.6) has been completed.

3. Array components are unnamed variables that are created and initialized
default values (§4.5.4) whenever a new object that is an array is cre
(§15.9). The array components effectively cease to exist when the array
longer referenced. See §10 for a description of arrays.

TYPES, VALUES, AND VARIABLES Kinds of Variables4.5.3

 For
ble is
itial-
 The
body

ruc-
rame-
5.8) or
ew
re-
ffec-
or is

ht
d
The
f the

.3).

local

ssion
s-
ent

nt the
oth-
when

 be
s exe-

ari-
les of
ch a
it has
4. Method parameters (§8.4.1) name argument values passed to a method.
every parameter declared in a method declaration, a new parameter varia
created each time that method is invoked (§15.11). The new variable is in
ized with the corresponding argument value from the method invocation.
method parameter effectively ceases to exist when the execution of the
of the method is complete.

5. Constructor parameters (§8.6.1) name argument values passed to a const
tor. For every parameter declared in a constructor declaration, a new pa
ter variable is created each time a class instance creation expression (§1
explicit constructor invocation (§8.6.5) invokes that constructor. The n
variable is initialized with the corresponding argument value from the c
ation expression or constructor invocation. The constructor parameter e
tively ceases to exist when the execution of the body of the construct
complete.

6. An exception-handler parameter is created each time an exception is caug
by acatch clause of atry statement (§14.18). The new variable is initialize
with the actual object associated with the exception (§11.3, §14.16).
exception-handler parameter effectively ceases to exist when execution o
block associated with thecatch clause is complete.

7. Local variables are declared by local variable declaration statements (§14
Whenever the flow of control enters a block (§14.2) orfor statement
(§14.12), a new variable is created for each local variable declared in a
variable declaration statement immediately contained within that block orfor
statement. A local variable declaration statement may contain an expre
which initializes the variable. The local variable with an initializing expre
sion is not initialized, however, until the local variable declaration statem
that declares it is executed. (The rules of definite assignment (§16) preve
value of a local variable from being used before it has been initialized or
erwise assigned a value.) The local variable effectively ceases to exist
the execution of the block orfor statement is complete.

Were it not for one exceptional situation, a local variable could always
regarded as being created when its local variable declaration statement i
cuted. The exceptional situation involves theswitch statement (§14.9), where
it is possible for control to enter a block but bypass execution of a local v
able declaration statement. Because of the restrictions imposed by the ru
definite assignment (§16), however, the local variable declared by su
bypassed local variable declaration statement cannot be used before
been definitely assigned a value by an assignment expression (§15.25).
45

4.5.4 Initial Values of Variables TYPES, VALUES, AND VARIABLES

46

ith a

ment

rgu-
plicit

ject

it is
 can
The following example contains several different kinds of variables:

class Point {
static int numPoints; // numPoints is a class variable
int x, y; // x andy are instance variables
int[] w = new int[10]; // w[0] is an array component
int setX(int x) { // x is a method parameter

int oldx = this.x; // oldx is a local variable
this.x = x;
return oldx;

}
}

4.5.4 Initial Values of Variables

Every variable in a Java program must have a value before its value is used:

• Each class variable, instance variable, or array component is initialized w
default value when it is created (§15.8, §15.9, §20.3.6):

◆ For typebyte, the default value is zero, that is, the value of(byte)0.

◆ For typeshort, the default value is zero, that is, the value of(short)0.

◆ For typeint, the default value is zero, that is,0.

◆ For typelong, the default value is zero, that is,0L.

◆ For typefloat, the default value is positive zero, that is,0.0f.

◆ For typedouble, the default value is positive zero, that is,0.0d.

◆ For typechar, the default value is the null character, that is,'\u0000'.

◆ For typeboolean, the default value isfalse.

◆ For all reference types (§4.3), the default value isnull.

• Each method parameter (§8.4.1) is initialized to the corresponding argu
value provided by the invoker of the method (§15.11).

• Each constructor parameter (§8.6.1) is initialized to the corresponding a
ment value provided by a class instance creation expression (§15.8) or ex
constructor invocation (§8.6.5).

• An exception-handler parameter (§14.18) is initialized to the thrown ob
representing the exception (§11.3, §14.16).

• A local variable (§14.3, §14.12) must be explicitly given a value before
used, by either initialization (§14.3) or assignment (§15.25), in a way that
be verified by the compiler using the rules for definite assignment (§16).

TYPES, VALUES, AND VARIABLES Variables Have Types, Objects Have Classes4.5.5

ll
us a

 in the
ct was
he
or
s
 class

t that
y the
s not
sion

an be
e can
rence
The example program:

class Point {
static int npoints;
int x, y;
Point root;

}

class Test {
public static void main(String[] args) {

System.out.println("npoints=" + Point.npoints);
Point p = new Point();
System.out.println("p.x=" + p.x + ", p.y=" + p.y);
System.out.println("p.root=" + p.root);

}
}

prints:

npoints=0
p.x=0, p.y=0
p.root=null

illustrating the default initialization ofnpoints, which occurs when the class
Point is prepared (§12.3.2), and the default initialization ofx, y, androot, which
occurs when a newPoint is instantiated. See §12 for a full description of a
aspects of loading, linking, and initialization of classes and interfaces, pl
description of the instantiation of classes to make new class instances.

4.5.5 Variables Have Types, Objects Have Classes

Every object belongs to some particular class: the class that was mentioned
creation expression that produced the object, the class whose class obje
used to invoke thenewInstance method (§20.3.6) to produce the object, or t
String class for objects implicitly created by the string concatenation operat+
(§15.17.1). This class is called theclass of the object. (Arrays also have a class, a
described at the end of this section.) An object is said to be an instance of its
and of all superclasses of its class.

(Sometimes a variable or expression is said to have a “run-time type” bu
is an abuse of terminology; it refers to the class of the object referred to b
value of the variable or expression at run time, assuming that the value i
null. Properly speaking, type is a compile-time notion. A variable or expres
has a type; an object or array has no type, but belongs to a class.)

The type of a variable is always declared, and the type of an expression c
deduced at compile time. The type limits the possible values that the variabl
hold or the expression can produce at run time. If a run-time value is a refe
47

4.5.5 Variables Have Types, Objects Have Classes TYPES, VALUES, AND VARIABLES

48

 that

 is an
hose

8.1.4)

n the
that is notnull, it refers to an object or array that has a class (not a type), and
class will necessarily be compatible with the compile-time type.

Even though a variable or expression may have a compile-time type that
interface type, there are no instances of interfaces. A variable or expression w
type is an interface type can reference any object whose class implements (§
that interface.

Here is an example of creating new objects and of the distinction betwee
type of a variable and the class of an object:

public interface Colorable {
void setColor(byte r, byte g, byte b);

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {

byte r, g, b;

public void setColor(byte rv, byte gv, byte bv) {
r = rv; g = gv; b = bv;

}

}

class Test {
public static void main(String[] args) {

Point p = new Point();
ColoredPoint cp = new ColoredPoint();
p = cp;
Colorable c = cp;

}
}

In this example:

• The local variablep of the methodmain of classTest has typePoint and is
initially assigned a reference to a new instance of classPoint.

• The local variablecp similarly has as its typeColoredPoint, and is initially
assigned a reference to a new instance of classColoredPoint.

• The assignment of the value ofcp to the variablep causesp to hold a refer-
ence to aColoredPoint object. This is permitted becauseColoredPoint is a
subclass ofPoint, so the classColoredPoint is assignment compatible
(§5.2) with the typePoint. A ColoredPoint object includes support for all
the methods of aPoint. In addition to its particular fieldsr, g, andb, it has
the fields of classPoint, namelyx andy.

TYPES, VALUES, AND VARIABLES Variables Have Types, Objects Have Classes4.5.5

lid Java
e

s.
• The local variablec has as its type the interface typeColorable, so it can
hold a reference to any object whose class implementsColorable; specifi-
cally, it can hold a reference to aColoredPoint.

• Note that an expression such as “new Colorable()” is not valid because it is
not possible to create an instance of an interface, only of a class.

Every array also has a class; the methodgetClass (§20.1.1), when invoked
for an array object, will return a class object (of classClass) that represents the
class of the array. The classes for arrays have strange names that are not va
identifiers; for example, the class for an array ofint components has the nam
“[I” and so the value of the expression:

new int[10].getClass().getName()

is the string"[I"; see §20.1.1 for details.

Oft on the dappled turf at ease
I sit, and play with similes,

Loose types of things through all degree
—William Wordsworth,To the Same Flower
49

C H A P T E R 5

s

s,
.

 of the
in the
e the
rror at
y
text
 a con-
rsion

ll
rsion
r the

ce of

ion

f

Conversions and Promotion

Thou art not for the fashion of these time
Where none will sweat but for promotion

—William Shakespeare,As You Like It, Act II, scene iii

EVERY Java expression has a type that can be deduced from the structure
expression and the types of the literals, variables, and methods mentioned
expression. It is possible, however, to write an expression in a context wher
type of the expression is not appropriate. In some cases, this leads to an e
compile time; for example, if the expression in anif statement (§14.8) has an
type other thanboolean, a compile-time error occurs. In other cases, the con
may be able to accept a type that is related to the type of the expression; as
venience, rather than requiring the programmer to indicate a type conve
explicitly, the Java language performs an implicitconversion from the type of the
expression to a type acceptable for its surrounding context.

A specific conversion from typeS to typeT allows an expression of typeS to
be treated at compile time as if it had typeT instead. In some cases this wi
require a corresponding action at run time to check the validity of the conve
or to translate the run-time value of the expression into a form appropriate fo
new typeT . For example:

• A conversion from typeObject (§20.1) to typeThread (§20.20) requires a
run-time check to make sure that the run-time value is actually an instan
classThread or one of its subclasses; if it is not, an exception is thrown.

• A conversion from typeThread to typeObject requires no run-time action;
Thread is a subclass ofObject, so any reference produced by an express
of typeThread is a valid reference value of typeObject.

• A conversion from typeint to typelong requires run-time sign-extension o
a 32-bit integer value to the 64-bitlong representation. No information is
lost.
51

5 Conversions and Promotions CONVERSIONS AND PROMOTIONS

52

on.

tted.
nce of

s
amed
ess of
at an
ethod
ho-
ment

r one

ding

on to
t are

tion.

rgu-
orms
ation
• A conversion from typedouble to typelong requires a nontrivial translation
from a 64-bit floating-point value to the 64-bit integer representati
Depending on the actual run-time value, information may be lost.

In every conversion context, only certain specific conversions are permi
The specific conversions that are possible in Java are grouped for convenie
description into several broad categories:

• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• String conversions

There are fiveconversion contexts in which conversion of Java expression
may occur. Each context allows conversions in some of the categories n
above but not others. The term “conversion” is also used to describe the proc
choosing a specific conversion for such a context. For example, we say th
expression that is an actual argument in a method invocation is subject to “m
invocation conversion,” meaning that a specific conversion will be implicitly c
sen for that expression according to the rules for the method invocation argu
context.

One conversion context is the operand of a numeric operator such as+ or *.
The conversion process for such operands is callednumeric promotion. Promotion
is special in that, in the case of binary operators, the conversion chosen fo
operand may depend in part on the type of the other operand expression.

This chapter first describes the six categories of conversions (§5.1), inclu
the special conversions toString allowed for the string concatenation operator+.
Then the five conversion contexts are described:

• Assignment conversion (§5.2, §15.25) converts the type of an expressi
the type of a specified variable. The conversions permitted for assignmen
limited in such a way that assignment conversion never causes an excep

• Method invocation conversion (§5.3, §15.8, §15.11) is applied to each a
ment in a method or constructor invocation and, except in one case, perf
the same conversions that assignment conversion does. Method invoc
conversion never causes an exception.

CONVERSIONS AND PROMOTIONS Conversions and Promotions 5

xplic-
ent

than
excep-

type

to a
• Casting conversion (§5.4) converts the type of an expression to a type e
itly specified by a cast operator (§15.15). It is more inclusive than assignm
or method invocation conversion, allowing any specific conversion other
a string conversion, but certain casts to a reference type may cause an
tion at run time.

• String conversion (§5.4, §15.17.1) allows any type to be converted to
String.

• Numeric promotion (§5.6) brings the operands of a numeric operator
common type so that an operation can be performed.

Here are some examples of the various contexts for conversion:

class Test {

public static void main(String[] args) {

// Casting conversion (§5.4) of afloat literal to
// typeint. Without the cast operator, this would
// be a compile-time error, because this is a
// narrowing conversion (§5.1.3):
int i = (int)12.5f;

// String conversion (§5.4) ofi’s int value:
System.out.println("(int)12.5f==" + i);

// Assignment conversion (§5.2) ofi’s value to type
// float. This is a widening conversion (§5.1.2):
float f = i;

// String conversion off 'sfloat value:
System.out.println("after float widening: " + f);

// Numeric promotion (§5.6) ofi’s value to type
// float. This is a binary numeric promotion.
// After promotion, the operation isfloat*float:
System.out.print(f);
f = f * i;

// Two string conversions ofi andf:
System.out.println("*" + i + "==" + f);

// Method invocation conversion (§5.3) off ’s value
// to typedouble, needed because the methodMath.sin
// accepts only adouble argument:
double d = Math.sin(f);

// Two string conversions off andd:
System.out.println("Math.sin(" + f + ")==" + d);

}

}

53

5.1 Kinds of Conversion CONVERSIONS AND PROMOTIONS

54

may
d for
mply
ntity
dun-

rall
 type

e, the
which produces the output:

(int)12.5f==12
after float widening: 12.0
12.0*12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kinds of Conversion

Specific type conversions in Java are divided into six categories.

5.1.1 Identity Conversions

A conversion from a type to that same type is permitted for any type. This
seem trivial, but it has two practical consequences. First, it is always permitte
an expression to have the desired type to begin with, thus allowing the si
stated rule that every expression is subject to conversion, if only a trivial ide
conversion. Second, it implies that it is permitted for a program to include re
dant cast operators for the sake of clarity.

The only permitted conversion that involves the typeboolean is the identity
conversion fromboolean to boolean.

5.1.2 Widening Primitive Conversions

The following 19 specific conversions on primitive types are called thewidening
primitive conversions:

• byte to short, int, long, float, or double

• short to int, long, float, or double

• char to int, long, float, or double

• int to long, float, or double

• long to float or double

• float to double

Widening primitive conversions do not lose information about the ove
magnitude of a numeric value. Indeed, conversions widening from an integral
to another integral type and fromfloat to double do not lose any information at
all; the numeric value is preserved exactly. Conversion of anint or along value
to float, or of along value todouble, may result inloss of precision—that is,
the result may lose some of the least significant bits of the value. In this cas

CONVERSIONS AND PROMOTIONS Narrowing Primitive Conversions5.1.3

ger

ll the

ions

.

 of a

-

resulting floating-point value will be a correctly rounded version of the inte
value, using IEEE 754 round-to-nearest mode (§4.2.4).

A widening conversion of a signed integer value to an integral typeT simply
sign-extends the two’s-complement representation of the integer value to fi
wider format. A widening conversion of a character to an integral typeT zero-
extends the representation of the character value to fill the wider format.

Despite the fact that loss of precision may occur, widening convers
among primitive types never result in a run-time exception (§11).

Here is an example of a widening conversion that loses precision:

class Test {
public static void main(String[] args) {

int big = 1234567890;
float approx = big;
System.out.println(big - (int)approx);

}
}

which prints:

-46

thus indicating that information was lost during the conversion from typeint to
typefloat because values of typefloat are not precise to nine significant digits

5.1.3 Narrowing Primitive Conversions

The following 23 specific conversions on primitive types are called thenarrowing
primitive conversions:

• byte to char

• short to byte or char

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

Narrowing conversions may lose information about the overall magnitude
numeric value and may also lose precision.

A narrowing conversion of a signed integer to an integral typeT simply dis-
cards all but then lowest order bits, wheren is the number of bits used to repre
55

5.1.3 Narrowing Primitive Conversions CONVERSIONS AND PROMOTIONS

56

 of
 the

-
e of
mber,

 the

int

ega-
able

osi-
able

ep.

 a
sent typeT. In addition to a possible loss of information about the magnitude
the numeric value, this may cause the sign of the resulting value to differ from
sign of the input value.

A narrowing conversion of a character to an integral typeT likewise simply
discards all but then lowest order bits, wheren is the number of bits used to rep
resent typeT. In addition to a possible loss of information about the magnitud
the numeric value, this may cause the resulting value to be a negative nu
even though characters represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral typeT takes
two steps:

1. In the first step, the floating-point number is converted either to along, if T is
long, or to anint, if T is byte, short, char, orint, as follows:

◆ If the floating-point number is NaN (§4.2.3), the result of the first step of
conversion is anint or long 0.

◆ Otherwise, if the floating-point number is not an infinity, the floating-po
value is rounded to an integer valueV, rounding toward zero using IEEE
754 round-toward-zero mode (§4.2.3). Then there are two cases:

❖ If T is long, and this integer value can be represented as along, then the
result of the first step is thelong valueV.

❖ Otherwise, if this integer value can be represented as anint, then the
result of the first step is theint valueV.

◆ Otherwise, one of the following two cases must be true:

❖ The value must be too small (a negative value of large magnitude or n
tive infinity), and the result of the first step is the smallest represent
value of typeint or long.

❖ The value must be too large (a positive value of large magnitude or p
tive infinity), and the result of the first step is the largest represent
value of typeint or long.

2. In the second step:

◆ If T is int or long, the result of the conversion is the result of the first st

◆ If T is byte, char, or short, the result of the conversion is the result of
narrowing conversion to typeT (§5.1.3) of the result of the first step.

CONVERSIONS AND PROMOTIONS Narrowing Primitive Conversions5.1.3

i-
rstood

ely,
f

ode.

ay
time
The example:

class Test {
public static void main(String[] args) {

float fmin = Float.NEGATIVE_INFINITY;
float fmax = Float.POSITIVE_INFINITY;
System.out.println("long: " + (long)fmin +

".." + (long)fmax);
System.out.println("int: " + (int)fmin +

".." + (int)fmax);
System.out.println("short: " + (short)fmin +

".." + (short)fmax);
System.out.println("char: " + (int)(char)fmin +

".." + (int)(char)fmax);
System.out.println("byte: " + (byte)fmin +

".." + (byte)fmax);
}

}

produces the output:

long: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647
short: 0..-1
char: 0..65535
byte: 0..-1

The results forchar, int, andlong are unsurprising, producing the minimum
and maximum representable values of the type.

The results forbyte andshort lose information about the sign and magn
tude of the numeric values and also lose precision. The results can be unde
by examining the low order bits of the minimum and maximumint. The mini-
mumint is, in hexadecimal,0x80000000, and the maximumint is0x7fffffff.
This explains theshort results, which are the low 16 bits of these values, nam
0x0000 and0xffff; it explains thechar results, which also are the low 16 bits o
these values, namely,'\u0000' and'\uffff'; and it explains thebyte results,
which are the low 8 bits of these values, namely,0x00 and0xff.

A narrowing conversion fromdouble to float behaves in accordance with
IEEE 754. The result is correctly rounded using IEEE 754 round-to-nearest m
A value too small to be represented as afloat is converted to positive or negative
zero; a value too large to be represented as afloat is converted to a (positive or
negative) infinity. Adouble NaN is always converted to afloat NaN.

Despite the fact that overflow, underflow, or other loss of information m
occur, narrowing conversions among primitive types never result in a run-
exception (§11).
57

5.1.4 Widening Reference Conversions CONVERSIONS AND PROMOTIONS

58

nver-

class
Here is a small test program that demonstrates a number of narrowing co
sions that lose information:

class Test {

public static void main(String[] args) {

// A narrowing ofint to short loses high bits:
System.out.println("(short)0x12345678==0x" +

Integer.toHexString((short)0x12345678));

// A int value not fitting inbyte changes sign and magnitude:
System.out.println("(byte)255==" + (byte)255);

// A float value too big to fit gives largestint value:
System.out.println("(int)1e20f==" + (int)1e20f);

// A NaN converted toint yields zero:
System.out.println("(int)NaN==" + (int)Float.NaN);

// A double value too large forfloat yields infinity:
System.out.println("(float)-1e100==" + (float)-1e100);

// A double value too small forfloat underflows to zero:
System.out.println("(float)1e-50==" + (float)1e-50);

}

}

This test program produces the following output:

(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1e100==-Infinity
(float)1e-50==0.0

5.1.4 Widening Reference Conversions

The following conversions are called thewidening reference conversions:

• From any class typeS to any class typeT, provided thatS is a subclass ofT.
(An important special case is that there is a widening conversion to the
typeObject from any other class type.)

• From any class typeS to any interface typeK , provided thatS implementsK.

• From the null type to any class type, interface type, or array type.

• From any interface typeJ to any interface typeK, provided thatJ is a sub-
interface ofK.

CONVERSIONS AND PROMOTIONS Narrowing Reference Conversions5.1.5

never
e as
e.

10 for

 the

ing

rence
• From any interface type to typeObject.

• From any array type to typeObject.

• From any array type to typeCloneable.

• From any array typeSC[] to any array typeTC[], provided thatSC andTC
are reference types and there is a widening conversion fromSC to TC.

Such conversions never require a special action at run time and therefore
throw an exception at run time. They consist simply in regarding a referenc
having some other type in a manner that can be proved correct at compile tim

See §8 for the detailed specifications for classes, §9 for interfaces, and §
arrays.

5.1.5 Narrowing Reference Conversions

The following conversions are called thenarrowing reference conversions:

• From any class typeS to any class typeT , provided thatS is a superclass ofT.
(An important special case is that there is a narrowing conversion from
class typeObject to any other class type.)

• From any class typeS to any interface typeK, provided thatS is not final and
does not implementK. (An important special case is that there is a narrow
conversion from the class typeObject to any interface type.)

• From typeObject to any array type.

• From typeObject to any interface type.

• From any interface typeJ to any class typeT that is notfinal.

• From any interface typeJ to any class typeT that isfinal, provided thatT
implementsJ.

• From any interface typeJ to any interface typeK, provided thatJ is not a sub-
interface ofK and there is no method namem such thatJ andK both declare a
method namedm with the same signature but different return types.

• From any array typeSC[] to any array typeTC[], provided thatSC andTC
are reference types and there is a narrowing conversion fromSC to TC.

Such conversions require a test at run time to find out whether the actual refe
value is a legitimate value of the new type. If not, then aClassCastException is
thrown.
59

5.1.6 String Conversions CONVERSIONS AND PROMOTIONS

60

itive

 any

con-

 type

face

other

ype,
5.1.6 String Conversions

There is a string conversion to typeString from every other type, including the
null type.

5.1.7 Forbidden Conversions

• There is no permitted conversion from any reference type to any prim
type.

• Except for the string conversions, there is no permitted conversion from
primitive type to any reference type.

• There is no permitted conversion from the null type to any primitive type.

• There is no permitted conversion to the null type other than the identity
version.

• There is no permitted conversion to the typeboolean other than the identity
conversion.

• There is no permitted conversion from the typeboolean other than the iden-
tity conversion and string conversion.

• There is no permitted conversion other than string conversion from class
S to a different class typeT if S is not a subclass ofT andT is not a subclass
of S .

• There is no permitted conversion from class typeS to interface typeK if S is
final and does not implementK.

• There is no permitted conversion from class typeS to any array type ifS is not
Object.

• There is no permitted conversion other than string conversion from inter
typeJ to class typeT if T is final and does not implementJ .

• There is no permitted conversion from interface typeJ to interface typeK if J
andK declare methods with the same signature but different return types.

• There is no permitted conversion from any array type to any class type
thanObject or String.

• There is no permitted conversion from any array type to any interface t
except to the interface typeCloneable, which is implemented by all arrays.

• There is no permitted conversion from array typeSC[] to array typeTC[] if
there is no permitted conversion other than a string conversion fromSC toTC.

CONVERSIONS AND PROMOTIONS Assignment Conversion 5.2

ned
pe of

.1.1),
sion
the

 is a

 by a
urs.
sign-

hat an
ents

ype;

n of
5.2 Assignment Conversion

Assignment conversion occurs when the value of an expression is assig
(§15.25) to a variable: the type of the expression must be converted to the ty
the variable. Assignment contexts allow the use of an identity conversion (§5
a widening primitive conversion (§5.1.2), or a widening reference conver
(§5.1.4). In addition, a narrowing primitive conversion may be used if all of
following conditions are satisfied:

• The expression is a constant expression of typeint.

• The type of the variable isbyte, short, orchar.

• The value of the expression (which is known at compile time, because it
constant expression) is representable in the type of the variable.

If the type of the expression cannot be converted to the type of the variable
conversion permitted in an assignment context, then a compile-time error occ

If the type of an expression can be converted to the type a variable by as
ment conversion, we say the expression (or its value) isassignable to the variable
or, equivalently, that the type of the expression isassignment compatible with the
type of the variable.

An assignment conversion never causes an exception. (Note, however, t
assignment may result in an exception in a special case involving array elem
—see §10.10 and §15.25.1.)

The compile-time narrowing of constants means that code such as:

byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal42 has typeint
would mean that a cast tobyte would be required:

byte theAnswer = (byte)42; // cast is permitted but not required

A value of primitive type must not be assigned to a variable of reference t
an attempt to do so will result in a compile-time error. A value of typeboolean
can be assigned only to a variable of typeboolean.

The following test program contains examples of assignment conversio
primitive values:

class Test {
public static void main(String[] args) {

short s = 12; // narrow12 to short
float f = s; // widenshort to float
System.out.println("f=" + f);
61

5.2 Assignment Conversion CONVERSIONS AND PROMOTIONS

62

ype;

 be
char c = '\u0123';
long l = c; // widenchar to long
System.out.println("l=0x" + Long.toString(l,16));

f = 1.23f;
double d = f; // widenfloat to double
System.out.println("d=" + d);

}
}

It produces the following output:

f=12.0
i=0x123
d=1.2300000190734863

The following test, however, produces compile-time errors:

class Test {
public static void main(String[] args) {

short s = 123;
char c = s; // error: would require cast
s = c; // error: would require cast

}
}

because not allshort values arechar values, and neither are allchar values
short values.

A value of reference type must not be assigned to a variable of primitive t
an attempt to do so will result in a compile-time error.

A value of the null type (the null reference is the only such value) may
assigned to any reference type, resulting in a null reference of that type.

Here is a sample program illustrating assignments of references:

public class Point { int x, y; }

public class Point3D extends Point { int z; }

public interface Colorable {
void setColor(int color);

}

public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

CONVERSIONS AND PROMOTIONS Assignment Conversion 5.2
class Test {

public static void main(String[] args) {

// Assignments to variables of class type:
Point p = new Point();
p = new Point3D(); // ok: becausePoint3d is a

// subclass ofPoint

Point3D p3d = p; // error: will require a cast because a
// Point might not be aPoint3D
// (even though it is, dynamically,
// in this example.)

// Assignments to variables of typeObject:
Object o = p; // ok: any object toObject
int[] a = new int[3];
Object o2 = a; // ok: an array toObject

// Assignments to variables of interface type:
ColoredPoint cp = new ColoredPoint();
Colorable c = cp; // ok: ColoredPoint implements

// Colorable

// Assignments to variables of array type:
byte[] b = new byte[4];
a = b; // error: these are not arrays

// of the same primitive type
Point3D[] p3da = new Point3D[3];
Point[] pa = p3da; // ok: since we can assign a

// Point3D to aPoint
p3da = pa; // error: (cast needed) since aPoint

// can't be assigned to aPoint3D

}

}

Assignment of a value of compile-time reference typeS (source) to a variable
of compile-time reference typeT (target) is checked as follows:

• If S is a class type:

◆ If T is a class type, thenS must either be the same class asT, orS must be a
subclass ofT, or a compile-time error occurs.

◆ If T is an interface type, thenS must implement interfaceT , or a compile-
time error occurs.

◆ If T is an array type, then a compile-time error occurs.
63

5.2 Assignment Conversion CONVERSIONS AND PROMOTIONS

64

 for

0 for

ence
bed in
• If S is an interface type:

◆ If T is a class type, thenT must beObject, or a compile-time error occurs.

◆ If T is an interface type, thenT must be either the same interface asS or a
superinterface ofS, or a compile-time error occurs.

◆ If T is an array type, then a compile-time error occurs.

• If S is an array typeSC[], that is, an array of components of typeSC:

◆ If T is a class type, thenT must beObject, or a compile-time error occurs.

◆ If T is an interface type, then a compile-time error occurs unlessT is the
interface typeCloneable, the only interface implemented by arrays.

◆ If T is an array typeTC[], that is, an array of components of typeTC , then a
compile-time error occurs unless one of the following is true:

❖ TC andSC are the same primitive type.

❖ TC andSC are both reference types and typeSC is assignable toTC, as
determined by a recursive application of these compile-time rules
assignability.

See §8 for the detailed specifications of classes, §9 for interfaces, and §1
arrays.

The following test program illustrates assignment conversions on refer
values, but fails to compile because it violates the preceding rules, as descri
its comments. This example should be compared to the preceding one.

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

// Okay becauseColoredPoint is a subclass ofPoint:
p = cp;

// Okay becauseColoredPoint implements Colorable:
Colorable c = cp;

CONVERSIONS AND PROMOTIONS Assignment Conversion 5.2

a

.

t

se a
// The following cause compile-time errors because
// we cannot be sure they will succeed, depending on
// the run-time type ofp; a run-time check will be
// necessary for the needed narrowing conversion and
// must be indicated by including a cast:
cp = p; // p might be neither aColoredPoint

// nor a subclass ofColoredPoint
c = p; // p might not implementColorable

}

}

Here is another example involving assignment of array objects:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {
public static void main(String[] args) {

long[] veclong = new long[100];
Object o = veclong; // okay
Long l = veclong; // compile-time error
short[] vecshort = veclong; // compile-time error
Point[] pvec = new Point[100];
ColoredPoint[] cpvec = new ColoredPoint[100];
pvec = cpvec; // okay
pvec[0] = new Point(); // okay at compile time,

// but would throw an
// exception at run time

cpvec = pvec; // compile-time error
}

}

In this example:

• The value ofveclong cannot be assigned to aLong variable, becauseLong
is a class type (§20.8) other thanObject. An array can be assigned only to
variable of a compatible array type, or to a variable of typeObject.

• The value ofveclong cannot be assigned tovecshort, because they are
arrays of primitive type, andshort andlong are not the same primitive type

• The value ofcpvec can be assigned topvec, because any reference tha
could be the value of an expression of typeColoredPoint can be the value of
a variable of typePoint. The subsequent assignment of the newPoint to a
component ofpvec then would throw anArrayStoreException (if the pro-
gram were otherwise corrected so that it could be compiled), becau
ColoredPoint array can’t have an instance ofPoint as the value of a com-
ponent.
65

5.3 Method Invocation Conversion CONVERSIONS AND PROMOTIONS

66

e

sed

 or
must
 con-
ver-

ar-
 The
 add
cess

ded
olve
• The value ofpvec cannot be assigned tocpvec, because not every referenc
that could be the value of an expression of typeColoredPoint can correctly
be the value of a variable of typePoint. If the value ofpvec at run time were
a reference to an instance ofPoint[], and the assignment tocpvec were
allowed, a simple reference to a component ofcpvec, say,cpvec[0], could
return aPoint, and aPoint is not aColoredPoint. Thus to allow such an
assignment would allow a violation of the type system. A cast may be u
(§5.4, §15.15) to ensure thatpvec references aColoredPoint[]:

cpvec = (ColoredPoint[])pvec; // okay, but may throw an
// exception at run time

5.3 Method Invocation Conversion

Method invocation conversion is applied to each argument value in a method
constructor invocation (§15.8, §15.11): the type of the argument expression
be converted to the type of the corresponding parameter. Method invocation
texts allow the use of an identity conversion (§5.1.1), a widening primitive con
sion (§5.1.2), or a widening reference conversion (§5.1.4).

Method invocation conversions specifically do not include the implicit n
rowing of integer constants which is part of assignment conversion (§5.2).
Java designers felt that including these implicit narrowing conversions would
additional complexity to the overloaded method matching resolution pro
(§15.11.2). Thus, the example:

class Test {

static int m(byte a, int b) { return a+b; }

static int m(short a, short b) { return a-b; }

public static void main(String[] args) {
System.out.println(m(12, 2)); // compile-time error

}

}

causes a compile-time error because the integer literals12 and2 have typeint, so
neither methodm matches under the rules of (§15.11.2). A language that inclu
implicit narrowing of integer constants would need additional rules to res
cases like this example.

CONVERSIONS AND PROMOTIONS Casting Conversion 5.5

the

e

.
,
i

type
y the
.1), a
on
 con-
ent or
r than

t in a

tity
 or a

con-

The
 of a
e

5.4 String Conversion

String conversion applies only to the operands of the binary+ operator when one
of the arguments is aString. In this single special case, the other argument to
+ is converted to aString, and a newString which is the concatenation of the
two strings is the result of the+. String conversion is specified in detail within th
description of the string concatenation+ operator (§15.17.1).

5.5 Casting Conversion

Sing away sorrow, cast away care
—Miguel de Cervantes (1547–1616)

Don Quixote (Lockhart's translation), Chapter vii

Casting conversion is applied to the operand of a cast operator (§15.15): the
of the operand expression must be converted to the type explicitly named b
cast operator. Casting contexts allow the use of an identity conversion (§5.1
widening primitive conversion (§5.1.2), a narrowing primitive conversi
(§5.1.3), a widening reference conversion (§5.1.4), or a narrowing reference
version (§5.1.5). Thus casting conversions are more inclusive than assignm
method invocation conversions: a cast can do any permitted conversion othe
a string conversion.

Some casts can be proven incorrect at compile time; such casts resul
compile-time error.

A value of a primitive type can be cast to another primitive type by iden
conversion, if the types are the same, or by a widening primitive conversion
narrowing primitive conversion.

A value of a primitive type cannot be cast to a reference type by casting
version, nor can a value of a reference type be cast to a primitive type.

The remaining cases involve conversion between reference types.
detailed rules for compile-time correctness checking of a casting conversion
value of compile-time reference typeS (source) to a compile-time reference typ
T (target) are as follows:
67

5.5 Casting Conversion CONVERSIONS AND PROMOTIONS

68

m-

ct

-
.

.

0 for
• If S is a class type:

◆ If T is a class type, thenS andT must be related classes—that is,S andT
must be the same class, orS a subclass ofT , or T a subclass ofS; otherwise
a compile-time error occurs.

◆ If T is an interface type:

❖ If S is not afinal class (§8.1.2), then the cast is always correct at co
pile time (because even ifS does not implementT, a subclass ofS might).

❖ If S is afinal class (§8.1.2), thenS must implementT , or a compile-
time error occurs.

◆ If T is an array type, thenS must be the classObject, or a compile-time
error occurs.

• If S is an interface type:

◆ If T is a class type that is notfinal (§8.1.2), then the cast is always corre
at compile time (because even ifT does not implementS, a subclass ofT
might).

◆ If T is a class type that isfinal (§8.1.2), thenT must implementS, or a
compile-time error occurs.

◆ If T is an interface type and ifT andS contain methods with the same signa
ture (§8.4.2) but different return types, then a compile-time error occurs

• If S is an array typeSC[], that is, an array of components of typeSC :

◆ If T is a class type, then ifT is notObject, then a compile-time error occurs
(becauseObject is the only class type to which arrays can be assigned)

◆ If T is an interface type, then a compile-time error occurs unlessT is the
interface typeCloneable, the only interface implemented by arrays.

◆ If T is an array typeTC[], that is, an array of components of typeTC, then a
compile-time error occurs unless one of the following is true:

❖ TC andSC are the same primitive type.

❖ TC andSC are reference types and typeSC can be cast toTC by a recursive
application of these compile-time rules for casting.

See §8 for the detailed specifications of classes, §9 for interfaces, and §1
arrays.

CONVERSIONS AND PROMOTIONS Casting Conversion 5.5

es:

 the

o
a-

he

but
-time
type.)

s
 ref-
If a cast to a reference type is not a compile-time error, there are two cas

• The cast can be determined to be correct at compile time. A cast from
compile-time typeS to compile-time typeT is correct at compile time if and
only if S can be converted toT by assignment conversion (§5.2).

• The cast requires a run-time validity check. If the value at run time isnull,
then the cast is allowed. Otherwise, letR be the class of the object referred t
by the run-time reference value, and letT be the type named in the cast oper
tor. A cast conversion must check, at run time, that the classR is assignment
compatible with the typeT, using the algorithm specified in §5.2 but using t
classR instead of the compile-time typeS as specified there. (Note thatR can-
not be an interface when these rules are first applied for any given cast, R
may be an interface if the rules are applied recursively because the run
reference value refers to an array whose element type is an interface
This modified algorithm is shown here:

◆ If R is an ordinary class (not an array class):

❖ If T is a class type, thenR must be either the same class (§4.3.4) asT or a
subclass ofT, or a run-time exception is thrown.

❖ If T is an interface type, thenR must implement (§8.1.4) interfaceT, or a
run-time exception is thrown.

❖ If T is an array type, then a run-time exception is thrown.

◆ If R is an interface:

❖ If T is a class type, thenT must beObject (§4.3.2, §20.1), or a run-time
exception is thrown.

❖ If T is an interface type, thenR must be either the same interface asT or a
subinterface ofT, or a run-time exception is thrown.

❖ If T is an array type, then a run-time exception is thrown.

◆ If R is a class representing an array typeRC[]—that is, an array of compo-
nents of typeRC:

❖ If T is a class type, thenT must beObject (§4.3.2, §20.1), or a run-time
exception is thrown.

❖ If T is an interface type, then a run-time exception is thrown unlessT is
the interface typeCloneable, the only interface implemented by array
(this case could slip past the compile-time checking if, for example, a
erence to an array were stored in a variable of typeObject).
69

5.5 Casting Conversion CONVERSIONS AND PROMOTIONS

70

ilar to

 other),
❖ If T is an array typeTC[], that is, an array of components of typeTC , then
a run-time exception is thrown unless one of the following is true:

✣ TC andRC are the same primitive type.

✣ TC andRC are reference types and typeRC can be cast toTC by a recur-
sive application of these run-time rules for casting.

If a run-time exception is thrown, it is aClassCastException (§11.5.1.1,
§20.22).

Here are some examples of casting conversions of reference types, sim
the example in §5.2:

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoint extends Point { }

class Test {

public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
Colorable c;

// The following may cause errors at run time because
// we cannot be sure they will succeed; this possibility
// is suggested by the casts:
cp = (ColoredPoint)p; // p might not reference an

// object which is aColoredPoint
// or a subclass ofColoredPoint

c = (Colorable)p; // p might not beColorable

// The following are incorrect at compile time because
// they can never succeed as explained in the text:
Long l = (Long)p; // compile-time error #1
EndPoint e = new EndPoint();
c = (Colorable)e; // compile-time error #2

}

}

Here the first compile-time error occurs because the class typesLong andPoint
are unrelated (that is, they are not the same, and neither is a subclass of the
so a cast between them will always fail.

CONVERSIONS AND PROMOTIONS Casting Conversion 5.5

-time
The second compile-time error occurs because a variable of typeEndPoint
can never reference a value that implements the interfaceColorable. This is
becauseEndPoint is afinal type, and a variable of afinal type always holds a
value of the same run-time type as its compile-time type. Therefore, the run
type of variablee must be exactly the typeEndPoint, and typeEndPoint does
not implementColorable.

Here is an example involving arrays (§10):

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

public String toString() { return "("+x+","+y+")"; }
}

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;

ColoredPoint(int x, int y, int color) {
super(x, y); setColor(color);

}

public void setColor(int color) { this.color = color; }

public String toString() {
return super.toString() + "@" + color;

}

}

class Test {

public static void main(String[] args) {
Point[] pa = new ColoredPoint[4];
pa[0] = new ColoredPoint(2, 2, 12);
pa[1] = new ColoredPoint(4, 5, 24);
ColoredPoint[] cpa = (ColoredPoint[])pa;
System.out.print("cpa: {");
for (int i = 0; i < cpa.length; i++)

System.out.print((i == 0 ? " " : ", ") + cpa[i]);
System.out.println(" }");

}

}

This example compiles without errors and produces the output:

cpa: { (2,2)@12, (4,5)@24, null, null }
71

5.6 Numeric Promotions CONVERSIONS AND PROMOTIONS

72

t run

eric
ning

tor to
meric
tion
ions”

ty of
The following example uses casts to compile, but it throws exceptions a
time, because the types are incompatible:

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;

public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {

Point[] pa = new Point[100];

// The following line will throw aClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.println(cpa[0]);

int[] shortvec = new int[2];

Object o = shortvec;

// The following line will throw aClassCastException:
Colorable c = (Colorable)o;

c.setColor(0);

}

}

5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator. Num
promotion contexts allow the use of an identity conversion (§5.1.1) or a wide
primitive conversion (§5.1.2).

Numeric promotions are used to convert the operands of a numeric opera
a common type so that an operation can be performed. The two kinds of nu
promotion are unary numeric promotion (§5.6.1) and binary numeric promo
(§5.6.2). The analogous conversions in C are called “the usual unary convers
and “the usual binary conversions.”

Numeric promotion is not a general feature of Java, but rather a proper
the specific definitions of the built-in operations.

CONVERSIONS AND PROMOTIONS Unary Numeric Promotion5.6.1

t

ons:

ing
5.6.1 Unary Numeric Promotion

Some operators applyunary numeric promotion to a single operand, which mus
produce a value of a numeric type:

• If the operand is of compile-time typebyte, short, or char, unary numeric
promotion promotes it to a value of typeint by a widening conversion
(§5.1.2).

• Otherwise, a unary numeric operand remains as is and is not converted.

Unary numeric promotion is performed on expressions in the following situati

• The dimension expression in array creations (§15.9)

• The index expression in array access expressions (§15.12)

• Operands of the unary operators plus+ (§15.14.3) and minus- (§15.14.4)

• The operand of the bitwise complement operator~ (§15.14.5)

• Each operand, separately, of the shift operators>>, >>>, and<< (§15.18), so
that along shift distance (right operand) does not promote the value be
shifted (left operand) tolong

Here is a test program that includes examples of unary numeric promotion:

class Test {
public static void main(String[] args) {

byte b = 2;
int a[] = new int[b]; // dimension expression promotion
char c = '\u0001';
a[c] = 1; // index expression promotion
a[0] = -c; // unary- promotion
System.out.println("a: " + a[0] + "," + a[1]);

b = -1;
int i = ~b; // bitwise complement promotion
System.out.println("~0x" + Integer.toHexString(b)

+ "==0x" + Integer.toHexString(i));

i = b << 4L; // shift promotion (left operand)
System.out.println("0x" + Integer.toHexString(b)

 + "<<4L==0x" + Integer.toHexString(i));
}

}

This test program produces the output:

a: -1,1
~0xffffffff==0x0
0xffffffff<<4L==0xfffffff0
73

5.6.2 Binary Numeric Promotion CONVERSIONS AND PROMOTIONS

74

f
rder,

:

ther:
5.6.2 Binary Numeric Promotion

When an operator appliesbinary numeric promotion to a pair of operands, each o
which must denote a value of a numeric type, the following rules apply, in o
using widening conversion (§5.1.2) to convert operands as necessary:

• If either operand is of typedouble, the other is converted todouble.

• Otherwise, if either operand is of typefloat, the other is converted tofloat.

• Otherwise, if either operand is of typelong, the other is converted tolong.

• Otherwise, both operands are converted to typeint.

Binary numeric promotion is performed on the operands of certain operators

• The multiplicative operators*, / and% (§15.16)

• The addition and subtraction operators for numeric types+ and- (§15.17.2)

• The numerical comparison operators<, <=, >, and>= (§15.19.1)

• The numerical equality operators== and!= (§15.20.1)

• The integer bitwise operators&, ^, and| (§15.21.1)

• In certain cases, the conditional operator? : (§15.24)

An example of binary numeric promotion appears above in §5.1. Here is ano

class Test {
public static void main(String[] args) {

int i = 0;
float f = 1.0f;
double d = 2.0;

// Firsti*f promoted tofloat*float, then
// float==double is promoted todouble==double:
if (i * f == d)

System.out.println("oops");

// A char&byte is promoted toint&int:
byte b = 0x1f;
char c = 'G';
int control = c & b;
System.out.println(Integer.toHexString(control));

// A int:float promoted tofloat:float:
f = (b==0) ? f : 4.0f;
System.out.println(1.0/f);

}

}

CONVERSIONS AND PROMOTIONS Binary Numeric Promotion5.6.2

ns!
which produces the output:

7
0.25

The example converts the ASCII characterG to the ASCII control-G (BEL), by
masking off all but the low 5 bits of the character. The7 is the numeric value of
this control character.

 O suns! O grass of graves! O perpetual transfers and promotio
—Walt Whitman,Walt Whitman (1855),

in Leaves of Grass
75

C H A P T E R 6
o;
me.
h;
.

lared
) of a
r), or

er, or

 by a

 array
name

face
ype,

f the
s with

 field
nt
within
ccess
 the
er can
Names

The Tao that can be told is not the eternal Ta
The name that can be named is not the eternal na

The Nameless is the origin of Heaven and Eart
The Named is the mother of all things

—Lao-Tsu (c. 6th centuryBC)

NAMES are used to refer to entities declared in a Java program. A dec
entity (§6.1) is a package, class type, interface type, member (field or method
reference type, parameter (to a method, constructor, or exception handle
local variable.

Names in Java programs are either simple, consisting of a single identifi
qualified, consisting of a sequence of identifiers separated by “.” tokens (§6.2).

Every name introduced by a declaration has ascope (§6.3), which is the part
of the Java program text within which the declared entity can be referred to
simple name.

Packages and reference types (that is, class types, interface types, and
types) have members (§6.4). A member can be referred to using a qualified
N.x, whereN is a simple or qualified name andx is an identifier. IfN names a
package, thenx is a member of that package, which is either a class or inter
type or a subpackage. IfN names a reference type or a variable of a reference t
thenx names a member of that type, which is either a field or a method.

In determining the meaning of a name (§6.5), Java uses the context o
occurrence to disambiguate among packages, types, variables, and method
the same name.

Access control (§6.6) can be specified in a class, interface, method, or
declaration to control whenaccess to a member is allowed. Access is a differe
concept from scope; access specifies the part of the Java program text
which the declared entity can be referred to by a qualified name, a field a
expression (§15.10), or a method invocation expression (§15.11) in which
method is not specified by a simple name. The default access is that a memb
77

6.1 Declarations NAMES

78

r pos-

dis-

ssion
rt of a
 may

ession
or an

d or
rt of a

tifier
ne of

or a

e

be accessed anywhere within the package that contains its declaration; othe
sibilities arepublic, protected, andprivate.

Fully qualified names (§6.7) and naming conventions (§6.8) are also
cussed in this chapter.

The name of a field, parameter, or local variable may be used as an expre
(§15.13.1). The name of a method may appear in an expression only as pa
method invocation expression (§15.11). The name of a class or interface type
appear in an expression only as part of a class instance creation expr
(§15.8), an array creation expression (§15.9), a cast expression (§15.15),
instanceof expression (§15.19.2), or as part of a qualified name for a fiel
method. The name of a package may appear in an expression only as pa
qualified name for a class or interface type.

6.1 Declarations

A declaration introduces an entity into a Java program and includes an iden
(§3.8) that can be used in a name to refer to this entity. A declared entity is o
the following:

• A package, declared in apackage declaration (§7.4)

• An imported type, declared in a single-type-import declaration (§7.5.1)
type-import-on-demand declaration (§7.5.2)

• A class, declared in a class type declaration (§8.1)

• An interface, declared in an interface type declaration (§9.1)

• A member of a reference type (§8.2, §9.2, §10.7), one of the following:

◆ A field, one of the following:

❖ A field declared in a class type (§8.3)

❖ A constant field declared in an interface type (§9.3)

❖ The field length, which is implicitly a member of every array typ
(§10.7)

◆ A method, one of the following:

❖ A method (abstract or otherwise) declared in a class type (§8.4)

❖ A method (alwaysabstract) declared in an interface type (§9.4)

NAMES Names and Identifiers 6.2

of the

 into
ntexts
ariable

 also

e by

 “
on or

may
• A parameter, one of the following:

◆ A parameter of a method or constructor of a class (§8.4.1, §8.6.1)

◆ A parameter of anabstract method of an interface (§9.4)

◆ A parameter of an exception handler declared in acatch clause of atry
statement (§14.18)

• A local variable, one of the following:

◆ A local variable declared in a block (§14.3)

◆ A local variable declared in afor statement (§14.12)

Constructors (§8.6) are also introduced by declarations, but use the name
class in which they are declared rather than introducing a new name.

6.2 Names and Identifiers

A name is used to refer to an entity declared in a Java program.
There are two forms of names: simple names and qualified names. Asimple

name is a single identifier. Aqualified name consists of a name, a “.” token, and
an identifier.

In determining the meaning of a name (§6.5), the Java language takes
account the context in which the name appears. It distinguishes among co
where a name must denote (refer to) a package (§6.5.3), a type (§6.5.4), a v
or value in an expression (§6.5.5), or a method (§6.5.6).

Not all identifiers in Java programs are a part of a name. Identifiers are
used in the following situations:

• In declarations (§6.1), where an identifier may occur to specify the nam
which the declared entity will be known

• In field access expressions (§15.10), where an identifier occurs after a.”
token to indicate a member of an object that is the value of an expressi
the keywordsuper that appears before the “.” token

• In some method invocation expressions (§15.11), where an identifier
occur after a “.” token and before a “(” token to indicate a method to be
invoked for an object that is the value of an expression or the keywordsuper
that appears before the “.” token

• As labels in labeled statements (§14.6) and inbreak (§14.13) andcontinue
(§14.14) statements that refer to statement labels
79

6.2 Names and Identifiers NAMES

80

ntities.

r-
vo-

tions.

of
ent
.

In the example:

class Test {
public static void main(String[] args) {

Class c = System.out.getClass();
System.out.println(c.toString().length() +

args[0].length() + args.length);
}

}

the identifiersTest, main, and the first occurrences ofargs andc are not names;
rather, they are used in declarations to specify the names of the declared e
The namesString, Class, System.out.getClass, System.out.println,
c.toString, args, andargs.length appear in the example. The first occu
rence oflength is not a name, but rather an identifier appearing in a method in
cation expression (§15.11). The second occurrence oflength is not a name, but
rather an identifier appearing in a method invocation expression (§15.11).

The identifiers used in labeled statements and their associatedbreak and
continue statements are completely separate from those used in declara
Thus, the following code is valid:

class TestString {

char[] value;

int offset, count;

int indexOf(TestString str, int fromIndex) {
char[] v1 = value, v2 = str.value;
int max = offset + (count - str.count);
int start = offset + ((fromIndex < 0) ? 0 : fromIndex);

i:
for (int i = start; i <= max; i++)
{

int n = str.count, j = i, k = str.offset;
while (n-- != 0) {

if (v1[j++] != v2[k++])
continue i;

}
return i - offset;

}
return -1;

}
}

This code was taken from a version of the classString and its methodindexOf
(§20.12.26), where the label was originally calledtest. Changing the label to
have the same name as the local variablei does not hide the label in the scope
the declaration ofi. The identifiermax could also have been used as the statem
label; the label would not hide the local variablemax within the labeled statement

NAMES Scope of a Simple Name 6.3

tity

f the

) or
 type
ion

rface
es in

inter-
 The
use is
at a

f the
6.3 Scope of a Simple Name

The scope of a declaration is the region of the program within which the en
declared by the declaration can be referred to using a simple name:

• The scope of a package, as introduced by apackage declaration, is deter-
mined by the host system (§7.4.3). All Java code is within the scope o
standard package namedjava, so the packagejava can always be referred to
by Java code.

• The scope of a type imported by a single-type-import declaration (§7.5.1
type-import-on-demand declaration (§7.5.2) is all the class and interface
declarations (§7.6) in the compilation unit in which the import declarat
appears.

• The scope of a type introduced by a class type declaration (§8.1.1) or inte
type declaration (§9.1.1) is the declarations of all class and interface typ
all the compilation units (§7.3) of the package in which it is declared.

• The scope of a member declared in or inherited by a class type (§8.2) or
face type (§9.2) is the entire declaration of the class or interface type.
declaration of a member needs to appear before it is used only when the
in a field initialization expression (§8.3.2, §12.4.2, §12.5). This means th
compile-time error results from the test program:

class Test {
int i = j; // compile-time error: incorrect forward reference
int j = 1;

}

whereas the following example compiles without error:

class Test {
Test() { k = 2; }
int j = 1;
int i = j;
int k;

}

even though the constructor (§8.6) forTest refers to the fieldk that is
declared three lines later.

• The scope of a parameter of a method (§8.4.1) is the entire body o
method.
81

6.3 Scope of a Simple Name NAMES

82

f the

f the
.3)
ara-

the

ppear

pe
• The scope of a parameter of a constructor (§8.6.1) is the entire body o
constructor.

• The scope of a local variable declaration in a block (§14.3.2) is the rest o
block in which the declaration appears, starting with its own initializer (§14
and including any further declarators to the right in the local variable decl
tion statement.

• The scope of a local variable declared in theForInit part of afor statement
(§14.12) includes all of the following:

◆ Its own initializer

◆ Any further declarators to the right in theForInit part of thefor statement

◆ TheExpression andForUpdate parts of thefor statement

◆ The containedStatement

• The scope of a parameter of an exception handler that is declared in acatch
clause of atry statement (§14.18) is the entire block associated with
catch.

These rules imply that declarations of class and interface types need not a
before uses of the types.

In the example:

package points;

class Point {
int x, y;
PointList list;
Point next;

}

class PointList {
Point first;

}

the use ofPointList in classPoint is correct, because the scope of the class ty
namePointList includes both classPoint and classPointList, as well as any
other type declarations in other compilation units of packagepoints.

NAMES Hiding Names 6.3.1

ecla-
efer to

(§8.2)
he

ared

f

-
ple
6.3.1 Hiding Names

Some declarations may be hidden (§6.3.1) in part of their scope by another d
ration of the same name, in which case a simple name cannot be used to r
the declared entity.

The example:

class Test {
static int x = 1;
public static void main(String[] args) {

int x = 0;
System.out.print("x=" + x);
System.out.println(", Test.x=" + Test.x);

}
}

produces the output:

x=0, Test.x=1

This example declares:

• a classTest

• a class (static) variablex that is a member of the classTest

• a class methodmain that is a member of the classTest

• a parameterargs of themain method

• a local variablex of themain method

Since the scope of a class variable includes the entire body of the class
the class variablex would normally be available throughout the entire body of t
methodmain. In this example, however, the class variablex is hidden within the
body of the methodmain by the declaration of the local variablex.

A local variable has as its scope the rest of the block in which it is decl
(§14.3.2); in this case this is the rest of the body of themain method, namely its
initializer “0” and the invocations ofprint andprintln.

This means that:

• The expression “x” in the invocation ofprint refers to (denotes) the value o
the local variablex.

• The invocation ofprintln uses a qualified name (§6.6)Test.x, which uses
the class type nameTest to access the class variablex, because the declara
tion of Test.x is hidden at this point and cannot be referred to by its sim
name.
83

6.3.1 Hiding Names NAMES

84

that
 rare.
the

-

ce
l

e

If the standard naming conventions (§6.8) are followed, then hiding
would make the identification of separate naming contexts matter should be
The following contrived example involves hiding because it does not follow
standard naming conventions:

class Point { int x, y; }

class Test {

static Point Point(int x, int y) {
Point p = new Point();
p.x = x; p.y = y;
return p;

}

public static void main(String[] args) {
int Point;
Point[] pa = new Point[2];
for (Point = 0; Point < 2; Point++) {

pa[Point] = new Point();
pa[Point].x = Point;
pa[Point].y = Point;

}
System.out.println(pa[0].x + "," + pa[0].y);
System.out.println(pa[1].x + "," + pa[1].y);
Point p = Point(3, 4);
System.out.println(p.x + "," + p.y);

}

}

This compiles without error and executes to produce the output:

0,0
1,1
3,4

Within the body ofmain, the lookups ofPoint find different declarations depend
ing on the context of the use:

• In the expression “new Point[2]”, the two occurrences of the class instan
creation expression “new Point()”, and at the start of three different loca
variable declaration statements, thePoint is a TypeName (§6.5.4) and
denotes the class typePoint in each case.

• In the method invocation expression “Point(3, 4)” the occurrence ofPoint
is aMethodName(§6.5.6) and denotes the class (static) methodPoint.

• All other names areExpressionNames (§6.5.5) and refer to the local variabl
Point.

NAMES The Members of a Package 6.4.1

re
 in all
 type
either
per-

rence
termi-
, see

rface

ystem
s

nct
t mem-
is pos-
The example:

import java.util.*;

class Vector {
int val[] = { 1 , 2 };

}

class Test {
public static void main(String[] args) {

Vector v = new Vector();
System.out.println(v.val[0]);

}
}

compiles and prints:

1

using the classVector declared here in preference to classjava.util.Vector
that might be imported on demand.

6.4 Members and Inheritance

Packages and reference types havemembers. The members of a package (§7) a
subpackages (§7.1) and all the class (§8) and interface (§9) types declared
the compilation units (§7.3) of the package. The members of a reference
(§4.3) are fields (§8.3, §9.3, §10.7) and methods (§8.4, §9.4). Members are
declared in the type, orinheritedbecause they are accessible members of a su
class or superinterface which are neither hidden nor overridden (§8.4.6).

This section provides an overview of the members of packages and refe
types here, as background for the discussion of qualified names and the de
nation of the meaning of names. For a complete description of membership
§7.1, §8.2, §9.2, and §10.7.

6.4.1 The Members of a Package

A member of a package (§7) is a subpackage (§7.1), or a class (§8) or inte
(§9) type declared in a compilation unit (§7.3) of the package.

In general, the subpackages of a package are determined by the host s
(§7.2). However, the standard packagejava always includes the subpackage
lang, util, io, andnet and may include other subpackages. No two disti
members of the same package may have the same simple name (§7.1), bu
bers of different packages may have the same simple name. For example, it
sible to declare a package:
85

6.4.2 The Members of a Class Type NAMES

86

mes

s of a

lass

g the

 are
 the
package vector;

public class Vector { Object[] vec; }

that has as a member apublic class namedVector, even though the standard
packagejava.util also declares a class namedVector. These two class types
are different, reflected by the fact that they have different fully qualified na
(§6.7). The fully qualified name of this exampleVector is vector.Vector,
whereasjava.util.Vector is the fully qualified name of the standardVector
class. Because the packagevector contains a class namedVector, it cannot also
have a subpackage namedVector.

6.4.2 The Members of a Class Type

The members of a class type (§8.2) are fields and methods. The member
class type are all of the following:

• Members inherited from its direct superclass (§8.1.3), if it has one (the c
Object has no direct superclass)

• Members inherited from any direct superinterfaces (§8.1.4)

• Members declared in the body of the class (§8.1.5)

Constructors (§8.6) are not members.
There is no restriction against a field and a method of a class type havin

same simple name.
A class may have two or more fields with the same simple name if they

declared in different interfaces and inherited. An attempt to refer to any of
fields by its simple name results in a compile-time error (§6.5.6.2, §8.2).

In the example:

interface Colors {
int WHITE = 0, BLACK = 1;

}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;

}

class Test implements Colors, Separates {
public static void main(String[] args) {

System.out.println(BLACK); // compile-time error: ambiguous
}

}

the nameBLACK in the methodmain is ambiguous, because classTest has two
members namedBLACK, one inherited fromColors and one fromSeparates.

NAMES The Members of an Interface Type6.4.3

if the
bers

. Such

e and
uper-

terface

dure

ers of

they
such
A class type may have two or more methods with the same simple name
methods have different signatures (§8.4.2), that is, if they have different num
of parameters or different parameter types in at least one parameter position
a method member name is said to beoverloaded.

A class type may contain a declaration for a method with the same nam
the same signature as a method that would otherwise be inherited from a s
class or superinterface. In this case, the method of the superclass or superin
is not inherited. If the method not inherited isabstract, then the new declaration
is said toimplement it; if the method not inherited is notabstract, then the new
declaration is said tooverride it.

In the example:

class Point {
float x, y;
void move(int dx, int dy) { x += dx; y += dy; }
void move(float dx, float dy) { x += dx; y += dy; }
public String toString() { return "("+x+","+y+")"; }

}

the classPoint has two members that are methods with the same name,move.
The overloadedmove method of classPoint chosen for any particular method
invocation is determined at compile time by the overloading resolution proce
given in §15.11.

In this example, the members of the classPoint are thefloat instance vari-
ablesx andy declared inPoint, the two declaredmove methods, the declared
toString method, and the members thatPoint inherits from its implicit direct
superclassObject (§4.3.2), such as the methodhashCode (§20.1.4). Note that
Point does not inherit thetoString method (§20.1.2) of classObject because
that method is overridden by the declaration of thetoString method in class
Point.

6.4.3 The Members of an Interface Type

The members of an interface type (§9.2) are fields and methods. The memb
an interface are all of the following:

• Members inherited from any direct superinterfaces (§9.1.3)

• Members declared in the body of the interface (§9.1.4)

An interface may have two or more fields with the same simple name if
are declared in different interfaces and inherited. An attempt to refer to any
field by its simple name results in a compile-time error (§6.5.5.1, §9.2).
87

6.4.4 The Members of an Array Type NAMES

88
In the example:

interface Colors {
int WHITE = 0, BLACK = 1;

}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;

}

interface ColorsAndSeparates extends Colors, Separates {
int DEFAULT = BLACK; // compile-time error: ambiguous

}

the members of the interfaceColorsAndSeparates include those members
inherited fromColors and those inherited fromSeparates, namely WHITE,
BLACK (first of two),CYAN, MAGENTA, YELLOW, andBLACK (second of two). The
member nameBLACK is ambiguous in the interfaceColorsAndSeparates.

6.4.4 The Members of an Array Type

The members of an array type (§10.7) are all of the following:

• Members inherited from its implicit superclassObject (§4.3.2, §20.1)

• The fieldlength, which is a constant (final) field of every array; its type is
int and it contains the number of components of the array

The example:

class Test {
public static void main(String[] args) {

int[] ia = new int[3];
int[] ib = new int[6];
System.out.println(ia.getClass() == ib.getClass());
System.out.println("ia has length=" + ia.length);

}
}

produces the output:

true
ia has length=3

This example uses the methodgetClass inherited from classObject and the
field length. The result of the comparison of theClass objects in the second
println demonstrates that all arrays whose components are of typeint are
instances of the same array type, which isint[].

NAMES Determining the Meaning of a Name 6.5

. The
auses

-

name

f dif-
d in
ypes
am-
trouble
ontext
6.5 Determining the Meaning of a Name

The meaning of a name in Java depends on the context in which it is used
determination of the meaning of a name requires three steps. First, context c
a name syntactically to fall into one of five categories:PackageName, TypeName,
ExpressionName, MethodName, or AmbiguousName. Second, a name that is ini
tially classified by its context as anAmbiguousName is then reclassified by certain
scoping rules to be aPackageName, TypeName, or ExpressionName. Third, the
resulting category then dictates the final determination of the meaning of the
(or a compilation error if the name has no meaning).

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier
AmbiguousName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

Java’s use of context helps to minimize name conflicts between entities o
ferent kinds. Such conflicts will be rare if the naming conventions describe
§6.8 are followed. Nevertheless, conflicts may arise unintentionally as t
developed by different programmers or different organizations evolve. For ex
ple, types, methods, and fields may have the same name. Java never has
distinguishing between a method and a field with the same name, since the c
of a use always tells whether a method or a field is intended.
89

6.5.1 Syntactic Classification of a Name According to Context NAMES

90

 in

4.1,

ctor

e cre-

ssion

)

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as aPackageName in these contexts:

• In a package declaration (§7.4)

• In a type-import-on-demand declaration (§7.5.2)

• To the left of the “.” in a qualifiedPackageName

• To the left of the “.” in a qualifiedTypeName

A name is syntactically classified as aTypeName in these contexts:

• In a single-type-import declaration (§7.5.1)

• In anextends clause in a class declaration (§8.1.3)

• In animplements clause in a class declaration (§8.1.4)

• In anextends clause in an interface declaration (§9.1.3)

• As aType (or the part of aType that remains after all brackets are deleted)
any of the following contexts:

◆ In a field declaration (§8.3, §9.3)

◆ As the result type of a method (§8.4, §9.4)

◆ As the type of a formal parameter of a method or constructor (§8.
§8.6.1, §9.4)

◆ As the type of an exception that can be thrown by a method or constru
(§8.4.4, §8.6.4, §9.4)

◆ As the type of a local variable (§14.3)

◆ As the type of an exception parameter in acatch clause of atry statement
(§14.18)

◆ As the class type of an instance that is to be created in a class instanc
ation expression (§15.8)

◆ As the element type of an array to be created in an array creation expre
(§15.9)

◆ As the type mentioned in the cast operator of a cast expression (§15.15

◆ As the type that follows theinstanceof relational operator (§15.19.2)

NAMES Reclassification of Contextually Ambiguous Names6.5.2

)

ra-
that

be

7.3)
1)

unit
the

-on-
the
A name is syntactically classified as anExpressionName in these contexts:

• As the array reference expression in an array access expression (§15.12

• As aPostfixExpression (§15.13)

• As the left-hand operand of an assignment operator (§15.25)

A name is syntactically classified as aMethodName in this context:

• Before the “(” in a method invocation expression (§15.11)

A name is syntactically classified as anAmbiguousName in these contexts:

• To the left of the “.” in a qualifiedExpressionName

• To the left of the “.” in a qualifiedMethodName

• To the left of the “.” in a qualifiedAmbiguousName

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows:

• If the AmbiguousName is a simple name, consisting of a singleIdentifier:

◆ If the Identifier appears within the scope (§6.3) of a local variable decla
tion (§14.3) or parameter declaration (§8.4.1, §8.6.1, §14.18) with
name, then theAmbiguousName is reclassified as anExpressionName.

◆ Otherwise, consider the class or interfaceC within whose declaration the
Identifier occurs. IfC has one or more fields with that name, which may
either declared within it or inherited, then theAmbiguousName is reclassi-
fied as anExpressionName.

◆ Otherwise, if a type of that name is declared in the compilation unit (§
containing theIdentifier, either by a single-type-import declaration (§7.5.
or by a class or interface type declaration (§7.6), then theAmbiguousName
is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared in another compilation
(§7.3) of the package (§7.1) of the compilation unit containing
Identifier, then theAmbiguousName is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared by exactly one type-import
demand declaration (§7.5.2) of the compilation unit containing
Identifier, then theAmbiguousName is reclassified as aTypeName.
91

6.5.2 Reclassification of Contextually Ambiguous Names NAMES

92

port-

as the

ually
◆ Otherwise, if a type of that name is declared by more than one type-im
on-demand declaration of the compilation unit containing theIdentifier,
then a compile-time error results.

◆ Otherwise, theAmbiguousName is reclassified as aPackageName. A later
step determines whether or not a package of that name actually exists.

• If the AmbiguousName is a qualified name, consisting of a name, a “.”, and an
Identifier, then the name to the left of the “.” is first reclassified, for it is itself
anAmbiguousName. There is then a choice:

◆ If the name to the left of the “.” is reclassified as aPackageName, then there
is a further choice:

❖ If there is a package whose name is the name to the left of the “.” and that
package contains a declaration of a type whose name is the same
Identifier, then thisAmbiguousName is reclassified as aTypeName.

❖ Otherwise, thisAmbiguousName is reclassified as aPackageName. A
later step determines whether or not a package of that name act
exists.

◆ If the name to the left of the “.” is reclassified as aTypeName, then this
AmbiguousName is reclassified as anExpressionName.

◆ If the name to the left of the “.” is reclassified as anExpressionName, then
thisAmbiguousName is reclassified as anExpressionName.

As an example, consider the following contrived “library code”:

package ORG.rpgpoet;

import java.util.Random;

interface Music { Random[] wizards = new Random[4]; }

and then consider this example code in another package:

package bazola;

class Gabriel {
static int n = ORG.rpgpoet.Music.wizards.length;

}

First of all, the nameORG.rpgpoet.Music.wizards.length is classified as an
ExpressionName because it functions as aPostfixExpression. Therefore, each of
the names:

ORG.rpgpoet.Music.wizards
ORG.rpgpoet.Music

NAMES Meaning of Type Names 6.5.4

er-

-
le, as

e

ccurs.

rs. It
ORG.rpgpoet
ORG

is initially classified as anAmbiguousName. These are then reclassified:

• Assuming that there is no class or interface namedORG in any other compila-
tion unit of packagebazola, then the simple nameORG is reclassified as a
PackageName.

• Next, assuming that there is no class or interface namedrpgpoet in any com-
pilation unit of packageORG (and we know that there is no such class or int
face because packageORG has a subpackage namedrpgpoet), the qualified
nameORG.rpgpoet is reclassified as aPackageName.

• Next, because packageORG.rpgpoet has an interface type namedMusic, the
qualified nameORG.rpgpoet.Music is reclassified as aTypeName.

• Finally, because the nameORG.rpgpoet.Music is aTypeName, the qualified
nameORG.rpgpoet.Music.wizards is reclassified as anExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as aPackageName is determined as follows.

6.5.3.1 Simple Package Names

If a package name consists of a singleIdentifier, then this identifier denotes a top
level package named by that identifier. If no package of that name is accessib
determined by the host system (§7.4.3), then a compile-time error occurs.

6.5.3.2 Qualified Package Names

If a package name is of the formQ.Id, thenQ must also be a package name. Th
package nameQ.Id names a package that is the member namedId within the
package named byQ. If Q does not name an accessible package orId does not
name an accessible subpackage of that package, then a compile-time error o

6.5.4 Meaning of Type Names

The meaning of a name classified as aTypeName is determined as follows.

6.5.4.1 Simple Type Names

If a type name consists of a singleIdentifier, then the identifier must occur in the
scope of a declaration of a type with this name, or a compile-time error occu
93

6.5.4 Meaning of Type Names NAMES

94

 with
ows:

.3),
of a
e.

unit
ifier
a file
of the

-on-
fier,

port-
us as

ccurs.

most

e

),
is possible that the identifier occurs within the scope of more than one type
that name, in which case the type denoted by the name is determined as foll

• If a type with that name is declared in the current compilation unit (§7
either by a single-type-import declaration (§7.5.1) or by a declaration
class or interface type (§7.6), then the simple type name denotes that typ

• Otherwise, if a type with that name is declared in another compilation
(§7.3) of the package (§7.1) containing the identifier, then the ident
denotes that type. Note that, in systems that store compilation units in
system, such a compilation unit must have a file name that is the name
type (§7.6).

• Otherwise, if a type of that name is declared by exactly one type-import
demand declaration (§7.5.2) of the compilation unit containing the identi
then the simple type name denotes that type.

• Otherwise, if a type of that name is declared by more than one type-im
on-demand declaration of the compilation unit, then the name is ambiguo
a type name; a compile-time error occurs.

• Otherwise, the name is undefined as a type name; a compile-time error o

This order for considering type declarations is designed to choose the
explicit of two or more applicable type declarations.

6.5.4.2 Qualified Type Names

If a type name is of the formQ.Id, thenQ must be a package name. The typ
nameQ.Id names a type that is the member namedId within the package named
by Q. If Q does not name an accessible package, orId does not name a type within
that package, or the type namedId within that package is not accessible (§6.6
then a compile-time error occurs.

The example:

package wnj.test;

class Test {
public static void main(String[] args) {

java.util.Date date =
new java.util.Date(System.currentTimeMillis());

System.out.println(date.toLocaleString());
}

}

produced the following output the first time it was run:

Sun Jan 21 22:56:29 1996

NAMES Meaning of Expression Names 6.5.5

lved
n

he
,
.

tion
 then
rame-
3), so
pe of
er.

 that

 type

pile-

r field
type.

ppear
, or
In this example:

• The namewnj.test must name a package on the host system. It is reso
by first looking for the packagewnj, using the procedure described i
§6.5.3.1, and then making sure that the subpackagetest of this package is
accessible.

• The namejava.util.Date (§21.3) must denote a type, so we first use t
procedure recursively to determine ifjava.util is an accessible package
which it is, and then look to see if the typeDate is accessible in this package

6.5.5 Meaning of Expression Names

The meaning of a name classified as anExpressionName is determined as follows.

6.5.5.1 Simple Expression Names

If an expression name consists of a singleIdentifier, then:

• If the Identifier appears within the scope (§6.3) of a local variable declara
(§14.3) or parameter declaration (§8.4.1, §8.6.1, §14.18) with that name,
the expression name denotes a variable, that is, that local variable or pa
ter. Local variables and parameters are never hidden (§6.3, §6.3.1, §14.
there is necessarily at most one such local variable or parameter. The ty
the expression name is the declared type of the local variable or paramet

• Otherwise, if theIdentifier appears within a class declaration (§8):

◆ If there is not exactly one member of that class (§8.2) that is a field with
name, then a compile-time error results.

◆ Otherwise, if the single member field with that name is declaredfinal
(§8.3.1.2), then the expression name denotes the value of the field. The
of the expression name is the declared type of the field. If theIdentifier
appears in a context that requires a variable and not a value, then a com
time error occurs.

◆ Otherwise, the expression name denotes a variable, the single membe
with that name. The type of the expression name is the field’s declared

If the field is an instance variable (§8.3.1.1), the expression name must a
within the declaration of an instance method (§8.4), constructor (§8.6)
instance variable initializer (§8.3.2.2). If it appears within astatic method
(§8.4.3.2), static initializer (§8.5), or initializer for astatic variable
(§8.3.1.1, §12.4.2), then a compile-time error occurs.
95

6.5.5 Meaning of Expression Names NAMES

96

with

mber
pe of
 not

time
. If the
it will

 a

hat is

(that
• Otherwise, the identifier appears within an interface declaration (§9):

◆ If there is not exactly one member of that interface (§9.2) that is a field
that name, then a compile-time error results.

◆ Otherwise, the expression name denotes the value of the single me
field of that name. The type of the expression name is the declared ty
the field. If theIdentifier appears in a context that requires a variable and
a value, then a compile-time error occurs.

In the example:

class Test {

static int v;

static final int f = 3;

public static void main(String[] args) {
int i;
i = 1;
v = 2;
f = 33; // compile-time error
System.out.println(i + " " + v + " " + f);

}

}

the names used as the left-hand-sides in the assignments toi, v, andf denote the
local variablei, the fieldv, and the value off (not the variablef, becausef is a
final variable). The example therefore produces an error at compile
because the last assignment does not have a variable as its left-hand side
erroneous assignment is removed, the modified code can be compiled and
produce the output:

1 2 3

6.5.5.2 Qualified Expression Names

If an expression name is of the formQ.Id, thenQ has already been classified as
package name, a type name, or an expression name:

• If Q is a package name, then a compile-time error occurs.

• If Q is a type name that names a class type (§8), then:

◆ If there is not exactly one accessible (§6.6) member of the class type t
a field namedId, then a compile-time error occurs.

◆ Otherwise, if the single accessible member field is not a class variable
is, it is not declaredstatic), then a compile-time error occurs.

NAMES Meaning of Expression Names 6.5.5

ri-

ion

type

ion
t

r an

 a

ssion
◆ Otherwise, if the class variable is declaredfinal, thenQ.Id denotes the
value of the class variable. The type of the expressionQ.Id is the declared
type of the class variable. IfQ.Id appears in a context that requires a va
able and not a value, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes the class variable. The type of the express
Q.Id is the declared type of the class variable.

• If Q is a type name that names an interface type (§9), then:

◆ If there is not exactly one accessible (§6.6) member of the interface
that is a field namedId, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes the value of the field. The type of the express
Q.Id is the declared type of the field. IfQ.Id appears in a context tha
requires a variable and not a value, then a compile-time error occurs.

• If Q is an expression name, letT be the type of the expressionQ :

◆ If T is not a reference type, a compile-time error occurs.

◆ If there is not exactly one accessible (§6.6) member of the typeT that is a
field namedId, then a compile-time error occurs.

◆ Otherwise, if this field is any of the following:

❖ A field of an interface type

❖ A final field of a class type (which may be either a class variable o
instance variable)

❖ Thefinal field length of an array type

thenQ.Id denotes the value of the field. The type of the expressionQ.Id is
the declared type of the field. IfQ.Id appears in a context that requires
variable and not a value, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes a variable, the fieldId of classT, which may be
either a class variable or an instance variable. The type of the expre
Q.Id is the declared type of the field
97

6.5.6 Meaning of Method Names NAMES

98

The

of

thod

 a
a
r

oca-
The example:

class Point {
int x, y;
static int nPoints;

}

class Test {
public static void main(String[] args) {

int i = 0;
i.x++; // compile-time error
Point p = new Point();
p.nPoints(); // compile-time error

}
}

encounters two compile-time errors, because theint variablei has no members,
and becausenPoints is not a method of classPoint.

6.5.6 Meaning of Method Names

A MethodName can appear only in a method invocation expression (§15.11).
meaning of a name classified as aMethodName is determined as follows.

6.5.6.1 Simple Method Names

If a method name consists of a singleIdentifier, thenIdentifier is the method name
to be used for method invocation. TheIdentifier must name at least one method
the class or interface within whose declaration theIdentifier appears. See §15.11
for further discussion of the interpretation of simple method names in me
invocation expressions.

6.5.6.2 Qualified Method Names

If a method name is of the formQ.Id, thenQ has already been classified as
package name, a type name, or an expression name. IfQ is a package name, then
compile-time error occurs. Otherwise,Id is the method name to be used fo
method invocation. IfQ is a type name, thenId must name at least onestatic
method of the typeQ. If Q is an expression name, then letT be the type of the
expressionQ ; Id must name at least one method of the typeT. See §15.11 for fur-
ther discussion of the interpretation of qualified method names in method inv
tion expressions.

NAMES Determining Accessibility 6.6.1

ference
0) and
 that
pres-

k-

-
f that

cation
ructor

).

y
ss or

 or a
d the

.

age

.2.

d.

n the
6.6 Qualified Names and Access Control

Qualified names are a means of access to members of packages and re
types; related means of access include field access expressions (§15.1
method invocation expressions (§15.11). All three are syntactically similar in
a “.” token appears, preceded by some indication of a package, type, or ex
sion having a type and followed by anIdentifier that names a member of the pac
age or type. These are collectively known as constructs forqualified access.

Java provides mechanisms foraccess control, to prevent the users of a pack
age or class from depending on unnecessary details of the implementation o
package or class. Access control applies to qualified access and to the invo
of constructors by class instance creation expressions (§15.8), explicit const
invocations (§8.6.5), and the methodnewInstance of classClass (§20.3.6).

If access is permitted, then the accessed entity is said to beaccessible.

6.6.1 Determining Accessibility

• Whether a package is accessible is determined by the host system (§7.2

• If a class or interface type is declaredpublic, then it may be accessed by an
Java code that can access the package in which it is declared. If a cla
interface type is not declaredpublic, then it may be accessed only from
within the package in which it is declared.

• A member (field or method) of a reference (class, interface, or array) type
constructor of a class type is accessible only if the type is accessible an
member or constructor is declared to permit access:

◆ If the member or constructor is declaredpublic, then access is permitted
All members of interfaces are implicitlypublic.

◆ Otherwise, if the member or constructor is declaredprotected, then access
is permitted only when one of the following is true:

✣ Access to the member or constructor occurs from within the pack
containing the class in which theprotected member is declared.

✣ Access occurs within a subclass of the class in which theprotected
member is declared, and the access is correct as described in §6.6

◆ Otherwise, if the member or constructor is declaredprivate, then access is
permitted only when it occurs from within the class in which it is declare

◆ Otherwise, we say there is default access, which is permitted only whe
access occurs from within the package in which the type is declared.
99

6.6.2 Details onprotected Access NAMES

100

tside
ple-

f

of

 a
ch it
6.6.2 Details onprotected Access

A protected member or constructor of an object may be accessed from ou
the package in which it is declared only by code that is responsible for the im
mentation of that object. LetC be the class in which aprotected member or con-
structor is declared and letS be the subclass ofC in whose declaration the use o
theprotected member or constructor occurs. Then:

• If an access is of aprotected member (field or method), letId be its name.
Consider then the means of qualified access:

◆ If the access is by a field access expression of the formsuper.Id, then the
access is permitted.

◆ If the access is by a qualified nameQ.Id , whereQ is aTypeName, then the
access is permitted if and only ifQ is S or a subclass ofS.

◆ If the access is by a qualified nameQ.Id , whereQ is anExpressionName,
then the access is permitted if and only if the type of the expressionQ isS or
a subclass ofS.

◆ If the access is by a field access expressionE.Id , whereE is a Primary
expression, or by a method invocation expressionE.Id(. . .), whereE is a
Primary expression, then the access is permitted if and only if the type E
is S or a subclass ofS.

• Otherwise, if an access is of aprotected constructor:

◆ If the access is by a superclass constructor invocationsuper(. . .), then the
access is permitted.

◆ If the access is by a class instance creation expressionnew T(. . .), then the
access is not permitted. (Aprotected constructor can be accessed by
class instance creation expression only from within the package in whi
is defined.)

◆ If the access is by an invocation of the methodnewInstance of classClass
(§20.3.6), then the access is not permitted.

6.6.3 An Example of Access Control

For examples of access control, consider the two compilation units:

package points;

class PointVec { Point[] vec; }

NAMES Example: Access topublic and Non-public Classes 6.6.4

the

It

e

ssing

 to

cess
and:

package points;

public class Point {
protected int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { return y; }

}

which declare two class types in the packagepoints:

• The class typePointVec is notpublic and not part of thepublic interface
of the packagepoints, but rather can be used only by other classes in
package.

• The class typePoint is declaredpublic and is available to other packages.
is part of thepublic interface of the packagepoints.

• The methodsmove, getX, andgetY of the classPoint are declaredpublic
and so are available to any Java code that uses an object of typePoint.

• The fieldsx andy are declaredprotected and are accessible outside th
packagepoints only in subclasses of classPoint, and only when they are
fields of objects that are being implemented by the code that is acce
them.

See §6.6.7 for an example of how theprotected access modifier limits access.

6.6.4 Example: Access topublic and Non-public Classes

If a class lacks thepublic modifier, access to the class declaration is limited
the package in which it is declared (§6.6). In the example:

package points;

public class Point {
public int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

}

class PointList {
Point next, prev;

}

two classes are declared in the compilation unit. The classPoint is available out-
side the packagepoints, while the classPointList is available for access only
within the package. Thus a compilation unit in another package can ac
points.Point, either by using its fully qualified name:
101

6.6.5 Example: Default-Access Fields, Methods, and Constructors NAMES

102

ully

ins the
 mem-

is not
package pointsUser;

class Test {
public static void main(String[] args) {

points.Point p = new points.Point();
System.out.println(p.x + " " + p.y);

}
}

or by using a single-type-import declaration (§7.5.1) that mentions the f
qualfied name, so that the simple name may be used thereafter:

package pointsUser;

import points.Point;

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println(p.x + " " + p.y);

}
}

However, this compilation unit cannot use or importpoints.PointList, which
is not declaredpublic and is therefore inaccessible outside packagepoints.

6.6.5 Example: Default-Access Fields, Methods, and Constructors

If none of the access modifierspublic, protected, or private are specified, a
class member or constructor is accessible throughout the package that conta
declaration of the class in which the class member is declared, but the class
ber or constructor is not accessible in any other package. If apublic class has a
method or constructor with default access, then this method or constructor
accessible to or inherited by a subclass declared outside this package.

For example, if we have:

package points;

public class Point {
public int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
public void moveAlso(int dx, int dy) { move(dx, dy); }

}

then a subclass in another package may declare an unrelatedmove method, with
the same signature (§8.4.2) and return type. Because the originalmove method is
not accessible from packagemorepoints, super may not be used:

NAMES Example:public Fields, Methods, and Constructors 6.6.6

t

kage
age in
package morepoints;

public class PlusPoint extends points.Point {
public void move(int dx, int dy) {

super.move(dx, dy); // compile-time error
moveAlso(dx, dy);

}
}

Because move ofPoint is not overridden bymove in PlusPoint, the method
moveAlso in Point never calls the method move inPlusPoint.

Thus if you delete thesuper.move call fromPlusPoint and execute the tes
program:

import points.Point;

import morepoints.PlusPoint;

class Test {

 public static void main(String[] args) {
 PlusPoint pp = new PlusPoint();
 pp.move(1, 1);
 }

}

it terminates normally. If move ofPoint were overridden bymove in PlusPoint,
then this program would recurse infinitely, until aStackoverflowError
occurred.

6.6.6 Example:public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the pac
where it is declared and from any other package that has access to the pack
which it is declared (§7.4.4). For example, in the compilation unit:

package points;

public class Point {

int x, y;

public void move(int dx, int dy) {
x += dx; y += dy;
moves++;

}

public static int moves = 0;

}

103

6.6.7 Example:protected Fields, Methods, and Constructors NAMES

104

ccess
e

thepublic classPoint has aspublic members themove method and themoves
field. Thesepublic members are accessible to any other package that has a
to packagepoints. The fieldsx andy are notpublic and therefore are accessibl
only from within the packagepoints.

6.6.7 Example:protected Fields, Methods, and Constructors

Consider this example, where thepoint package declares:

package points;

public class Point {

protected int x, y;

void warp(threePoint.Point3d a) {
if (a.z > 0) // compile-time error: cannot accessa.z

a.delta(this);
}

}

and thethreePoint package declares:

package threePoint;

import points.Point;

public class Point3d extends Point {

protected int z;

public void delta(Point p) {
p.x += this.x; // compile-time error: cannot accessp.x
p.y += this.y; // compile-time error: cannot accessp.y

}

public void delta3d(Point3d q) {
q.x += this.x;
q.y += this.y;
q.z += this.z;

}

}

which defines a classPoint3d. A compile-time error occurs in the methoddelta
here: it cannot access the protected membersx andy of its parameterp, because
while Point3d (the class in which the references to fieldsx andy occur) is a sub-
class ofPoint (the class in whichx andy are declared), it is not involved in the
implementation of aPoint (the type of the parameterp). The methoddelta3d
can access the protected members of its parameterq, because the classPoint3d is
a subclass ofPoint and is involved in the implementation of aPoint3d.

NAMES Fully Qualified Names 6.7

 a

 pro-

a

y in
ple:

es,
 of the

lified
e.

ve

 of a

other
kage,
.

The methoddelta could try to cast (§5.4, §15.15) its parameter to be
Point3d, but this cast would fail, causing an exception, if the class ofp at run
time were notPoint3d.

A compile-time error also occurs in the method warp: it cannot access the
tected memberz of its parametera, because while the classPoint (the class in
which the reference to fieldz occurs) is involved in the implementation of
Point (the type of the parameter a), it is not a subclass ofPoint (the class in
whichz is declared).

6.6.8 Example:private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the class bod
which the member is declared and is not inherited by subclasses. In the exam

class Point {

Point() { setMasterID(); }

int x, y;
private int ID;
private static int masterID = 0;

private void setMasterID() { ID = masterID++; }

}

the private membersID, masterID, and setMasterID may be used only
within the body of classPoint. They may not be accessed by qualified nam
field access expressions, or method invocation expressions outside the body
declaration ofPoint.

See §8.6.8 for an example that uses aprivate constructor.

6.7 Fully Qualified Names

Every package, class, interface, array type, and primitive type has a fully qua
name. It follows that every type except the null type has a fully qualified nam

• The fully qualified name of a primitive type is the keyword for that primiti
type, namelyboolean, char, byte, short, int, long, float, ordouble.

• The fully qualified name of a named package that is not a subpackage
named package is its simple name.

• The fully qualified name of a named package that is a subpackage of an
named package consists of the fully qualified name of the containing pac
followed by “.”, followed by the simple (member) name of the subpackage
105

6.8 Naming Conventions NAMES

106

med

med
 “

me

of

 names
elp to
• The fully qualified name of a class or interface that is declared in an unna
package is the simple name of the class or interface.

• The fully qualified name of a class or interface that is declared in a na
package consists of the fully qualified name of the package, followed by.”,
followed by the simple name of the class or interface.

• The fully qualified name of an array type consists of the fully qualified na
of the component type of the array type followed by “[]”.

Examples:

• The fully qualified name of the typelong is “long”.

• The fully qualified name of the standard packagejava.lang is “java.lang”
because it is subpackagelang of packagejava.

• The fully qualified name of the classObject, which is defined in the package
java.lang, is “java.lang.Object”.

• The fully qualified name of the interfaceEnumeration, which is defined in
the packagejava.util, is “java.util.Enumeration”.

• The fully qualified name of the type “array ofdouble” is “double[]”.

• The fully qualified name of the type “array of array of array of array
String” is “java.lang.String[][][][]”.

In the example:

package points;

class Point { int x, y; }

class PointVec {
Point[] vec;

}

the fully qualified name of the typePoint is “points.Point”; the fully qualified
name of the typePointVec is “points.PointVec”; and the fully qualified name
of the type of the fieldvec of classPointVec is “points.Point[]”.

6.8 Naming Conventions

The Java system and standard classes attempt to use, whenever possible,
chosen according to the conventions presented here. These conventions h
make code more readable and avoid certain kinds of name conflicts.

NAMES Package Names 6.8.1

ever,
nal

ese
bs.

ed as
ntifier
uch as

r this

tifier
 not

n that

iable,
thout

for a
letter.
rmine
a type
We recommend these conventions for use in all Java programs. How
these conventions should not be followed slavishly if long-held conventio
usage dictates otherwise. So, for example, thesin andcos methods of the class
java.lang.Math have mathematically conventional names, even though th
method names flout Java convention because they are short and are not ver

6.8.1 Package Names

Names of packages that are to be made widely available should be form
described in §7.7. Such names are always qualified names whose first ide
consists of two or three uppercase letters that name an Internet domain, s
COM, EDU, GOV, MIL, NET, ORG, or a two-letter ISO country code such asUK or JP.
Here are examples of hypothetical unique names that might be formed unde
convention:

COM.JavaSoft.jag.Oak
ORG.NPR.pledge.driver
UK.ac.city.rugby.game

Names of packages intended only for local use should have a first iden
that begins with a lowercase letter, but that first identifier specifically should
be the identifierjava; package names that start with the identifierjava are
reserved to JavaSoft for naming standard Java packages.

When package names occur in expressions:

• If a package name is hidden by a field declaration, thenimport declarations
(§7.5) can usually be used to make available the type names declared i
package.

• If a package name is hidden by a declaration of a parameter or local var
then the name of the parameter or local variable can be changed wi
affecting other Java code.

• The first component of a package name is normally not easily mistaken
type name, as a type name normally begins with a single uppercase
(The Java language does not actually rely on case distinctions to dete
whether a name is a package name or a type name. It is not possible for
name to hide a package name.)
107

6.8.2 Class and Interface Type Names NAMES

108

overly
:

verly
y be
 used

the

lds,
 they

nally

 letter
 some

d

6.8.2 Class and Interface Type Names

Names of class types should be descriptive nouns or noun phrases, not
long, in mixed case with the first letter of each word capitalized. For example

ClassLoader
SecurityManager
Thread
Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not o
long, in mixed case with the first letter of each word capitalized. The name ma
a descriptive noun or noun phrase, which is appropriate when an interface is
as if it were an abstract superclass, such as interfacesjava.io.DataInput and
java.io.DataOutput; or it may be an adjective describing a behavior, as for
interfacesjava.lang.Runnable andjava.lang.Cloneable.

Hiding involving class and interface type names is rare. Names of fie
parameters, and local variables normally do not hide type names because
conventionally begin with a lowercase letter whereas type names conventio
begin with an uppercase letter.

6.8.3 Method Names

Method names should be verbs or verb phrases, in mixed case, with the first
lowercase and the first letter of any subsequent words capitalized. Here are
additional specific conventions for method names:

• Methods toget andset an attribute that might be thought of as a variableV
should be namedgetV andsetV. An example is the methodsgetPriority
(§20.20.22) andsetPriority (§20.20.23) of classjava.lang.Thread.

• A method that returns the length of something should be namedlength, as in
classjava.lang.String (§20.12.11).

• A method that tests aboolean conditionV about an object should be name
isV. An example is the methodisInterrupted of classjava.lang.Thread
(§20.20.32).

• A method that converts its object to a particular formatF should be named
toF. Examples are the methodtoString of class java.lang.Object
(§20.1.2) and the methodstoLocaleString (§21.3.27) andtoGMTString
(§21.3.28) of classjava.util.Date.

NAMES Constant Names 6.8.5

 class
ndard

st
igned

ns for

ge.

 can

 then
cting

s, or

viated.
ames

s fre-
ith a
Whenever possible and appropriate, basing the names of methods in a new
on names in an existing class that is similar, especially a class from the sta
Java Application Programming Interface classes, will make it easier to use.

Method names cannot hide or be hidden by other names (§6.5.6).

6.8.4 Field Names

Names of fields that are notfinal should be in mixed case with a lowercase fir
letter and the first letters of subsequent words capitalized. Note that well-des
Java classes have very fewpublic or protected fields, except for fields that are
constants (final static fields) (§6.8.5).

Fields should have names that are nouns, noun phrases, or abbreviatio
nouns. Examples of this convention are the fieldsbuf, pos, andcount of the class
java.io.ByteArrayInputStream (§22.6) and the fieldbytesTransferred of
the classjava.io.InterruptedIOException (§22.30.1).

Hiding involving field names is rare.

• If a field name hides a package name, then animport declaration (§7.5) can
usually be used to make available the type names declared in that packa

• If a field name hides a type name, then a fully qualified name for the type
be used.

• Field names cannot hide method names.

• If a field name is hidden by a declaration of a parameter or local variable,
the name of the parameter or local variable can be changed without affe
other Java code.

6.8.5 Constant Names

The names of constants in interface types should be, andfinal variables of class
types may conventionally be, a sequence of one or more words, acronym
abbreviations, all uppercase, with components separated by underscore “_” char-
acters. Constant names should be descriptive and not unnecessarily abbre
Conventionally they may be any appropriate part of speech. Examples of n
for constants includeMIN_VALUE, MAX_VALUE, MIN_RADIX, andMAX_RADIX of the
classjava.lang.Character.

A group of constants that represent alternative values of a set, or, les
quently, masking bits in an integer value, are sometimes usefully specified w
common acronym as a name prefix, as in:
109

6.8.6 Local Variable and Parameter Names NAMES

110

t hide

ally
ain at

uished

y are

ding,
rned

ned

 the

xcept
shed
interface ProcessStates {
int PS_RUNNING = 0;
int PS_SUSPENDED = 1;

}

Hiding involving constant names is rare:

• Constant names should be longer than three letters, so that they do no
the initial component of a unique package name.

• Constant names normally have no lowercase letters, so they will not norm
hide names of packages, types, or fields, whose names normally cont
least one lowercase letter.

• Constant names cannot hide method names, because they are disting
syntactically.

6.8.6 Local Variable and Parameter Names

Local variable and parameter names should be short, yet meaningful. The
often short sequences of lowercase letters that are not words. For example:

• Acronyms, that is the first letter of a series of words, as incp for a variable
holding a reference to aColoredPoint

• Abbreviations, as inbuf holding a pointer to abuffer of some kind

• Mnemonic terms, organized in some way to aid memory and understan
typically by using a set of local variables with conventional names patte
after the names of parameters to widely used classes. For example:

◆ in andout, whenever some kind of input and output are involved, patter
after the fields ofjava.lang.System

◆ off andlen, whenever an offset and length are involved, patterned after
parameters to theread andwrite methods of the interfacesDataInput
andDataOutput of java.io

One-character local variable or parameter names should be avoided, e
for temporary and looping variables, or where a variable holds an undistingui
value of a type. Conventional one-character names are:

• b for abyte

• c for achar

• d for adouble

• e for anException

NAMES Local Variable and Parameter Names 6.8.6

rcase
des
7.7).

e
t.

s.

,

),
”

• f for afloat

• i, j, andk for integers

• l for along

• o for anObject

• s for aString

• v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three uppe
letters should be avoided to avoid potential conflicts with the initial country co
and domain names that are the first component of unique package names (§

What’s in a name? That which we call a ros
By any other name would smell as swee

—William Shakespeare,Romeo and Juliet (c. 1594), Act II, scene ii

. . . stat rosa pristina nomine, nomina nuda tenemu
—Bernard of Morlay,De contemptu mundi(12th century),

quoted in Umberto Eco,The Name of the Rose (1980)

Rose, Rose, bo-Bose
Banana-fana fo-Fose,

Fee, fie, mo-Mose—
—Rose!

—Lincoln Chase and Shirley Elliston,The Name Game
(#3 pop single in the U.S., January 1965

as applied to the name “Rose
111

C H A P T E R 7
s.

wn set
sible

 of a
ilation
s and

.2.2).
aniza-
ses
rmined
kages

 In

Java

tion
tomat-

he

 be
Packages

Good things come in small package
—Traditional proverb

JAVA programs are organized as sets of packages. Each package has its o
of names for types, which helps to prevent name conflicts. A type is acces
(§6.6) outside the package that declares it only if the type is declaredpublic.

The naming structure for packages is hierarchical (§7.1). The members
package are class and interface types (§7.6), which are declared in comp
units of the package, and subpackages, which may contain compilation unit
subpackages of their own.

A package can be stored in a file system (§7.2.1) or in a database (§7
Packages that are stored in a file system have certain constraints on the org
tion of their compilation units to allow a simple implementation to find clas
easily. In either case, the set of packages available to a Java program is dete
by the host system, but must always include at least the three standard pac
java.lang, java.util, andjava.io as specified in Chapters 20, 21, and 22.
most host environments, the standard packagesjava.applet, java.awt, and
java.net, which are not described in this specification, are also available to
programs.

A package consists of a number of compilation units (§7.3). A compila
unit automatically has access to all types declared in its package and also au
ically imports each of the types declared in the predefined packagejava.lang.

A compilation unit has three parts, each of which is optional:

• A package declaration (§7.4), giving the fully qualified name (§6.7) of t
package to which the compilation unit belongs

• import declarations (§7.5) that allow types from other packages to
referred to using their simple names

• Type declarations (§7.6) of class and interface types
113

7.1 Package Members PACKAGES

114

amed
nique
would
ckage

0, 21,

 same

-

ot
For small programs and casual development, a package can be unn
(§7.4.2) or have a simple name, but if Java code is to be widely distributed, u
package names should be chosen (§7.7). This can prevent the conflicts that
otherwise occur if two development groups happened to pick the same pa
name and these packages were later to be used in a single program.

7.1 Package Members

A package can have members of either or both of the following kinds:

• Subpackages of the package

• Types declared in the compilation units (§7.3) of the package

For example, in the standard Java Application Programming Interface:

• The packagejava has subpackagesawt, applet, io, lang, net, andutil,
but no compilation units.

• The packagejava.awt has a subpackage namedimage, as well as a number
of compilation units containing declarations of class and interface types.

If the fully qualified name (§6.7) of a package isP, andQ is a subpackage ofP,
thenP.Q is the fully qualified name of the subpackage.

The subpackages of packagejava namedlang, util, andio (whose fully
qualified package names are thereforejava.lang, java.util, andjava.io) are
a standard part of every Java implementation and are specified in Chapters 2
and 22. Many Java implementations will include the entire set ofjava packages
defined in the series of booksThe Java Application Programming Interface.

A package may not contain a type declaration and a subpackage of the
name, or a compile-time error results. Here are some examples:

• Because the packagejava.awt has a subpackageimage, it cannot (and does
not) contain a declaration of a class or interface type namedimage.

• If there is a package namedmouse and a typeButton in that package (which
then might be referred to asmouse.Button), then there cannot be any pack
age with the fully qualified namemouse.Button or mouse.Button.Click.

• If COM.Sun.java.jag is the fully qualified name of a type, then there cann
be any package whose fully qualified name is eitherCOM.Sun.java.jag or
COM.Sun.java.jag.scrabble.

PACKAGES Storing Packages in a File System7.2.1

nient
cance
ing a

. There
named
d
ed

es are
ticular

tions
rm of

binary
 Each
, that
ctory

ing
s
tion
roup;
sed
es.
t

The hierarchical naming structure for packages is intended to be conve
for organizing related packages in a conventional manner, but has no signifi
in the Java language itself other than the prohibition against a package hav
subpackage with the same simple name as a type declared in that package
is no special access relationship in the Java language between a package
oliver and another package namedoliver.twist, or between packages name
evelyn.wood andevelyn.Waugh. For example, the code in a package nam
oliver.twist has no better access to the types declared within packageoliver
than code in any other package.

7.2 Host Support for Packages

Each Java host determines how packages, compilation units, and subpackag
created and stored; which top-level package names are in scope in a par
compilation; and which packages are accessible.

The packages may be stored in a local file system in simple implementa
of Java. Other implementations may use a distributed file system or some fo
database to store Java source and/or binary code.

7.2.1 Storing Packages in a File System

As an extremely simple example, all the Java packages and source and
code on a system might be stored in a single directory and its subdirectories.
immediate subdirectory of this directory would represent a top-level package
is, one whose fully qualified name consists of a single simple name. The dire
might contain the following immediate subdirectories:

COM
gls
jag
java
wnj

where directoryjava would contain the standard Java Application Programm
Interface packages that are part of every standard Java system; the directoriejag,
gls, andwnj might contain packages that the three authors of this specifica
created for their personal use and to share with each other within this small g
and the directoryCOM would contain packages procured from companies that u
the conventions described in §7.7 to generate unique names for their packag

Continuing the example, the directoryjava would probably contain at leas
the following subdirectories:
115

7.2.1 Storing Packages in a File System PACKAGES

116

rd

3)
m is

ould
nts of
ween
 on a
applet
awt
io
lang
net
util

corresponding to the standard packagesjava.applet, java.awt, java.io,
java.lang, java.net, andjava.util that are defined as part of the standa
Java Application Programming Interface.

Still continuing the example, if we were to look inside the directoryutil, we
might see the following files:

BitSet.java Observable.java
BitSet.class Observable.class
Date.java Observer.java
Date.class Observer.class
Dictionary.java Properties.java
Dictionary.class Properties.class
EmptyStackException.java Random.java
EmptyStackException.class Random.class
Enumeration.java Stack.java
Enumeration.class Stack.class
Hashtable.java StringTokenizer.java
Hashtable.class StringTokenizer.class
NoSuchElementException.java Vector.java
NoSuchElementException.class Vector.class

where each of the.java files contains the source for a compilation unit (§7.
that contains the definition of a class or interface whose binary compiled for
contained in the corresponding.class file.

Under this simple organization of packages, an implementation of Java w
transform a package name into a pathname by concatenating the compone
the package name, placing a file name separator (directory indicator) bet
adjacent components. For example, if this simple organization were used
UNIX system, where the file name separator is/, the package name:

jag.scrabble.board

would be transformed into the directory name:

jag/scrabble/board

and:

COM.Sun.sunsoft.DOE

would be transformed to the directory name:

COM/Sun/sunsoft/DOE

PACKAGES Compilation Units 7.3

the

e the
efini-

t can-
 Uni-
 As a

 the

t file
ld be

ges in

ation
ase to

tion to
xport

 of
In fact, the standard JavaSoft Java Developer’s Kit on UNIX differs from
very simple discipline described here only in that it provides aCLASSPATH envi-
ronment variable that specifies a set of directories, each of which is treated lik
single directory described here. These directories are searched in order for d
tions of named packages and types.

A package name component or class name might contain a character tha
not correctly appear in a host file system’s ordinary directory name, such as a
code character on a system that allows only ASCII characters in file names.
convention, the character can be escaped by using, say, the@ character followed
by four hexadecimal digits giving the numeric value of the character, as in
\uxxxx escape (§3.3), so that the package name:

children.activities.crafts.papierM\u00e2ch\u00e9

which can also be written using full Unicode as:

children.activities.crafts.papierMâché

might be mapped to the directory name:

children/activities/crafts/papierM@00e2ch@00e9

If the @ character is not a valid character in a file name for some given hos
system, then some other character that is not valid in a Java identifier cou
used instead.

7.2.2 Storing Packages in a Database

A host system may store packages and their compilation units and subpacka
a database.

Java allows such a database to relax the restrictions (§7.6) on compil
units in file-based implementations. For example, a system that uses a datab
store packages need not enforce a maximum of onepublic class or interface per
compilation unit. Systems that use a database must, however, provide an op
convert a Java program to a form that obeys the restrictions, for purposes of e
to file-based implementations.

7.3 Compilation Units

CompilationUnit is the goal symbol (§2.1) for the syntactic grammar (§2.3)
Java programs. It is defined by the following productions:
117

7.4 Package Declarations PACKAGES

118

larly.

he

 be

l

kage
age

ck-

alified
CompilationUnit:
PackageDeclarationopt ImportDeclarationsopt TypeDeclarationsopt

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

Types declared in different compilation units can depend on each other, circu
A Java compiler must arrange to compile all such types at the same time.

A compilation unit consists of three parts, each of which is optional:

• A package declaration (§7.4), giving the fully qualified name (§6.7) of t
package to which the compilation unit belongs

• import declarations (§7.5) that allow types from other packages to
referred to using their simple names

• Type declarations (§7.6) of class and interface types

Every compilation unit automatically and implicitly imports everypublic
type name declared in the predefined packagejava.lang, so that the names of al
those types are available as simple names, as described in §7.5.3.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the pac
to which the compilation unit belongs. A compilation unit that has no pack
declaration is part of an unnamed package.

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (§6.2) of the pa
age to which the compilation unit belongs.

PackageDeclaration:
package PackageName ;

The package name mentioned in a package declaration must be the fully qu
name (§6.7) of the package.

PACKAGES Unnamed Packages 7.4.2

lly

kage.

pport
lation

, one
ly one
ith the
y”

hen
ent.
for a
kage,
en
com-
from
named
d

ended
mport
e with
d warn
If a type namedT is declared in a compilation unit of a package whose fu
qualified name isP, then the fully qualified name of the type isP.T ; thus in the
example:

package wnj.points;

class Point { int x, y; }

the fully qualified name of classPoint is wnj.points.Point.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed pac
As an example, the compilation unit:

class FirstCall {
public static void main(String[] args) {

System.out.println("Mr. Watson, come here. "
+ "I want you.");

}
}

defines a very simple compilation unit as part of an unnamed package.
A Java system must support at least one unnamed package; it may su

more than one unnamed package but is not required to do so. Which compi
units are in each unnamed package is determined by the host system.

In Java systems that use a hierarchical file system for storing packages
typical strategy is to associate an unnamed package with each directory; on
unnamed package is available at a time, namely the one that is associated w
“current working directory.” The precise meaning of “current working director
depends on the host system.

Unnamed packages are provided by Java principally for convenience w
developing small or temporary applications or when just beginning developm

Caution must be taken when using unnamed packages. It is possible
compilation unit in a named package to import a type from an unnamed pac
but the compiled version of this compilation unit will likely then work only wh
that particular unnamed package is “current.” For this reason, it is strongly re
mended that compilation units of named packages never import types
unnamed packages. It is also recommended that any type declared in an un
package not be declaredpublic, to keep them from accidentally being importe
by a named package.

It is recommended that a Java system provide safeguards against unint
consequences in situations where compilation units of named packages i
types from unnamed packages. One strategy is to provide a way to associat
each named package at most one unnamed package, and then to detect an
119

7.4.3 Scope and Hiding of a Package Name PACKAGES

120

amed
r an
amed

 con-

st sys-
ages

base
ckage

d to
of an
her

on-
.2)

nly

ila-
.

about situations in which a named package is used by more than one unn
package. It is specifically not required—indeed, it is strongly discouraged—fo
implementation to support use of a named package by more than one unn
package by maintaining multiple compiled versions of the named package.

7.4.3 Scope and Hiding of a Package Name

Which top-level package names are in scope (§6.3, §6.5) is determined by
ventions of the host system.

Package names never hide other names.

7.4.4 Access to Members of a Package

Whether access to members of a package is allowed is determined by the ho
tem. The packagejava should always be accessible, and its standard subpack
lang, io, andutil should always be accessible.

It is strongly recommended that the protections of a file system or data
used to store Java programs be set to make all compilation units of a pa
available whenever any of the compilation units is available.

7.5 Import Declarations

An import declaration allows a type declared in another package to be referre
by a simple name (§6.2) that consists of a single identifier. Without the use
appropriateimport declaration, the only way to refer to a type declared in anot
package is to use its fully qualified name (§6.7).

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration

A single-type-import declaration (§7.5.1) imports a single type, by menti
ing its fully qualified name. A type-import-on-demand declaration (§7.5
imports all thepublic types of a named package as needed.

An import declaration makes types available by their simple names o
within the compilation unit that actually contains theimport declaration. The
scope of the name(s) it introduces specifically does not include thepackage state-
ment, otherimport statements in the current compilation unit, or other comp
tion units in the same package. Please see §7.5.4 for an illustrative example

PACKAGES Single-Type-Import Declaration 7.5.1

clara-

; a
pe is
ssible

c-

 a

t to
nless
ored.
pila-
pile-

im-
r they
7.5.1 Single-Type-Import Declaration

A single-type-import declarationimports a single type by giving its fully qualified
name, making it available under a simple name in the class and interface de
tions of its compilation unit.

SingleTypeImportDeclaration:
import TypeName ;

The TypeName must be the fully qualified name of a class or interface type
compile-time error occurs if the named type does not exist. If the named ty
not in the current package, then it must be accessible (§6.6)—in an acce
package and declaredpublic (§8.1.2, §9.1.2)—or a compile-time error occurs.

The example:

import java.util.Vector;

causes the simple nameVector to be available within the class and interface de
larations in a compilation unit. Thus, the simple nameVector refers to the type
Vector in the packagejava.util in all places where it is not hidden (§6.3) by
declaration of a field, parameter, or local variable with the same name.

If two single-type-import declarations in the same compilation unit attemp
import types with the same simple name, then a compile-time error occurs, u
the two types are the same type, in which case the duplicate declaration is ign
If another type with the same name is otherwise declared in the current com
tion unit except by a type-import-on-demand declaration (§7.5.2), then a com
time error occurs.

So the sample program:

import java.util.Vector;

class Vector { Object[] vec; }

causes a compile-time error because of the duplicate declaration ofVector, as
does:

import java.util.Vector;

import myVector.Vector;

wheremyVector is a package containing the compilation unit:

package myVector;

public class Vector { Object[] vec; }

The compiler keeps track of types by their fully qualified names (§6.7). S
ple names and fully qualified names may be used interchangeably wheneve
are both available.
121

7.5.2 Type-Import-on-Demand Declaration PACKAGES

122

. For

e a
(§7.2).
 unit
 decla-

d; the

unit.

ec-

ation

any
Note that an import statement cannot import a subpackage, only a type
example, it does not work to try to importjava.util and then use the name
util.Random to refer to the typejava.util.Random:

import java.util; // incorrect: compile-time error

class Test { util.Random generator; }

7.5.2 Type-Import-on-Demand Declaration

A type-import-on-demand declaration allows all public types declared in the
package named by a fully qualified name to be imported as needed.

TypeImportOnDemandDeclaration:
import PackageName . * ;

It is a compile-time error for a type-import-on-demand declaration to nam
package that is not accessible (§6.6), as determined by the host system
Two or more type-import-on-demand declarations in the same compilation
may name the same package; the effect is as if there were exactly one such
ration. It is not a compile-time error to name the current package orjava.lang in
a type-import-on-demand declaration, even though they are already importe
duplicate type-import-on-demand declaration is ignored.

The example:

import java.util.*;

causes the simple names of allpublic types declared in the packagejava.util
to be available within the class and interface declarations of the compilation
Thus, the simple nameVector refers to the typeVector in the package
java.util in all places where it is not hidden (§6.3) by a single-type-import d
laration of a type whose simple name isVector; by a type namedVector and
declared in the package to which the compilation unit belongs; or by a declar
of a field, parameter, or local variable namedVector. (It would be unusual for any
of these conditions to occur.)

7.5.3 Automatic Imports

Each compilation unit automatically imports each of thepublic type names
declared in the predefined packagejava.lang, as if the declaration:

import java.lang.*;

appeared at the beginning of each compilation unit, immediately following
package statement.

PACKAGES A Strange Example 7.5.4

nven-
 is an
The full specification ofjava.lang is given in Chapter 20. The following
public types are defined injava.lang:

AbstractMethodError LinkageError
ArithmeticException Long
ArrayStoreException Math
Boolean NegativeArraySizeException
Character NoClassDefFoundError
Class NoSuchFieldError
ClassCastException NoSuchMethodError
ClassCircularityError NullPointerException
ClassFormatError Number
ClassLoader NumberFormatException
ClassNotFoundException Object
CloneNotSupportedException OutOfMemoryError
Cloneable Process
Compiler Runnable
Double Runtime
Error RuntimeException
Exception SecurityException
ExceptionInInitializerError SecurityManager
Float StackOverflowError
IllegalAccessError String
IllegalAccessException StringBuffer
IllegalArgumentException System
IllegalMonitorStateException Thread
IllegalThreadStateException ThreadDeath
IncompatibleClassChangeError ThreadGroup
IndexOutOfBoundsException Throwable
InstantiationError UnknownError
InstantiationException UnsatisfiedLinkError
Integer VerifyError
InternalError VirtualMachineError
InterruptedException

7.5.4 A Strange Example

Package names and type names are usually different under the naming co
tions described in §6.8. Nevertheless, in a contrived example where there
unconventionally-named packageVector, which declares apublic class named
Mosquito:

package Vector;

public class Mosquito { int capacity; }

and then the compilation unit:

package strange.example;

import java.util.Vector;
123

7.6 Type Declarations PACKAGES

124

s

e
o C++

rs in

 them.
 the

their
d to

ring to
port
import Vector.Mosquito;

class Test {
public static void main(String[] args) {

System.out.println(new Vector().getClass());
System.out.println(new Mosquito().getClass());

}
}

the single-type-import declaration (§7.5.1) importing classVector from package
java.util does not prevent the package nameVector from appearing and being
correctly recognized in subsequentimport declarations. The example compile
and produces the output:

class java.util.Vector
class Vector.Mosquito

7.6 Type Declarations

A type declaration declares a class type (§8) or an interface type (§9):

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

A Java compiler must ignore extra “;” tokens appearing at the level of typ
declarations. Stray semicolons are permitted in Java solely as a concession t
programmers who are used to writing:

class date { int month, day, year; };

(In C++, but not in Java, one can provide a comma-separated list of identifie
order to declare variables between the “}” and the “;”.) Extra semicolons should
not be used in new Java code. Software that reformats Java code can delete

By default, the types declared in a package are accessible only within
compilation units of that package, but a type may be declared to bepublic to
grant access to the type from code in other packages (§6.6, §8.1.2, §9.1.2).

A Java implementation must keep track of types within packages by
fully qualified names (§6.7). Multiple ways of naming a type must be expande
fully qualified names to make sure that such names are understood as refer
the same type. For example, if a compilation unit contains the single-type-im
declaration (§7.5.1):

import java.util.Vector;

PACKAGES Unique Package Names 7.7

 may
 not
 (such

e in

m

ation
hine

file

 need

e type

”?
 . .

ages

lled
 by a
s are

 from

y arise
ay
then within that compilation unit the simple nameVector and the fully qualified
namejava.util.Vector refer to the same type.

When Java packages are stored in a file system (§7.2.1), the host system
choose to enforce the restriction that it is a compile-time error if a type is
found in a file under a name composed of the type name plus an extension
as.java or .jav) if either of the following is true:

• The type is referred to by code in other compilation units of the packag
which the type is declared.

• The type is declaredpublic (and therefore is potentially accessible fro
code in other packages).

This restriction implies that there must be at most one such type per compil
unit. This restriction makes it easy for a Java compiler and Java Virtual Mac
to find a named class within a package; for example, the source code for apublic
type wet.sprocket.Toad would be found in a fileToad.java in the directory
wet/sprocket, and the corresponding object code would be found in the
Toad.class in the same directory.

When Java packages are stored in a database (§7.2.2), the host system
not enforce such restrictions.

In practice, many Java programmers choose to put each class or interfac
in its own compilation unit, whether or not it ispublic or is referred to by code in
other compilation units.

7.7 Unique Package Names

Did I ever tell you that Mrs. McCave
Had twenty-three sons and she named them all “Dave

Well, she did. And that wasn’t a smart thing to do. .
—Dr. Seuss (Theodore Geisel),Too Many Daves (1961)

Developers should take steps to avoid the possibility of two published pack
having the same name by choosingunique package names for packages that are
widely distributed. This allows packages to be easily and automatically insta
and catalogued. This section specifies a standard convention, not enforced
Java compiler, for generating such unique package names. Java system
encouraged to provide automatic support for converting a set of packages
local and casual package names to the unique name format described here.

If unique package names are not used, then package name conflicts ma
far from the point of creation of either of the conflicting packages. This m
125

7.7 Unique Package Names PACKAGES

126

r to
e

h other
ot in a

niza-

 your

ts be
ples:

rcase

n-
o the

ack-
med
ss

ckage
stry

ation
il
in
create a situation that is difficult or impossible for the user or programme
resolve. The classClassLoader (§20.14) of the standard Java Virtual Machin
environment can be used to isolate packages with the same name from eac
in those cases where the packages will have constrained interactions, but n
way that is transparent to a naïve Java program.

You form a unique package name by first having (or belonging to an orga
tion that has) an Internet domain name, such asSun.COM. You then reverse this
name, component by component, to obtain, in this example,COM.Sun, and use this
as a prefix for your package names, using a convention developed within
organization to further administer package names.

Such a convention might specify that certain directory name componen
division, department, project, machine, or login names. Some possible exam

COM.Sun.sunsoft.DOE
COM.Sun.java.jag.scrabble
COM.Apple.quicktime.v2
EDU.cmu.cs.bovik.cheese
GOV.whitehouse.socks.mousefinder

The first component of a unique package name is always written in all-uppe
ASCII letters and should be one of the top-level domain names, currentlyCOM,
EDU, GOV, MIL, NET, ORG, or one of the English two-letter codes identifying cou
tries as specified in ISO Standard 3166, 1981. For more information, refer t
documents stored atftp://rs.internic.net/rfc, for example,rfc920.txt
andrfc1032.txt.

The name of a package is not meant to imply anything about where the p
age is stored within the Internet; for example, a package na
EDU.cmu.cs.bovik.cheese is not necessarily obtainable from Internet addre
cmu.EDU or fromcs.cmu.EDU or frombovik.cs.cmu.EDU. The Java convention
for generating unique package names is merely a way to piggyback a pa
naming convention on top of an existing, widely known unique name regi
instead of having to create a separate registry for Java package names.

If you need to get a new Internet domain name, you can get an applic
form fromftp://ftp.internic.net and submit the complete forms by E-ma
to domreg@internic.net. To find out what the currently registered doma
names are, you cantelnet to rs.internic.net and use thewhois facility.

C H A P T E R 8
s,
:

h

 are

age in

s
eclared
lared

gle

izers,
decla-
uctor

bers
rinter-
lared

once,
 class.
Classes

class 1. The nounclass derives from
Medieval French and Frenchclasse from Latinclassis,

probably originally a summons,
hence a summoned collection of person

a group liable to be summoned
perhaps forcallassis from calare,

to call, hence to summon.
—Eric Partridge

Origins: A Short Etymological Dictionary of Modern Englis

CLASS declarations define new reference types and describe how they
implemented (§8.1).

The name of a class has as its scope all type declarations in the pack
which the class is declared (§8.1.1). A class may be declaredabstract (§8.1.2.1)
and must be declaredabstract if it is incompletely implemented; such a clas
cannot be instantiated, but can be extended by subclasses. A class may be d
final (§8.1.2.2), in which case it cannot have subclasses. If a class is dec
public, then it can be referred to from other packages.

Each class exceptObject is an extension of (that is, a subclass of) a sin
existing class (§8.1.3) and may implement interfaces (§8.1.4).

The body of a class declares members (fields and methods), static initial
and constructors (§8.1.5). The scope of the name of a member is the entire
ration of the class to which the member belongs. Field, method, and constr
declarations may include the access modifiers (§6.6)public, protected, or
private. The members of a class include both declared and inherited mem
(§8.2). Newly declared fields can hide fields declared in a superclass or supe
face. Newly declared methods can hide, implement, or override methods dec
in a superclass or superinterface.

Field declarations (§8.3) describe class variables, which are incarnated
and instance variables, which are freshly incarnated for each instance of the
127

8.1 Class Declaration CLASSES

128

 to
zer;

thod
class
hat is
how it

y be

 and

ther

d to

y by
, they

e

A field may be declaredfinal (§8.3.1.2), in which case it cannot be assigned
except as part of its declaration. Any field declaration may include an initiali
the declaration of afinal field must include an initializer.

Method declarations (§8.4) describe code that may be invoked by me
invocation expressions (§15.11). A class method is invoked relative to the
type; an instance method is invoked with respect to some particular object t
an instance of the class type. A method whose declaration does not indicate
is implemented must be declaredabstract. A method may be declaredfinal
(§8.4.3.3), in which case it cannot be hidden or overridden. A method ma
implemented by platform-dependentnative code (§8.4.3.4). Asynchronized
method (§8.4.3.5) automatically locks an object before executing its body
automatically unlocks the object on return, as if by use of asynchronized state-
ment (§14.17), thus allowing its activities to be synchronized with those of o
threads (§17).

Method names may be overloaded (§8.4.7).
Static initializers (§8.5) are blocks of executable code that may be use

help initialize a class when it is first loaded (§12.4).
Constructors (§8.6) are similar to methods, but cannot be invoked directl

a method call; they are used to initialize new class instances. Like methods
may be overloaded (§8.6.6).

8.1 Class Declaration

A class declaration specifies a new reference type:

ClassDeclaration:
ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

If a class is declared in a named package (§7.4.1) with fully qualified namP
(§6.7), then the class has the fully qualified nameP.Identifier. If the class is in an
unnamed package (§7.4.2), then the class has the fully qualified nameIdentifier.
In the example:

class Point { int x, y; }

the classPoint is declared in a compilation unit with nopackage statement, and
thusPoint is its fully qualified name, whereas in the example:

package vista;

class Point { int x, y; }

CLASSES Class Declaration 8.1

o be
.)
e
(§7.6).
s

7.3)

ame
or

o
and

tion.

ss
the fully qualified name of the classPoint is vista.Point. (The package name
vista is suitable for local or personal use; if the package were intended t
widely distributed, it would be better to give it a unique package name (§7.7)

A compile-time error occurs if theIdentifier naming a class appears as th
name of any other class type or interface type declared in the same package

A compile-time error occurs if theIdentifier naming a class is also declared a
a type by a single-type-import declaration (§7.5.1) in the compilation unit (§
containing the class declaration.

In the example:

package test;

import java.util.Vector;

class Point {
int x, y;

}

interface Point { // compile-time error #1
int getR();
int getTheta();

}

class Vector { Point[] pts; } // compile-time error #2

the first compile-time error is caused by the duplicate declaration of the n
Point as both aclass and aninterface in the same package. A second err
detected at compile time is the attempt to declare the nameVector both by a class
type declaration and by a single-type-import declaration.

Note, however, that it is not an error for theIdentifier that names a class als
to name a type that otherwise might be imported by a type-import-on-dem
declaration (§7.5.2) in the compilation unit (§7.3) containing the class declara
In the example:

package test;

import java.util.*;

class Vector { Point[] pts; } // not a compile-time error

the declaration of the classVector is permitted even though there is also a cla
java.util.Vector. Within this compilation unit, the simple nameVector refers
to the classtest.Vector, not tojava.util.Vector (which can still be referred
to by code within the compilation unit, but only by its fully qualified name).
129

8.1.1 Scope of a Class Type Name CLASSES

130

class
ed. As

mbers.

ple

 if
 more
h not
e pro-
8.1.1 Scope of a Class Type Name

The Identifier in a class declaration specifies the name of the class. This
name has as its scope (§6.3) the entire package in which the class is declar
an example, the compilation unit:

package points;

class Point {
int x, y; // coordinates
PointColor color; // color of this point
Point next; // next point with this color
static int nPoints;

}

class PointColor {
Point first; // first point with this color
PointColor(int color) {

this.color = color;
}
private int color; // color components

}

defines two classes that use each other in the declarations of their class me
Because the class type namesPoint andPointColor have the entire package
points, including the entire current compilation unit, as their scope, this exam
compiles correctly—that is, forward reference is not a problem.

8.1.2 Class Modifiers

A class declaration may includeclass modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
public abstract final

The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in a class declaration. If two or
class modifiers appear in a class declaration, then it is customary, thoug
required, that they appear in the order consistent with that shown above in th
duction forClassModifier.

CLASSES Class Modifiers 8.1.2

lete.
,

as

thod
or

of an
pt to

,

8.1.2.1 abstract Classes

An abstract class is a class that is incomplete, or to be considered incomp
Only abstract classes may haveabstract methods (§8.4.3.1, §9.4), that is
methods that are declared but not yet implemented. If a class that is notabstract
contains anabstract method, then a compile-time error occurs. A class h
abstract methods if any of the following is true:

• It explicitly contains a declaration of anabstract method (§8.4.3).

• It inherits anabstract method from its direct superclass (§8.1.3).

• A direct superinterface (§8.1.4) of the class declares or inherits a me
(which is therefore necessarilyabstract) and the class neither declares n
inherits a method that implements it.

In the example:

abstract class Point {
int x = 1, y = 1;
void move(int dx, int dy) {

x += dx;
y += dy;
alert();

}
abstract void alert();

}

abstract class ColoredPoint extends Point {
int color;

}

class SimplePoint extends Point {
void alert() { }

}

a classPoint is declared that must be declaredabstract, because it contains a
declaration of anabstract method namedalert. The subclass ofPoint named
ColoredPoint inherits theabstract methodalert, so it must also be declared
abstract. On the other hand, the subclass ofPoint namedSimplePoint pro-
vides an implementation ofalert, so it need not beabstract.

A compile-time error occurs if an attempt is made to create an instance
abstract class using a class instance creation expression (§15.8). An attem
instantiate anabstract class using thenewInstance method of classClass
(§20.3.6) will cause anInstantiationException (§11.5.1) to be thrown. Thus
continuing the example just shown, the statement:

Point p = new Point();
131

8.1.2 Class Modifiers CLASSES

132

hus,
-

t

s an

lass

o
ue

s
vent
ructor
r
bles.
ed;
would result in a compile-time error; the classPoint cannot be instantiated
because it isabstract. However, aPoint variable could correctly be initialized
with a reference to any subclass ofPoint, and the classSimplePoint is not
abstract, so the statement:

Point p = new SimplePoint();

would be correct.
A subclass of anabstract class that is not itselfabstract may be instanti-

ated, resulting in the execution of a constructor for theabstract class and, there-
fore, the execution of the field initializers for instance variables of that class. T
in the example just given, instantiation of aSimplePoint causes the default con
structor and field initializers forx andy of Point to be executed.

It is a compile-time error to declare anabstract class type such that it is no
possible to create a subclass that implements all of itsabstract methods. This
situation can occur if the class would have as members twoabstract methods
that have the same method signature (§8.4.2) but different return types. A
example, the declarations:

interface Colorable { void setColor(int color); }

abstract class Colored implements Colorable {
abstract int setColor(int color);

}

result in a compile-time error: it would be impossible for any subclass of c
Colored to provide an implementation of a method namedsetColor, taking one
argument of typeint, that can satisfy bothabstract method specifications,
because the one in interfaceColorable requires the same method to return n
value, while the one in classColored requires the same method to return a val
of typeint (§8.4).

A class type should be declaredabstract only if the intent is that subclasse
can be created to complete the implementation. If the intent is simply to pre
instantiation of a class, the proper way to express this is to declare a const
(§8.6.8) of no arguments, make itprivate, never invoke it, and declare no othe
constructors. A class of this form usually contains class methods and varia
The classjava.lang.Math is an example of a class that cannot be instantiat
its declaration looks like this:

public final class Math {

private Math() { } // never instantiate this class

. . . declarations of class variables and methods . . .

}

CLASSES Superclasses and Subclasses8.1.3

re

 if a
 a

tation
i-
s
as no

time
 other
 (§7.2)
8.1.2.2 final Classes

A class can be declaredfinal if its definition is complete and no subclasses a
desired or required. A compile-time error occurs if the name of afinal class
appears in theextends clause (§8.1.3) of anotherclass declaration; this implies
that afinal class cannot have any subclasses. A compile-time error occurs
class is declared bothfinal andabstract, because the implementation of such
class could never be completed (§8.1.2.1).

Because afinal class never has any subclasses, the methods of afinal class
are never overridden (§8.4.6.1).

8.1.3 Superclasses and Subclasses

The optionalextends clause in a class declaration specifies thedirect superclass
of the current class. A class is said to be adirect subclass of the class it extends.
The direct superclass is the class from whose implementation the implemen
of the current class is derived. Theextends clause must not appear in the defin
tion of the classjava.lang.Object (§20.1), because it is the primordial clas
and has no direct superclass. If the class declaration for any other class h
extends clause, then the class has the classjava.lang.Object as its implicit
direct superclass.

Super:
extends ClassType

The following is repeated from §4.3 to make the presentation here clearer:

ClassType:
TypeName

The ClassType must name an accessible (§6.6) class type, or a compile-
error occurs. All classes in the current package are accessible. Classes in
packages are accessible if the host system permits access to the package
and the class is declaredpublic. If the specifiedClassTypenames a class that is
final (§8.1.2.2), then a compile-time error occurs;final classes are not allowed
to have subclasses.

In the example:

class Point { int x, y; }

final class ColoredPoint extends Point { int color; }

class Colored3DPoint extends ColoredPoint { int z; } // error

the relationships are as follows:
133

8.1.3 Superclasses and Subclasses CLASSES

134

 it

ela-

. For

 time,
• The classPoint is a direct subclass ofjava.lang.Object.

• The classjava.lang.Object is the direct superclass of the classPoint.

• The classColoredPoint is a direct subclass of classPoint.

• The classPoint is the direct superclass of classColoredPoint.

The declaration of classColored3dPoint causes a compile-time error because
attempts to extend thefinal classColoredPoint.

The subclassrelationship is the transitive closure of the direct subclass r
tionship. A classA is a subclass of classC if either of the following is true:

• A is the direct subclass ofC.

• There exists a classB such thatA is a subclass ofB, andB is a subclass ofC,
applying this definition recursively.

ClassC is said to be asuperclassof classA wheneverA is a subclass ofC.
In the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

final class Colored3dPoint extends ColoredPoint { int z; }

the relationships are as follows:

• The classPoint is a superclass of classColoredPoint.

• The classPoint is a superclass of classColored3dPoint.

• The classColoredPoint is a subclass of classPoint.

• The classColoredPoint is a superclass of classColored3dPoint.

• The classColored3dPoint is a subclass of classColoredPoint.

• The classColored3dPoint is a subclass of classPoint.

A compile-time error occurs if a class is declared to be a subclass of itself
example:

class Point extends ColoredPoint { int x, y; }

class ColoredPoint extends Point { int color; }

causes a compile-time error. If circularly declared classes are detected at run
as classes are loaded (§12.2), then aClassCircularityError is thrown.

CLASSES Superinterfaces 8.1.4

ter-

ile-
faces
ackage

ore
nt
8.1.4 Superinterfaces

The optionalimplements clause in a class declaration lists the names of in
faces that aredirect superinterfaces of the class being declared:

Interfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType
InterfaceTypeList , InterfaceType

The following is repeated from §4.3 to make the presentation here clearer:

InterfaceType:
TypeName

EachInterfaceType must name an accessible (§6.6) interface type, or a comp
time error occurs. All interfaces in the current package are accessible. Inter
in other packages are accessible if the host system permits access to the p
(§7.4.4) and the interface is declaredpublic.

A compile-time error occurs if the same interface is mentioned two or m
times in a singleimplements clause, even if the interface is named in differe
ways; for example, the code:

class Redundant implements java.lang.Cloneable, Cloneable {
int x;

}

results in a compile-time error because the namesjava.lang.Cloneable and
Cloneable refer to the same interface.

An interface typeI is asuperinterface of class typeC if any of the following
is true:

• I is a direct superinterface ofC.

• C has some direct superinterfaceJ for which I is a superinterface, using the
definition of “superinterface of an interface” given in §9.1.3.

• I is a superinterface of the direct superclass ofC, using this definition recur-
sively.

A class is said toimplement all its superinterfaces.
135

8.1.4 Superinterfaces CLASSES

136

 class
ter-

s
ration
per-
In the example:

public interface Colorable {
void setColor(int color);
int getColor();

}

public interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;
void setFinish(int finish);
int getFinish();

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }

}

class PaintedPoint extends ColoredPoint implements Paintable
{

int finish;
public void setFinish(int finish) {

this.finish = finish;
}
public int getFinish() { return finish; }

}

the relationships are as follows:

• The interfacePaintable is a superinterface of classPaintedPoint.

• The interfaceColorable is a superinterface of classColoredPoint and of
classPaintedPoint.

• The interfacePaintable is a subinterface of the interfaceColorable, and
Colorable is a superinterface ofPaintable, as defined in §9.1.3.

A class can have a superinterface in more than one way. In this example, the
PaintedPoint hasColorable as a superinterface both because it is a superin
face ofColoredPoint and because it is a superinterface ofPaintable.

Unless the class being declared isabstract, the declarations of the method
defined in each direct superinterface must be implemented either by a decla
in this class or by an existing method declaration inherited from the direct su
class, because a class that is notabstract is not permitted to haveabstract
methods (§8.1.2.1).

CLASSES Superinterfaces 8.1.4

hods

rn

h a
ent
Thus, the example:

interface Colorable {
void setColor(int color);
int getColor();

}

class Point { int x, y; };

class ColoredPoint extends Point implements Colorable {
int color;

}

causes a compile-time error, becauseColoredPoint is not anabstract class but
it fails to provide an implementation of methodssetColor andgetColor of the
interfaceColorable.

It is permitted for a single method declaration in a class to implement met
of more than one superinterface. For example, in the code:

interface Fish { int getNumberOfScales(); }

interface Piano { int getNumberOfScales(); }

class Tuna implements Fish, Piano {
// You can tune a piano, but can you tuna fish?
int getNumberOfScales() { return 91; }

}

the methodgetNumberOfScales in classTuna has a name, signature, and retu
type that matches the method declared in interfaceFish and also matches the
method declared in interfacePiano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int getNumberOfScales(); }

interface StringBass { double getNumberOfScales(); }

class Bass implements Fish, StringBass {
// This declaration cannot be correct, no matter what type is used.
public ??? getNumberOfScales() { return 91; }

}

it is impossible to declare a method namedgetNumberOfScales with the same
signature and return type as those of both the methods declared in interfaceFish
and in interfaceStringBass, because a class can have only one method wit
given signature (§8.4). Therefore, it is impossible for a single class to implem
both interfaceFish and interfaceStringBass (§8.4.6).
137

8.1.5 Class Body and Member Declarations CLASSES

138

elds
8.5)

 is the

s

e class

 not
8.1.5 Class Body and Member Declarations

A class body may contain declarations of members of the class, that is, fi
(§8.3) and methods (§8.4). A class body may also contain static initializers (§
and declarations of constructors (§8.6) for the class.

ClassBody:
{ ClassBodyDeclarationsopt }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration

The scope of the name of a member declared in or inherited by a class type
entire body of the class type declaration.

8.2 Class Members

The members of a class type are all of the following:

• Members inherited from its direct superclass (§8.1.3), except in classObject,
which has no direct superclass

• Members inherited from any direct superinterfaces (§8.1.4)

• Members declared in the body of the class (§8.1.5)

Members of a class that are declaredprivate are not inherited by subclasse
of that class. Only members of a class that are declaredprotected or public are
inherited by subclasses declared in a package other than the one in which th
is declared.

Constructors and static initializers are not members and therefore are
inherited.

The example:

CLASSES Examples of Inheritance 8.2.1

o

d
 this

ss of

ass

es.

:

class Point {
int x, y;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y = y; }
private void reset() { this.x = 0; this.y = 0; }

}

class ColoredPoint extends Point {
int color;
void clear() { reset(); } // error

}

class Test {
public static void main(String[] args) {

ColoredPoint c = new ColoredPoint(0, 0); // error
c.reset(); // error

}
}

causes four compile-time errors:

• An error occurs becauseColoredPoint has no constructor declared with tw
integer parameters, as requested by the use inmain. This illustrates the fact
thatColoredPoint does not inherit the constructors of its superclassPoint.

• Another error occurs becauseColoredPoint declares no constructors, an
therefore a default constructor for it is automatically created (§8.6.7), and
default constructor is equivalent to:

ColoredPoint() { super(); }

which invokes the constructor, with no arguments, for the direct supercla
the classColoredPoint. The error is that the constructor forPoint that takes
no arguments isprivate, and therefore is not accessible outside the cl
Point, even through a superclass constructor invocation (§8.6.5).

• Two more errors occur because the methodreset of classPoint is private,
and therefore is not inherited by classColoredPoint. The method invoca-
tions in methodclear of classColoredPoint and in methodmain of class
Test are therefore not correct.

8.2.1 Examples of Inheritance

This section illustrates inheritance of class members through several exampl

8.2.1.1 Example: Inheritance with Default Access

Consider the example where thepoints package declares two compilation units
139

8.2.1 Examples of Inheritance CLASSES

140
package points;

public class Point {
int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

}

and:

package points;

public class Point3d extends Point {
int z;
public void move(int dx, int dy, int dz) {

x += dx; y += dy; z += dz;
}

}

and a third compilation unit, in another package, is:

import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {

x += dx; y += dy; z += dz; w += dw; // compile-time errors
}

}

Here both classes in thepoints package compile. The classPoint3d inherits the
fields x andy of classPoint, because it is in the same package asPoint. The
classPoint4d, which is in a different package, does not inherit the fieldsx andy
of classPoint or the fieldz of classPoint3d, and so fails to compile.

A better way to write the third compilation unit would be:

import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {

super.move(dx, dy, dz); w += dw;
}

}

using themove method of the superclassPoint3d to processdx, dy, anddz. If
Point4d is written in this way it will compile without errors.

8.2.1.2 Inheritance withpublic and protected

Given the classPoint:

package points;

CLASSES Examples of Inheritance 8.2.1

ge,

e

public class Point {

public int x, y;

protected int useCount = 0;

static protected int totalUseCount = 0;

public void move(int dx, int dy) {
x += dx; y += dy; useCount++; totalUseCount++;

}

}

thepublic andprotected fieldsx, y, useCount andtotalUseCount are inher-
ited in all subclasses ofPoint. Therefore, this test program, in another packa
can be compiled successfully:

class Test extends points.Point {
public void moveBack(int dx, int dy) {

x -= dx; y -= dy; useCount++; totalUseCount++;
}

}

8.2.1.3 Inheritance withprivate

In the example:

class Point {

int x, y;

void move(int dx, int dy) {
x += dx; y += dy; totalMoves++;

}

private static int totalMoves;

void printMoves() { System.out.println(totalMoves); }

}

class Point3d extends Point {

int z;

void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz; totalMoves++;

}

}

the class variabletotalMoves can be used only within the classPoint; it is not
inherited by the subclassPoint3d. A compile-time error occurs at the point wher
methodmove of classPoint3d tries to incrementtotalMoves.
141

8.2.1 Examples of Inheritance CLASSES

142

e
as a
d to a

ts or
n,
s

he
.
s

s

8.2.1.4 Accessing Members of Inaccessible Classes

Even though a class might not be declaredpublic, instances of the class might b
available at run time to code outside the package in which it is declared if it h
public superclass or superinterface. An instance of the class can be assigne
variable of such apublic type. An invocation of apublic method of the object
referred to by such a variable may invoke a method of the class if it implemen
overrides a method of thepublic superclass or superinterface. (In this situatio
the method is necessarily declaredpublic, even though it is declared in a clas
that is notpublic.)

Consider the compilation unit:

package points;

public class Point {
public int x, y;
public void move(int dx, int dy) {

x += dx; y += dy;
}

}

and another compilation unit of another package:

package morePoints;

class Point3d extends points.Point {
public int z;
public void move(int dx, int dy, int dz) {

super.move(dx, dy); z += dz;
}

}

public class OnePoint {
static points.Point getOne() { return new Point3d(); }

}

An invocationmorePoints.OnePoint.getOne() in yet a third package would
return aPoint3d that can be used as aPoint, even though the typePoint3d is
not available outside the packagemorePoints. The methodmove could then be
invoked for that object, which is permissible because methodmove of Point3d is
public (as it must be, for any method that overrides apublic method must itself
bepublic, precisely so that situations such as this will work out correctly). T
fieldsx andy of that object could also be accessed from such a third package

While the fieldz of classPoint3d is public, it is not possible to access thi
field from code outside the packagemorePoints, given only a reference to an
instance of classPoint3d in a variablep of type Point. This is because the
expressionp.z is not correct, asp has typePoint and classPoint has no field
namedz; also, the expression((Point3d)p).z is not correct, because the clas

CLASSES Field Declarations 8.3

age

d,
.

scope
typePoint3d cannot be referred to outside packagemorePoints. The declaration
of the fieldz aspublic is not useless, however. If there were to be, in pack
morePoints, apublic subclassPoint4d of the classPoint3d:

package morePoints;

public class Point4d extends Point3d {
public int w;
public void move(int dx, int dy, int dz, int dw) {

super.move(dx, dy, dz); w += dw;
}

}

then classPoint4d would inherit the fieldz, which, beingpublic, could then be
accessed by code in packages other thanmorePoints, through variables and
expressions of thepublic typePoint4d.

8.3 Field Declarations

Poetic fields encompass me aroun
And still I seem to tread on classic ground

—Joseph Addison (1672–1719),A Letter from Italy

The variables of a class type are introduced byfield declarations:

FieldDeclaration:
FieldModifiersopt Type VariableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

The FieldModifiers are described in §8.3.1. TheIdentifier in a FieldDeclarator
may be used in a name to refer to the field. The name of a field has as its
143

8.3.1 Field Modifiers CLASSES

144

than
 one
-

cla-
same
e dif-

f that
the

eed

l the
 in the

ame
ever,
ple

ous.
t be
her-

y.

 field
ifiers
(§6.3) the entire body of the class declaration in which it is declared. More
one field may be declared in a single field declaration by using more than
declarator; theFieldModifiers andType apply to all the declarators in the declara
tion. Variable declarations involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to contain de
rations of two fields with the same name. Methods and fields may have the
name, since they are used in different contexts and are disambiguated by th
ferent lookup procedures (§6.5).

If the class declares a field with a certain name, then the declaration o
field is said tohide (§6.3.1) any and all accessible declarations of fields with
same name in the superclasses and superinterfaces of the class.

If a field declaration hides the declaration of another field, the two fields n
not have the same type.

A class inherits from its direct superclass and direct superinterfaces al
fields of the superclass and superinterfaces that are both accessible to code
class and not hidden by a declaration in the class.

It is possible for a class to inherit more than one field with the same n
(§8.3.3.3). Such a situation does not in itself cause a compile-time error. How
any attempt within the body of the class to refer to any such field by its sim
name will result in a compile-time error, because such a reference is ambigu

There might be several paths by which the same field declaration migh
inherited from an interface. In such a situation, the field is considered to be in
ited only once, and it may be referred to by its simple name without ambiguit

A hidden field can be accessed by using a qualified name (if it isstatic) or
by using a field access expression (§15.10) that contains the keywordsuper or a
cast to a superclass type. See §15.10.2 for discussion and an example.

8.3.1 Field Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
public protected private
final static transient volatile

The access modifierspublic, protected, andprivate are discussed in §6.6. A
compile-time error occurs if the same modifier appears more than once in a
declaration, or if a field declaration has more than one of the access mod
public, protected, and private. If two or more (distinct) field modifiers

CLASSES Field Modifiers 8.3.1

ppear

no
eated.
s

new
iable

mple,
s
in

 the
appear in a field declaration, it is customary, though not required, that they a
in the order consistent with that shown above in the production forFieldModifier.

8.3.1.1 static Fields

If a field is declaredstatic, there exists exactly one incarnation of the field,
matter how many instances (possibly zero) of the class may eventually be cr
A static field, sometimes called aclass variable, is incarnated when the class i
initialized (§12.4).

A field that is not declaredstatic (sometimes called a non-static field) is
called aninstance variable. Whenever a new instance of a class is created, a
variable associated with that instance is created for every instance var
declared in that class or any of its superclasses.

The example program:

class Point {
int x, y, useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

class Test {
public static void main(String[] args) {

Point p = new Point(1,1);
Point q = new Point(2,2);
p.x = 3; p.y = 3; p.useCount++; p.origin.useCount++;
System.out.println("(" + q.x + "," + q.y + ")");
System.out.println(q.useCount);
System.out.println(q.origin == Point.origin);
System.out.println(q.origin.useCount);

}
}

prints:

(2,2)
0
true
1

showing that changing the fieldsx, y, anduseCount of p does not affect the fields
of q, because these fields are instance variables in distinct objects. In this exa
the class variableorigin of the classPoint is referenced both using the clas
name as a qualifier, inPoint.origin, and using variables of the class type
field access expressions (§15.10), as inp.origin andq.origin. These two ways
of accessing theorigin class variable access the same object, evidenced by
fact that the value of the reference equality expression (§15.20.3):
145

8.3.1 Field Modifiers CLASSES

146

le
bles

-
. If
y be
ame

ged by

ill
 for a

s
an
its

r-
q.origin==Point.origin

is true. Further evidence is that the incrementation:

p.origin.useCount++;

causes the value ofq.origin.useCount to be1; this is so becausep.origin and
q.origin refer to the same variable.

8.3.1.2 final Fields

A field can be declaredfinal, in which case its declarator must include a variab
initializer or a compile-time error occurs. Both class and instance varia
(static and non-static fields) may be declaredfinal.

Any attempt to assign to afinal field results in a compile-time error. There
fore, once afinal field has been initialized, it always contains the same value
a final field holds a reference to an object, then the state of the object ma
changed by operations on the object, but the field will always refer to the s
object. This applies also to arrays, because arrays are objects; if afinal field
holds a reference to an array, then the components of the array may be chan
operations on the array, but the field will always refer to the same array.

Declaring a fieldfinal can serve as useful documentation that its value w
not change, can help to avoid programming errors, and can make it easier
compiler to generate efficient code.

In the example:

class Point {
int x, y;
int useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

the classPoint declares afinal class variableorigin. The origin variable
holds a reference to an object that is an instance of classPoint whose coordinates
are (0, 0). The value of the variablePoint.origin can never change, so it alway
refers to the samePoint object, the one created by its initializer. However,
operation on thisPoint object might change its state—for example, modifying
useCount or even, misleadingly, itsx or y coordinate.

8.3.1.3 transient Fields

Variables may be markedtransient to indicate that they are not part of the pe
sistent state of an object. If an instance of the classPoint:

CLASSES Field Modifiers 8.3.1

ices;

riables
ple-
h the
ation
 that
re that
ally,

poses:
k-
able.
s on
t the

d

 rules

hods
class Point {
int x, y;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only the fieldsx andy
would be saved. This specification does not yet specify details of such serv
we intend to provide them in a future version of this specification.

8.3.1.4 volatile Fields

As described in §17, the Java language allows threads that access shared va
to keep private working copies of the variables; this allows a more efficient im
mentation of multiple threads. These working copies need be reconciled wit
master copies in the shared main memory only at prescribed synchroniz
points, namely when objects are locked or unlocked. As a rule, to ensure
shared variables are consistently and reliably updated, a thread should ensu
it has exclusive use of such variables by obtaining a lock that, convention
enforces mutual exclusion for those shared variables.

Java provides a second mechanism that is more convenient for some pur
a field may be declaredvolatile, in which case a thread must reconcile its wor
ing copy of the field with the master copy every time it accesses the vari
Moreover, operations on the master copies of one or more volatile variable
behalf of a thread are performed by the main memory in exactly the order tha
thread requested.

If, in the following example, one thread repeatedly calls the methodone (but
no more thanInteger.MAX_VALUE (§20.7.2) times in all), and another threa
repeatedly calls the methodtwo:

class Test {

static int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

then methodtwo could occasionally print a value forj that is greater than the
value ofi, because the example includes no synchronization and, under the
explained in §17, the shared values ofi andj might be updated out of order.

One way to prevent this out-or-order behavior would be to declare met
one andtwo to besynchronized (§8.4.3.5):
147

8.3.2 Initialization of Fields CLASSES

148

d

n-
,
e pro-

d
n

n

n

class Test {

static int i = 0, j = 0;

static synchronized void one() { i++; j++; }

static synchronized void two() {
System.out.println("i=" + i + " j=" + j);

}

}

This prevents methodone and methodtwo from being executed concurrently, an
furthermore guarantees that the shared values ofi andj are both updated before
methodone returns. Therefore methodtwo never observes a value forj greater
than that fori; indeed, it always observes the same value fori andj.

Another approach would be to declarei andj to bevolatile:

class Test {

static volatile int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

This allows methodone and methodtwo to be executed concurrently, but guara
tees that accesses to the shared values fori andj occur exactly as many times
and in exactly the same order, as they appear to occur during execution of th
gram text by each thread. Therefore, methodtwo never observes a value forj
greater than that fori, because each update toi must be reflected in the share
value fori before the update toj occurs. It is possible, however, that any give
invocation of methodtwo might observe a value forj that is much greater than the
value observed fori, because methodone might be executed many times betwee
the moment when methodtwo fetches the value ofi and the moment when
methodtwo fetches the value ofj.

See §17 for more discussion and examples.
A compile-time error occurs if afinal variable is also declaredvolatile.

8.3.2 Initialization of Fields

If a field declarator contains avariable initializer, then it has the semantics of a
assignment (§15.25) to the declared variable, and:

CLASSES Initialization of Fields 8.3.2

when

each

ents
 time

 of
).

on-
riable
lass.
• If the declarator is for a class variable (that is, astatic field), then the vari-
able initializer is evaluated and the assignment performed exactly once,
the class is initialized (§12.4).

• If the declarator is for an instance variable (that is, a field that is notstatic),
then the variable initializer is evaluated and the assignment performed
time an instance of the class is created (§12.5).

The example:

class Point {
int x = 1, y = 5;

}

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println(p.x + ", " + p.y);

}
}

produces the output:

1, 5

because the assignments tox andy occur whenever a newPoint is created.
Variable initializers are also used in local variable declaration statem

(§14.3), where the initializer is evaluated and the assignment performed each
the local variable declaration statement is executed.

It is a compile-time error if the evaluation of a variable initializer for a field
a class (or interface) can complete abruptly with a checked exception (§11.2

8.3.2.1 Initializers for Class Variables

A compile-time error occurs if an initialization expression for a class variable c
tains a use by a simple name of that class variable or of another class va
whose declaration occurs to its right (that is, textually later) in the same c
Thus:

class Test {
static float f = j; // compile-time error: forward reference
static int j = 1;
static int k = k+1; // compile-time error: forward reference

}

causes two compile-time errors, becausej is referred to in the initialization off
beforej is declared and because the initialization ofk refers tok itself.
149

8.3.3 Examples of Field Declarations CLASSES

150

liza-

time

lso
” that
ious

ble
tance
ame

e of
lara-

 the

cla-
If a reference by simple name to any instance variable occurs in an initia
tion expression for a class variable, then a compile-time error occurs.

If the keywordthis (§15.7.2) or the keywordsuper (§15.10.2, §15.11)
occurs in an initialization expression for a class variable, then a compile-
error occurs.

(One subtlety here is that, at run time,static variables that arefinal and
that are initialized with compile-time constant values are initialized first. This a
applies to such fields in interfaces (§9.3.1). These variables are “constants
will never be observed to have their default initial values (§4.5.4), even by dev
programs. See §12.4.2 and §13.4.8 for more discussion.)

8.3.2.2 Initializers for Instance Variables

A compile-time error occurs if an initialization expression for an instance varia
contains a use by a simple name of that instance variable or of another ins
variable whose declaration occurs to its right (that is, textually later) in the s
class. Thus:

class Test {
float f = j;
int j = 1;
int k = k+1;

}

causes two compile-time errors, becausej is referred to in the initialization off
beforej is declared and because the initialization ofk refers tok itself.

Initialization expressions for instance variables may use the simple nam
anystatic variable declared in or inherited by the class, even one whose dec
tion occurs textually later. Thus the example:

class Test {
float f = j;
static int j = 1;

}

compiles without error; it initializesj to 1 when classTest is initialized, and ini-
tializesf to the current value ofj every time an instance of classTest is created.

Initialization expressions for instance variables are permitted to refer to
current objectthis (§15.7.2) and to use the keywordsuper (§15.10.2, §15.11).

8.3.3 Examples of Field Declarations

The following examples illustrate some (possibly subtle) points about field de
rations.

CLASSES Examples of Field Declarations 8.3.3

:

ables
8.3.3.1 Example: Hiding of Class Variables

The example:

class Point {
static int x = 2;

}

class Test extends Point {
static double x = 4.7;
public static void main(String[] args) {

new Test().printX();
}
void printX() {

System.out.println(x + " " + super.x);
}

}

produces the output:

4.7 2

because the declaration ofx in classTest hides the definition ofx in classPoint,
so classTest does not inherit the fieldx from its superclassPoint. Within the
declaration of classTest, the simple namex refers to the field declared within
classTest. Code in classTest may refer to the fieldx of classPoint assuper.x
(or, becausex is static, asPoint.x). If the declaration ofTest.x is deleted:

class Point {
static int x = 2;

}

class Test extends Point {
public static void main(String[] args) {

new Test().printX();
}
void printX() {

System.out.println(x + " " + super.x);
}

}

then the fieldx of classPoint is no longer hidden within classTest; instead, the
simple namex now refers to the fieldPoint.x. Code in classTest may still refer
to that same field assuper.x. Therefore, the output from this variant program is

2 2

8.3.3.2 Example: Hiding of Instance Variables

This example is similar to that in the previous section, but uses instance vari
rather than static variables. The code:
151

8.3.3 Examples of Field Declarations CLASSES

152

, the
in

in
class Point {
int x = 2;

}

class Test extends Point {
double x = 4.7;
void printBoth() {

System.out.println(x + " " + super.x);
}
public static void main(String[] args) {

Test sample = new Test();
sample.printBoth();
System.out.println(sample.x + " " +

((Point)sample).x);
}

}

produces the output:

4.7 2
4.7 2

because the declaration ofx in classTest hides the definition ofx in classPoint,
so classTest does not inherit the fieldx from its superclassPoint. It must be
noted, however, that while the fieldx of classPoint is not inherited by class
Test, it is neverthelessimplemented by instances of classTest. In other words,
every instance of classTest contains two fields, one of typeint and one of type
float. Both fields bear the namex, but within the declaration of classTest, the
simple namex always refers to the field declared within classTest. Code in
instance methods of classTest may refer to the instance variablex of classPoint
assuper.x.

Code that uses a field access expression to access fieldx will access the field
namedx in the class indicated by the type of reference expression. Thus
expressionsample.x accesses afloat value, the instance variable declared
classTest, because the type of the variable sample isTest, but the expression
((Point)sample).x accesses anint value, the instance variable declared
classPoint, because of the cast to typePoint.

If the declaration ofx is deleted from classTest, as in the program:

class Point {
static int x = 2;

}

class Test extends Point {
void printBoth() {

System.out.println(x + " " + super.x);
}
public static void main(String[] args) {

Test sample = new Test();

CLASSES Examples of Field Declarations 8.3.3

d

ter-
n any
ified

e

sample.printBoth();
System.out.println(sample.x + " " +

((Point)sample).x);
}

}

then the fieldx of classPoint is no longer hidden within classTest. Within
instance methods in the declaration of classTest, the simple namex now refers to
the field declared within classPoint. Code in classTest may still refer to that
same field assuper.x. The expressionsample.x still refers to the fieldx within
type Test, but that field is now an inherited field, and so refers to the fielx
declared in classPoint. The output from this variant program is:

2 2
2 2

8.3.3.3 Example: Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two in
faces or from its superclass and an interface. A compile-time error occurs o
attempt to refer to any ambiguously inherited field by its simple name. A qual
name or a field access expression that contains the keywordsuper (§15.10.2) may
be used to access such fields unambiguously. In the example:

interface Frob { float v = 2.0f; }

class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {
public static void main(String[] args) {

new Test().printV();
}
void printV() { System.out.println(v); }

}

the classTest inherits two fields namedv, one from its superclassSuperTest and
one from its superinterfaceFrob. This in itself is permitted, but a compile-time
error occurs because of the use of the simple namev in methodprintV: it cannot
be determined whichv is intended.

The following variation uses the field access expressionsuper.v to refer to
the field namedv declared in classSuperTest and uses the qualified nam
Frob.v to refer to the field namedv declared in interfaceFrob:

interface Frob { float v = 2.0f; }

class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {
public static void main(String[] args) {

new Test().printV();
153

8.3.3 Examples of Field Declarations CLASSES

154

, and
big-

s,

e two
value

, the
ple
}
void printV() {

System.out.println((super.v + Frob.v)/2);
}

}

It compiles and prints:

2.5

Even if two distinct inherited fields have the same type, the same value
are bothfinal, any reference to either field by simple name is considered am
uous and results in a compile-time error. In the example:

interface Color { int RED=0, GREEN=1, BLUE=2; }

interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }

class Test implements Color, TrafficLight {
public static void main(String[] args) {

System.out.println(GREEN); // compile-time error
System.out.println(RED); // compile-time error

}
}

it is not astonishing that the reference toGREEN should be considered ambiguou
because classTest inherits two different declarations forGREEN with different
values. The point of this example is that the reference toRED is also considered
ambiguous, because two distinct declarations are inherited. The fact that th
fields namedRED happen to have the same type and the same unchanging
does not affect this judgment.

8.3.3.4 Example: Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths
field is considered to be inherited only once. It may be referred to by its sim
name without ambiguity. For example, in the code:

public interface Colorable {
int RED = 0xff0000, GREEN = 0x00ff00, BLUE = 0x0000ff;

}

public interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
. . .

}

CLASSES Method Declarations 8.4

e
d

hods.

ber of

that
t

e
field of

hod
pairs
sup-
class PaintedPoint extends ColoredPoint implements Paintable
{

. . . RED . . .
}

the fieldsRED, GREEN, andBLUE are inherited by the classPaintedPoint both
through its direct superclassColoredPoint and through its direct superinterfac
Paintable. The simple namesRED, GREEN, andBLUE may nevertheless be use
without ambiguity within the classPaintedPoint to refer to the fields declared in
interfaceColorable.

8.4 Method Declarations

The diversity of physical arguments and opinions embraces all sorts of met
—Michael de Montaigne (1533–1592),Of Experience

A method declares executable code that can be invoked, passing a fixed num
values as arguments.

MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
MethodModifiersopt ResultType MethodDeclarator Throwsopt

ResultType:
Type
void

MethodDeclarator:
Identifer (FormalParameterListopt)

TheMethodModifiers are described in §8.4.3, theThrows clause in §8.4.4, and the
MethodBody in §8.4.5. A method declaration either specifies the type of value
the method returns or uses the keywordvoid to indicate that the method does no
return a value.

The Identifier in a MethodDeclarator may be used in a name to refer to th
method. A class can declare a method with the same name as the class or a
the class.

For compatibility with older versions of Java, a declaration form for a met
that returns an array is allowed to place (some or all of) the empty bracket
that form the declaration of the array type after the parameter list. This is
ported by the obsolescent production:
155

8.4.1 Formal Parameters CLASSES

156

 two
 types
ey are

roce-

pa-
n iden-
er:

ars in

 their

ent
lared

refer

hese
meters

using
MethodDeclarator:
MethodDeclarator []

but should not be used in new Java code.
It is a compile-time error for the body of a class to have as members

methods with the same signature (§8.4.2) (name, number of parameters, and
of any parameters). Methods and fields may have the same name, since th
used in different contexts and are disambiguated by the different lookup p
dures (§6.5).

8.4.1 Formal Parameters

The formal parameters of a method, if any, are specified by a list of comma-se
rated parameter specifiers. Each parameter specifier consists of a type and a
tifier (optionally followed by brackets) that specifies the name of the paramet

FormalParameterList:
FormalParameter
FormalParameterList , FormalParameter

FormalParameter:
Type VariableDeclaratorId

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

If a method has no parameters, only an empty pair of parentheses appe
the method’s declaration.

If two formal parameters are declared to have the same name (that is,
declarations mention the sameIdentifier), then a compile-time error occurs.

When the method is invoked (§15.11), the values of the actual argum
expressions initialize newly created parameter variables, each of the dec
Type, before execution of the body of the method. TheIdentifier that appears in
theDeclaratorId may be used as a simple name in the body of the method to
to the formal parameter.

The scope of formal parameter names is the entire body of the method. T
parameter names may not be redeclared as local variables or exception para
within the method; that is, hiding the name of a parameter is not permitted.

Formal parameters are referred to only using simple names, never by
qualified names (§6.6).

CLASSES Method Modifiers 8.4.3

r and
thods

.
 in a
ccess

f

tom-
hown

ding

f an

ry
8.4.2 Method Signature

Thesignature of a method consists of the name of the method and the numbe
types of formal parameters to the method. A class may not declare two me
with the same signature, or a compile-time error occurs. The example:

class Point implements Move {
int x, y;
abstract void move(int dx, int dy);
void move(int dx, int dy) { x += dx; y += dy; }

}

causes a compile-time error because it declares twomove methods with the same
signature. This is an error even though one of the declarations isabstract.

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private
abstract static final synchronized native

The access modifierspublic, protected, andprivate are discussed in §6.6
A compile-time error occurs if the same modifier appears more than once
method declaration, or if a method declaration has more than one of the a
modifierspublic, protected, andprivate. A compile-time error occurs if a
method declaration that contains the keywordabstract also contains any one o
the keywordsprivate, static, final, native, orsynchronized.

If two or more method modifiers appear in a method declaration, it is cus
ary, though not required, that they appear in the order consistent with that s
above in the production forMethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, provi
its signature (name and number and type of parameters), return type, andthrows
clause (if any), but does not provide an implementation. The declaration o
abstract methodm must appear within anabstract class (call itA); otherwise a
compile-time error results. Every subclass ofA that is notabstract must provide
an implementation form, or a compile-time error occurs. More precisely, for eve
157

8.4.3 Method Modifiers CLASSES

158

thod

tion
t can

 more

 never
subclassC of theabstract classA, if C is notabstract, then there must be some
classB such that all of the following are true:

• B is a superclass ofC or isC itself.

• B is a subclass ofA.

• B provides a declaration of the methodm that is notabstract, and this decla-
ration is inherited byC, thereby providing an implementation of methodm
that is visible toC .

If there is no such classB, then a compile-time error occurs.
It is a compile-time error for aprivate method to be declaredabstract. It

would be impossible for a subclass to implement aprivate abstract method,
becauseprivate methods are not visible to subclasses; therefore such a me
could never be used.

It is a compile-time error for astatic method to be declaredabstract.
It is a compile-time error for afinal method to be declaredabstract.
An abstract class can override anabstract method by providing another

abstract method declaration. This can provide a place to put a documenta
comment (§18), or to declare that the set of checked exceptions (§11.2) tha
be thrown by that method, when it is implemented by its subclasses, is to be
limited. For example, consider this code:

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(); }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public abstract class InfiniteBuffer implements Buffer {
abstract char get() throws BufferError;

}

The overriding declaration of methodget in classInfiniteBuffer states that
methodget in any subclass ofInfiniteBuffer never throws aBufferEmpty
exception, putatively because it generates the data in the buffer, and thus can
run out of data.

CLASSES Method Modifiers 8.4.3

s:

s
e

nce

r a
An instance method that is notabstract can be overridden by anabstract
method. For example, we can declare anabstract classPoint that requires its
subclasses to implementtoString if they are to be complete, instantiable classe

abstract class Point {
int x, y;
public abstract String toString();

}

This abstract declaration oftoString overrides the non-abstract toString
method of classObject (§20.1.2). (ClassObject is the implicit direct superclass
of classPoint.) Adding the code:

class ColoredPoint extends Point {
int color;
public String toString() {

return super.toString() + ": color " + color; // error
}

}

results in a compile-time error because the invocationsuper.toString() refers
to methodtoString in classPoint, which isabstract and therefore cannot be
invoked. MethodtoString of classObject can be made available to clas
ColoredPoint only if classPoint explicitly makes it available through som
other method, as in:

abstract class Point {
int x, y;
public abstract String toString();
protected String objString() { return super.toString(); }

}

class ColoredPoint extends Point {
int color;
public String toString() {

return objString() + ": color " + color; // correct
}

}

8.4.3.2 static Methods

A method that is declaredstatic is called aclass method. A class method is
always invoked without reference to a particular object. An attempt to refere
the current object using the keywordthis or the keywordsuper in the body of a
class method results in a compile time error. It is a compile-time error fo
static method to be declaredabstract.
159

8.4.3 Method Modifiers CLASSES

160

ith
ords

g

not

fely
th
A method that is not declaredstatic is called aninstance method, and some-
times called a non-static method). An instance method is always invoked w
respect to an object, which becomes the current object to which the keyw
this andsuper refer during execution of the method body.

8.4.3.3 final Methods

A method can be declaredfinal to prevent subclasses from overriding or hidin
it. It is a compile-time error to attempt to override or hide afinal method.

A private method and all methods declared in afinal class (§8.1.2.2) are
implicitly final, because it is impossible to override them. It is permitted but
required for the declarations of such methods to redundantly include thefinal
keyword.

It is a compile-time error for afinal method to be declaredabstract.
At run-time, a machine-code generator or optimizer can easily and sa

“inline” the body of afinal method, replacing an invocation of the method wi
the code in its body, as in the example:

final class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }

}

class Test {
public static void main(String[] args) {

Point[] p = new Point[100];
for (int i = 0; i < p.length; i++) {

p[i] = new Point();
p[i].move(i, p.length-1-i);

}
}

}

Here, inlining the methodmove of classPoint in methodmain would transform
thefor loop to the form:

for (int i = 0; i < p.length; i++) {
p[i] = new Point();
Point pi = p[i];
pi.x += i;
pi.y += p.length-1-i;

}

The loop might then be subject to further optimizations.

CLASSES Method Modifiers 8.4.3

d that

lly

g

lass

s that
Such inlining cannot be done at compile time unless it can be guarantee
Test andPoint will always be recompiled together, so that wheneverPoint—
and specifically itsmove method—changes, the code forTest.main will also be
updated.

8.4.3.4 native Methods

A method that isnative is implemented in platform-dependent code, typica
written in another programming language such as C, C++,FORTRAN, or assembly
language. The body of anative method is given as a semicolon only, indicatin
that the implementation is omitted, instead of a block.

A compile-time error occurs if anative method is declaredabstract.
For example, the classRandomAccessFile of the standard packagejava.io

might declare the followingnative methods:

package java.io;

public class RandomAccessFile
implements DataOutput, DataInput

{ . . .
public native void open(String name, boolean writeable)

throws IOException;
public native int readBytes(byte[] b, int off, int len)

throws IOException;
public native void writeBytes(byte[] b, int off, int len)

throws IOException;
public native long getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native long length() throws IOException;
public native void close() throws IOException;

}

8.4.3.5 synchronized Methods

A synchronized method acquires a lock (§17.1) before it executes. For a c
(static) method, the lock associated with theClass object (§20.3) for the
method’s class is used. For an instance method, the lock associated withthis (the
object for which the method was invoked) is used. These are the same lock
can be used by thesynchronized statement (§14.17); thus, the code:

class Test {
int count;
synchronized void bump() { count++; }
static int classCount;
static synchronized void classBump() {

classCount++;
}

}

161

8.4.3 Method Modifiers CLASSES

162

 class
t.

g
e-
has exactly the same effect as:

class BumpTest {
int count;
void bump() {

synchronized (this) {
count++;

}
}
static int classCount;
static void classBump() {

try {
synchronized (Class.forName("BumpTest")) {

classCount++;
}

} catch (ClassNotFoundException e) {
...

}
}

}

The more elaborate example:

public class Box {

private Object boxContents;

public synchronized Object get() {
Object contents = boxContents;
boxContents = null;
return contents;

}

public synchronized boolean put(Object contents) {
if (boxContents != null)

return false;
boxContents = contents;
return true;

}

}

defines a class which is designed for concurrent use. Each instance of the
Box has an instance variablecontents that can hold a reference to any objec
You can put an object in aBox by invokingput, which returnsfalse if the box is
already full. You can get something out of aBox by invokingget, which returns a
null reference if thebox is empty.

If put and get were notsynchronized, and two threads were executin
methods for the same instance ofBox at the same time, then the code could misb
have. It might, for example, lose track of an object because two invocations toput
occurred at the same time.

CLASSES Method Throws 8.4.4

esult

 of a
e or a

nsure
 con-
tions
cep-
here

hich

e.
table
y yet

class

ram
rhaps

 to
 not to
See §17 for more discussion of threads and locks.

8.4.4 Method Throws

A throws clause is used to declare any checked exceptions (§11.2) that can r
from the execution of a method or constructor:

Throws:
throws ClassTypeList

ClassTypeList:
ClassType
ClassTypeList , ClassType

A compile-time error occurs if anyClassType mentioned in athrows clause is not
the classThrowable (§20.22) or a subclass ofThrowable. It is permitted but not
required to mention other (unchecked) exceptions in athrows clause.

For each checked exception that can result from execution of the body
method or constructor, a compile-time error occurs unless that exception typ
superclass of that exception type is mentioned in athrows clause in the declara-
tion of the method or constructor.

The requirement to declare checked exceptions allows the compiler to e
that code for handling such error conditions has been included. Methods or
structors that fail to handle exceptional conditions thrown as checked excep
will normally result in a compile-time error because of the lack of a proper ex
tion type in athrows clause. Java thus encourages a programming style w
rare and otherwise truly exceptional conditions are documented in this way.

The predefined exceptions that are not checked in this way are those for w
declaring every possible occurrence would be unimaginably inconvenient:

• Exceptions that are represented by the subclasses of classError, for example
OutOfMemoryError, are thrown due to a failure in or of the virtual machin
Many of these are the result of linkage failures and can occur at unpredic
points in the execution of a Java program. Sophisticated programs ma
wish to catch and attempt to recover from some of these conditions.

• The exceptions that are represented by the subclasses of the
RuntimeException, for example NullPointerException, result from
runtime integrity checks and are thrown either directly from the Java prog
or in library routines. It is beyond the scope of the Java language, and pe
beyond the state of the art, to include sufficient information in the program
reduce to a manageable number the places where these can be proven
occur.
163

8.4.5 Method Body CLASSES

164

hods
 to

on
pe
er-

ly a
ust

ec-

tion
k that

 with
value

d yet
A method that overrides or hides another method (§8.4.6), including met
that implementabstract methods defined in interfaces, may not be declared
throw more checked exceptions than the overridden or hidden method.

More precisely, suppose thatB is a class or interface, andA is a superclass or
superinterface ofB, and a method declarationn in B overrides or hides a method
declarationm in A. If n has athrows clause that mentions any checked excepti
types, thenm must have athrows clause, and for every checked exception ty
listed in thethrows clause ofn , that same exception class or one of its sup
classes must occur in thethrows clause ofm; otherwise, a compile-time error
occurs.

See §11 for more information about exceptions and a large example.

8.4.5 Method Body

A method body is either a block of code that implements the method or simp
semicolon, indicating the lack of an implementation. The body of a method m
be a semicolon if and only if the method is eitherabstract (§8.4.3.1) ornative
(§8.4.3.4).

MethodBody:
Block
;

A compile-time error occurs if a method declaration is eitherabstract or
native and has a block for its body. A compile-time error occurs if a method d
laration is neitherabstract nornative and has a semicolon for its body.

If an implementation is to be provided for a method but the implementa
requires no executable code, the method body should be written as a bloc
contains no statements: “{ }”.

If a method is declaredvoid, then its body must not contain anyreturn
statement (§14.15) that has anExpression.

If a method is declared to have a return type, then everyreturn statement
(§14.15) in its body must have anExpression. A compile-time error occurs if the
body of the method can complete normally (§14.1). In other words, a method
a return type must return only by using a return statement that provides a
return; it is not allowed to “drop off the end of its body.”

Note that it is possible for a method to have a declared return type an
contain no return statements. Here is one example:

CLASSES Inheritance, Overriding, and Hiding 8.4.6

eth-
are
idden

is said
s and
 class.

 of the

.3),

pres-

idden
See

 to
super-
ss. A
is
ible

ing a

g of
class DizzyDean {
int pitch() { throw new RuntimeException("90 mph?!"); }

}

8.4.6 Inheritance, Overriding, and Hiding

A classinherits from its direct superclass and direct superinterfaces all the m
ods (whetherabstract or not) of the superclass and superinterfaces that
accessible to code in the class and are neither overridden (§8.4.6.1) nor h
(§8.4.6.2) by a declaration in the class.

8.4.6.1 Overriding (By Instance Methods)

If a class declares an instance method, then the declaration of that method
to override any and all methods with the same signature in the superclasse
superinterfaces of the class that would otherwise be accessible to code in the
Moreover, if the method declared in the class is notabstract, then the declara-
tion of that method is said toimplement any and all declarations ofabstract
methods with the same signature in the superclasses and superinterfaces
class that would otherwise be accessible to code in the class.

A compile-time error occurs if an instance method overrides astatic
method. In this respect, overriding of methods differs from hiding of fields (§8
for it is permissible for an instance variable to hide astatic variable.

An overridden method can be accessed by using a method invocation ex
sion (§15.11) that contains the keywordsuper. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overr
method; in this respect, overriding of methods differs from hiding of fields.
§15.11.4.10 for discussion and examples of this point.

8.4.6.2 Hiding (By Class Methods)

If a class declares astatic method, then the declaration of that method is said
hide any and all methods with the same signature in the superclasses and
interfaces of the class that would otherwise be accessible to code in the cla
compile-time error occurs if astatic method hides an instance method. In th
respect, hiding of methods differs from hiding of fields (§8.3), for it is permiss
for astatic variable to hide an instance variable.

A hidden method can be accessed by using a qualified name or by us
method invocation expression (§15.11) that contains the keywordsuper or a cast
to a superclass type. In this respect, hiding of methods is similar to hidin
fields.
165

8.4.6 Inheritance, Overriding, and Hiding CLASSES

166

, then
as a
 a

s or
g of
ide

e at
 error

n the

ot be
a sub-

ature
re are

:

 that
not
air,
8.4.6.3 Requirements in Overriding and Hiding

If a method declaration overrides or hides the declaration of another method
a compile-time error occurs if they have different return types or if one h
return type and the other isvoid. Moreover, a method declaration must not have
throws clause that conflicts (§8.4.4) with that of any method that it override
hides; otherwise, a compile-time error occurs. In these respects, overridin
methods differs from hiding of fields (§8.3), for it is permissible for a field to h
a field of another type.

The access modifier (§6.6) of an overriding or hiding method must provid
least as much access as the overridden or hidden method, or a compile-time
occurs. In more detail:

• If the overridden or hidden method ispublic, then the overriding or hiding
method must bepublic; otherwise, a compile-time error occurs.

• If the overridden or hidden method isprotected, then the overriding or hid-
ing method must beprotected or public; otherwise, a compile-time error
occurs.

• If the overridden or hidden method has default (package) access, the
overriding or hiding method must not beprivate; otherwise, a compile-time
error occurs.

Note that aprivate method is never accessible to subclasses and so cann
hidden or overridden in the technical sense of those terms. This means that
class can declare a method with the same signature as aprivate method in one of
its superclasses, and there is no requirement that the return type orthrows clause
of such a method bear any relationship to those of theprivate method in the
superclass.

8.4.6.4 Inheriting Methods with the Same Signature

It is possible for a class to inherit more than one method with the same sign
(§8.4.6.4). Such a situation does not in itself cause a compile-time error. The
then two possible cases:

• If one of the inherited methods is notabstract, then there are two subcases

◆ If the method that is notabstract is static, a compile-time error occurs.

◆ Otherwise, the method that is notabstract is considered to override, and
therefore to implement, all the other methods on behalf of the class
inherits it. A compile-time error occurs if, comparing the method that is
abstract with each of the other of the inherited methods, for any such p

CLASSES Examples of Method Declarations8.4.8

other
hat
y

y

hey

ot to

ht be
elf,

inher-
 differ-

ired

le, a
ides
a dif-

d the
e the
o be
ined

thod
either they have different return types or one has a return type and the
is void. Moreover, a compile-time error occurs if the inherited method t
is notabstract has athrows clause that conflicts (§8.4.4) with that of an
other of the inherited methods.

• If none of the inherited methods is notabstract, then the class is necessaril
anabstract class and is considered to inherit all theabstract methods. A
compile-time error occurs if, for any two such inherited methods, either t
have different return types or one has a return type and the other isvoid. (The
throws clauses do not cause errors in this case.)

It is not possible for two or more inherited methods with the same signature n
beabstract, because methods that are notabstract are inherited only from the
direct superclass, not from superinterfaces.

There might be several paths by which the same method declaration mig
inherited from an interface. This fact causes no difficulty and never, of its
results in a compile-time error.

8.4.7 Overloading

If two methods of a class (whether both declared in the same class, or both
ited by a class, or one declared and one inherited) have the same name but
ent signatures, then the method name is said to beoverloaded. This fact causes no
difficulty and never of itself results in a compile-time error. There is no requ
relationship between the return types or between thethrows clauses of two meth-
ods with the same name but different signatures.

Methods are overridden on a signature-by-signature basis. If, for examp
class declares twopublic methods with the same name, and a subclass overr
one of them, the subclass still inherits the other method. In this respect, Jav
fers from C++.

When a method is invoked (§15.11), the number of actual arguments an
compile-time types of the arguments are used, at compile time, to determin
signature of the method that will be invoked (§15.11.2). If the method that is t
invoked is an instance method, the actual method to be invoked will be determ
at run time, using dynamic method lookup (§15.11.4).

8.4.8 Examples of Method Declarations

The following examples illustrate some (possibly subtle) points about me
declarations.
167

8.4.8 Examples of Method Declarations CLASSES

168

 on
8.4.8.1 Example: Overriding

In the example:

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

}

class SlowPoint extends Point {

int xLimit, yLimit;

void move(int dx, int dy) {
super.move(limit(dx, xLimit), limit(dy, yLimit));

}

static int limit(int d, int limit) {
return d > limit ? limit : d < -limit ? -limit : d;

}

}

the classSlowPoint overrides the declarations of methodmove of classPoint
with its ownmove method, which limits the distance that the point can move
each invocation of the method. When themove method is invoked for an instance
of classSlowPoint, the overriding definition in classSlowPoint will always be
called, even if the reference to theSlowPoint object is taken from a variable
whose type isPoint.

8.4.8.2 Example: Overloading, Overriding, and Hiding

In the example:

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

int color;

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

}

CLASSES Examples of Method Declarations8.4.8

e

the

ng
e for

ss
the classRealPoint hides the declarations of theint instance variablesx andy
of classPoint with its ownfloat instance variablesx andy, and overrides the
methodmove of classPoint with its ownmove method. It also overloads the nam
move with another method with a different signature (§8.4.2).

In this example, the members of the classRealPoint include the instance
variablecolor inherited from the classPoint, thefloat instance variablesx and
y declared inRealPoint, and the twomove methods declared inRealPoint.

Which of these overloadedmove methods of classRealPoint will be chosen
for any particular method invocation will be determined at compile time by
overloading resolution procedure described in §15.11.

8.4.8.3 Example: Incorrect Overriding

This example is an extended variation of that in the preceding section:

class Point {

int x = 0, y = 0, color;

void move(int dx, int dy) { x += dx; y += dy; }

int getX() { return x; }

int getY() { return y; }

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

float getX() { return x; }

float getY() { return y; }

}

Here the classPoint provides methodsgetX andgetY that return the values of its
fields x andy; the classRealPoint then overrides these methods by declari
methods with the same signature. The result is two errors at compile time, on
each method, because the return types do not match; the methods in classPoint
return values of typeint, but the wanna-be overriding methods in cla
RealPoint return values of typefloat.

8.4.8.4 Example: Overriding versus Hiding

This example corrects the errors of the example in the preceding section:
169

8.4.8 Examples of Method Declarations CLASSES

170

e

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

int getX() { return x; }

int getY() { return y; }

int color;

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

int getX() { return (int)Math.floor(x); }

int getY() { return (int)Math.floor(y); }

}

Here the overriding methodsgetX andgetY in classRealPoint have the same
return types as the methods of classPoint that they override, so this code can b
successfully compiled.

Consider, then, this test program:

class Test {

public static void main(String[] args) {
RealPoint rp = new RealPoint();
Point p = rp;
rp.move(1.71828f, 4.14159f);
p.move(1, -1);
show(p.x, p.y);
show(rp.x, rp.y);
show(p.getX(), p.getY());
show(rp.getX(), rp.getY());

}

static void show(int x, int y) {
System.out.println("(" + x + ", " + y + ")");

}

static void show(float x, float y) {
System.out.println("(" + x + ", " + y + ")");

}

}

The output from this program is:

CLASSES Examples of Method Declarations8.4.8

lass
to an

is

tes
in

 fields

ype
pect,

The
(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

The first line of output illustrates the fact that an instance ofRealPoint actu-
ally contains the two integer fields declared in classPoint; it is just that their
names are hidden from code that occurs within the declaration of c
RealPoint (and those of any subclasses it might have). When a reference
instance of classRealPoint in a variable of typePoint is used to access the field
x, the integer fieldx declared in classPoint is accessed. The fact that its value
zero indicates that the method invocationp.move(1, -1) did not invoke the
methodmove of classPoint; instead, it invoked the overriding methodmove of
classRealPoint.

The second line of output shows that the field accessrp.x refers to the fieldx
declared in classRealPoint. This field is of typefloat, and this second line of
output accordingly displays floating-point values. Incidentally, this also illustra
the fact that the method nameshow is overloaded; the types of the arguments
the method invocation dictate which of the two definitions will be invoked.

The last two lines of output show that the method invocationsp.getX() and
rp.getX() each invoke thegetX method declared in classRealPoint. Indeed,
there is no way to invoke thegetX method of classPoint for an instance of class
RealPoint from outside the body ofRealPoint, no matter what the type of the
variable we may use to hold the reference to the object. Thus, we see that
and methods behave differently: hiding is different from overriding.

8.4.8.5 Example: Invocation of Hidden Class Methods

A hidden class (static) method can be invoked by using a reference whose t
is the class that actually contains the declaration of the method. In this res
hiding of static methods is different from overriding of instance methods.
example:

class Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }

}

class Sub extends Super {
static String greeting() { return "Hello"; }
String name() { return "Dick"; }

}

171

8.4.8 Examples of Method Declarations CLASSES

172

n of
e

isting
class Test {
public static void main(String[] args) {

Super s = new Sub();
System.out.println(s.greeting() + ", " + s.name());

}
}

produces the output:

Goodnight, Dick

because the invocation ofgreeting uses the type ofs, namelySuper, to figure
out, at compile time, which class method to invoke, whereas the invocatio
name uses the class ofs, namelySub, to figure out, at run time, which instanc
method to invoke.

8.4.8.6 Large Example of Overriding

Overriding makes it easy for subclasses to extend the behavior of an ex
class, as shown in this example:

import java.io.OutputStream;

import java.io.IOException;

class BufferOutput {

private OutputStream o;

BufferOutput(OutputStream o) { this.o = o; }

protected byte[] buf = new byte[512];

protected int pos = 0;

public void putchar(char c) throws IOException {
if (pos == buf.length)

flush();
buf[pos++] = (byte)c;

}

public void putstr(String s) throws IOException {
for (int i = 0; i < s.length(); i++)

putchar(s.charAt(i));
}

public void flush() throws IOException {
o.write(buf, 0, pos);

CLASSES Examples of Method Declarations8.4.8

n

od

-

pos = 0;
}

}

class LineBufferOutput extends BufferOutput {

LineBufferOutput(OutputStream o) { super(o); }

public void putchar(char c) throws IOException {
super.putchar(c);
if (c == '\n')

flush();
}

}

class Test {
public static void main(String[] args)

throws IOException
{

LineBufferOutput lbo =
new LineBufferOutput(System.out);

lbo.putstr("lbo\nlbo");
System.out.print("print\n");
lbo.putstr("\n");

}
}

This example produces the output:

lbo
print
lbo

The classBufferOutput implements a very simple buffered version of a
OutputStream, flushing the output when the buffer is full orflush is invoked.
The subclassLineBufferOutput declares only a constructor and a single meth
putchar, which overrides the methodputchar of BufferOutput. It inherits the
methodsputstr andflush from classBuffer.

In theputchar method of aLineBufferOutput object, if the character argu-
ment is a newline, then it invokes theflush method. The critical point about over
riding in this example is that the methodputstr, which is declared in class
BufferOutput, invokes theputchar method defined by the current objectthis,
which is not necessarily theputchar method declared in classBufferOutput.

Thus, whenputstr is invoked inmain using theLineBufferOutput object
lbo, the invocation ofputchar in the body of theputstr method is an invocation
of the putchar of the objectlbo, the overriding declaration ofputchar that
checks for a newline. This allows a subclass ofBufferOutput to change the
behavior of theputstr method without redefining it.
173

8.4.8 Examples of Method Declarations CLASSES

174

nd its

 com-

ption

thod
at
, an
Documentation for a class such asBufferOutput, which is designed to be
extended, should clearly indicate what is the contract between the class a
subclasses, and should clearly indicate that subclasses may override theputchar
method in this way. The implementor of theBufferOutput class would not,
therefore, want to change the implementation ofputstr in a future implementa-
tion of BufferOutput not to use the methodputchar, because this would break
the preexisting contract with subclasses. See the further discussion of binary
patibility in §13, especially §13.2.

8.4.8.7 Example: Incorrect Overriding because of Throws

This example uses the usual and conventional form for declaring a new exce
type, in its declaration of the classBadPointException:

class BadPointException extends Exception {
BadPointException() { super(); }
BadPointException(String s) { super(s); }

}

class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }

}

class CheckedPoint extends Point {
void move(int dx, int dy) throws BadPointException {

if ((x + dx) < 0 || (y + dy) < 0)
throw new BadPointException();

x += dx; y += dy;
}

}

This example results in a compile-time error, because the override of me
move in classCheckedPoint declares that it will throw a checked exception th
themove in classPoint has not declared. If this were not considered an error
invoker of the methodmove on a reference of typePoint could find the contract
between it andPoint broken if this exception were thrown.

Removing thethrows clause does not help:

class CheckedPoint extends Point {
void move(int dx, int dy) {

if ((x + dx) < 0 || (y + dy) < 0)
throw new BadPointException();

x += dx; y += dy;
}

}

CLASSES Static Initializers 8.5

ized
ed to

ptly

tual
rations
e. This
med
A different compile-time error now occurs, because the body of the methodmove
cannot throw a checked exception, namelyBadPointException, that does not
appear in thethrows clause formove.

8.5 Static Initializers

Any static initializersdeclared in a class are executed when the class is initial
and, together with any field initializers (§8.3.2) for class variables, may be us
initialize the class variables of the class (§12.4).

StaticInitializer:
static Block

It is a compile-time error for a static initializer to be able to complete abru
(§14.1, §15.5) with a checked exception (§11.2).

The static initializers and class variable initializers are executed in tex
order and may not refer to class variables declared in the class whose decla
appear textually after the use, even though these class variables are in scop
restriction is designed to catch, at compile time, circular or otherwise malfor
initializations. Thus, both:

class Z {
static int i = j + 2;
static int j = 4;

}

and:

class Z {
static { i = j + 2; }
static int i, j;
static { j = 4; }

}

result in compile-time errors.

Accesses to class variables by methods are not checked in this way, so:

class Z {
static int peek() { return j; }
static int i = peek();
static int j = 1;

}

175

8.6 Constructor Declarations CLASSES

176

t

zer,

ds,
 .

:

f
 error
thod
class Test {
public static void main(String[] args) {

System.out.println(Z.i);
}

}

produces the output:

0

because the variable initializer fori uses the class methodpeek to access the
value of the variablej beforej has been initialized by its variable initializer, a
which point it still has its default value (§4.5.4).

If a return statement (§14.15) appears anywhere within a static initiali
then a compile-time error occurs.

If the keywordthis (§15.7.2) or the keywordsuper (§15.10, §15.11) appears
anywhere within a static initializer, then a compile-time error occurs.

8.6 Constructor Declarations

The constructor of wharves, bridges, piers, bulk-hea
floats, stays against the sea . .

—Walt Whitman,Song of the Broad-Axe (1856)

A constructor is used in the creation of an object that is an instance of a class

ConstructorDeclaration:
ConstructorModifiersopt ConstructorDeclarator

Throwsopt ConstructorBody

ConstructorDeclarator:
SimpleTypeName (FormalParameterListopt)

The SimpleTypeNamein theConstructorDeclarator must be the simple name o
the class that contains the constructor declaration; otherwise a compile-time
occurs. In all other respects, the constructor declaration looks just like a me
declaration that has no result type.

Here is a simple example:

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y; }

}

CLASSES Constructor Modifiers 8.6.3

), by
e-
xplicit
ever

seful,
ctor

there-

ior to

igna-

.
 in a
f the

re it
r is
tor to

ade
 their
Constructors are invoked by class instance creation expressions (§15.8
thenewInstance method of classClass (§20.3), by the conversions and concat
nations caused by the string concatenation operator + (§15.17.1), and by e
constructor invocations from other constructors (§8.6.5). Constructors are n
invoked by method invocation expressions (§15.11).

Access to constructors is governed by access modifiers (§6.6). This is u
for example, in preventing instantiation by declaring an inaccessible constru
(§8.6.8).

Constructor declarations are not members. They are never inherited and
fore are not subject to hiding or overriding.

8.6.1 Formal Parameters

The formal parameters of a constructor are identical in structure and behav
the formal parameters of a method (§8.4.1).

8.6.2 Constructor Signature

The signature of a constructor is identical in structure and behavior to the s
ture of a method (§8.4.2).

8.6.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
public protected private

The access modifierspublic, protected, andprivate are discussed in §6.6
A compile-time error occurs if the same modifier appears more than once
constructor declaration, or if a constructor declaration has more than one o
access modifierspublic, protected, andprivate.

Unlike methods, a constructor cannot beabstract, static, final, native,
or synchronized. A constructor is not inherited, so there is no need to decla
final and anabstract constructor could never be implemented. A constructo
always invoked with respect to an object, so it makes no sense for a construc
be static. There is no practical need for a constructor to besynchronized,
because it would lock the object under construction, which is normally not m
available to other threads until all constructors for the object have completed
177

8.6.4 Constructor Throws CLASSES

178

hat
that

 the

ther
-
itten

ke
ing

tion

per-

f a

.

work. The lack ofnative constructors is an arbitrary language design choice t
makes it easy for an implementation of the Java Virtual Machine to verify
superclass constructors are always properly invoked during object creation.

8.6.4 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to
throws clause for a method (§8.4.4).

8.6.5 Constructor Body

The first statement of a constructor body may be an explicit invocation of ano
constructor of the same class, written asthis followed by a parenthesized argu
ment list, or an explicit invocation of a constructor of the direct superclass, wr
assuper followed by a parenthesized argument list.

ConstructorBody:
{ ExplicitConstructorInvocationopt BlockStatementsopt }

ExplicitConstructorInvocation:
this (ArgumentListopt) ;
super (ArgumentListopt) ;

It is a compile-time error for a constructor to directly or indirectly invo
itself through a series of one or more explicit constructor invocations involv
this.

If a constructor body does not begin with an explicit constructor invoca
and the constructor being declared is not part of the primordial classObject, then
the constructor body is implicitly assumed by the compiler to begin with a su
class constructor invocation “super();”, an invocation of the constructor of its
direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body o
constructor is like the body of a method (§8.4.5). Areturn statement (§14.15)
may be used in the body of a constructor if it does not include an expression

In the example:

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

}

CLASSES Constructor Overloading 8.6.6

al

nce
e
ple,

ot be

ally
mati-
on-
ized
. An

ods.
ation
class ColoredPoint extends Point {

static final int WHITE = 0, BLACK = 1;

int color;

ColoredPoint(int x, int y) {
this(x, y, WHITE);

}

ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;

}

}

the first constructor ofColoredPoint invokes the second, providing an addition
argument; the second constructor ofColoredPoint invokes the constructor of its
superclassPoint, passing along the coordinates.

An explicit constructor invocation statement may not refer to any insta
variables or instance methods declared in this class or any superclass, or usthis
or super in any expression; otherwise, a compile-time error occurs. For exam
if the first constructor ofColoredPoint in the example above were changed to:

ColoredPoint(int x, int y) {
this(x, y, color);

}

then a compile-time error would occur, because an instance variable cann
used within a superclass constructor invocation.

An invocation of the constructor of the direct superclass, whether it actu
appears as an explicit constructor invocation statement or is provided auto
cally (§8.6.7), performs an additional implicit action after a normal return of c
trol from the constructor: all instance variables that have initializers are initial
at that time, in the textual order in which they appear in the class declaration
invocation of another constructor in the same class using the keywordthis does
not perform this additional implicit action.

§12.5 describes the creation and initialization of new class instances.

8.6.6 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of meth
The overloading is resolved at compile time by each class instance cre
expression (§15.8).
179

8.6.7 Default Constructor CLASSES

180

s the

m-
.

he

 creat-
e cre-

ge by
r with
8.6.7 Default Constructor

If a class contains no constructor declarations, then adefault constructor that
takes no parameters is automatically provided:

• If the class being declared is the primordial classObject, then the default
constructor has an empty body.

• Otherwise, the default constructor takes no parameters and simply invoke
superclass constructor with no arguments.

A compile-time error occurs if a default constructor is provided by the co
piler but the superclass does not have a constructor that takes no arguments

If the class is declaredpublic, then the default constructor is implicitly given
the access modifierpublic (§6.6); otherwise, the default constructor has t
default access implied by no access modifier. Thus, the example:

public class Point {
int x, y;

}

is equivalent to the declaration:

public class Point {
int x, y;
public Point() { super(); }

}

where the default constructor ispublic because the classPoint is public.

8.6.8 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from
ing instances of the class by declaring at least one constructor, to prevent th
ation of an implicit constructor, and declaring all constructors to beprivate. A
public class can likewise prevent the creation of instances outside its packa
declaring at least one constructor, to prevent creation of a default constructo
public access, and declaring no constructor that ispublic.

Thus, in the example:

class ClassOnly {
private ClassOnly() { }
static String just = "only the lonely";

}

the classClassOnly cannot be instantiated, while in the example:

CLASSES Preventing Instantiation of a Class8.6.8
package just;

public class PackageOnly {
PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice cream" };

}

the classPackageOnly can be instantiated only within the packagejust, in
which it is declared.

Bow, bow, ye lower middle classes!
Bow, bow, ye tradesmen, bow, ye masses!
Blow the trumpets, bang the brasses!

Tantantara! Tzing! Boom!
—W. S. Gilbert,Iolanthe
181

C H A P T E R 9
s
.

s.”

rs are
rwise
tract

sses to

con-

-
ed by
at its

herit-
 any

lue a
nt the
ll the
ctually
imple-
Interfaces

My apple trees will never get acros
And eat the cones under his pines, I tell him

He only says “Good Fences Make Good Neighbor
—Robert Frost,Mending Wall (1914)

AN interface declaration introduces a new reference type whose membe
constants and abstract methods. This type has no implementation, but othe
unrelated classes can implement it by providing implementations for its abs
methods.

Java programs can use interfaces to make it unnecessary for related cla
share a common abstract superclass or to add methods toObject.

An interface may be declared to be andirect extensionof one or more other
interfaces, meaning that it implicitly specifies all the abstract methods and
stants of the interfaces it extends, except for any constants that it may hide.

A class may be declared todirectly implement one or more interfaces, mean
ing that any instance of the class implements all the abstract methods specifi
the interface or interfaces. A class necessarily implements all the interfaces th
direct superclasses and direct superinterfaces do. This (multiple) interface in
ance allows objects to support (multiple) common behaviors without sharing
implementation.

A variable whose declared type is an interface type may have as its va
reference to any object that is an instance of a class declared to impleme
specified interface. It is not sufficient that the class happen to implement a
abstract methods of the interface; the class or one of its superclasses must a
be declared to implement the interface, or else the class is not considered to
ment the interface.
183

9.1 Interface Declarations INTERFACES

184

e
 error
h a
1) in

entire
 type

 if

t

9.1 Interface Declarations

An interface declaration specifies a new reference type:

InterfaceDeclaration:
InterfaceModifiersopt interface Identifier

ExtendsInterfacesopt InterfaceBody

A compile-time error occurs if theIdentifier naming an interface appears as th
name of any other class or interface in the same package. A compile-time
also occurs if theIdentifier naming an interface appears as the name by whic
class or interface is to be known via a single-type-import declaration (§7.5.
the compilation unit containing the interface declaration. In the example:

class Point { int x, y; }

interface Point { void move(int dx, int dy); }

a compile-time error occurs because aclass and aninterface in the same pack-
age cannot have the same name.

9.1.1 Scope of an Interface Type Name

The Identifier specifies the name of the interface and has as its scope the
package in which it is declared. This is the same scoping rule as for class
names; see §8.1.1 for an example involving classes.

9.1.2 Interface Modifiers

An interface declaration may be preceded byinterface modifiers:

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public abstract

The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in an interface declaration.

9.1.2.1 abstract Interfaces

Every interface is implicitlyabstract. This modifier is obsolete and should no
be used in new Java programs.

INTERFACES Interface Body and Member Declarations9.1.4

each
nts of

inter-

st

ace

ll

er-
9.1.3 Superinterfaces

If an extends clause is provided, then the interface being declared extends
of the other named interfaces and therefore inherits the methods and consta
each of the other named interfaces. These other named interfaces are thedirect
superinterfaces of the interface being declared. Any class thatimplements the
declared interface is also considered to implement all the interfaces that this
faceextends and that are accessible to the class.

ExtendsInterfaces:
extends InterfaceType
ExtendsInterfaces , InterfaceType

The following is repeated from §4.3 to make the presentation here clearer:

InterfaceType:
TypeName

Each InterfaceTypein the extends clause of an interface declaration mu
name an accessible interface type; otherwise a compile-time error occurs.

A compile-time error occurs if there is a circularity such that an interf
directly or indirectly extends itself.

There is no analogue of the classObject for interfaces; that is, while every
class is an extension of classObject, there is no single interface of which a
interfaces are extensions.

The superinterfacerelationship is the transitive closure of the direct sup
interface relationship. An interfaceK is a superinterface of interfaceI if either of
the following is true:

• K is a direct superinterface ofI.

• There exists an interfaceJ such thatK is a superinterface ofJ, andJ is a
superinterface ofI, applying this definition recursively.

InterfaceI is said to be asubinterfaceof interfaceK wheneverK is a superinter-
face ofI.

9.1.4 Interface Body and Member Declarations

The body of an interface may declare members of the interface:
185

9.1.5 Access to Interface Member Names INTERFACES

186

 body

e

rinter-

ose

,
nt.

n

InterfaceBody:
{ InterfaceMemberDeclarationsopt }

InterfaceMemberDeclarations:
InterfaceMemberDeclaration
InterfaceMemberDeclarations InterfaceMemberDeclaration

InterfaceMemberDeclaration:
ConstantDeclaration
AbstractMethodDeclaration

The scope of the name of a member declared in an interface type is the entire
of the interface type declaration.

9.1.5 Access to Interface Member Names

All interface members are implicitlypublic. They are accessible outside th
package where the interface is declared if the interface is also declaredpublic
and the package containing the interface is accessible as described in §7.1.

9.2 Interface Members

The members of an interface are those members inherited from direct supe
faces and those members declared in the interface.

The interface inherits, from the interfaces it extends, all members of th
interfaces, except for fields that it hides and methods that it overrides.

9.3 Field (Constant) Declarations

The materials of action are variable
but the use we make of them should be consta

—Epictetus (circa 60 A.D.),
translated by Thomas Wentworth Higginso

ConstantDeclaration:
ConstantModifiers Type VariableDeclarator

ConstantModifiers: one of
public static final

INTERFACES Initialization of Fields in Interfaces 9.3.1

yle,

fiers

me
error.
y its
ce is

t be
her-

y.

ion,
d and
.4).
ce
 field

er be
ams.

rror
Every field declaration in the body of an interface is implicitlypublic,
static, andfinal. It is permitted, but strongly discouraged as a matter of st
to redundantly specify any or all of these modifiers for such fields.

A constant declaration in an interface must not include any of the modi
synchronized, transient, orvolatile, or a compile-time error occurs.

It is possible for an interface to inherit more than one field with the sa
name (§8.3.3.3). Such a situation does not in itself cause a compile-time
However, any attempt within the body of the interface to refer to either field b
simple name will result in a compile-time error, because such a referen
ambiguous.

There might be several paths by which the same field declaration migh
inherited from an interface. In such a situation, the field is considered to be in
ited only once, and it may be referred to by its simple name without ambiguit

9.3.1 Initialization of Fields in Interfaces

Every field in the body of an interface must have an initialization express
which need not be a constant expression. The variable initializer is evaluate
the assignment performed exactly once, when the interface is initialized (§12

A compile-time error occurs if an initialization expression for an interfa
field contains a reference by simple name to the same field or to another
whose declaration occurs textually later in the same interface. Thus:

interface Test {
float f = j;
int j = 1;
int k = k+1;

}

causes two compile-time errors, becausej is referred to in the initialization off
beforej is declared and because the initialization ofk refers tok itself.

(One subtlety here is that, at run time,fields that are initialized with com-
pile-time constant values are initialized first. This applies also tostatic final
fields in classes (§8.3.2.1). This means, in particular, that these fields will nev
observed to have their default initial values (§4.5.4), even by devious progr
See §12.4.2 and §13.4.8 for more discussion.)

If the keywordthis (§15.7.2) or the keywordsuper (15.10.2, 15.11) occurs
in an initialization expression for a field of an interface, then a compile-time e
occurs.
187

9.3.2 Examples of Field Declarations INTERFACES

188

cla-

xam-
ingle
 a

 field

, for
aces
. This

e

ly
9.3.2 Examples of Field Declarations

The following example illustrates some (possibly subtle) points about field de
rations.

9.3.2.1 Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for e
ple, two of its direct superinterfaces declare fields with that name, then a s
ambiguous member results. Any use of this ambiguous member will result in
compile-time error. Thus in the example:

interface BaseColors {
int RED = 1, GREEN = 2, BLUE = 4;

}

interface RainbowColors extends BaseColors {
int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;

}

interface PrintColors extends BaseColors {
int YELLOW = 8, CYAN = 16, MAGENTA = 32;

}

interface LotsOfColors extends RainbowColors, PrintColors {
int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;

}

the interfaceLotsOfColors inherits two fields namedYELLOW. This is all right as
long as the interface does not contain any reference by simple name to the
YELLOW. (Such a reference could occur within a variable initializer for a field.)

Even if interfacePrintColors were to give the value3 to YELLOW rather than
the value8, a reference to fieldYELLOW within interfaceLotsOfColors would
still be considered ambiguous.

9.3.2.2 Multiply Inherited Fields

If a single field is inherited multiple times from the same interface because
example, both this interface and one of this interface’s direct superinterf
extend the interface that declares the field, then only a single member results
situation does not in itself cause a compile-time error.

In the example in the previous section, the fieldsRED, GREEN, andBLUE are
inherited by interfaceLotsOfColors in more than one way, through interfac
RainbowColors and also through interfacePrintColors, but the reference to
field RED in interfaceLotsOfColors is not considered ambiguous because on
one actual declaration of the fieldRED is involved.

INTERFACES Inheritance and Overriding 9.4.1

 if
.

bility
le, to

ecify

cribe
thod

y be

aid to
f the

thod
rent
9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifiersopt ResultType MethodDeclarator Throwsopt ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
public abstract

The access modifierpublic is discussed in §6.6. A compile-time error occurs
the same modifier appears more than once in an abstract method declaration

Every method declaration in the body of an interface is implicitlyabstract,
so its body is always represented by a semicolon, not a block. For compati
with older versions of Java, it is permitted but discouraged, as a matter of sty
redundantly specify theabstract modifier for methods declared in interfaces.

Every method declaration in the body of an interface is implicitlypublic. It
is permitted, but strongly discouraged as a matter of style, to redundantly sp
thepublic modifier for interface methods.

Note that a method declared in an interface must not be declaredstatic, or a
compile-time error occurs, because in Javastatic methods cannot beabstract.

Note that a method declared in an interface must not be declarednative or
synchronized, or a compile-time error occurs, because those keywords des
implementation properties rather than interface properties. However, a me
declared in an interface may be implemented by a method that is declarednative
or synchronized in a class that implements the interface.

Note that a method declared in an interface must not be declaredfinal or a
compile-time error occurs. However, a method declared in an interface ma
implemented by a method that is declaredfinal in a class that implements the
interface.

9.4.1 Inheritance and Overriding

If the interface declares a method, then the declaration of that method is s
override any and all methods with the same signature in the superinterfaces o
interface that would otherwise be accessible to code in this interface.

If a method declaration in an interface overrides the declaration of a me
in another interface, a compile-time error occurs if the methods have diffe
return types or if one has a return type and the other isvoid. Moreover, a method
189

9.4.2 Overloading INTERFACES

190

y

e, an
ace

per-

ame
error.
time
rent

nher-
 in a

e, or
same

re is

tract

.
ther
rown
n in
declaration must not have athrows clause that conflicts (§8.4.4) with that of an
method that it overrides; otherwise, a compile-time error occurs.

Methods are overridden on a signature-by-signature basis. If, for exampl
interface declares twopublic methods with the same name, and a subinterf
overrides one of them, the subinterface still inherits the other method.

An interface inherits from its direct superinterfaces all methods of the su
interfaces that are not overridden by a declaration in the interface.

It is possible for an interface to inherit more than one method with the s
signature (§8.4.2). Such a situation does not in itself cause a compile-time
The interface is considered to inherit all the methods. However, a compile-
error occurs if, for any two such inherited methods, either they have diffe
return types or one has a return type and the other isvoid. (Thethrows clauses
do not cause errors in this case.)

There might be several paths by which the same method declaration is i
ited from an interface. This fact causes no difficulty and never of itself results
compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interfac
both inherited by a interface, or one declared and one inherited) have the
name but different signatures, then the method name is said to beoverloaded. This
fact causes no difficulty and never of itself results in a compile-time error. The
no required relationship between the return types or between thethrows clauses
of two methods with the same name but different signatures.

9.4.3 Examples of Abstract Method Declarations

The following examples illustrate some (possibly subtle) points about abs
method declarations.

9.4.3.1 Example: Overriding

Methods declared in interfaces areabstract and thus contain no implementation
About all that can be accomplished by an overriding method declaration, o
than to affirm a method signature, is to restrict the exceptions that might be th
by an implementation of the method. Here is a variation of the example show
§8.4.3.1:

INTERFACES Examples of Abstract Method Declarations9.4.3

s that
l

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(); }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public interface InfiniteBuffer extends Buffer {
 char get() throws BufferError; // override

}

9.4.3.2 Example: Overloading

In the example code:

interface PointInterface {
void move(int dx, int dy);

}

interface RealPointInterface extends PointInterface {
void move(float dx, float dy);
void move(double dx, double dy);

}

the method namemove is overloaded in interfaceRealPointInterface with
three different signatures, two of them declared and one inherited. Any clas
implements interfaceRealPointInterface must provide implementations of al
three method signatures.

Death, life, and sleep, reality and thought,
Assist me, God, their boundaries to know . . .

—William Wordsworth,Maternal Grief
191

C H A P T E R 10
se.

gned

 may

ns that

,

f

nents
array
e) the
onent

if the
use
Arrays

Even Solomon in all his glory was not arrayed like one of the
—Matthew 6:29

JAVA arrays are objects (§4.3.1), are dynamically created, and may be assi
to variables of typeObject (§4.3.2). All methods of classObject may be invoked
on an array.

An array object contains a number of variables. The number of variables
be zero, in which case the array is said to beempty. The variables contained in an
array have no names; instead they are referenced by array access expressio
use nonnegative integer index values. These variables are called thecomponents
of the array. If an array hasn components, we sayn is thelength of the array; the
components of the array are referenced using integer indices from 0 to
inclusive.

All the components of an array have the same type, called thecomponent type
of the array. If the component type of an array isT, then the type of the array itsel
is writtenT[].

The component type of an array may itself be an array type. The compo
of such an array may contain references to subarrays. If, starting from any
type, one considers its component type, and then (if that is also an array typ
component type of that type, and so on, eventually one must reach a comp
type that is not an array type; this is called theelement type of the original array,
and the components at this level of the data structure are called theelements of the
original array.

There is one situation in which an element of an array can be an array:
element type isObject, then some or all of the elements may be arrays, beca
any array object can be assigned to any variable of typeObject.

n 1–
193

10.1 Array Types ARRAYS

194

mber
e

nce.

 ele-
ces of

he
tances

le of
ompo-
array.
rence

 type

rrays:

array
10.1 Array Types

An array type is written as the name of an element type followed by some nu
of empty pairs of square brackets[]. The number of bracket pairs indicates th
depth of array nesting. An array’s length is not part of its type.

The element type of an array may be any type, whether primitive or refere
In particular:

• Arrays with an interface type as the component type are allowed. The
ments of such an array may have as their value a null reference or instan
any class type that implements the interface.

• Arrays with anabstract class type as the component type are allowed. T
elements of such an array may have as their value a null reference or ins
of any subclass of theabstract class that is not itselfabstract.

Array types are used in declarations and in cast expressions (§15.15).

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variab
array type does not create an array object or allocate any space for array c
nents. It creates only the variable itself, which can contain a reference to an
However, the initializer part of a declarator (§8.3) may create an array, a refe
to which then becomes the initial value of the variable.

Because an array’s length is not part of its type, a single variable of array
may contain references to arrays of different lengths.

Here are examples of declarations of array variables that do not create a

int[] ai; // array ofint
short[][] as; // array of array ofshort
Object[] ao, // array ofObject

otherAo; // array ofObject
short s, // scalarshort

aas[][]; // array of array ofshort

Here are some examples of declarations of array variables that create
objects:

Exception ae[] = new Exception[3];
Object aao[][] = new Exception[2][3];
int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };
char ac[] = { 'n', 'o', 't', ' ', 'a', ' ',

 'S', 't', 'r', 'i', 'n', 'g' };
String[] aas = { "array", "of", "String", };

ARRAYS Array Access 10.4

or as

y vari-
st be

0 for

lizer

evels
sting.

om-
lizer

2) that
ndex-

motion
th a

that is
es an
The [] may appear as part of the type at the beginning of the declaration,
part of the declarator for a particular variable, or both, as in this example:

byte[] rowvector, colvector, matrix[];

This declaration is equivalent to:

byte rowvector[], colvector[], matrix[][];

Once an array object is created, its length never changes. To make an arra
able refer to an array of different length, a reference to a different array mu
assigned to the variable.

If an array variablev has typeA[], whereA is a reference type, thenv can
hold a reference to an instance of any array typeB[], providedB can be assigned
to A. This may result in a run-time exception on a later assignment; see §10.1
a discussion.

10.3 Array Creation

An array is created by an array creation expression (§15.9) or an array initia
(§10.6).

An array creation expression specifies the element type, the number of l
of nested arrays, and the length of the array for at least one of the levels of ne
The array’s length is available as a final instance variablelength.

An array initializer creates an array and provides initial values for all its c
ponents. (Contrast this with C and C++, where it is possible for an array initia
to specify initial values for some but not all of the components of an array.)

10.4 Array Access

A component of an array is accessed by an array access expression (§15.1
consists of an expression whose value is an array reference followed by an i
ing expression enclosed by[and], as inA[i]. All arrays are0-origin. An array
with lengthn can be indexed by the integers0 to n-1.

Arrays must be indexed byint values;short, byte, orchar values may also
be used as index values because they are subjected to unary numeric pro
(§5.6.1) and becomeint values. An attempt to access an array component wi
long index value results in a compile-time error.

All array accesses are checked at run time; an attempt to use an index
less than zero or greater than or equal to the length of the array caus
IndexOutOfBoundsException to be thrown.
195

10.5 Arrays: A Simple Example ARRAYS

196

ation
hould

pro-
10.5 Arrays: A Simple Example

The example:

class Gauss {
public static void main(String[] args) {

int[] ia = new int[101];
for (int i = 0; i < ia.length; i++)

ia[i] = i;
int sum = 0;
for (int i = 0; i < ia.length; i++)

sum += ia[i];
System.out.println(sum);

}
}

that produces output:

5050

declares a variableia that has type array ofint, that is,int[]. The variableia is
initialized to reference a newly created array object, created by an array cre
expression (§15.9). The array creation expression specifies that the array s
have101 components. The length of the array is available using the fieldlength,
as shown.

The example program fills the array with the integers from0 to 100, sums
these integers, and prints the result.

10.6 Arrays Initializers

An array initializer may be specified in a declaration, creating an array and
viding some initial values:

ArrayInitializer:
{ VariableInitializersopt ,opt }

VariableInitializers:
VariableInitializer
VariableInitializers , VariableInitializer

The following is repeated from §8.3 to make the presentation here clearer:

VariableInitializer:
Expression
ArrayInitializer

ARRAYS Array Members 10.7

ons,

ssion
com-

ing a
 be

lizer

-

ts

 in
An array initializer is written as a comma-separated list of expressi
enclosed by braces “{” and “}”.

The length of the constructed array will equal the number of expressions.
Each expression specifies a value for one array component. Each expre

must be assignment-compatible (§5.2) with the array’s component type, or a
pile-time error results.

If the component type is itself an array type, then the expression specify
component may itself be an array initializer; that is, array initializers may
nested.

A trailing comma may appear after the last expression in an array initia
and is ignored.

As an example:

class Test {
public static void main(String[] args) {

int ia[][] = { {1, 2}, null };
for (int i = 0; i < 2; i++)

for (int j = 0; j < 2; j++)
System.out.println(ia[i][j]);

}
}

prints:

1
2

before causing aNullPointerException in trying to index the second compo
nent of the arrayia, which is a null reference.

10.7 Array Members

The members of an array type are all of the following:

• Thepublic final field length, which contains the number of componen
of the array (length may be positive or zero)

• Thepublic methodclone, which overrides the method of the same name
classObject and throws no checked exceptions

• All the members inherited from classObject; the only method ofObject that
is not inherited is itsclone method

An array thus has the same methods as the following class:
197

10.7 Array Members ARRAYS

198

n

pile
could

tes
gram:
class A implements Cloneable {
public final int length = X;
public Object clone() {

try {
return super.clone();

} catch (CloneNotSupportedException e) {
throw new InternalError(e.getMessage());

}
}

}

Every array implements interfaceCloneable. That arrays are cloneable is show
by the test program:

class Test {
public static void main(String[] args) {

int ia1[] = { 1, 2 };
int ia2[] = (int[])ia1.clone();
System.out.print((ia1 == ia2) + " ");
ia1[1]++;
System.out.println(ia2[1]);

}
}

which prints:

false 2

showing that the components of the arrays referenced byia1 andia2 are different
variables. (In some early implementations of Java this example failed to com
because the compiler incorrectly believed that the clone method for an array
throw aCloneNotSupportedException.)

A clone of a multidimensional array is shallow, which is to say that it crea
only a single new array. Subarrays are shared, as shown by the example pro

class Test {
public static void main(String[] args) throws Throwable {

int ia[][] = { { 1 , 2}, null };
int ja[][] = (int[][])ia.clone();
System.out.print((ia == ja) + " ");
System.out.println(ia[0] == ja[0] && ia[1] == ja[1]);

}
}

which prints:

false true

showing that theint[] array that isia[0] and theint[] array that isja[0] are
the same array.

ARRAYS Array Store Exception 10.10

e

ay

hile

ce as a
ys
10.8 Class Objects for Arrays

Every array has an associatedClass object, shared with all other arrays with th
same component type. The superclass of an array type is considered to beObject,
as shown by the following example code:

class Test {
public static void main(String[] args) {

int[] ia = new int[3];
System.out.println(ia.getClass());
System.out.println(ia.getClass().getSuperclass());

}
}

which prints:

class [I
class java.lang.Object

where the string “[I” is the run-time type signature for the class object “arr
with component typeint” (§20.1.1).

10.9 An Array of Characters is Not aString

In Java, unlike C, an array ofchar is not aString (§20.12), and neither aString
nor an array ofchar is terminated by'\u0000' (theNUL character).

A JavaString object is immutable, that is, its contents never change, w
an array ofchar has mutable elements. The methodtoCharArray in class
String returns an array of characters containing the same character sequen
String. The classStringBuffer implements useful methods on mutable arra
of characters (§20.13).

10.10 Array Store Exception

If an array variablev has typeA[], whereA is a reference type, thenv can hold a
reference to an instance of any array typeB[], providedB can be assigned toA.

Thus, the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }
199

10.10 Array Store Exception ARRAYS

200

f type

.
t
f
 at

ent is
t

 actual
rence
class Test {
public static void main(String[] args) {

ColoredPoint[] cpa = new ColoredPoint[10];
Point[] pa = cpa;
System.out.println(pa[1] == null);
try {

pa[0] = new Point();
} catch (ArrayStoreException e) {

System.out.println(e);
}

}
}

produces the output:

true
java.lang.ArrayStoreException

Here the variablepa has typePoint[] and the variablecpa has as its value a ref-
erence to an object of typeColoredPoint[]. A ColoredPoint can be assigned
to aPoint; therefore, the value ofcpa can be assigned topa.

A reference to this arraypa, for example, testing whetherpa[1] is null, will
not result in a run-time type error. This is because the element of the array o
ColoredPoint[] is aColoredPoint, and everyColoredPoint can stand in for
aPoint, sincePoint is the superclass ofColoredPoint.

On the other hand, an assignment to the arraypa can result in a run-time error
At compile time, an assignment to an element ofpa is checked to make sure tha
the value assigned is aPoint. But sincepa holds a reference to an array o
ColoredPoint, the assignment is valid only if the type of the value assigned
run-time is, more specifically, aColoredPoint.

Java checks for such a situation at run-time to ensure that the assignm
valid; if not, anArrayStoreException is thrown. More formally: an assignmen
to an element of an array whose type isA[], whereA is a reference type, is
checked at run-time to ensure that the value assigned can be assigned to the
element type of the array, where the actual element type may be any refe
type that is assignable toA.

 At length burst in the argent revelry,
With plume, tiara, and all rich array . . .

—John Keats,The Eve of St. Agnes(1819)

C H A P T E R 11
er
t)

age, a

Some
s by
 an
ese
 and
antic

 the
 pro-

error

such
 that

int at
lished
 an
pres-
 field
 cur-
Exceptions

If anything can go wrong, it will.
—Finagle’s Law

(often incorrectly attributed to Murphy, whose law is rath
different—which only goes to show that Finagle was righ

WHEN a Java program violates the semantic constraints of the Java langu
Java Virtual Machine signals this error to the program as anexception. An exam-
ple of such a violation is an attempt to index outside the bounds of an array.
programming languages and their implementations react to such error
peremptorily terminating the program; other programming languages allow
implementation to react in an arbitrary or unpredictable way. Neither of th
approaches is compatible with the design goals of Java: to provide portability
robustness. Instead, Java specifies that an exception will be thrown when sem
constraints are violated and will cause a non-local transfer of control from
point where the exception occurred to a point that can be specified by the
grammer. An exception is said to bethrown from the point where it occurred and
is said to becaught at the point to which control is transferred.

Java programs can also throw exceptions explicitly, usingthrow statements
(§14.16). This provides an alternative to the old-fashioned style of handling
conditions by returning funny values, such as the integer value-1 where a nega-
tive value would not normally be expected. Experience shows that too often
funny values are ignored or not checked for by callers, leading to programs
are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the classThrowable or one
of its subclasses; such an object can be used to carry information from the po
which an exception occurs to the handler that catches it. Handlers are estab
by catch clauses oftry statements (§14.18). During the process of throwing
exception, a Java Virtual Machine abruptly completes, one by one, any ex
sions, statements, method and constructor invocations, static initializers, and
initialization expressions that have begun but not completed execution in the
201

11.1 The Causes of Exceptions EXCEPTIONS

202

hat it
uper-

ethod

ption

ation

etails
 time

 the

re.

 Vir-

 lan-

2.3)

ry

, but
ssion
rent thread. This process continues until a handler is found that indicates t
handles that particular exception by naming the class of the exception or a s
class of the class of the exception. If no such handler is found, then the m
uncaughtException (§20.21.31) is invoked for theThreadGroup that is the par-
ent of the current thread—thus every effort is made to avoid letting an exce
go unhandled.

The Java exception mechanism is integrated with the Java synchroniz
model (§17), so that locks are released assynchronized statements (§14.17) and
invocations ofsynchronized methods (§8.4.3.5, §15.11) complete abruptly.

This chapter describes the different causes of exceptions (§11.1). It d
how exceptions are checked at compile time (§11.2) and processed at run
(§11.3). A detailed example (§11.4) is then followed by an explanation of
exception hierarchy and the standard exception classes (§11.5).

11.1 The Causes of Exceptions

If we do not succeed, then we run the risk of failu
—J. Danforth Quayle (1990)

An exception is thrown for one of threereasons:

• An abnormal execution condition was synchronously detected by a Java
tual Machine. Such conditions arise because:

◆ evaluation of an expression violates the normal semantics of the Java
guage, such as an integer divide by zero, as summarized in §15.5

◆ an error occurs in loading or linking part of the Java program (§12.2, §1

◆ some limitation a resource is exceeded, such as using too much memo

These exceptions are not thrown at an arbitrary point in the program
rather at a point where they are specified as a possible result of an expre
evaluation or statement execution.

• A throw statement (§14.16) was executed in Java code.

• An asynchronous exception occurred either because:

◆ the methodstop of classThread (§20.20.16) was invoked

◆ an internal error has occurred in the virtual machine (§11.5.2.2)

Exceptions are represented by instances of the classThrowable and instances
of its subclasses. These classes are, collectively, theexception classes.

EXCEPTIONS Why Runtime Exceptions are Not Checked11.2.2

ndlers
m
 pos-

.4)
lass of
dlers
led.

are
tion
ecked

escrip-
 by the

. The
will
 per-
an
n. In

not

cur at
. A

gners
lish-

 of the
11.2 Compile-Time Checking of Exceptions

The Java language checks, at compile time, that a Java program contains ha
for checked exceptions, by analyzing which checked exceptions can result fro
execution of a method or constructor. For each checked exception which is a
sible result, thethrows clause for the method (§8.4.4) or constructor (§8.6
must mention the class of that exception or one of the superclasses of the c
that exception. This compile-time checking for the presence of exception han
is designed to reduce the number of exceptions which are not properly hand

The unchecked exceptions classes are the classRuntimeException and its
subclasses, and the classError and its subclasses. All other exception classes
checked exception classes. The standard Java API defines a number of excep
classes, both checked and unchecked. Additional exception classes, both ch
and unchecked, may be declared by Java programmers. See §11.5 for a d
tion of the Java exception class hierarchy and the exception classes defined
standard Java API and Java Virtual Machine.

The checked exception classes named in thethrows clause are part of the
contract between the implementor and user of the method or constructor
throws clause of an overriding method may not specify that this method
result in throwing any checked exception which the overridden method is not
mitted, by itsthrows clause, to throw. When interfaces are involved, more th
one method declaration may be overridden by a single overriding declaratio
this case, the overriding declaration must have athrows clause that is compatible
with all the overridden declarations (§9.4).

Variable initializers for fields (§8.3.2) and static initializers (§8.5) must
result in a checked exception; if one does, a compile-time error occurs.

11.2.1 Why Errors are Not Checked

Those unchecked exception classes which are theerror classes (Error and its
subclasses) are exempted from compile-time checking because they can oc
many points in the program and recovery from them is difficult or impossible
Java program declaring such exceptions would be cluttered, pointlessly.

11.2.2 Why Runtime Exceptions are Not Checked

The runtime exception classes (RuntimeException and its subclasses) are
exempted from compile-time checking because, in the judgment of the desi
of Java, having to declare such exceptions would not aid significantly in estab
ing the correctness of Java programs. Many of the operations and constructs
203

11.3 Handling of an Exception EXCEPTIONS

204

 to a
t suf-
 this
 to be

t, by
be

blish
guage

d the

y the

ion

ller
on of

t to be

f the
e
of the
n

brupt
Java language can result in runtime exceptions. The information available
Java compiler, and the level of analysis the compiler performs, are usually no
ficient to establish that such runtime exceptions cannot occur, even though
may be obvious to the Java programmer. Requiring such exception classes
declared would simply be an irritation to Java programmers.

For example, certain code might implement a circular data structure tha
construction, can never involvenull references; the programmer can then
certain that aNullPointerException cannot occur, but it would be difficult for a
compiler to prove it. The theorem-proving technology that is needed to esta
such global properties of data structures is beyond the scope of this Java Lan
Specification.

11.3 Handling of an Exception

When an exception is thrown, control is transferred from the code that cause
exception to the nearest dynamically-enclosingcatch clause of atry statement
(§14.18) that handles the exception.

A statement or expression isdynamically enclosed by a catch clause if it
appears within thetry block of thetry statement of which thecatch clause is a
part, or if the caller of the statement or expression is dynamically enclosed b
catch clause.

Thecaller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation express
(§15.11) that was executed to cause the method to be invoked.

• If within a constructor or the initializer for an instance variable, then the ca
is the class instance creation expression (§15.8) or the method invocati
newInstance that was executed to cause an object to be created.

• If within a static initializer or an initializer for astatic variable, then the
caller is the expression that used the class or interface so as to cause i
initialized.

Whether a particularcatch clausehandles an exception is determined by
comparing the class of the object that was thrown to the declared type o
parameter of thecatch clause. Thecatch clause handles the exception if the typ
of its parameter is the class of the exception or a superclass of the class
exception. Equivalently, acatch clause will catch any exception object that is a
instanceof (§15.19.2) the declared parameter type.

The control transfer that occurs when an exception is thrown causes a
completion of expressions (§15.5) and statements (§14.1) until acatch clause is

EXCEPTIONS Handling Asynchronous Exceptions11.3.2

cuting
ver

rent
ter all

-

ways
a

e
f no

 are
pres-

ts
 which
 state-
n is
tively
hich

execu-

hread
sibly
xcep-
.
eces-
encountered that can handle the exception; execution then continues by exe
the block of thatcatch clause. The code that caused the exception is ne
resumed.

If no catch clause handling an exception can be found, then the cur
thread (the thread that encountered the exception) is terminated, but only af
finally clauses have been executed and the methoduncaughtException
(§20.21.31) has been invoked for theThreadGroup that is the parent of the cur
rent thread.

In situations where it is desirable to ensure that one block of code is al
executed after another, even if that other block of code completes abruptly, try
statement with afinally clause (§14.18.2) may be used. If atry or catch block
in atry–finally ortry–catch–finally statement completes abruptly, then th
finally clause is executed during propagation of the exception, even i
matchingcatch clause is ultimately found. If afinally clause is executed
because of abrupt completion of atry block and thefinally clause itself com-
pletes abruptly, then the reason for the abrupt completion of thetry block is dis-
carded and the new reason for abrupt completion is propagated from there.

The exact rules for abrupt completion and for the catching of exceptions
specified in detail with the specification of each statement in §14 and for ex
sions in §15 (especially §15.5).

11.3.1 Exceptions are Precise

Exceptions in Java areprecise: when the transfer of control takes place, all effec
of the statements executed and expressions evaluated before the point from
the exception is thrown must appear to have taken place. No expressions,
ments, or parts thereof that occur after the point from which the exceptio
thrown may appear to have been evaluated. If optimized code has specula
executed some of the expressions or statements which follow the point at w
the exception occurs, such code must be prepared to hide this speculative
tion from the user-visible state of the Java program.

11.3.2 Handling Asynchronous Exceptions

Most exceptions in Java occur synchronously as a result of an action by the t
in which they occur, and at a point in the Java program that is specified to pos
result in such an exception. An asynchronous exception is, by contrast, an e
tion that can potentially occur at any point in the execution of a Java program

Proper understanding of the semantics of asynchronous exceptions is n
sary if high-quality machine code is to be generated.
205

11.4 An Example of Exceptions EXCEPTIONS

206

:

ll the
y may
 An
 the

e an
ized
andle

oint
, this
 Since
nera-
 for
Asynchronous exceptions are rare in Java. They occur only as a result of

• An invocation of thestop methods of classThread (§20.20.15, §20.20.16) or
ThreadGroup (§20.21.8, §20.21.9)

• An InternalError (§11.5.2.2) in the Java Virtual Machine

Thestop methods may be invoked by one thread to affect another thread or a
threads in a specified thread group. They are asynchronous because the
occur at any point in the execution of the other thread or threads.
InternalError is considered asynchronous so that it may be handled using
same mechanism that handles thestop method, as will now be described.

Java permits a small but bounded amount of execution to occur befor
asynchronous exception is thrown. This delay is permitted to allow optim
code to detect and throw these exceptions at points where it is practical to h
them while obeying the semantics of the Java language.

A simple implementation might poll for asynchronous exceptions at the p
of each control transfer instruction. Since a Java program has a finite size
provides a bound on the total delay in detecting an asynchronous exception.
no asynchronous exception will occur between control transfers, the code ge
tor has some flexibility to reorder computation between control transfers
greater performance.

The paperPolling Efficiently on Stock Hardwareby Mark Feeley,Proc. 1993
Conference on Functional Programming and Computer Architecture, Copen-
hagen, Denmark, pp. 179–187, is recommended as further reading.

Like all exceptions, asynchronous exceptions are precise (§11.3.1).

11.4 An Example of Exceptions

Consider the following example:

class TestException extends Exception {

TestException() { super(); }

TestException(String s) { super(s); }

}

class Test {

public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {

EXCEPTIONS An Example of Exceptions 11.4
try {
thrower(args[i]);
System.out.println("Test \"" + args[i] +

"\" didn't throw an exception");
} catch (Exception e) {

System.out.println("Test \"" + args[i] +
"\" threw a " + e.getClass() +
"\n with message: " + e.getMessage());

}
}

}

static int thrower(String s) throws TestException {
try {

if (s.equals("divide")) {
int i = 0;
return i/i;

}
if (s.equals("null")) {

s = null;
return s.length();

}
if (s.equals("test"))

throw new TestException("Test message");
return 0;

} finally {
System.out.println("[thrower(\"" + s +

"\") done]");
}

}

}

If we execute the test program, passing it the arguments:

divide null not test

it produces the output:

[thrower("divide") done]
Test "divide" threw a class java.lang.ArithmeticException

with message: / by zero
[thrower("null") done]
Test "null" threw a class java.lang.NullPointerException

with message: null
[thrower("not") done]
Test "not" didn't throw an exception
[thrower("test") done]
Test "test" threw a class TestException

with message: Test message
207

11.5 The Exception Hierarchy EXCEPTIONS

208

e

s

asses,

ing for
ecked
s

ro-

ep-
This example declares an exception classTestException. Themain method
of classTest invokes thethrower method four times, causing exceptions to b
thrown three of the four times. Thetry statement in methodmain catches each
exception that thethrower throws. Whether the invocation ofthrower completes
normally or abruptly, a message is printed describing what happened.

The declaration of the methodthrower must have athrows clause because
it can throw instances ofTestException, which is a checked exception clas
(§11.2). A compile-time error would occur if thethrows clause were omitted.

Notice that thefinally clause is executed on every invocation ofthrower,
whether or not an exception occurs, as shown by the “[thrower(...) done]” out-
put that occurs for each invocation

11.5 The Exception Hierarchy

The possible exceptions in a Java program are organized in a hierarchy of cl
rooted at classThrowable (§11.5, §20.22), a direct subclass ofObject. The
classesException and Error are direct subclasses ofThrowable. The class
RuntimeException is a direct subclass ofException.

The exception classes declared by the standard packagesjava.lang,
java.util, java.io andjava.net are called thestandard exception classes.

Java programs can use the pre-existing exception classes inthrow statements,
or define additional exception classes, as subclasses ofThrowable or of any of its
subclasses, as appropriate. To take advantage of Java’s compile-time check
exception handlers, it is typical to define most new exception classes as ch
exception classes, specifically as subclasses ofException that are not subclasse
of RuntimeException.

11.5.1 The ClassesException and RuntimeException

The classException is the superclass of all the exceptions that ordinary p
grams may wish to recover from.

11.5.1.1 Standard Runtime Exceptions

The classRuntimeException is a subclass of classException. The subclasses
of RuntimeException are unchecked exception classes.

Packagejava.lang defines the following standard unchecked runtime exc
tions, which, like all other classes in packagejava.lang, are implicitly imported
and therefore may be referred to by their simple names:

EXCEPTIONS The ClassesException andRuntimeException 11.5.1

ch

ray
mpo-

) a

o-
 class

e

t.

n
iting

an
alues

ay

 a

me

le-

n

• ArithmeticException: An exceptional arithmetic situation has arisen, su
as an integer division (§15.16.2) operation with a zero divisor.

• ArrayStoreException: An attempt has been made to store into an ar
component a value whose class is not assignment compatible with the co
nent type of the array (§10.10, §15.25.1).

• ClassCastException: An attempt has been made to cast (§5.4, §15.15
reference to an object to an inappropriate type.

• IllegalArgumentException: A method was passed an invalid or inappr
priate argument or invoked on an inappropriate object. Subclasses of this
include:

◆ IllegalThreadStateException: A thread was not in an appropriat
state for a requested operation.

◆ NumberFormatException: An attempt was made to convert aString to a
value of a numeric type, but theString did not have an appropriate forma

• IllegalMonitorStateException: A thread has attempted to wait o
(§20.1.6, §20.1.7, §20.1.8) or notify (§20.1.9, §20.1.10) other threads wa
on an object that it has not locked.

• IndexOutOfBoundsException: Either an index of some sort (such as to
array, a string, or a vector) or a subrange, specified either by two index v
or by an index and a length, was out of range.

• NegativeArraySizeException: An attempt was made to create an arr
with a negative length (§15.9).

• NullPointerException: An attempt was made to use a null reference in
case where an object reference was required.

• SecurityException: A security violation was detected (§20.17).

Packagejava.util defines the following additional standard unchecked runti
exceptions:

• java.util.EmptyStackException: An attempt was made to access an e
ment of an empty stack.

• java.util.NoSuchElementException: An attempt was made to access a
element of an empty vector.
209

11.5.1 The ClassesException andRuntimeException EXCEPTIONS

210

all
e

ld

does

ing
od

class is

f a

ad

ed

al

r
 cur-

g
.15,
11.5.1.2 Standard Checked Exceptions

The standard subclasses ofException other thanRuntimeException are all
checked exception classes.

Packagejava.lang defines the following standard exceptions, which, like
other classes in packagejava.lang, are implicitly imported and therefore may b
referred to by their simple names:

• ClassNotFoundException: A class or interface with a specified name cou
not be found (§20.3.8).

• CloneNotSupportedException: The clone method (§20.1.5) of class
Object has been invoked to clone an object, but the class of that object
not implement theCloneable interface.

• IllegalAccessException: An attempt has been made to load a class us
a string giving its fully qualified name, but the currently executing meth
does not have access to the definition of the specified class because the
notpublic and is in another package.

• InstantiationException: An attempt was made to create an instance o
class using thenewInstance method in classClass, but the specified class
object cannot be instantiated because it is an interface, isabstract, or is an
array.

• InterruptedException: The current thread was waiting, and another thre
has interrupted the current thread, using theinterrupt method of class
Thread (§20.20.31).

Packagejava.io defines the following additional standard exceptions:

• java.io.IOException: A requested I/O operation could not be complet
normally. Subclasses of this class include:

◆ java.io.EOFException: End of file has been encountered before norm
completion of an input operation.

◆ java.io.FileNotFoundException: A file with the name specified by a
file name string or path was not found within the file system.

◆ java.io.InterruptedIOException: The current thread was waiting fo
completion of an I/O operation, and another thread has interrupted the
rent thread, using theinterrupt method of classThread (§20.20.31).

◆ java.io.UTFDataFormatException: A requested conversion of a strin
to or from Java modified UTF-8 format could not be completed (§22.1

EXCEPTIONS The ClassError 11.5.2

TF-8

of

 an

s

t

d

t

nary

hing

ese

s of
n

§22.2.14) because the string was too long or because the purported U
data was not the result of encoding a Unicode string into UTF-8.

The standard packagejava.net defines the following additional subclasses
java.io.IOException:

◆ java.net.MalformedURLException: A string that was provided as a
URL, or as part of a URL, had an inappropriate format or specified
unknown protocol.

◆ java.net.ProtocolException: Some aspect of a network protocol wa
not correctly carried out.

◆ java.net.SocketException: An operation involving a socket could no
be completed normally.

◆ java.net.UnknownHostException: The name of a network host coul
not be resolved to a network address.

◆ java.net.UnknownServiceException: The network connection canno
support the requested service.

11.5.2 The ClassError

The classError and its standard subclasses are exceptions from which ordi
programs are not ordinarily expected to recover. The classError is a separate
subclass ofThrowable, distinct fromException in the class hierarchy, to allow
programs to use the idiom:

} catch (Exception e) {

to catch all exceptions from which recovery may be possible without catc
errors from which recovery is typically not possible.

Packagejava.lang defines all the error classes described here. Th
classes, like all other classes in packagejava.lang, are implicitly imported and
therefore may be referred to by their simple names.

11.5.2.1 Loading and Linkage Errors

A Java Virtual Machine throws an object that is an instance of a subclas
LinkageError when a loading, linkage, preparation, verification or initializatio
error occurs:
211

11.5.2 The ClassError EXCEPTIONS

212

ibed

f

ilure

 error

will

t

f the
e-
uage
 vir-

e,
lt in
or is
t in a

r
claim

for
recur-

n, a

s.
• The loading process is described in §12.2. The errorsClassFormatError,
ClassCircularityError, andNoClassDefFoundError are described there.

• The linking process is described in §12.3. The linking errors are descr
there. These errors includeIllegalAccessError, InstantiationError,
NoSuchFieldError, andNoSuchMethodError, all of which are subclasses o
IncompatibleClassChangeError, and, also,UnsatisfiedLinkError.

• The class verification process is described in §12.3.1. The verification fa
errorVerifyError is described there.

• The class preparation process is described in §12.3.2. The preparation
described there isAbstractMethodError.

• The class initialization process is described in §12.4. A virtual machine
throw the errorExceptionInInitializerError if execution of a static ini-
tializer or of an initializer for astatic field results in an exception that is no
anError or a subclass ofError.

11.5.2.2 Virtual Machine Errors

A Java Virtual Machine throws an object that is an instance of a subclass o
classVirtualMachineError when an internal error or resource limitation pr
vents it from implementing the semantics of the Java Language. This lang
specification and the Java Virtual Machine Specification define the following
tual machine errors:

• InternalError: An internal error has occurred in a Java Virtual Machin
because of a fault in the software implementing the virtual machine, a fau
the underlying host system software, or a fault in the hardware. This err
delivered asynchronously when it is detected, and may occur at any poin
Java program.

• OutOfMemoryError: A Java Virtual Machine has run out of either virtual o
physical memory, and the automatic storage manager wasn’t able to re
enough memory to satisfy an object creation request.

• StackOverflowError: A Java Virtual Machine has run out of stack space
a thread, typically because the thread is doing an unbounded number of
sive invocations due to a fault in the executing program.

• UnknownError: An exception or error has occurred but, for some reaso
Java Virtual Machine is unable to report the actual exception or error.

A sophisticated Java program may be designed to handleOutOfMemoryError and
attempt to recover from it, perhaps by carefully dropping references to object

EXCEPTIONS The ClassError 11.5.2

em-
of a
-
 to

-

on.
We are exploring enhancements to Java to simplify handling of out-of-m
ory conditions. One possibility would be to support automatic suspension
thread which encounters anOutOfMemoryError and allow another thread to han
dle theerror situation. Such a technique might also permit a Java program
recover from aStackOverflowError if this overflow does not result from a non
terminating recursion. Suggestions for other approaches are welcomed.

No rule is so general, which admits not some excepti
—Robert Burton (1576–1640)
213

C H A P T E R 12
tely.

ram.
ses,

vok-
ng,

12.2),

n of
aliza-
12.8)

n the

hine
 that
 as a
ed as
Execution

We must all hang together, or assuredly we shall all hang separa
—Benjamin Franklin (July 4, 1776)

THIS chapter specifies activities that occur during execution of a Java prog
It is organized around the life cycle of a Java Virtual Machine and of the clas
interfaces, and objects that form a Java program.

A Java Virtual Machine starts up by loading a specified class and then in
ing the methodmain in this specified class. Section §12.1 outlines the loadi
linking, and initialization steps involved in executingmain, as an introduction to
the concepts in this chapter. Further sections specify the details of loading (§
linking (§12.3), and initialization (§12.4).

The chapter continues with a specification of the procedures for creatio
new class instances (§12.5); finalization of class instances (§12.6); and fin
tion of classes (§12.7). It concludes by describing the unloading of classes (§
and the procedure followed when a virtual machine exits (§12.9).

12.1 Virtual Machine Start-Up

A Java Virtual Machine starts execution by invoking the methodmain of some
specified class, passing it a single argument, which is an array of strings. I
examples in this specification, this first class is typically calledTest.

The manner in which the initial class is specified to the Java Virtual Mac
is beyond the scope of this specification, but it is typical, in host environments
use command lines, for the fully-qualified name of the class to be specified
command-line argument and for following command-line arguments to be us
strings to be provided as the argument to the methodmain. For example, in a
UNIX implementation, the command line:

java Test reboot Bob Dot Enzo
215

12.1.1 Load the ClassTest EXECUTION

216

trings

 fur-

on-
 class
cess
.2.

ing
ed

ents
. If a

n is

 that
em is
d fur-

e men-

ta-
nked
sses
esult
tion
 that
e. (In
s an
will typically start a Java Virtual Machine by invoking methodmain of classTest
(a class in an unnamed package), passing it an array containing the four s
"reboot", "Bob", "Dot", and"Enzo".

We now outline the steps the virtual machine may take to executeTest, as an
example of the loading, linking, and initialization processes that are described
ther in later sections.

12.1.1 Load the ClassTest

The initial attempt to execute the methodmain of classTest discovers that the
classTest is not loaded—that is, that the virtual machine does not currently c
tain a binary representation for this class. The virtual machine then uses a
loader (§20.14) to attempt to find such a binary representation. If this pro
fails, then an error is thrown. This loading process is described further in §12

12.1.2 LinkTest: Verify, Prepare, (Optionally) Resolve

After Test is loaded, it must be initialized beforemain can be invoked. AndTest,
like all (class or interface) types, must be linked before it is initialized. Link
involves verification, preparation and (optionally) resolution. Linking is describ
further in §12.3.

Verification checks that the loaded representation ofTest is well-formed,
with a proper symbol table. Verification also checks that the code that implem
Test obeys the semantic requirements of Java and the Java Virtual Machine
problem is detected during verification, then an error is thrown. Verificatio
described further in §12.3.1.

Preparation involves allocation of static storage and any data structures
are used internally by the virtual machine, such as method tables. If a probl
detected during preparation, then an error is thrown. Preparation is describe
ther in §12.3.2.

Resolution is the process of checking symbolic references fromTest to other
classes and interfaces, by loading the other classes and interfaces that ar
tioned and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implemen
tion may resolve symbolic references from a class or interface that is being li
very early, even to the point of resolving all symbolic references from the cla
and interfaces that are further referenced, recursively. (This resolution may r
in errors from these further loading and linking steps.) This implementa
choice represents one extreme and is similar to the kind of “static” linkage
has been done for many years in simple implementations of the C languag
these implementations, a compiled program is typically represented a

EXECUTION InitializeTest: Execute Initializers 12.1.3

-
hese

 only
nces

 one at
r used

rors
some
e to
en-
e the
class
 In a
rown

the
ss,

atic

direct

t
e

y also

d-
“a.out” file that contains a fully-linked version of the program, including com
pletely resolved links to library routines used by the program. Copies of t
library routines are included in the “a.out” file.)

An implementation may instead choose to resolve a symbolic reference
when it is actively used; consistent use of this strategy for all symbolic refere
would represent the “laziest” form of resolution. In this case, ifTest had several
symbolic references to another class, then the references might be resolved
a time, as they are used, or perhaps not at all, if these references were neve
during execution of the program.

The only requirement on when resolution is performed is that any er
detected during resolution must be thrown at a point in the program where
action is taken by the program that might, directly or indirectly, require linkag
the class or interface involved in the error. Using the “static” example implem
tation choice described above, loading and linkage errors could occur befor
program is executed if they involved a class or interface mentioned in the
Test or any of the further, recursively referenced, classes and interfaces.
system that implemented the “laziest” resolution, these errors would be th
only when an incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 InitializeTest: Execute Initializers

In our continuing example, the virtual machine is still trying to execute
methodmain of classTest. This is an attempted active use (§12.4.1) of the cla
which is permitted only if the class has been initialized.

Initialization consists of execution of any class variable initializers and st
initializers of the classTest, in textual order. But beforeTest can be initialized,
its direct superclass must be initialized, as well as the direct superclass of its
superclass, and so on, recursively. In the simplest case,Test hasObject as its
implicit direct superclass; if classObject has not yet been initialized, then it mus
be initialized beforeTest is initialized. ClassObject has no superclass, so th
recursion terminates here.

If classTest has another classSuper as its superclass, thenSuper must be
initialized beforeTest. This requires loading, verifying, and preparingSuper if
this has not already been done and, depending on the implementation, ma
involve resolving the symbolic references fromSuper and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, inclu
ing such errors involving other types.

The initialization process is described further in §12.4.
217

12.1.4 InvokeTest.main EXECUTION

218

hod

type
 by
by a

d

sses
nces.

ring),
 or
load-
 how-
n the

should

ss or
ed to

.3.1)
y have
e veri-
ly or

same
e. But

 and
gn of
12.1.4 InvokeTest.main

Finally, after completion of the initialization for classTest (during which other
consequential loading, linking, and initializing may have occurred), the met
main of Test is invoked.

The methodmain must be declaredpublic, static, andvoid. It must accept
a single argument that is an array of strings.

12.2 Loading of Classes and Interfaces

Loading refers to the process of finding the binary form of a class or interface
with a particular name, perhaps by computing it on the fly, but more typically
retrieving a binary representation previously computed from source code
compiler, and constructing, from that binary form, aClass object to represent the
class or interface.

The binary format of a class or interface is normally theclass file format
described inThe Java Virtual Machine, but other formats are possible, provide
they meet the requirements specified in §13.1. The methoddefineClass
(§20.14.3) of classClassLoader may be used to constructClass objects from
binary representations in theclass file format.

A Java Virtual Machine system should maintain an internal table of cla
and interfaces that have been loaded for the sake of resolving symbolic refere
Each entry in the table should consist of a fully qualified class name (as a st
a class loader, and aClass object. Whenever a symbolic reference to a class
interface is to be resolved, a class loader is identified that is responsible for
ing the class or interface, if necessary. The table should be consulted first,
ever; if it already contains an entry for that class name and class loader, the
class object in that entry should be used and no method of the class loader
be invoked. If the table contains no such entry, then the methodloadClass
(§20.14.2) of the class loader should be invoked, giving it the name of the cla
interface. If and when it returns, the class object that it returns should be us
make a new entry in the table for that class name and class loader.

The purpose of this internal table is to allow the verification process (§12
to assume, for its purposes, that two classes or interfaces are the same if the
the same name and the same class loader. This property allows a class to b
fied without loading all the classes and interfaces that it uses, whether active
passively. Well-behaved class loaders do maintain this property: given the
name twice, a good class loader should return the same class object each tim
without the internal table, a malicious class loader could violate this property
undermine the security of the Java type system. A basic principle of the desi

EXECUTION Loading: Implications for Code Generation12.2.2

tten in
ses as

2.8)

ns of
roup of
t to a
s is
ponsi-
pro-

low-
-

se

ted

e

 fail

 for a
g the

ws all
oup is
before
ay be
such a
the Java language is that the type system cannot be subverted by code wri
Java, not even by implementations of such otherwise sensitive system clas
ClassLoader (§20.14) andSecurityManager (§20.17).

An entry may be deleted from the internal table only after unloading (§1
the class or interface represented by the class object in the entry.

12.2.1 The Loading Process

The loading process is implemented by the classClassLoader (§20.14) and its
subclasses. Different subclasses ofClassLoader may implement different load-
ing policies. In particular, a class loader may cache binary representatio
classes and interfaces, prefetch them based on expected usage, or load a g
related classes together. These activities may not be completely transparen
running Java application if, for example, a newly compiled version of a clas
not found because an older version is cached by a class loader. It is the res
bility of a class loader, however, to reflect loading errors only at points in the
gram they could have arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the fol
ing subclasses of classLinkageError will be thrown at any point in the Java pro
gram that (directly or indirectly) uses the type:

• ClassCircularityError: A class or interface could not be loaded becau
it would be its own superclass or superinterface (§13.4.4).

• ClassFormatError: The binary data that purports to specify a reques
compiled class or interface is malformed.

• NoClassDefFoundError: No definition for a requested class or interfac
could be found by the relevant class loader.

Because loading involves the allocation of new data structures, it may
with anOutOfMemoryError.

12.2.2 Loading: Implications for Code Generation

A cooperating class loader can enable a code generator to generate code
group of class and interface types—perhaps an entire package—by loadin
binary code for these types as a group. A format can be designed that allo
the internal symbolic references in such a group to be resolved, before the gr
loaded. Such a strategy may also allow the generated code to be optimized
loading based on the known concrete types in the group. This approach m
useful in specific cases, but is discouraged as a general technique, since
class file format is unlikely to be widely understood.
219

12.3 Linking of Classes and Interfaces EXECUTION

220

om-
exe-
rent
m-

nd,
e lan-
pared

point
 link-

efer-
olu-

tatic
mple-

ith

truc-
ation
ction,
ith a
pline

arate

ub-
at

 set
uage
ee
12.3 Linking of Classes and Interfaces

Linking is the process of taking a binary form of a class or interface type and c
bining it into the runtime state of the Java Virtual Machine, so that it can be
cuted. A class or interface type is always loaded before it is linked. Three diffe
activities are involved in linking: verification, preparation, and resolution of sy
bolic references.

Java allows an implementation flexibility as to when linking activities (a
because of recursion, loading) take place, provided that the semantics of th
guage are respected, that a class or interface is completely verified and pre
before it is initialized, and that errors detected during linkage are thrown at a
in the program where some action is taken by the program that might require
age to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic r
ence in a class or interface individually, only when it is used (lazy or late res
tion), or to resolve them all at once while the class is being verified (s
resolution). This means that the resolution process may continue, in some i
mentations, after a class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail w
anOutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is s
turally correct. For example, it checks that every instruction has a valid oper
code; that every branch instruction branches to the start of some other instru
rather than into the middle of an instruction; that every method is provided w
structurally correct signature; and that every instruction obeys the type disci
of the Java language.

For a more detailed description of the verification process, see the sep
volume of this series,The Java Virtual Machine Specification.

If an error occurs during verification, then an instance of the following s
class of classLinkageError will be thrown at the point in the Java program th
caused the class to be verified:

• VerifyError: The binary definition for a class or interface failed to pass a
of required checks to verify that it obeys the semantics of the Java lang
and that it cannot violate the integrity of the Java Virtual Machine. (S
§13.4.2, §13.4.4, §13.4.8, and §13.4.16 for some examples.)

EXECUTION Resolution of Symbolic References12.3.3

or
lues

izers
.

lly
e

.
data
 inter-
” or
 class

thods,
sses
clude
ell as
ion.

 with
 used

pi-
lass
er
s
t

ly:

hat
ation
s not
12.3.2 Preparation of a Class or Interface Type

Preparation involves creating thestatic fields (class variables and constants) f
a class or interface and initializing such fields to the standard default va
(§4.5.4). This does not require the execution of any Java code; explicit initial
for static fields are executed as part of initialization (§12.4), not preparation

Java implementations must detect the following error during preparation:

• AbstractMethodError: A class that is not declared to beabstract has an
abstract method. This can occur, for example, if a method that is origina
not abstract is changed to beabstract after another class that inherits th
nowabstract method declaration has been compiled (§13.4.15).

If such an error is detected, then an instance ofAbstractMethodError should be
thrown at the point in the Java program that caused the class to be prepared

Implementations of the Java Virtual Machine may precompute additional
structures at preparation time in order to make later operations on a class or
face more efficient. One particularly useful data structure is a “method table
other data structure that allows any method to be invoked on instances of a
without requiring a search of superclasses at invocation time.

12.3.3 Resolution of Symbolic References

A Java binary file references other classes and interfaces and their fields, me
and constructors symbolically, using the fully-qualified names of the other cla
and interfaces (§13.1). For fields and methods, these symbolic references in
the name of the class or interface type that declares the field or method as w
the name of the field or method itself, together with appropriate type informat

Before a symbolic reference can be used it must be undergoresolution,
wherein a symbolic reference is checked to be correct and, typically, replaced
a direct reference that can be more efficiently processed if the reference is
repeatedly.

If an error occurs during resolution, then an error will be thrown. Most ty
cally, this will be an instance of one of the following subclasses of the c
IncompatibleClassChangeError, but it may also be an instance of some oth
subclass ofIncompatibleClassChangeError or even an instance of the clas
IncompatibleClassChangeError itself. This error may be thrown at any poin
in the program that uses a symbolic reference to the type, directly or indirect

• IllegalAccessError: A symbolic reference has been encountered t
specifies a use or assignment of a field, or invocation of a method, or cre
of an instance of a class, to which the code containing the reference doe
have access because the field or method was declaredprivate, protected,
221

12.3.4 Linking: Implications for Code Generation EXECUTION

222

en

t is
reated

tion

fers
 does
 to
le, if
ers to

fers
rface
t for
cur,

other

g on

re the
dard)

age
. It
age
 first

age
never
or default access (notpublic), or because the class was not declaredpublic.
This can occur, for example, if a field that is originally declaredpublic is
changed to beprivate after another class that refers to the field has be
compiled (§13.4.6).

• InstantiationError: A symbolic reference has been encountered tha
used in a class instance creation expression, but an instance cannot be c
because the reference turns out to refer to an interface or to anabstract
class. This can occur, for example, if a class that is originally notabstract is
changed to beabstract after another class that refers to the class in ques
has been compiled (§13.4.1).

• NoSuchFieldError: A symbolic reference has been encountered that re
to a specific field of a specific class or interface, but the class or interface
not declare a field of that name (it is specifically not sufficient for it simply
be an inherited field of that class or interface). This can occur, for examp
a field declaration was deleted from a class after another class that ref
the field was compiled (§13.4.7).

• NoSuchMethodError: A symbolic reference has been encountered that re
to a specific method of a specific class or interface, but the class or inte
does not declare a method of that signature (it is specifically not sufficien
it simply to be an inherited method of that class or interface). This can oc
for example, if a method declaration was deleted from a class after an
class that refers to the method was compiled (§13.4.12).

Additionally, an UnsatisfiedLinkError (a subclass ofLinkageError)
may be thrown if a class declares anative method for which no implementation
can be found. The error will occur if the method is used, or earlier dependin
what kind of resolution strategy is being used by the virtual machine (§12.3).

12.3.4 Linking: Implications for Code Generation

The symbolic references within a group of types may be resolved even befo
group is loaded (§12.2.2), in an implementation that uses a special (non-stan
binary format (§13.1). This corresponds to the traditional practice of “link
editing.” Even if this is not done, a Java implementation has a lot of flexibility
may resolve all symbolic references from a type at the point of the first link
activity on the type, or defer the resolution of each symbolic reference to the
use of that reference.

We note that the flexibility accorded the Java implementation in the link
process does not affect correctly formed Java programs, which should
encounter linkage errors.

EXECUTION When Initialization Occurs 12.4.1

liz-
 an
here.
aces
es of

or

e to a
time
.8 for a

t put
 other
xtual

rations
scope
 oth-

cted
an be
ion
e also
d of
ram-
enera-
.4.3).
12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initia
ers forstatic fields (class variables) declared in the class. Initialization of
interface consists of executing the initializers for fields (constants) declared t

Before a class is initialized, its superclass must be initialized, but interf
implemented by the class need not be initialized. Similarly, the superinterfac
an interface need not be initialized before the interface is initialized.

12.4.1 When Initialization Occurs

A class or interface typeT will be initialized at its firstactive use, which occurs if:

• T is a class and a method actually declared inT (rather than inherited from a
superclass) is invoked.

• T is a class and a constructor for classT is invoked, orU is an array with ele-
ment typeT, and an array of typeU is created.

• A non-constant field declared inT (rather than inherited from a superclass
superinterface) is used or assigned. Aconstant field is one that is (explicitly or
implicitly) both final andstatic, and that is initialized with the value of a
compile-time constant expression (§15.27). Java specifies that a referenc
constant field must be resolved at compile time to a copy of the compile-
constant value, so uses of such a field are never active uses. See §13.4
further discussion.

All other uses of a type arepassive uses.
The intent here is that a class or interface type has a set of initializers tha

it in a consistent state, and that this state is the first state that is observed by
classes. The static initializers and class variable initializers are executed in te
order, and may not refer to class variables declared in the class whose decla
appear textually after the use, even though these class variables are in
(§8.5). This restriction is designed to detect, at compile time, most circular or
erwise malformed initializations.

As shown in an example in §8.5, the fact that initialization code is unrestri
allows examples to be constructed where the value of a class variable c
observed when it still has its initial default value, before its initializing express
is evaluated, but such examples are rare in practice. (Such examples can b
constructed for instance variable initialization; see the example at the en
§12.5). Java provides the full power of the language in these initializers; prog
mers must exercise some care. This power places an extra burden on code g
tors, but this burden would arise in any case because Java is concurrent (§12
223

12.4.1 When Initialization Occurs EXECUTION

224

 not

e is

actu-
class,
Before a class is initialized, its superclasses are initialized, if they have
previously been initialized.

Thus, the test program:

class Super {
static { System.out.print("Super "); }

}

class One {
static { System.out.print("One "); }

}

class Two extends Super {
static { System.out.print("Two "); }

}

class Test {
public static void main(String[] args) {

One o = null;
Two t = new Two();
System.out.println((Object)o == (Object)t);

}
}

prints:

Super Two false

The classOne is never initialized, because it not used actively and therefor
never linked to. The classTwo is initialized only after its superclassSuper has
been initialized.

A reference to a field is an active use of only the class or interface that
ally declares it, even though it might be referred to through the name of a sub
a subinterface, or a class that implements an interface. The test program:

class Super { static int taxi = 1729; }

class Sub extends Super {
static { System.out.print("Sub "); }

}

class Test {
public static void main(String[] args) {

System.out.println(Sub.taxi);
}

}

prints only:

1729

EXECUTION Detailed Initialization Procedure 12.4.2

 of

es

a-

reful
 class
of a
because the classSub is never initialized; the reference toSub.taxi is a reference
to a field actually declared in classSuper and is not an active use of the classSub.

Initialization of an interface does not, of itself, require initialization of any
its superinterfaces. Thus, the test program:

interface I {
int i = 1, ii = Test.out("ii", 2);

}

interface J extends I {
int j = Test.out("j", 3), jj = Test.out("jj", 4);

}

interface K extends J {
int k = Test.out("k", 5);

}

class Test {

public static void main(String[] args) {
System.out.println(J.i);
System.out.println(K.j);

}

static int out(String s, int i) {
System.out.println(s + "=" + i);
return i;

}

}

produces the output:

1
j=3
jj=4
3

The reference toJ.i is to a field that is a compile-time constant; therefore, it do
not causeI to be initialized. The reference toK.j is a reference to a field actually
declared in interfaceJ that is not a compile-time constant; this causes initializ
tion of the fields of interfaceJ, but not those of its superinterfaceI, nor those of
interfaceK. Despite the fact that the nameK is used to refer to fieldj of interface
J, interfaceK is not actively used.

12.4.2 Detailed Initialization Procedure

Because Java is multithreaded, initialization of a class or interface requires ca
synchronization, since some other thread may be trying to initialize the same
or interface at the same time. There is also the possibility that initialization
225

12.4.2 Detailed Initialization Procedure EXECUTION

226

f that

e of
. It
t the

on or
.

ce
the

ead,
e

ad,
n the

on is

ble.

 the
form
e the
ptly

ptly,
.

class or interface may be requested recursively as part of the initialization o
class or interface; for example, a variable initializer in classA might invoke a
method of an unrelated classB, which might in turn invoke a method of classA.
The implementation of the Java Virtual Machine is responsible for taking car
synchronization and recursive initialization by using the following procedure
assumes that theClass object has already been verified and prepared, and tha
Class object contains state that indicates one of four situations:

• ThisClass object is verified and prepared but not initialized.

• ThisClass object is being initialized by some particular threadT.

• ThisClass object is fully initialized and ready for use.

• ThisClass object is in an erroneous state, perhaps because the verificati
preparation step failed, or because initialization was attempted and failed

The procedure for initializing a class or interface is then as follows:

1. Synchronize (§14.17) on theClass object that represents the class or interfa
to be initialized. This involves waiting until the current thread can obtain
lock for that object (§17.13).

2. If initialization is in progress for the class or interface by some other thr
then wait (§20.1.6) on thisClass object (which temporarily releases th
lock). When the current thread awakens from thewait, repeat this step.

3. If initialization is in progress for the class or interface by the current thre
then this must be a recursive request for initialization. Release the lock o
Class object and complete normally.

4. If the class or interface has already been initialized, then no further acti
required. Release the lock on theClass object and complete normally.

5. If theClass object is in an erroneous state, then initialization is not possi
Release the lock on theClass object and throw aNoClassDefFoundError.

6. Otherwise, record the fact that initialization of theClass object is now in
progress by the current thread and release the lock on theClass object.

7. Next, if theClass object represents a class rather than an interface, and
superclass of this class has not yet been initialized, then recursively per
this entire procedure for the superclass. If necessary, verify and prepar
superclass first. If the initialization of the superclass completes abru
because of a thrown exception, then lock thisClass object, label it erroneous,
notify all waiting threads (§20.1.10), release the lock, and complete abru
throwing the same exception that resulted from initializing the superclass

EXECUTION Initialization: Implications for Code Generation12.4.3

f the
they
s
.3.1,

se

ome
te

n

s
ason

s ini-

ss or
d. If

s no
atch-

f the
ation
 how-
de is
8. Next, execute either the class variable initializers and static initializers o
class, or the field initializers of the interface, in textual order, as though
were a single block, except thatfinal class variables and fields of interface
whose values are compile-time constants are initialized first (§8.3.2.1, §9
§13.4.8).

9. If the execution of the initializers completes normally, then lock thisClass
object, label it fully initialized, notify all waiting threads (§20.1.10), relea
the lock, and complete this procedure normally.

10. Otherwise, the initializers must have completed abruptly by throwing s
exceptionE . If the class ofE is notError or one of its subclasses, then crea
a new instance of the classExceptionInInitializerError, with E as the
argument, and use this object in place ofE in the following step. But if a new
instance ofExceptionInInitializerError cannot be created because a
OutOfMemoryError occurs, then instead use anOutOfMemoryError object in
place ofE in the following step.

11. Lock the Class object, label it erroneous, notify all waiting thread
(§20.1.10), release the lock, and complete this procedure abruptly with re
E or its replacement as determined in the previous step.

(Due to a flaw in some early implementations of Java, a exception during clas
tialization was ignored, rather than causing anExceptionInInitializerError
as described here.)

12.4.3 Initialization: Implications for Code Generation

Code generators need to preserve the points of possible initialization of a cla
interface, inserting an invocation of the initialization procedure just describe
this initialization procedure completes normally and theClass object is fully ini-
tialized and ready for use, then the invocation of the initialization procedure i
longer necessary and it may be eliminated from the code—for example, by p
ing it out or otherwise regenerating the code.

Compile-time analysis may, in some cases, be able to eliminate many o
checks that a type has been initialized from the generated code, if an initializ
order for a group of related types can be determined. Such analysis must,
ever, fully account for the fact that Java is concurrent and that initialization co
unrestricted.
227

12.5 Creation of New Class Instances EXECUTION

228

ions

 new

ot

 of a

pper

peci-
.
 for it
l the
all the
ble to
letes
e

efault
ed as

using

iables

her
d
ps. If
letes
12.5 Creation of New Class Instances

A new class instance is explicitly created when one of the following situat
occurs:

• Evaluation of a class instance creation expression (§15.8) creates a
instance of the class whose name appears in the expression.

• Invocation of thenewInstance method (§20.3.6) of classClass creates a
new instance of the class represented by theClass object for which the
method was invoked.

A new class instance may be implicitly created in the following situations:

• Loading of a class or interface that contains aString literal (§3.10.5) may
create a newString object (§20.12) to represent that literal. (This might n
occur if the sameString has previously been interned (§3.10.5).)

• Execution of a string concatenation operator (§15.17.1) that is not part
constant expression sometimes creates a newString object to represent the
result. String concatenation operators may also create temporary wra
objects for a value of a primitive type.

Each of these situations identifies a particular constructor to be called with s
fied arguments (possibly none) as part of the class instance creation process

Whenever a new class instance is created, memory space is allocated
with room for all the instance variables declared in the class type and al
instance variables declared in each superclass of the class type, including
instance variables that may be hidden. If there is not sufficient space availa
allocate memory for the object, then creation of the class instance comp
abruptly with anOutOfMemoryError. Otherwise, all the instance variables in th
new object, including those declared in superclasses, are initialized to their d
values (§4.5.4). Just before a reference to the newly created object is return
the result, the indicated constructor is processed to initialize the new object
the following procedure:

1. Assign the arguments for the constructor to newly created parameter var
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation of anot
constructor in the same class (usingthis), then evaluate the arguments an
process that constructor invocation recursively using these same five ste
that constructor invocation completes abruptly, then this procedure comp
abruptly for the same reason; otherwise, continue with step 5.

EXECUTION Creation of New Class Instances 12.5

 of

r

sively
uptly,
, con-

lues
they
hese
sed

wise,
piler
s-
aliza-

letes
ther-

ew
3. This constructor does not begin with an explicit constructor invocation
another constructor in the same class (usingthis). If this constructor is for a
class other thanObject, then this constructor will begin with a explicit o
implicit invocation of a superclass constructor (usingsuper). Evaluate the
arguments and process that superclass constructor invocation recur
using these same five steps. If that constructor invocation completes abr
then this procedure completes abruptly for the same reason. Otherwise
tinue with step 4.

4. Execute the instance variable initializers for this class, assigning their va
to the corresponding instance variables, in the left-to-right order in which
appear textually in the source code for the class. If execution of any of t
initializers results in an exception, then no further initializers are proces
and this procedure completes abruptly with that same exception. Other
continue with step 5. (In some early Java implementations, the com
incorrectly omitted the code to initialize a field if the field initializer expre
sion was a constant expression whose value was equal to the default initi
tion value for its type.)

5. Execute the rest of the body of this constructor. If that execution comp
abruptly, then this procedure completes abruptly for the same reason. O
wise, this procedure completes normally.

In the example:

class Point {
int x, y;
Point() { x = 1; y = 1; }

}

class ColoredPoint extends Point {
int color = 0xFF00FF;

}

class Test {
public static void main(String[] args) {

ColoredPoint cp = new ColoredPoint();
System.out.println(cp.color);

}
}

a new instance ofColoredPoint is created. First, space is allocated for the n
ColoredPoint, to hold the fieldsx, y, andcolor. All these fields are then initial-
ized to their default values (in this case,0 for each field). Next, theColoredPoint
constructor with no arguments is first invoked. SinceColoredPoint declares no
constructors, a default constructor of the form:
229

12.5 Creation of New Class Instances EXECUTION

230

e
om-
nts,

ext,

d.
e,

-
f the

on
rther

 dis-
at are
iding
hus,
ColoredPoint() { super(); }

is provided for it automatically by the Java compiler.
This constructor then invokes thePoint constructor with no arguments. Th

Point constructor does not begin with an invocation of a constructor, so the c
piler provides an implicit invocation of its superclass constructor of no argume
as though it had been written:

Point() { super(); x = 1; y = 1; }

Therefore, the constructor forObject which takes no arguments is invoked.
The classObject has no superclass, so the recursion terminates here. N

any instance variable initializers and static initializers ofObject are invoked.
Next, the body of the constructor ofObject that takes no arguments is execute
No such constructor is declared inObject, so the compiler supplies a default on
which in this special case is:

Object() { }

This constructor executes without effect and returns.
Next, all initializers for the instance variables of classPoint are executed. As

it happens, the declarations ofx andy do not provide any initialization expres
sions, so no action is required for this step of the example. Then the body o
Point constructor is executed, settingx to 1 andy to 1.

Next, the initializers for the instance variables of classColoredPoint are
executed. This step assigns the value0xFF00FF to color. Finally, the rest of the
body of theColoredPoint constructor is executed (the part after the invocati
of super); there happen to be no statements in the rest of the body, so no fu
action is required and initialization is complete.

Unlike C++, the Java language does not specify altered rules for method
patch during the creation of a new class instance. If methods are invoked th
overridden in subclasses in the object being initialized, then these overr
methods are used, even before the new object is completely initialized. T
compiling and running the example:

class Super {

Super() { printThree(); }

void printThree() { System.out.println("three"); }

}

EXECUTION Finalization of Class Instances 12.6

st

irtual

rs or
 auto-
ed by

ked,
Also,
 any
cep-
class Test extends Super {

int indiana = (int)Math.PI; // That is,3

public static void main(String[] args) {
Test t = new Test();
t.printThree();

}

void printThree() { System.out.println(indiana); }

}

produces the output:

0
3

This shows that the invocation ofprintThree in the constructor for classSuper
does not invoke the definition ofprintThree in classSuper, but rather invokes
the overriding definition ofprintThree in classTest. This method therefore
runs before the field initializers ofTest have been executed, which is why the fir
value output is0, the default value to which the fieldthree of Test is initialized.
The later invocation ofprintThree in methodmain invokes the same definition
of printThree, but by that point the initializer for instance variablethree has
been executed, and so the value3 is printed.

See §8.6 for more details on constructor declarations.

12.6 Finalization of Class Instances

The classObject has aprotected method calledfinalize (§20.1.11); this
method can be overridden by other classes. The particular definition offinalize
that can be invoked for an object is called thefinalizer of that object. Before the
storage for an object is reclaimed by the garbage collector, the Java V
Machine will invoke the finalizer of that object.

Finalizers provide a chance to free up resources (such as file descripto
operating system graphics contexts) that cannot be freed automatically by an
matic storage manager. In such situations, simply reclaiming the memory us
an object would not guarantee that the resources it held would be reclaimed.

The Java language does not specify how soon a finalizer will be invo
except to say that it will happen before the storage for the object is reused.
the Java language does not specify which thread will invoke the finalizer for
given object. If an uncaught exception is thrown during the finalization, the ex
tion is ignored and finalization of that object terminates.
231

12.6.1 Implementing Finalization EXECUTION

232

,
ati-

oded

ver-
:

hat is

tinu-
ram
be less

piler
me-

 be

 live

; a

hine
Thefinalize method declared in classObject takes no action. However, the
fact that classObject declares afinalize method means that thefinalize
method for any class can always invoke thefinalize method for its superclass
which is usually good practice. (Unlike constructors, finalizers do not autom
cally invoke the finalizer for the superclass; such an invocation must be c
explicitly.)

For efficiency, an implementation may keep track of classes that do not o
ride thefinalize method of classObject, or override it in a trivial way, such as

protected void finalize() throws Throwable {
super.finalize();

}

We encourage implementations to treat such objects as having a finalizer t
not overridden, and to finalize them more efficiently, as described in §12.6.1.

A finalizer may be invoked explicitly, just like any other method.

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may bereachable, finalizer-
reachable, orunreachable, and it may also beunfinalized, finalizable, orfinalized.

A reachable object is any object that can be accessed in any potential con
ing computation from any live thread. Optimizing transformations of a prog
can be designed that reduce the number of objects that are reachable to
than those which would naively be considered reachable. For example, a com
or code generator may choose, explicitly or implicitly, to set a variable or para
ter that will no longer be used tonull to cause the storage for such an object to
potentially reclaimable sooner. Afinalizer-reachable object can be reached from
some finalizable object through some chain of references, but not from any
thread. Anunreachable object cannot be reached by either means.

An unfinalized object has never had its finalizer automatically invoked
finalized object has had its finalizer automatically invoked. Afinalizable object
has never had its finalizer automatically invoked, but the Java Virtual Mac
may eventually automatically invoke its finalizer.

EXECUTION Implementing Finalization 12.6.1

 we

bject

tly; it
d, as

ome

ome
 object

el it
he
ts
The life cycle of an object obeys the following transition diagram, where
abbreviate “finalizer-reachable” as “f-reachable”:

When an object is first created (A), it is reachable and unfinalized.
As references to an object are discarded during program execution, an o

that was reachable may become finalizer-reachable (B, C, D) or unreachable (E, F).
(Note that a finalizer-reachable object never becomes unreachable direc
becomes reachable when the finalizer from which it can be reached is invoke
explained below.)

If the Java Virtual Machine detects that an unfinalized object has bec
finalizer-reachable or unreachable, it may label the object finalizable (G, H); more-
over, if the object was unreachable, it becomes finalizer-reachable (H).

If the Java Virtual Machine detects that a finalized object has bec
unreachable, it may reclaim the storage occupied by the object because the
will never again become reachable (I).

At any time, a Java Virtual Machine may take any finalizable object, lab
finalized, and then invoke itsfinalize method in some thread. This causes t
object to become finalized and reachable (J, K), and it also may cause other objec
that were finalizer-reachable to become reachable again (L, M, N).

M

reachable

unfinalized

reachable

finalizable

reachable

finalized

f-reachable

unfinalized

f-reachable

finalizable

f-reachable

finalized

object
created

storage
reclaimed

unreachable

unfinalized

unreachable

finalized

finalize not overridden

A

E F

B C D

G

H

I

J

L N

O

K

233

12.6.2 Finalizer Invocations are Not Ordered EXECUTION

234

se its
lizer
y

uto-
e way

n
ade

and
ized.

class
de to

tegy is

tically
ore-
fore,
y

n any

es
zable
rder,
ager
ed.
izer-
ll the
for the
A finalizable object cannot also be unreachable; it can be reached becau
finalizer may eventually be invoked, whereupon the thread running the fina
will have access to the object, asthis (§15.7.2). Thus, there are actually onl
eight possible states for an object.

After an object has been finalized, no further action is taken until the a
matic storage management determines that it is unreachable. Because of th
that an object progresses from theunfinalized state through thefinalizable state to
thefinalized state, thefinalize method is never automatically invoked more tha
once by a Java Virtual Machine for each object, even if the object is again m
reachable after it has been finalized.

Explicit invocation of a finalizer ignores the current state of the object
does not change the state of the object from unfinalized or finalizable to final

If a class does not override methodfinalize of classObject (or overrides it
in only a trivial way, as described above), then if instances of such as
become unreachable, they may be discarded immediately rather than ma
await a second determination that they have become unreachable. This stra
indicated by the dashed arrow (O) in the transition diagram.

Java programmers should also be aware that a finalizer can be automa
invoked, even though it is reachable, during finalization-on-exit (§12.9); m
over, a finalizer can also be invoked explicitly as an ordinary method. There
we recommend that the design offinalize methods be kept simple and that the
be programmed defensively, so that they will work in all cases.

12.6.2 Finalizer Invocations are Not Ordered

Java imposes no ordering on finalize method calls. Finalizers may be called i
order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becom
unreachable (or finalizer-reachable), then all the objects may become finali
together. Eventually, the finalizers for these objects may be invoked, in any o
or even concurrently using multiple threads. If the automatic storage man
later finds that the objects are unreachable, then their storage can be reclaim

It is straightforward to implement a Java class that will cause a set of final
like methods to be invoked in a specified order for a set of objects when a
objects become unreachable. Defining such a class is left as an exercise
reader.

EXECUTION Virtual Machine Exit 12.9

d

 the
ly

 Lan-
ill be
lated

 might
owser

2.6).

 run

ger

zers,
tically
king
12.7 Finalization of Classes

If a class declares a class methodclassFinalize that takes no arguments an
returns no result:

static void classFinalize() throws Throwable { . . . }

then this method will be invoked before the class is unloaded (§12.8). Like
finalize method for objects, this method will be automatically invoked on
once. This method may optionally be declaredprivate, protected, orpublic.

12.8 Unloading of Classes and Interfaces

A Java Virtual Machine may provide mechanisms whereby classes areunloaded.
The details of such mechanisms are not specified in this version of the Java
guage Specification. In general, groups of related class and interface types w
unloaded together. This can be used, for example, to unload a group of re
types that have been loaded using a particular class loader. Such a group
consist of all the classes implementing a single applet in a Java-based br
such as HotJava, for example.

A class may not be unloaded while any instance of it is still reachable (§1
A class or interface may not be unloaded while theClass object that represents it
is still reachable.

Classes that declare class finalizers (§12.7) will have these finalizers
before they are unloaded.

12.9 Virtual Machine Exit

A Java Virtual Machine terminates all its activity andexits when one of two things
happens:

• All the threads that are not daemon threads (§20.20.24) terminate.

• Some thread invokes theexit method (§20.16.2) of classRuntime or class
System and the exit operation is not forbidden by the security mana
(§20.17.13).

A Java program can specify that the finalizers of all objects that have finali
and all classes that have class finalizers, that have not yet been automa
invoked are to be run before the virtual machine exits. This is done by invo
the methodrunFinalizersOnExit of classSystem with the argumenttrue. The
235

12.9 Virtual Machine Exit EXECUTION

236

vok-

e

default is to not run finalizers on exit, and this behavior may be restored by in
ing runFinalizersOnExit with the argumentfalse. An invocation of therun-
FinalizersOnExit method is permitted only if the caller is allowed toexit, and
is otherwise rejected by theSecurityManager (§20.17).

. . . Farewell!
The day frowns more and more. Thou’rt like to hav
A lullaby too rough: I never saw
The heavens so dim by day: A savage clamour!
Well may I get aboard! This is the chase.
I am gone for ever!

[Exit, pursued by a bear]
—William Shakespeare,The Winter’s Tale, Act III, scene iii

C H A P T E R 13
sary
 also
ent a
vent

ace a
f a

ally
 that
 permit-
 (not

38.
ease)
their
a sup-

ove

they
 by

ce.

ccess

tion.
Binary Compatibility

JAVA development tools should support automatic recompilation as neces
whenever source code is available. Particular implementations of Java may
store the source and binary of types in a versioning database and implem
ClassLoader (§20.14) that uses integrity mechanisms of the database to pre
linkage errors by providing binary-compatible versions of types to clients.

Developers of packages and classes that are to be widely distributed f
different set of problems. In the Internet, which is our favorite example o
widely distributed system, it is often impractical or impossible to automatic
recompile the pre-existing binaries that directly or indirectly depend on a type
is to be changed. Instead, Java defines a set of changes that developers are
ted to make to a package or to a class or interface type while preserving
breaking) compatibility with existing binaries.

The paper quoted above appears inProceedings of OOPSLA ’95, published as
ACM SIGPLAN Notices, Volume 30, Number 10, October 1995, pages 426–4
Within the framework of that paper, Java binaries are binary (release-to-rel
compatible under all relevant transformations that the authors identify. Using
scheme, here is a list of some important binary compatible changes that Jav
ports:

• Reimplementing existing methods, constructors, and initializers to impr
performance.

• Changing methods or constructors to return values on inputs for which
previously either threw exceptions that normally should not occur or failed
going into an infinite loop or causing a deadlock.

• Adding new fields, methods, or constructors to an existing class or interfa

• Deletingprivate fields, methods, or constructors of a class or interface.

• When an entire package is updated, deleting default (package-only) a
fields, methods, or constructors of classes and interfaces in the package.

• Reordering the fields, methods, or constructors in an existing type declara
237

13.1 The Form of a Java Binary BINARY COMPATIBILITY

238

ing

teed
s of

atible
cribed

evel-
piled.
must
at it
kages
s are

t
rties
per-
serve

spect
.4)

 the

mpile
d is
nter-
 add-
ause
• Moving a method upward in the class hierarchy, provided a forward
method is left in its place.

• Reordering the list of direct superinterfaces of a class or interface.

• Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaran
by all Java implementations. Java guarantees compatibility when binarie
classes and interfaces are mixed that are not known to be from comp
sources, but whose sources have been modified in the compatible ways des
here.

We encourage Java development systems to provide facilities that alert d
opers to the impact of changes on pre-existing binaries that cannot be recom

This chapter first specifies some properties that any Java binary format
have (§13.1). It next defines binary compatibility, explaining what it is and wh
is not (§13.2). It finally enumerates a large set of possible changes to pac
(§13.3), classes (§13.4) and interfaces (§13.5), specifying which change
guaranteed to preserve binary compatibility and which are not.

13.1 The Form of a Java Binary

While many Java binary files are likely to be in exactly theclass file format spec-
ified by theThe Java Virtual Machine Specification, this specification does no
mandate the use of any specific binary file format. Rather, it specifies prope
that any binary format for compiled types must obey. A number of these pro
ties are specifically chosen to support source code transformations that pre
binary compatibility.

The requirements are:

• Binary formats for Java programs must be defined and processed to re
the specifications of loading (§12.2), linking (§12.3) and initialization (§12
of class and interface types.

• A reference to another class or interface type must be symbolic, using
fully qualified name of the type as determined at compile time.

• A reference to a field of another class or interface must be resolved at co
time to a symbolic reference to the class or interface in which the fiel
declared, plus the simple name of the field. (Including the exact class or i
face in which the field is declared makes the binaries more robust, since
ing another field with the same name, even in a subclass, cannot c

BINARY COMPATIBILITY The Form of a Java Binary 13.1

 to a
sion.)
pe of
ences
t
noted.
inary
will
 have
ver

 to a
d or

. (As
ch a
thod

 also
thod

f the
confusion at link time. This rule does mean, however, that moving a field
superclass is not a binary compatible change; see §13.4.5 for a discus
The reference must also include a symbolic reference to the declared ty
the field so that the verifier can check that the type is as expected. Refer
to fields that arestatic, final, and initialized with compile-time constan
expressions are resolved at compile time to the constant value that is de
No reference to such a constant field should be present in the code in a b
file (except in the class or interface containing the constant field, which
have code to initialize it), and such constant fields must always appear to
been initialized; the default initial value for the type of such a field must ne
be observed. See §13.4.8 for a discussion.

• A reference to a method or constructor must be resolved at compile time
symbolic reference to the class or interface in which the denoted metho
constructor is declared, plus the signature of the method or constructor
for fields, this makes the binaries more robust, with the caveat that su
method cannot be moved to a superclass without leaving a forwarding me
behind; see §13.4.5 for a discussion.) A reference to a method must
include either a symbolic reference to the return type of the denoted me
or an indication that the denoted method is declaredvoid and does not return
a value. The signature of a method must include all of the following:

◆ The simple name of the method

◆ The number of parameters to the method

◆ A symbolic reference to the type of each parameter

The signature of a constructor must include both:

◆ The number of parameters to the constructor

◆ A symbolic reference to the type of each parameter

A Java binary representation for a class or interface must also contain all o
following:

• If it is a class and is not classjava.lang.Object, then a symbolic reference
to the direct superclass of this class

• A symbolic reference to each direct superinterface, if any
239

13.2 What Binary Compatibility Is and Is Not BINARY COMPATIBILITY

240

-
o the

g-

the

es and
 not
 with

 and
na-

 well.

ly

e the
s that
 other
hould
ior, as a

 colli-
• A specification of each field that is notprivate declared in the class or inter
face, given as the simple name of the field and a symbolic reference t
type of the field

• If it is a class, then the signature of each constructor, as described above

• For each method that is notprivate declared in the class or interface, its si
nature and return type, as described above

• The code needed to implement the class or interface:

◆ For an interface, code for the field initializers

◆ For a class, code for the field initializers, the static initializers, and
implementation of each method or constructor that is not declaredprivate

If a Java system defines a binary format that represents a group of class
interfaces comprised by an entire package, then this binary format need
expose information about fields, methods, or constructors that are declared
default (package) access.

The following sections specify the changes that may be made to class
interface type declarations without breaking compatibility with pre-existing bi
ries. The Java Virtual Machine and its standardclass file format support these
changes; other Java binary formats are required to support these changes as

13.2 What Binary Compatibility Is and Is Not

A change to a type isbinary compatible with (equivalently, does not break binary
compatibility with) preexisting binaries if preexisting binaries that previous
linked without error will continue to link without error.

As described in §13.1, symbolic references to methods and fields nam
exact class or interface in which the method or field is declared. This mean
binaries are compiled to rely on the accessible members and constructors of
classes and interfaces. To preserve binary compatibility, a class or interface s
treat these accessible members and constructors, their existence and behav
contract with users of the class or interface.

Java is designed to prevent additions to contracts and accidental name
sions from breaking binary compatibility; specifically:

BINARY COMPATIBILITY Evolution of Packages 13.3

class
pati-
.5.

 not
 the
hod
een
 time,
ould
guity
 an

on.)

 the
 from

lara-
source
code
stent
ssion

r sup-
 are
have

differ-
us to
flicts

 com-
ame

ously
types
• Introducing a new field with the same name as an existing field, in a sub
of the class containing the existing field declaration, does not break com
bility with preexisting binaries. See the example at the beginning of §13.4

• Addition of more methods overloading a particular method name does
break compatibility with preexisting binaries. The method signature that
preexisting binary will use for method lookup is chosen by Java’s met
overload resolution algorithm at compile time (§15.11.2). (If Java had b
designed so that the particular method to be executed was chosen at run
then such an ambiguity might be detected at run time. Such a rule w
imply that adding an additional overloaded method so as to make ambi
possible at a call site became possible could break compatibility with
unknown number of preexisting binaries. See §13.4.22 for more discussi

Binary compatibility is not the same as source compatibility. In particular,
example in §13.4.5 shows that a set of compatible binaries can be produced
sources that will not compile all together. This example is typical: a new dec
tion is added, changing the meaning of a name in an unchanged part of the
code, while the preexisting binary for that unchanged part of the source
retains the fully-qualified, previous meaning of the name. Producing a consi
set of source code requires providing a qualified name or field access expre
corresponding to the previous meaning.

We hope to make some improvements to future versions of Java to bette
port both source and binary compatible evolution of types. In particular, we
considering a mechanism to allow a class to implement two interfaces that
methods with the same signature but are to be considered different or have
ent return types. We welcome suggestions and proposals that would help
make additional improvements, either in managing name and signature con
or other sources of incompatibility.

13.3 Evolution of Packages

A new class or interface type may be added to a package without breaking
patibility with pre-existing binaries, provided the new type does not reuse a n
previously given to an unrelated type. If a new type reuses a name previ
given to an unrelated type, then a conflict may result, since binaries for both
could not be loaded by the same class loader.

Changes in class and interface types that are notpublic and that are not a
superclass or superinterface, respectively, of apublic type, affect only types
241

13.4 Evolution of Classes BINARY COMPATIBILITY

242

r oth-
vided

nd its

ither

 is
t rec-

t
recom-
within the package in which they are declared. Such types may be deleted o
erwise changed, even if incompatibilities are otherwise described here, pro
that the affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class a
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was notabstract is changed to be declaredabstract, then pre-
existing binaries that attempt to create new instances of that class will throw e
an InstantiationError at link time, or anInstantiationException at run
time (if the methodnewInstance (§20.3.6) of classClass is used); such a change
is therefore not recommended for widely distributed classes.

Changing a class that was declaredabstract to no longer be declared
abstract does not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declaredfinal is changed to be declaredfinal, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class
loaded, becausefinal classes can have no subclasses; such a change is no
ommended for widely distributed classes.

Changing a class that was declaredfinal to no longer be declaredfinal
does not break compatibility with pre-existing binaries.

13.4.3 public Classes

Changing a class that was not declaredpublic to be declaredpublic does not
break compatibility with pre-existing binaries.

If a class that was declaredpublic is changed to not be declaredpublic,
then anIllegalAccessError is thrown if a pre-existing binary is linked tha
needs but no longer has access to the class type; such a change is not
mended for widely distributed classes.

BINARY COMPATIBILITY Superclasses and Superinterfaces13.4.4

r-
larity
 rec-

 class
tal
es no

 with
thods.
ompile
h uses
 vari-

esults
spec-

 the
y dis-
irtual
sys-
13.4.4 Superclasses and Superinterfaces

A ClassCircularityError is thrown at load time if a class would be a supe
class of itself. Changes to the class hierarchy that could result in such a circu
when newly compiled binaries are loaded with pre-existing binaries are not
ommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a
type will not break compatibility with pre-existing binaries, provided that the to
set of superclasses or superinterfaces, respectively, of the class type los
members.

Changes to the set of superclasses of a class will not break compatibility
pre-existing binaries simply because of uses of class variables and class me
This is because uses of class variables and class methods are resolved at c
time to symbolic references to the name of the class that declares them. Suc
therefore depend only on the continuing existence of the class declaring the
able or method, not on the shape of the class hierarchy.

If a change to the direct superclass or the set of direct superinterfaces r
in any class or interface no longer being a superclass or superinterface, re
tively, then link-time errors may result if pre-existing binaries are loaded with
binary of the modified class. Such changes are not recommended for widel
tributed classes. The resulting errors are detected by the verifier of the Java V
Machine when an operation that previously compiled would violate the type
tem. For example, suppose that the following test program:

class Hyper { char h = 'h'; }

class Super extends Hyper { char s = 's'; }

class Test extends Super {
 public static void main(String[] args) {
 Hyper h = new Super();
 System.out.println(h.h);
 }
}

is compiled and executed, producing the output:

h

Suppose that a new version of classSuper is then compiled:

class Super { char s = 's'; }

This version of classSuper is not a subclass ofHyper. If we then run the existing
binaries ofHyper andTest with the new version ofSuper, then aVerifyError
is thrown at link time. The verifier objects because the result ofnew Super()
243

13.4.4 Superclasses and Superinterfaces BINARY COMPATIBILITY

244

tep:

ed by
t Java

ence
hey
uses
s in a
 code

d
rst

ed in

; this
cannot be assigned to a variable of typeHyper, becauseSuper is not a subclass of
Hyper.

It is instructive to consider what might happen without the verification s
the program might run and print:

s

This demonstrates that without the verifier the type system could be defeat
linking inconsistent binary files, even though each was produced by a correc
compiler.

As a further example, here is an implementation of a cast from a refer
type toint, which could be made to run in certain implementations of Java if t
failed to perform the verification process. Assume an implementation that
method dispatch tables and whose linker assigns offsets into those table
sequential and straightforward manner. Then suppose that the following Java
is compiled:

class Hyper { int zero(Object o) { return 0; } }

class Super extends Hyper { int peek(int i) { return i; } }

class Test extends Super {
public static void main(String[] args) throws Throwable {

Super as = new Super();
System.out.println(as);
System.out.println(Integer.toHexString(as.zero(as)));

}
}

The assumed implementation determines that the classSuper has two methods:
the first is methodzero inherited from classHyper, and the second is the metho
peek. Any subclass ofSuper would also have these same two methods in the fi
two entries of its method table. (Actually, all these methods would be preced
the method tables by all the methods inherited from classObject but, to simplify
the discussion, we ignore that here.) For the method invocationas.zero(as), the
compiler specifies that the first method of the method table should be invoked
is always correct if type safety is preserved.

If the compiled code is then executed, it prints something like:

Super@ee300858
0

which is the correct output. But if a new version ofSuper is compiled, which is
the same except for theextends clause:

class Super { int peek(int i) { return i; } }

BINARY COMPATIBILITY Class Body and Member Declarations13.4.5

nces of
ut:

cted

 use
ion.

ber
e (for

al field
g the
 code
ven if
xam-
then the first method in the method table forSuper will now bepeek, notzero.
Using the new binary code forSuper with the old binary code forHyper and
Test will cause the method invocationas.zero(as) to dispatch to the method
peek in Super, rather than the methodzero in Hyper. This is a type violation, of
course; the argument is of typeSuper but the parameter is of typeint. With a few
plausible assumptions about internal data representations and the conseque
the type violation, execution of this incorrect program might produce the outp

Super@ee300848
ee300848

A poke method, capable of altering any location in memory, could be conco
in a similar manner. This is left as an exercise for the reader.

The lesson is that a implementation of Java that lacks a verifier or fails to
it will not maintain type safety and is, therefore, not a valid Java implementat

13.4.5 Class Body and Member Declarations

No incompatibility with pre-existing binaries is caused by adding a class mem
that has the same name (for fields) or same name, signature, and return typ
methods) as a member of a superclass or subclass. References to the origin
or method were resolved at compile time to a symbolic reference containin
name of the class in which they were declared. This makes compiled Java
more robust against changes than it might otherwise be. No error occurs e
the set of classes being linked would encounter a compile-time error. As an e
ple, if the program:

class Hyper { String h = "Hyper"; }

class Super extends Hyper { }

class Test extends Super {
public static void main(String[] args) {

String s = new Test().h;
System.out.println(s);

}
}

is compiled and executed, it produces the output:

Hyper

Suppose that a new version of classSuper is then compiled:

class Super extends Hyper { char h = 'h'; }

If the resulting binary is used with the existing binaries forHyper andTest, then
the output is still:
245

13.4.5 Class Body and Member Declarations BINARY COMPATIBILITY

246

inary,
rclass
 that
Hyper

even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }

class Super extends Hyper { char h = 'h'; }

class Test extends Super {
public static void main(String[] args) {

String s = new Test().h;
System.out.println(s);

}
}

would result in a compile-time error, because theh in the source code formain
would now be construed as referring to thechar field declared inSuper, and a
char value can’t be assigned to aString.

Deleting a class member or constructor that is not declaredprivate may
cause a linkage error if the member or constructor is used by a pre-existing b
even if the member was an instance method that was overriding a supe
method. This is because, during resolution, the linker looks only in the class
was identified at compile time. Thus, if the program:

class Hyper {
void hello() { System.out.println("hello from Hyper"); }

}

class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }

}

class Test {
public static void main(String[] args) {

new Super().hello();
}

}

is compiled and executed, it produces the output:

hello from Super

Suppose that a new version of classSuper is produced:

class Super extends Hyper { }

If Super andHyper are recompiled but notTest, then aNoSuchMethodError
will result at link time, because the methodhello is no longer declared in class
Super.

BINARY COMPATIBILITY Class Body and Member Declarations13.4.5

ead,
tion

e

class,

will

t

To preserve binary compatibility, methods should not be deleted; inst
“forwarding methods” should be used. In our example, replacing the declara
of Super with:

class Super extends Hyper {
void hello() { super.hello(); }

}

then recompilingSuper andHyper and executing these new binaries with th
original binary forTest, produces the output:

hello from Hyper

as might have naively been expected from the previous example.
Thesuper keyword can be used to access a method declared in a super

bypassing any methods declared in the current class. The expression:

super.Identifier

is resolved, at compile time, to a methodM declared in a particular superclassS.
The methodM must still be declared in that class at run time or a linkage error
result. If the methodM is an instance method, then the methodMR invoked at run
time is the method with the same signature asM that is a member of the direc
superclass of the class containing the expression involvingsuper. Thus, if the
program:

class Hyper {
void hello() { System.out.println("hello from Hyper"); }

}

class Super extends Hyper { }

class Test extends Super {

public static void main(String[] args) {
new Test().hello();

}

void hello() {
super.hello();

}

}

is compiled and executed, it produces the output:

hello from Hyper

Suppose that a new version of classSuper is produced:
247

13.4.6 Access to Members and Constructors BINARY COMPATIBILITY

248

rint:

ccess
 be
ccess

less

ructor
lready)
class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }

}

If Super andHyper are recompiled but notTest, then running the new binaries
with the existing binary ofTest produces the output:

hello from Super

as you might expect. (A flaw in some early versions of Java caused them to p

hello from Hyper

incorrectly.)

13.4.6 Access to Members and Constructors

Changing the declared access of a member or constructor to permit less a
may break compatibility with pre-existing binaries, causing a linkage error to
thrown when these binaries are resolved. Less access is permitted if the a
modifier is changed from default access toprivate access; fromprotected
access to default orprivate access; or frompublic access toprotected,
default, orprivate access. Changing a member or constructor to permit
access is therefore not recommended for widely distributed classes.

Perhaps surprisingly, Java is defined so that changing a member or const
to be more accessible does not cause a linkage error when a subclass (a
defines a method to have less access. So, for example, if the packagepoints
defines the classPoint:

package points;

public class Point {
public int x, y;
protected void print() {

System.out.println("(" + x + "," + y + ")");
}

}

used by theTest program:

class Test extends points.Point {

protected void print() { System.out.println("Test"); }

public static void main(String[] args) {
Test t = new Test();
t.print();

BINARY COMPATIBILITY Field Declarations 13.4.7

nary
ime,

ragile.
reate

a-
er be
rclass
nce
 and
}

}

then these classes compile andTest executes to produce the output:

Test

If the methodprint in classPoint is changed to bepublic, and then only the
Point class is recompiled, and then executed with the previously existing bi
for Test then no linkage error occurs, even though it is improper, at compile t
for apublic method to be overridden by aprotected method (as shown by the
fact that the classTest could not be recompiled using this newPoint class unless
print were changed to bepublic.)

Allowing superclasses to changeprotected methods to bepublic without
breaking binaries of preexisting subclasses helps make Java binaries less f
The alternative, where such a change would cause a linkage error, would c
additional binary incompatibilities with no apparent benefit.

13.4.7 Field Declarations

Adding a field to a class will not break compatibility with any pre-existing bin
ries that are not recompiled, even in the case where a class could no long
recompiled because a field access previously referenced a field of a supe
with an incompatible type. The previously compiled class with such a refere
will continue to reference the field declared in a superclass. Thus compiling
executing the code:

class Hyper { String h = "hyper"; }

class Super extends Hyper { String s = "super"; }

class Test {
public static void main(String[] args) {

System.out.println(new Super().h);
}

}

produces the output:

hyper

ChangingSuper to be defined as:

class Super extends Hyper {
String s = "super";
int h = 0;

}

249

13.4.8 final Fields and Constants BINARY COMPATIBILITY

250

he

to
rld,

y one
ion is
usly
ource

ng

 For

t-
recompilingHyper andSuper, and executing the resulting new binaries with t
old binary ofTest produces the output:

hyper

The fieldh of Hyper is output by the original binary ofmain no matter what type
field h is declared inSuper. While this may seem surprising at first, it serves
reduce the number of incompatibilities that occur at run time. (In an ideal wo
all source files that needed recompilation would be recompiled whenever an
of them changed, eliminating such surprises. But such a mass recompilat
often impractical or impossible, especially in the Internet. And, as was previo
noted, such recompilation would sometimes require further changes to the s
code.)

Deleting a field from a class will break compatibility with any pre-existi
binaries that reference this field, and aNoSuchFieldError will be thrown when
such a reference from a pre-existing binary is linked. Onlyprivate fields may be
safely deleted from a widely distributed class.

13.4.8 final Fields and Constants

If a field that was notfinal is changed to befinal, then it can break compatibil-
ity with pre-existing binaries that attempt to assign new values to the field.
example, if the program:

class Super { static char s; }

class Test extends Super {
public static void main(String[] args) {

s = 'a';
System.out.println(s);

}
}

is compiled and executed, it produces the output:

a

Suppose that a new version of classSuper is produced:

class Super { static char s; }

If Super is recompiled but notTest, then running the new binary with the exis
ing binary ofTest results in aIncompatibleClassChangeError. (In certain

BINARY COMPATIBILITY final Fields and Constants 13.4.8

 of a

-

ility

em
y are

t-

ve

ion,

s

early implementations of Java this example would run without error, because
flaw in the implementation.)

We call a field that isstatic, final, and initialized with a compile-time con-
stant expression aprimitive constant. Note that all fields in interfaces are implic
itly static andfinal, and they are often, but not always, constants.

If a field is not a primitive constant, then deleting the keywordfinal or
changing the value to which the field is initialized does not break compatib
with existing binaries.

If a field is a primitive constant, then deleting the keywordfinal or changing
its value will not break compatibility with pre-existing binaries by causing th
not to run, but they will not see any new value for the constant unless the
recompiled. If the example:

class Flags { final static boolean debug = true; }

class Test {
public static void main(String[] args) {

if (Flags.debug)
System.out.println("debug is true");

}
}

is compiled and executed, it produces the output:

debug is true

Suppose that a new version of classFlags is produced:

class Flags { final static boolean debug = false; }

If Flags is recompiled but notTest, then running the new binary with the exis
ing binary ofTest produces the output:

debug is true

because the value ofdebug was a compile-time primitive constant, and could ha
been used in compilingTest without making a reference to the classFlags.

This result is a side-effect of the decision to support conditional compilat
as discussed at the end of §14.19.

This behavior would not change ifFlags were changed to be an interface, a
in the modified example:

interface Flags { boolean debug = true; }

class Test {
251

13.4.8 final Fields and Constants BINARY COMPATIBILITY

252

be

rib-
ikely
lues

es can
 math-
f class

 truly
at if a

d idi-

imi-

s
ial
lized
public static void main(String[] args) {
if (Flags.debug)

System.out.println("debug is true");
}

}

(One reason for requiring inlining of primitive constants is that Javaswitch state-
ments require constants on eachcase, and no two such constant values may
the same. Java checks for duplicate constant values in aswitch statement at com-
pile time; theclass file format does not do symbolic linkage ofcase values.)

The best way to avoid problems with “inconstant constants” in widely-dist
uted code is to declare as primitive constants only values which truly are unl
ever to change. Many primitive constants in interfaces are small integer va
replacing enumerated types, which Java does not support; these small valu
be chosen arbitrarily, and should not need to be changed. Other than for true
ematical constants, we recommend that Java code make very sparing use o
variables that are declaredstatic andfinal. If the read-only nature offinal is
required, a better choice is to declare aprivate static variable and a suitable
accessor method to get its value. Thus we recommend:

private static int N;

public static int getN() { return N; }

rather than:

public static final int N = ...;

There is no problem with:

public static int N = ...;

if N need not be read-only. We also recommend, as a general rule, that only
constant values be declared in interfaces. We note, but do not recommend, th
field of primitive type of an interface may change, its value may be expresse
omatically as in:

interface Flags {
boolean debug = new Boolean(true).booleanValue();

}

insuring that this value is not a constant. Similar idioms exist for the other pr
tive types.

One other thing to note is thatstatic final fields that have constant value
(whether of primitive orString type) must never appear to have the default init
value for their type (§4.5.4). This means that all such fields appear to be initia
first during class initialization (§8.3.2.1, §9.3.1, §12.4.2).

BINARY COMPATIBILITY Method and Constructor Declarations13.4.12

an
g
com-

y

an
g
com-

ility
er be
 of a
ch a

ith
; a
ng
ed

 com-
ore

efault
tor,

ng the
rs is
ement
13.4.9 static Fields

If a field that is not declaredprivate was not declaredstatic and is changed to
be declaredstatic, or vice versa, then a linkage time error, specifically
IncompatibleClassChangeError, will result if the field is used by a preexistin
binary which expected a field of the other kind. Such changes are not re
mended in code that has been widely distributed.

13.4.10 transient Fields

Adding or deleting atransient modifier of a field does not break compatibilit
with pre-existing binaries.

13.4.11 volatile Fields

If a field that is not declaredprivate was not declaredvolatile and is changed
to be declaredvolatile, or vice versa, then a linkage time error, specifically
IncompatibleClassChangeError, may result if the field is used by a preexistin
binary that expected a field of the opposite volatility. Such changes are not re
mended in code that has been widely distributed.

13.4.12 Method and Constructor Declarations

Adding a method or constructor declaration to a class will not break compatib
with any pre-existing binaries, even in the case where a type could no long
recompiled because a method invocation previously referenced a method
superclass with an incompatible type. The previously compiled class with su
reference will continue to reference the method declared in a superclass.

Deleting a method or constructor from a class will break compatibility w
any pre-existing binary that referenced this method or constructor
NoSuchMethodError will be thrown when such a reference from a pre-existi
binary is linked. Onlyprivate methods or constructors may be safely delet
from a widely distributed class.

If the source code for a class contains no declared constructors, the Java
piler automatically supplies a constructor with no parameters. Adding one or m
constructor declarations to the source code of such a class will prevent this d
constructor from being supplied automatically, effectively deleting a construc
unless one of the new constructors also has no parameters, thus replaci
default constructor. The automatically supplied constructor with no paramete
given the same access modifier as the class of its declaration, so any replac
253

13.4.13 Method and Constructor Parameters BINARY COMPATIBILITY

254

es is

s not
rmal
ing a
struc-

od or
 the

d or
e or

he
should have as much or more access if compatibility with pre-existing binari
to be preserved.

13.4.13 Method and Constructor Parameters

Changing the name of a formal parameter of a method or constructor doe
impact pre-existing binaries. Changing the name of a method, the type of a fo
parameter to a method or constructor, or adding a parameter to or delet
parameter from a method or constructor declaration creates a method or con
tor with a new signature, and has the combined effect of deleting the meth
constructor with the old signature and adding a method or constructor with
new signature (see §13.4.12).

13.4.14 Method Result Type

Changing the result type of a method, replacing a result type withvoid, or replac-
ing void with a result type has the combined effect of deleting the old metho
constructor and adding a new method or constructor with the new result typ
newlyvoid result (see §13.4.12).

13.4.15 abstract Methods

Changing a method that is declaredabstract to no longer be declaredabstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declaredabstract to be declaredabstract
will break compatibility with pre-existing binaries that previously invoked t
method, causing anAbstractMethodError. If the example program:

class Super { void out() { System.out.println("Out"); } }

class Test extends Super {
public static void main(String[] args) {

Test t = new Test();
System.out.println("Way ");
t.out();

}
}

is compiled and executed, it produces the output:

Way
Out

Suppose that a new version of classSuper is produced:

BINARY COMPATIBILITY final Methods 13.4.16

t-

n

. If

t-

thod
abstract class Super {
abstract void out();

}

If Super is recompiled but notTest, then running the new binary with the exis
ing binary ofTest results in aAbstractMethodError, because classTest has no
implementation of the methodout, and is therefore is (or should be) abstract. (A
early version of Java incorrectly produced the output:

Way

before encountering anAbstractMethodError while invoking the methodout,
incorrectly allowing the classTest to be prepared even though it has anabstract
method and is not declaredabstract.)

13.4.16 final Methods

Changing an instance method that is notfinal to befinal may break compati-
bility with existing binaries that depend on the ability to override the method
the test program:

class Super { void out() { System.out.println("out"); } }

class Test extends Super {

public static void main(String[] args) {
Test t = new Test();
t.out();

}

void out() { super.out(); }

}

is compiled and executed, it produces the output:

out

Suppose that a new version of classSuper is produced:

class Super { final void out() { System.out.println("!"); } }

If Super is recompiled but notTest, then running the new binary with the exis
ing binary ofTest results in aVerifyError because the classTest improperly
tries to override the instance methodout.

Changing a class (static) method that is notfinal to befinal does not
break compatibility with existing binaries, because the class of the actual me
to be invoked is resolved at compile time.
255

13.4.17 native Methods BINARY COMPATIBILITY

256

ty

ty

vided
our-

,
sult-

ended

t-

ati-

ould

with

time
Removing thefinal modifier from a method does not break compatibili
with pre-existing binaries.

13.4.17 native Methods

Adding or deleting anative modifier of a method does not break compatibili
with pre-existing binaries.

The impact of changes to Java types on preexistingnative methods that are
not recompiled is beyond the scope of this specification and should be pro
with the description of an implementation of Java. Implementations are enc
aged, but not required, to implementnative methods in a way that limits such
impact.

13.4.18 static Methods

If a method that is not declaredprivate was declaredstatic (that is, a class
method) and is changed to not be declaredstatic (that is, to an instance method)
or vice versa, then compatibility with pre-existing binaries may be broken, re
ing in a linkage time error, namely anIncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recomm
in code that has been widely distributed.

13.4.19 synchronized Methods

Adding or deleting asynchronized modifier of a method does not break compa
ibility with existing binaries.

13.4.20 Method and Constructor Throws

Changes to thethrows clause of methods or constructors do not break comp
bility with existing binaries; these clauses are checked only at compile time.

We are considering whether a future version of the Java language sh
require more rigorous checking ofthrows clauses when classes are verified.

13.4.21 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility
pre-existing binaries.

We note that a compiler cannot inline expand a method at compile
unless, for example, either:

BINARY COMPATIBILITY Method and Constructor Overloading13.4.22

ccessi-

spec-
are

fely
piler
thod

time)

com-
ach

piled;
 both

pile-
is no
ccurs
 execu-
• the method isprivate to its class

• an entire package is guaranteed to be kept together and the method is a
ble only within that package

• a set of Java code is being compiled to a special binary format where the
ified method is available only within a binary or set of binaries which
being kept together.

The keywordfinal on a method does not mean that the method can be sa
inlined; it only means that the method cannot be overridden. Unless the com
has extraordinary knowledge, it is still possible that a new version of that me
will be provided at link time.

In general we suggest that Java implementations use late-bound (run-
code generation and optimization.

13.4.22 Method and Constructor Overloading

Adding new methods that overload existing method names does not break
patibility with pre-existing binaries. The method signature to be used for e
method invocation was determined when these existing binaries were com
therefore newly added methods will not be used, even if their signatures are
applicable and more specific than the method signature originally chosen.

While adding a new overloaded method or constructor may cause a com
time error the next time a class or interface is compiled because there
method or constructor that is most specific (§15.11.2.2), no such error o
when a Java program is executed, because no overload resolution is done at
tion time.

If the example program:

class Super {
static void out(float f) { System.out.println("float"); }

}

class Test {
public static void main(String[] args) {

Super.out(2);
}

}

is compiled and executed, it produces the output:

float

Suppose that a new version of classSuper is produced:
257

13.4.23 Method Overriding BINARY COMPATIBILITY

258

t-

super-
exist-
d to a
ethod
e the
class Super {
static void out(float f) { System.out.println("float"); }
static void out(int i) { System.out.println("int"); }

}

If Super is recompiled but notTest, then running the new binary with the exis
ing binary ofTest still produces the output:

float

However, ifTest is then recompiled, using this newSuper, the output is then:

int

as might have been naively expected in the previous case.

13.4.23 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
class, then the subclass method will be found by method invocations in pre-
ing binaries, and these binaries are not impacted. If a class method is adde
class, then this method will not be found, because the invocation of a class m
is resolved at compile time to use the fully qualified name of the class wher
method is declared. Thus if the example:

class Hyper {
void hello() { System.out.print("Hello, "); }
static void world() { System.out.println("world!"); }

}

class Super extends Hyper { }

class Test {
public static void main(String[] args) {

Super s = new Super();
s.hello();
s.world();

}
}

is compiled and executed, it produces the output:

Hello, world!

Suppose that a new version of classSuper is produced:

class Super extends Hyper {
void hello() { System.out.print("Goodbye, cruel "); }
static void world() { System.out.println("earth!"); }

}

BINARY COMPATIBILITY public Interfaces 13.5.1

the

llow

pact

e and

t
ot rec-
If Super is recompiled but notHyper or Test, then running the new binary with
the existing binaries forHyper andTest will produce the output:

Goodbye, cruel world!

This example demonstrates that the invocation in:

s.world();

in the methodmain is resolved, at compile time, to a symbolic reference to
class containing the class methodworld, as though it had been written:

Hyper.world();

This is why theworld method ofHyper rather thanSuper is invoked in this
example. Of course, recompiling all the classes to produce new binaries will a
the output:

Goodbye, cruel earth!

to be produced.

13.4.24 Static Initializers

Adding, deleting, or changing a static initializer (§8.5) of a class does not im
pre-existing binaries.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interfac
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declaredpublic to be declaredpublic does not
break compatibility with pre-existing binaries.

If an interface that is declaredpublic is changed to not be declaredpublic,
then anIllegalAccessError is thrown if a pre-existing binary is linked tha
needs but no longer has access to the interface type, so such a change is n
ommended for widely distributed interfaces.
259

13.5.2 Superinterfaces BINARY COMPATIBILITY

260

ges to
sult in
 break

ting

sting

g

e as
13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that chan
the class hierarchy do, as described in §13.4.4. In particular, changes that re
any previous superinterface of a class no longer being a superinterface can
compatibility with pre-existing binaries, resulting in aVerifyError.

13.5.3 The Interface Members

Adding a member to an interface does not break compatibility with pre-exis
binaries.

Deleting a member from an interface may cause linkage errors in pre-exi
binaries. If the example program:

interface I { void hello(); }

class Test implements I {

public static void main(String[] args) {
I anI = new Test();
anI.hello();

}

public void hello() { System.out.println("hello"); }

}

is compiled and executed, it produces the output:

hello

Suppose that a new version of interfaceI is compiled:

interface I { }

If I is recompiled but notTest, then running the new binary with the existin
binary forTest will result in aNoSuchMethodError. (In some early implementa-
tions of Java this program still executed; the fact that the methodhello no longer
exists in interfaceI was not correctly detected.)

13.5.4 Field Declarations

The considerations for changing field declarations in interfaces are the sam
those forstatic final fields in classes, as described in §13.4.7 and §13.4.8.

BINARY COMPATIBILITY Abstract Method Declarations13.5.5

re the
13,
13.5.5 Abstract Method Declarations

The considerations for changing abstract method declarations in interfaces a
same as those forabstract methods in classes, as described in §13.4.
§13.4.14, §13.4.20, and §13.4.22.

Lo! keen-eyed, towering Science! . . .
Yet again, lo! the Soul—above all science . . .
For it, the partial to the permanent flowing,
For it, the Real to the Ideal tends.
For it, the mystic evolution . . .

—Walt Whitman,Song of the Universal (1874)
261

C H A P T E R 14

ts

elf.

her
ent

ts

l and
plain
avior

laces
ind of
iately

dan-

pty

bels.

 every
Blocks and Statemen

He was not merely a chip of the old block, but the old block its
—Edmund Burke, On Pitt’s First Speech

THE sequence of execution of a Java program is controlled bystatements,
which are executed for their effect and do not have values.

Some statementscontain other statements as part of their structure; such ot
statements are substatements of the statement. We say that statemS
immediately contains statementU if there is no statementT different fromS andU
such thatS containsT andT containsU. In the same manner, some statemen
contain expressions (§15) as part of their structure.

The first section of this chapter discusses the distinction between norma
abrupt completion of statements (§14.1). Most of the remaining sections ex
the various kinds of statements, describing in detail both their normal beh
and any special treatment of abrupt completion.

Blocks are explained first (§14.2), because they can appear in certain p
where other kinds of statements are not allowed, and because one other k
statement, a local variable declaration statement (§14.3), must be immed
contained within a block.

Next a grammatical maneuver is explained that sidesteps the familiar “
gling else” problem (§14.4).

Statements that will be familiar to C and C++ programmers are the em
(§14.5), labeled (§14.6), expression (§14.7),if (§14.8),switch (§14.9),while
(§14.10),do (§14.11),for (§14.12),break (§14.13),continue (§14.14), and
return (§14.15) statements.

Unlike C and C++, Java has nogoto statement. However, thebreak andcon-
tinue statements are extended in Java to allow them to mention statement la

The Java statements that are not in the C language are thethrow (§14.16),
synchronized (§14.17), andtry (§14.18) statements.

The last section (§14.19) of this chapter addresses the requirement that
statement bereachable in a certain technical sense.
263

14.1 Normal and Abrupt Completion of Statements BLOCKS AND STATEMENTS

264

.

ional
xecu-
ith no

ents

Java
licit

ses a

e ter-
 such
n

ual

the
plete
14.1 Normal and Abrupt Completion of Statements

Poirot’s abrupt departure had intrigued us all greatly
—Agatha Christie,The Mysterious Affair at Styles (1920), Chapter 12

Every statement has a normal mode of execution in which certain computat
steps are carried out. The following sections describe the normal mode of e
tion for each kind of statement. If all the steps are carried out as described, w
indication of abrupt completion, the statement is said tocomplete normally. How-
ever, certain events may prevent a statement from completing normally:

• The break (§14.13),continue (§14.14), andreturn (§14.15) statements
cause a transfer of control that may prevent normal completion of statem
that contain them.

• Evaluation of certain Java expressions may throw exceptions from the
Virtual Machine; these expressions are summarized in §15.5. An exp
throw (§14.16) statement also results in an exception. An exception cau
transfer of control that may prevent normal completion of statements.

If such an event occurs, then execution of one or more statements may b
minated before all steps of their normal mode of execution have completed;
statements are said tocomplete abruptly. An abrupt completion always has a
associatedreason, which is one of the following:

• A break with no label

• A break with a given label

• A continue with no label

• A continue with a given label

• A return with no value

• A return with a given value

• A throw with a given value, including exceptions thrown by the Java Virt
Machine

The terms “complete normally” and “complete abruptly” also apply to
evaluation of expressions (§15.5). The only reason an expression can com
abruptly is that an exception is thrown, because of either athrow with a given
value (§14.16) or a run-time exception or error (§11, §15.5).

BLOCKS AND STATEMENTS Local Variable Declaration Statements14.3

ssion
same
ed.

tate-
 the

of the

sions

ents

tate-
ese
y of
pletes

s.
If a statement evaluates an expression, abrupt completion of the expre
always causes the immediate abrupt completion of the statement, with the
reason. All succeeding steps in the normal mode of execution are not perform

Unless otherwise specified in this chapter, abrupt completion of a subs
ment causes the immediate abrupt completion of the statement itself, with
same reason, and all succeeding steps in the normal mode of execution
statement are not performed.

Unless otherwise specified, a statement completes normally if all expres
it evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements and local variable declaration statem
within braces.

Block:
{ BlockStatementsopt }

BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationStatement
Statement

A block is executed by executing each of the local variable declaration s
ments and other statements in order from first to last (left to right). If all of th
block statements complete normally, then the block completes normally. If an
these block statements complete abruptly for any reason, then the block com
abruptly for the same reason.

14.3 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable name

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
Type VariableDeclarators
265

14.3.1 Local Variable Declarators and Types BLOCKS AND STATEMENTS

266

y a
ther

 local

ose

e

. The
The following are repeated from §8.3 to make the presentation here clearer:

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

Every local variable declaration statement is immediately contained b
block. Local variable declaration statements may be intermixed freely with o
kinds of statements in the block.

A local variable declaration can also appear in the header of afor statement
(§14.12). In this case it is executed in the same manner as if it were part of a
variable declaration statement.

14.3.1 Local Variable Declarators and Types

Eachdeclarator in a local variable declaration declares one local variable, wh
name is theIdentifier that appears in the declarator.

The type of the variable is denoted by theType that appears at the start of th
local variable declaration, followed by any bracket pairs that follow theIdentifier
in the declarator. Thus, the local variable declaration:

int a, b[], c[][];

is equivalent to the series of declarations:

int a;
int[] b;
int[][] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++
general rule, however, also means that the local variable declaration:

float[][] f[][], g[][][], h[]; // Yechh!

is equivalent to the series of declarations:

BLOCKS AND STATEMENTS Scope of Local Variable Declarations14.3.2

ding
lared
 error

ly a

s:
float[][][][] f;
float[][][][][] g;
float[][][] h;

We do not recommend such “mixed notation” for array declarations.

14.3.2 Scope of Local Variable Declarations

The scope of a local variable declared in a block is the rest of the block, inclu
its own initializer. The name of the local variable parameter may not be redec
as a local variable or exception parameter within its scope, or a compile-time
occurs; that is, hiding the name of a local variable is not permitted.

A local variable cannot be referred to using a qualified name (§6.6), on
simple name.

The example:

class Test {
static int x;
public static void main(String[] args) {

int x = x;
}

}

causes a compile-time error because the initialization ofx is within the scope of
the declaration ofx as a local variable, and the localx does not yet have a value
and cannot be used.

The following program does compile:

class Test {
static int x;
public static void main(String[] args) {

int x = (x=2)*2;
System.out.println(x);

}
}

because the local variablex is definitely assigned (§16) before it is used. It print

4

Here is another example:

class Test {
public static void main(String[] args) {

System.out.print("2+1=");
int two = 2, three = two + 1;
System.out.println(three);

}
}

267

14.3.3 Hiding of Names by Local Variables BLOCKS AND STATEMENTS

268

o the

e of
 Thus

ilar
ical,
 have to

n two

name,
iable.
ppro-
a

which compiles correctly and produces the output:

2+1=3

The initializer forthree can correctly refer to the variabletwo declared in an ear-
lier declarator, and the method invocation in the next line can correctly refer t
variablethree declared earlier in the block.

The scope of a local variable declared in afor statement is the rest of thefor
statement, including its own initializer.

If a declaration of an identifier as a local variable appears within the scop
a parameter or local variable of the same name, a compile-time error occurs.
the following example does not compile:

class Test {
public static void main(String[] args) {

int i;
for (int i = 0; i < 10; i++)

System.out.println(i);
}

}

This restriction helps to detect some otherwise very obscure bugs. (A sim
restriction on hiding of members by local variables was judged impract
because the addition of a member in a superclass could cause subclasses to
rename local variables.)

On the other hand, local variables with the same name may be declared i
separate blocks orfor statements neither of which contains the other. Thus:

class Test {
public static void main(String[] args) {

for (int i = 0; i < 10; i++)
System.out.print(i + " ");

for (int i = 10; i > 0; i--)
System.out.print(i + " ");

System.out.println();
}

}

compiles without error and, when executed, produces the output:

0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

14.3.3 Hiding of Names by Local Variables

If a name declared as a local variable is already declared as a field or type
then that outer declaration is hidden throughout the scope of the local var
The field or type name can almost always (§6.8) still be accessed using an a
priately qualified name. For example, the keywordthis can be used to access

BLOCKS AND STATEMENTS Statements 14.4

-

 as the
 for
how-
es as

e it is
rator

ue is
sion,

 that
ssign-

the
cal
ion
 ini-

nd to

g

hidden fieldx, using the formthis.x. Indeed, this idiom typically appears in con
structors (§8.6):

class Pair {
Object first, second;
public Pair(Object first, Object second) {

this.first = first;
this.second = second;

}
}

In this example, the constructor takes parameters having the same names
fields to be initialized. This is simpler than having to invent different names
the parameters and is not too confusing in this stylized context. In general,
ever, it is considered poor style to have local variables with the same nam
fields.

14.3.4 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every tim
executed, the declarators are processed in order from left to right. If a decla
has an initialization expression, the expression is evaluated and its val
assigned to the variable. If a declarator does not have an initialization expres
then a Java compiler must prove, using exactly the algorithm given in §16,
every reference to the variable is necessarily preceded by execution of an a
ment to the variable. If this is not the case, then a compile-time error occurs.

Each initialization (except the first) is executed only if the evaluation of
preceding initialization expression completes normally. Execution of the lo
variable declaration completes normally only if evaluation of the last initializat
expression completes normally; if the local variable declaration contains no
tialization expressions, then executing it always completes normally.

14.4 Statements

There are many kinds of statements in the Java language. Most correspo
statements in the C and C++ languages, but some are unique to Java.

As in C and C++, the Javaif statement suffers from the so-called “danglin
else problem,” illustrated by this misleadingly formatted example:

if (door.isOpen())
if (resident.isVisible())

resident.greet("Hello!");
else door.bell.ring(); // A “danglingelse”
269

14.4 Statements BLOCKS AND STATEMENTS

270

ro-

e that

:

The problem is that both the outerif statement and the innerif statement might
conceivably own theelse clause. In this example, one might surmise that the p
grammer intended theelse clause to belong to the outerif statement. The Java
language, like C and C++ and many languages before them, arbitrarily decre
an else clause belongs to the innermostif to which it might possibly belong.
This rule is captured by the following grammar:

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

The following are repeated from §14.8 to make the presentation here clearer

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

BLOCKS AND STATEMENTS Labeled Statements14.6

 that

short

e
no
 of

other
Two
ntains

s the
iable.
rface,
f an
Statements are thus grammatically divided into two categories: those
might end in anif statement that has noelse clause (a “shortif statement”) and
those that definitely do not. Only statements that definitely do not end in a
if statement may appear as an immediate substatement before the keywordelse
in anif statement that does have anelse clause. This simple rule prevents th
“dangling else” problem. The execution behavior of a statement with the “
short if” restriction is identical to the execution behavior of the same kind
statement without the “no shortif” restriction; the distinction is drawn purely to
resolve the syntactic difficulty.

14.5 The Empty Statement

An empty statement does nothing.

EmptyStatement:
;

Execution of an empty statement always completes normally.

14.6 Labeled Statements

Statements may havelabel prefixes.

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

TheIdentifier is declared to be the label of the immediately containedStatement.
Unlike C and C++, the Java language has nogoto statement; identifier state-

ment labels are used withbreak (§14.13) orcontinue (§14.14) statements
appearing anywhere within the labeled statement.

A statement labeled by an identifier must not appear anywhere within an
statement labeled by the same identifier, or a compile-time error will occur.
statements can be labeled by the same identifier only if neither statement co
the other.

There is no restriction against using the same identifier as a label and a
name of a package, class, interface, method, field, parameter, or local var
Use of an identifier to label a statement does not hide a package, class, inte
method, field, parameter, or local variable with the same name. Use o
271

14.7 Expression Statements BLOCKS AND STATEMENTS

272

4.18)

ined

f the

 with

he
 state-
etes

ions
ast to

es-

ds of
 invoca-

15.25)
identifier as a local variable or as the parameter of an exception handler (§1
does not hide a statement label with the same name.

A labeled statement is executed by executing the immediately conta
Statement. If the statement is labeled by anIdentifier and the containedStatement
completes abruptly because of abreak with the sameIdentifier, then the labeled
statement completes normally. In all other cases of abrupt completion o
Statement, the labeled statement completes abruptly for the same reason.

14.7 Expression Statements

Certain kinds of expressions may be used as statements by following them
semicolons:

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

An expression statement is executed by evaluating the expression; if t
expression has a value, the value is discarded. Execution of the expression
ment completes normally if and only if evaluation of the expression compl
normally.

Unlike C and C++, the Java language allows only certain forms of express
to be used as expression statements. Note that Java does not allow a “c
void”—void is not a type in Java—so the traditional C trick of writing an expr
sion statement such as:

(void) ... ; // This idiom belongs to C, not to Java!

does not work in Java. On the other hand, Java allows all the most useful kin
expressions in expressions statements, and Java does not require a method
tion used as an expression statement to invoke avoid method, so such a trick is
almost never needed. If a trick is needed, either an assignment statement (§
or a local variable declaration statement (§14.3) can be used instead.

BLOCKS AND STATEMENTS Theif–then–else Statement 14.8.2

onal

 . .

 mak-

xecu-
14.8 Theif Statement

The if statement allows conditional execution of a statement or a conditi
choice of two statements, executing one or the other but not both.

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

TheExpression must have typeboolean, or a compile-time error occurs.

14.8.1 Theif–then Statement

I took an early opportunity of testing that statement .
—Agatha Christie,The Mysterious Affair at Styles (1920), Chapter 12

An if–then statement is executed by first evaluating theExpression. If evaluation
of the Expression completes abruptly for some reason, theif–then statement
completes abruptly for the same reason. Otherwise, execution continues by
ing a choice based on the resulting value:

• If the value istrue, then the containedStatement is executed; theif–then
statement completes normally only if execution of theStatement completes
normally.

• If the value isfalse, no further action is taken and theif–then statement
completes normally.

14.8.2 Theif–then–else Statement

An if–then–else statement is executed by first evaluating theExpression. If
evaluation of theExpression completes abruptly for some reason, then theif–
then–else statement completes abruptly for the same reason. Otherwise, e
tion continues by making a choice based on the resulting value:
273

14.9 Theswitch Statement BLOCKS AND STATEMENTS

274

ng on

ely

s

• If the value istrue, then the first containedStatement (the one before the
else keyword) is executed; theif–then–else statement completes normally
only if execution of that statement completes normally.

• If the value isfalse, then the second containedStatement (the one after the
else keyword) is executed; theif–then–else statement completes normally
only if execution of that statement completes normally.

14.9 Theswitch Statement

Theswitch statement transfers control to one of several statements dependi
the value of an expression.

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsopt SwitchLabelsopt }

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabel:
case ConstantExpression :
default :

The type of theExpression must bechar, byte, short, orint, or a compile-
time error occurs.

The body of aswitch statement must be a block. Any statement immediat
contained by the block may be labeled with one or morecase or default labels.
These labels are said to beassociated with theswitch statement, as are the value
of the constant expressions (§15.27) in thecase labels.

All of the following must be true, or a compile-time error will result:

BLOCKS AND STATEMENTS Theswitch Statement 14.9

te-
ate-

 it is
vince

tinues

 we

 com-
• Everycase constant expression associated with aswitch statement must be
assignable (§5.2) to the type of theswitch Expression.

• No two of thecase constant expressions associated with aswitch statement
may have the same value.

• At most onedefault label may be associated with the sameswitch state-
ment.

In C and C++ the body of aswitch statement can be a statement and sta
ments withcase labels do not have to be immediately contained by that st
ment. Consider the simple loop:

for (i = 0; i < n; ++i) foo();

wheren is known to be positive. A trick known asDuff ’s device can be used in C
or C++ to unroll the loop, but this is not valid Java code:

int q = (n+7)/8;
switch (n%8) {
case 0: do { foo(); // Great C hack, Tom,
case 7: foo(); // but it’s not valid in Java.
case 6: foo();
case 5: foo();
case 4: foo();
case 3: foo();
case 2: foo();
case 1: foo();

} while (--q >= 0);
}

Fortunately, this trick does not seem to be widely known or used. Moreover,
less needed nowadays; this sort of code transformation is properly in the pro
of state-of-the-art optimizing compilers.

When theswitch statement is executed, first theExpression is evaluated. If
evaluation of theExpression completes abruptly for some reason, theswitch
statement completes abruptly for the same reason. Otherwise, execution con
by comparing the value of theExpressionwith eachcase constant. Then there is a
choice:

• If one of thecase constants is equal to the value of the expression, then
say that thecase matches, and all statements after the matchingcase label in
the switch block, if any, are executed in sequence. If all these statements
plete normally, or if there are no statements after the matchingcase label,
then the entireswitch statement completes normally.
275

14.9 Theswitch Statement BLOCKS AND STATEMENTS

276

e
ce.
 after

.

e
brupt
r

gh

 code
• If no case matches but there is adefault label, then all statements after th
matchingdefault label in the switch block, if any, are executed in sequen
If all these statements complete normally, or if there are no statements
thedefault label, then the entireswitch statement completes normally.

• If no case matches and there is nodefault label, then no further action is
taken and theswitch statement completes normally.

If any statement immediately contained by theBlock body of theswitch
statement completes abruptly, it is handled as follows:

• If execution of theStatement completes abruptly because of abreak with no
label, no further action is taken and theswitch statement completes normally

• If execution of theStatement completes abruptly for any other reason, th
switch statement completes abruptly for the same reason. The case of a
completion because of abreak with a label is handled by the general rule fo
labeled statements (§14.6).

As in C and C++, execution of statements in a switch block “falls throu
labels” in Java. For example, the program:

class Toomany {

static void howMany(int k) {
switch (k) {
case 1: System.out.print("one ");
case 2: System.out.print("too ");
case 3: System.out.println("many");
}

}

public static void main(String[] args) {
howMany(3);
howMany(2);
howMany(1);

}

}

contains a switch block in which the code for each case falls through into the
for the next case. As a result, the program prints:

many
too many
one too many

If code is not to fall through case to case in this manner, thenbreak statements
should be used, as in this example:

BLOCKS AND STATEMENTS Thewhile Statement 14.10

 mak-

a

class Twomany {

static void howMany(int k) {
switch (k) {
case 1: System.out.println("one");

break; // exit the switch
case 2: System.out.println("two");

break; // exit the switch
case 3: System.out.println("many");

break; // not needed, but good style
}

}

public static void main(String[] args) {
howMany(1);
howMany(2);
howMany(3);

}

}

This program prints:

one
two
many

14.10 Thewhile Statement

Thewhile statement executes anExpression and aStatement repeatedly until the
value of theExpression is false.

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

TheExpression must have typeboolean, or a compile-time error occurs.
A while statement is executed by first evaluating theExpression. If evalua-

tion of theExpression completes abruptly for some reason, thewhile statement
completes abruptly for the same reason. Otherwise, execution continues by
ing a choice based on the resulting value:

• If the value istrue, then the containedStatement is executed. Then there is
choice:

◆ If execution of theStatement completes normally, then the entirewhile
statement is executed again, beginning by re-evaluating theExpression.
277

14.10.1 Abrupt Completion BLOCKS AND STATEMENTS

278

e

e

:

e
 case
-

e

◆ If execution of theStatement completes abruptly, see §14.10.1 below.

• If the value of theExpression is false, no further action is taken and th
while statement completes normally.

If the value of theExpression is false the first time it is evaluated, then th
Statementis not executed.

14.10.1 Abrupt Completion

Abrupt completion of the containedStatement is handled in the following manner

• If execution of theStatement completes abruptly because of abreak with no
label, no further action is taken and thewhile statement completes normally.

◆ If execution of theStatement completes abruptly because of acontinue
with no label, then the entirewhile statement is executed again.

◆ If execution of theStatement completes abruptly because of acontinue
with labelL, then there is a choice:

❖ If thewhile statement has labelL, then the entirewhile statement is exe-
cuted again.

❖ If the while statement does not have labelL, thewhile statement com-
pletes abruptly because of acontinue with labelL.

◆ If execution of theStatement completes abruptly for any other reason, th
while statement completes abruptly for the same reason. Note that the
of abrupt completion because of abreak with a label is handled by the gen
eral rule for labeled statements (§14.6).

14.11 Thedo Statement

The do statement executes aStatement and anExpression repeatedly until the
value of theExpression is false.

DoStatement:
do Statement while (Expression) ;

TheExpression must have typeboolean, or a compile-time error occurs.
A do statement is executed by first executing theStatement. Then there is a

choice:

• If execution of theStatement completes normally, then theExpression is eval-
uated. If evaluation of theExpression completes abruptly for some reason, th

BLOCKS AND STATEMENTS Abrupt Completion14.11.1

 is a

:

.

 the

e

mple-
do statement completes abruptly for the same reason. Otherwise, there
choice based on the resulting value:

◆ If the value istrue, then the entiredo statement is executed again.

◆ If the value isfalse, no further action is taken and thedo statement com-
pletes normally.

• If execution of theStatement completes abruptly, see §14.11.1 below.

Executing ado statement always executes the containedStatement at least once.

14.11.1 Abrupt Completion

Abrupt completion of the containedStatement is handled in the following manner

• If execution of theStatement completes abruptly because of abreak with no
label, then no further action is taken and thedo statement completes normally

• If execution of theStatement completes abruptly because of acontinue with
no label, then theExpression is evaluated. Then there is a choice based on
resulting value:

◆ If the value istrue, then the entiredo statement is executed again.

◆ If the value isfalse, no further action is taken and thedo statement com-
pletes normally.

• If execution of theStatement completes abruptly because of acontinue with
labelL, then there is a choice:

◆ If the do statement has labelL, then theExpression is evaluated. Then there
is a choice:

❖ If the value of theExpression is true, then the entiredo statement is exe-
cuted again.

❖ If the value of theExpression is false, no further action is taken and th
do statement completes normally.

◆ If the do statement does not have labelL, the do statement completes
abruptly because of acontinue with labelL.

• If execution of theStatement completes abruptly for any other reason, thedo
statement completes abruptly for the same reason. The case of abrupt co
tion because of abreak with a label is handled by the general rule (§14.6).
279

14.11.2 Example ofdo statement BLOCKS AND STATEMENTS

280
14.11.2 Example ofdo statement

The following code is one possible implementation of thetoHexString method
(§20.7.14) of classInteger:

public static String toHexString(int i) {
StringBuffer buf = new StringBuffer(8);
do {

buf.append(Character.forDigit(i & 0xF, 16));
i >>>= 4;

} while (i != 0);
return buf.reverse().toString();

}

Because at least one digit must be generated, thedo statement is an appropriate
control structure.

14.12 Thefor Statement

Thefor statement executes some initialization code, then executes anExpression,
a Statement, and some update code repeatedly until the value of theExpression is
false.

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

Statement

ForStatementNoShortIf:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression
StatementExpressionList , StatementExpression

TheExpression must have typeboolean, or a compile-time error occurs.

BLOCKS AND STATEMENTS Iteration offor statement14.12.2

ions
rded.

ted.

e a
ase,

ther

on
r

a-
 of the

om

 in
lua-

 not
14.12.1 Initialization offor statement

A for statement is executed by first executing theForInit code:

• If the ForInit code is a list of statement expressions (§14.7), the express
are evaluated in sequence from left to right; their values, if any, are disca
If evaluation of any expression completes abruptly for some reason, thefor
statement completes abruptly for the same reason; anyForInit statement
expressions to the right of the one that completed abruptly are not evalua

• If the ForInit code is a local variable declaration, it is executed as if it wer
local variable declaration statement (§14.3) appearing in a block. In this c
the scope of a declared local variable is its own initializer and any fur
declarators in theForInit part, plus theExpression, ForUpdate, and contained
Statement of thefor statement. If execution of the local variable declarati
completes abruptly for any reason, thefor statement completes abruptly fo
the same reason.

• If the ForInit part is not present, no action is taken.

14.12.2 Iteration offor statement

Next, afor iteration step is performed, as follows:

• If the Expression is present, it is evaluated, and if evaluation of theExpression
completes abruptly, thefor statement completes abruptly for the same re
son. Otherwise, there is then a choice based on the presence or absence
Expression and the resulting value if theExpression is present:

◆ If the Expression is not present, or it is present and the value resulting fr
its evaluation istrue, then the containedStatement is executed. Then there
is a choice:

❖ If execution of theStatement completes normally, then the following two
steps are performed in sequence:

✣ First, if theForUpdate part is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If eva
tion of any expression completes abruptly for some reason, thefor
statement completes abruptly for the same reason; anyForUpdate state-
ment expressions to the right of the one that completed abruptly are
evaluated. If theForUpdate part is not present, no action is taken.

✣ Second, anotherfor iteration step is performed.

❖ If execution of theStatement completes abruptly, see §14.12.3 below.
281

14.12.3 Abrupt Completion offor statement BLOCKS AND STATEMENTS

282

 is
.

e

:

 in
the

d

 in
the

abrupt
r

◆ If the Expression is present and the value resulting from its evaluation
false, no further action is taken and thefor statement completes normally

If the value of theExpression is false the first time it is evaluated, then th
Statement is not executed.

If the Expression is not present, then the only way afor statement can com-
plete normally is by use of abreak statement.

14.12.3 Abrupt Completion offor statement

Abrupt completion of the containedStatement is handled in the following manner

• If execution of theStatement completes abruptly because of abreak with no
label, no further action is taken and thefor statement completes normally.

• If execution of theStatement completes abruptly because of acontinue with
no label, then the following two steps are performed in sequence:

◆ First, if the ForUpdate part is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If
ForUpdatepart is not present, no action is taken.

◆ Second, anotherfor iteration step is performed.

• If execution of theStatement completes abruptly because of acontinue with
labelL, then there is a choice:

◆ If the for statement has labelL, then the following two steps are performe
in sequence:

❖ First, if theForUpdate part is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If
ForUpdate is not present, no action is taken.

❖ Second, anotherfor iteration step is performed.

◆ If the for statement does not have labelL, the for statement completes
abruptly because of acontinue with labelL.

• If execution of theStatement completes abruptly for any other reason, thefor
statement completes abruptly for the same reason. Note that the case of
completion because of abreak with a label is handled by the general rule fo
labeled statements (§14.6).

BLOCKS AND STATEMENTS Thebreak Statement 14.13

ost
he

.

 just

ost,

ay of
n arrow
 this
 nodes
14.13 Thebreak Statement

A break statement transfers control out of an enclosing statement.

BreakStatement:
break Identifieropt ;

A break statement with no label attempts to transfer control to the innerm
enclosingswitch, while, do, orfor statement; this statement, which is called t
break target, then immediately completes normally. To be precise, abreak state-
ment with no label always completes abruptly, the reason being abreak with no
label. If noswitch, while, do, or for statement encloses thebreak statement, a
compile-time error occurs.

A break statement with labelIdentifier attempts to transfer control to the
enclosing labeled statement (§14.6) that has the sameIdentifier as its label; this
statement, which is called thebreak target, then immediately completes normally
In this case, thebreak target need not be awhile, do, for, or switch statement.
To be precise, abreak statement with labelIdentifier always completes abruptly,
the reason being abreak with label Identifier. If no labeled statement with
Identifieras its label encloses thebreak statement, a compile-time error occurs.

It can be seen, then, that abreak statement always completes abruptly.
The preceding descriptions say “attempts to transfer control” rather than

“transfers control” because if there are anytry statements (§14.18) within the
break target whosetry blocks contain thebreak statement, then anyfinally
clauses of thosetry statements are executed, in order, innermost to outerm
before control is transferred to the break target. Abrupt completion of afinally
clause can disrupt the transfer of control initiated by abreak statement.

In the following example, a mathematical graph is represented by an arr
arrays. A graph consists of a set of nodes and a set of edges; each edge is a
that points from some node to some other node, or from a node to itself. In
example it is assumed that there are no redundant edges; that is, for any two
P andQ, whereQ may be the same asP , there is at most one edge fromP to Q.
Nodes are represented by integers, and there is an edge from nodei to node
edges[i][j] for everyi andj for which the array referenceedges[i][j]
does not throw anIndexOutOfBoundsException.

The task of the methodloseEdges, given integersi andj, is to construct a
new graph by copying a given graph but omitting the edge from nodei to nodej,
if any, and the edge from nodej to nodei, if any:
283

14.13 Thebreak Statement BLOCKS AND STATEMENTS

284

hared
class Graph {
int edges[][];

public Graph(int[][] edges) { this.edges = edges; }

public Graph loseEdges(int i, int j) {
int n = edges.length;
int[][] newedges = new int[n][];
for (int k = 0; k < n; ++k) {

edgelist: {
int z;

search: {
if (k == i) {

for (z = 0; z < edges[k].length; ++z)
if (edges[k][z] == j)

break search;
} else if (k == j) {

for (z = 0; z < edges[k].length; ++z)
if (edges[k][z] == i)

break search;
}
// No edge to be deleted; share this list.
newedges[k] = edges[k];
break edgelist;

}//search

// Copy the list, omitting the edge at positionz.
int m = edges[k].length - 1;
int ne[] = new int[m];
System.arraycopy(edges[k], 0, ne, 0, z);
System.arraycopy(edges[k], z+1, ne, z, m-z);
newedges[k] = ne;

}//edgelist

}
return new Graph(newedges);

}

}

Note the use of two statement labels,edgelist andsearch, and the use ofbreak
statements. This allows the code that copies a list, omitting one edge, to be s
between two separate tests, the test for an edge from nodei to nodej, and the test
for an edge from nodej to nodei.

BLOCKS AND STATEMENTS Thecontinue Statement 14.14

er-
he
one.
on

t

tion

 just

ut-
 of a
14.14 Thecontinue Statement

A continue statement may occur only in awhile, do, or for statement; state-
ments of these three kinds are callediteration statements. Control passes to the
loop-continuation point of an iteration statement.

ContinueStatement:
continue Identifieropt ;

A continue statement with no label attempts to transfer control to the inn
most enclosingwhile, do, or for statement; this statement, which is called t
continue target, then immediately ends the current iteration and begins a new
To be precise, such acontinue statement always completes abruptly, the reas
being acontinue with no label. If nowhile, do, or for statement encloses the
continue statement, a compile-time error occurs.

A continue statement with labelIdentifier attempts to transfer control to the
enclosing labeled statement (§14.6) that has the sameIdentifier as its label; that
statement, which is called thecontinue target, then immediately ends the curren
iteration and begins a new one. The continue target must be awhile, do, or for
statement or a compile-time error occurs. More precisely, acontinue statement
with labelIdentifier always completes abruptly, the reason being acontinue with
label Identifier. If no labeled statement withIdentifier as its label contains the
continue statement, a compile-time error occurs.

It can be seen, then, that acontinue statement always completes abruptly.
See the descriptions of thewhile statement (§14.10),do statement (§14.11),

andfor statement (§14.12) for a discussion of the handling of abrupt termina
because ofcontinue.

The preceding descriptions say “attempts to transfer control” rather than
“transfers control” because if there are anytry statements (§14.18) within the
continue target whosetry blocks contain thecontinue statement, then any
finally clauses of thosetry statements are executed, in order, innermost to o
ermost, before control is transferred to the continue target. Abrupt completion
finally clause can disrupt the transfer of control initiated by acontinue state-
ment.

In theGraph example in the preceding section, one of thebreak statements is
used to finish execution of the entire body of the outermostfor loop. Thisbreak
can be replaced by acontinue if thefor loop itself is labeled:
285

14.15 Thereturn Statement BLOCKS AND STATEMENTS

286

) or

a
r

ctor

a-
. The

 of
class Graph {
. . .
public Graph loseEdges(int i, int j) {

int n = edges.length;
int[][] newedges = new int[n][];

edgelists: for (int k = 0; k < n; ++k) {
int z;

search: {
if (k == i) {

. . .
} else if (k == j) {

. . .
}
newedges[k] = edges[k];
continue edgelists;

}//search
. . .

}//edgelists

return new Graph(newedges);
}

}

Which to use, if either, is largely a matter of programming style.

14.15 Thereturn Statement

A return statement returns control to the invoker of a method (§8.4, §15.11
constructor (§8.6, §15.8).

ReturnStatement:
return Expressionopt ;

A return statement with noExpressionmust be contained in the body of
method that is declared, using the keywordvoid, not to return any value (§8.4), o
in the body of a constructor (§8.6). A compile-time error occurs if areturn state-
ment appears within a static initializer (§8.5). Areturn statement with no
Expression attempts to transfer control to the invoker of the method or constru
that contains it. To be precise, areturn statement with noExpression always
completes abruptly, the reason being areturn with no value.

A return statement with anExpression must be contained in a method decl
ration that is declared to return a value (§8.4) or a compile-time error occurs
Expression must denote a variable or value of some typeT, or a compile-time
error occurs. The typeT must be assignable (§5.2) to the declared result type
the method, or a compile-time error occurs.

BLOCKS AND STATEMENTS Thethrow Statement 14.16

t

 just

 to
truc-
i-

me-
tiple
til a

d the

ref-

 true,

 fol-
A return statement with anExpression attempts to transfer control to the
invoker of the method that contains it; the value of theExpression becomes the
value of the method invocation. More precisely, execution of such areturn state-
ment first evaluates theExpression. If the evaluation of theExpression completes
abruptly for some reason, then thereturn statement completes abruptly for tha
reason. If evaluation of theExpression completes normally, producing a valueV,
then thereturn statement completes abruptly, the reason being areturn with
valueV.

It can be seen, then, that areturn statement always completes abruptly.
The preceding descriptions say “attempts to transfer control” rather than

“transfers control” because if there are anytry statements (§14.18) within the
method or constructor whosetry blocks contain thereturn statement, then any
finally clauses of thosetry statements will be executed, in order, innermost
outermost, before control is transferred to the invoker of the method or cons
tor. Abrupt completion of afinally clause can disrupt the transfer of control in
tiated by areturn statement.

14.16 Thethrow Statement

A throw statement causes an exception (§11) to be thrown. The result is an im
diate transfer of control (§11.3) that may exit multiple statements and mul
constructor, static and field initializer evaluations, and method invocations un
try statement (§14.18) is found that catches the thrown value. If no suchtry
statement is found, then execution of the thread (§17, §20.20) that execute
throw is terminated (§11.3) after invocation of theUncaughtException method
(§20.21.31) for the thread group to which the thread belongs.

ThrowStatement:
throw Expression ;

TheExpression in a throw statement must denote a variable or value of a
erence type which is assignable (§5.2) to the typeThrowable, or a compile-time
error occurs. Moreover, at least one of the following three conditions must be
or a compile-time error occurs:

• The exception is not a checked exception (§11.2)—specifically, one of the
lowing situations is true:

◆ The type of theExpression is the classRuntimeException or a subclass of
RuntimeException.

◆ The type of theExpression is the classError or a subclass ofError.
287

14.16 Thethrow Statement BLOCKS AND STATEMENTS

288

e

 and
the

g a

-
 that
d

 not
hod

e is
tion

ile-
 or its
is

ed to
• The throw statement is contained in thetry block of a try statement
(§14.18) and the type of theExpression is assignable (§5.2) to the type of th
parameter of at least onecatch clause of thetry statement. (In this case we
say the thrown value iscaught by thetry statement.)

• Thethrow statement is contained in a method or constructor declaration
the type of theExpression is assignable (§5.2) to at least one type listed in
throws clause (§8.4.4, §8.6.4) of the declaration.

A throw statement first evaluates theExpression. If the evaluation of the
Expression completes abruptly for some reason, then thethrow completes
abruptly for that reason. If evaluation of theExpression completes normally, pro-
ducing a valueV, then thethrow statement completes abruptly, the reason bein
throw with valueV.

It can be seen, then, that athrow statement always completes abruptly.
If there are any enclosingtry statements (§14.18) whosetry blocks contain

thethrow statement, then anyfinally clauses of thosetry statements are exe
cuted as control is transferred outward, until the thrown value is caught. Note
abrupt completion of afinally clause can disrupt the transfer of control initiate
by athrow statement.

If a throw statement is contained in a method declaration, but its value is
caught by sometry statement that contains it, then the invocation of the met
completes abruptly because of thethrow.

If a throw statement is contained in a constructor declaration, but its valu
not caught by sometry statement that contains it, then the class instance crea
expression (or the method invocation of methodnewInstance of classClass)
that invoked the constructor will complete abruptly because of thethrow.

If a throw statement is contained in a static initializer (§8.5), then a comp
time check ensures that either its value is always an unchecked exception
value is always caught by sometry statement that contains it. If, despite th
check, the value is not caught by sometry statement that contains thethrow
statement, then the value is rethrown if it is an instance of classError or one of its
subclasses; otherwise, it is wrapped in anExceptionInInitializerError
object, which is then thrown (§12.4.2).

By convention, user-declared throwable types should usually be declar
be subclasses of classException, which is a subclass of classThrowable (§11.5,
§20.22).

BLOCKS AND STATEMENTS Thesynchronized Statement 14.17

half
xecut-

rs.

he

ther
hods

n.
ks

e

lock
14.17 Thesynchronized Statement

A synchronized statement acquires a mutual-exclusion lock (§17.13) on be
of the executing thread, executes a block, then releases the lock. While the e
ing thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
synchronized (Expression) Block

The type ofExpression must be a reference type, or a compile-time error occu
A synchronized statement is executed by first evaluating theExpression.
If evaluation of theExpression completes abruptly for some reason, then t

synchronized statement completes abruptly for the same reason.
Otherwise, if the value of theExpression is null, aNullPointerException

is thrown.
Otherwise, let the non-null value of theExpression be V. The executing

thread locks the lock associated withV. Then theBlock is executed. If execution
of theBlock completes normally, then the lock is unlocked and thesynchronized
statement completes normally. If execution of theBlock completes abruptly for
any reason, then the lock is unlocked and thesynchronized statement then com-
pletes abruptly for the same reason.

Acquiring the lock associated with an object does not of itself prevent o
threads from accessing fields of the object or invoking unsynchronized met
on the object. Other threads can also usesynchronized methods or the
synchronized statement in a conventional manner to achieve mutual exclusio

The locks acquired bysynchronized statements are the same as the loc
that are acquired implicitly bysynchronized methods; see §8.4.3.5. A singl
thread may hold a lock more than once. The example:

class Test {
public static void main(String[] args) {

Test t = new Test();
synchronized(t) {

synchronized(t) {
System.out.println("made it!");

}
}

}
}

prints:

made it!

This example would deadlock if a single thread were not permitted to lock a
more than once.
289

14.18 Thetry statement BLOCKS AND STATEMENTS

290

ls.

an,
s.

 the
14.18 Thetry statement

These are the times that try men’s sou
—Thomas Paine, The American Crisis(1780)

. . . and they all fell to playing the game of catch as catch c
till the gunpowder ran out at the heels of their boot

—Samuel Foote

A try statement executes a block. If a value is thrown and thetry statement has
one or morecatch clauses that can catch it, then control will be transferred to
first suchcatch clause. If thetry statement has afinally clause, then another
block of code is executed, no matter whether thetry block completes normally or
abruptly, and no matter whether acatch clause is first given control.

TryStatement:
try Block Catches
try Block Catchesopt Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

The following is repeated from §8.4.1 to make the presentation here clearer:

FormalParameter:
Type VariableDeclaratorId

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

The Block immediately after the keywordtry is called thetry block of the
try statement. TheBlock immediately after the keywordfinally is called the
finally block of thetry statement.

A try statement may havecatch clauses (also calledexception handlers).
A catch clause must have exactly one parameter (which is called anexception

BLOCKS AND STATEMENTS Execution oftry–catch 14.18.1

lass

 whose

ble or
e

, only

sible
rown

ves

ay.
)

is

-
k

parameter); the declared type of the exception parameter must be the c
Throwable or a subclass ofThrowable, or a compile-time error occurs. The
scope of the parameter variable is theBlock of thecatch clause. An exception
parameter must not have the same name as a local variable or parameter in
scope it is declared, or a compile-time error occurs.

The scope of the name of an exception parameter is theBlock of thecatch
clause. The name of the parameter may not be redeclared as a local varia
exception parameter within theBlock of thecatch clause; that is, hiding the nam
of an exception parameter is not permitted.

Exception parameters cannot be referred to using qualified names (§6.6)
by simple names.

Exception handlers are considered in left-to-right order: the earliest pos
catch clause accepts the exception, receiving as its actual argument the th
exception object.

A finally clause ensures that thefinally block is executed after thetry
block and anycatch block that might be executed, no matter how control lea
thetry block orcatch block.

Handling of thefinally block is rather complex, so the two cases of atry
statement with and without afinally block are described separately.

14.18.1 Execution oftry–catch

Our supreme task is the resumption of our onward, normal w
—Warren G. Harding, Inaugural Address (1921

A try statement without afinally block is executed by first executing thetry
block. Then there is a choice:

• If execution of thetry block completes normally, then no further action
taken and thetry statement completes normally.

• If execution of thetry block completes abruptly because of athrow of a
valueV , then there is a choice:

◆ If the run-time type ofV is assignable (§5.2) to theParameter of anycatch
clause of thetry statement, then the first (leftmost) suchcatch clause is
selected. The valueV is assigned to the parameter of the selectedcatch
clause, and theBlock of thatcatch clause is executed. If that block com
pletes normally, then thetry statement completes normally; if that bloc
completes abruptly for any reason, then thetry statement completes
abruptly for the same reason.
291

14.18.2 Execution oftry–catch–finally BLOCKS AND STATEMENTS

292

y

en

 is

ork,
ist,
◆ If the run-time type ofV is not assignable to the parameter of anycatch
clause of thetry statement, then thetry statement completes abruptl
because of athrow of the valueV.

• If execution of thetry block completes abruptly for any other reason, th
thetry statement completes abruptly for the same reason.

In the example:

class BlewIt extends Exception {

BlewIt() { }

BlewIt(String s) { super(s); }

}

class Test {

static void blowUp() throws BlewIt { throw new BlewIt(); }

public static void main(String[] args) {

try {
blowUp();

} catch (RuntimeException r) {
System.out.println("RuntimeException:" + r);

} catch (BlewIt b) {
System.out.println("BlewIt");

}
}

}

the exceptionBlewIt is thrown by the methodblowUp. Thetry–catch statement
in the body ofmain has twocatch clauses. The run-time type of the exception
BlewIt which is not assignable to a variable of typeRuntimeException, but is
assignable to a variable of typeBlewIt, so the output of the example is:

BlewIt

14.18.2 Execution oftry–catch–finally

After the great captains and engineers have accomplish’d their w
After the noble inventors—after the scientists, the chem

the geologist, ethnologist,
Finally shall come the Poet . . .

—Walt Whitman,Passage to India (1870)

BLOCKS AND STATEMENTS Execution oftry–catch–finally 14.18.2
A try statement with afinally block is executed by first executing thetry
block. Then there is a choice:

• If execution of thetry block completes normally, then thefinally block is
executed, and then there is a choice:

◆ If thefinally block completes normally, then thetry statement completes
normally.

◆ If the finally block completes abruptly for reasonS , then thetry state-
ment completes abruptly for reasonS.

• If execution of thetry block completes abruptly because of athrow of a
valueV, then there is a choice:

◆ If the run-time type ofV is assignable to the parameter of anycatch clause
of thetry statement, then the first (leftmost) suchcatch clause is selected.
The valueV is assigned to the parameter of the selectedcatch clause, and
theBlock of thatcatch clause is executed. Then there is a choice:

❖ If the catch block completes normally, then thefinally block is exe-
cuted. Then there is a choice:

✣ If the finally block completes normally, then thetry statement com-
pletes normally.

✣ If the finally block completes abruptly for any reason, then thetry
statement completes abruptly for the same reason.

❖ If the catch block completes abruptly for reasonR, then thefinally
block is executed. Then there is a choice:

✣ If the finally block completes normally, then thetry statement com-
pletes abruptly for reasonR.

✣ If the finally block completes abruptly for reasonS, then thetry
statement completes abruptly for reasonS (and reasonR is discarded).

◆ If the run-time type ofV is not assignable to the parameter of anycatch
clause of thetry statement, then thefinally block is executed. Then there
is a choice:

❖ If the finally block completes normally, then thetry statement com-
pletes abruptly because of athrow of the valueV.

❖ If the finally block completes abruptly for reasonS, then thetry state-
ment completes abruptly for reasonS (and thethrow of valueV is dis-
carded and forgotten).
293

14.18.2 Execution oftry–catch–finally BLOCKS AND STATEMENTS

294

aught
mple
• If execution of thetry block completes abruptly for any other reasonR, then
thefinally block is executed. Then there is a choice:

◆ If thefinally block completes normally, then thetry statement completes
abruptly for reasonR.

◆ If the finally block completes abruptly for reasonS , then thetry state-
ment completes abruptly for reasonS (and reasonR is discarded).

The example:

class BlewIt extends Exception {

BlewIt() { }

BlewIt(String s) { super(s); }

}

class Test {

static void blowUp() throws BlewIt {
throw new NullPointerException();

}

public static void main(String[] args) {
try {

blowUp();
} catch (BlewIt b) {

System.out.println("BlewIt");
} finally {

System.out.println("Uncaught Exception");
}

}

}

produces the output:

Uncaught Exception
java.lang.NullPointerException

at Test.blowUp(Test.java:7)
at Test.main(Test.java:11)

The NullPointerException (which is a kind ofRuntimeException) that is
thrown by methodblowUp is not caught by thetry statement inmain, because a
NullPointerException is not assignable to a variable of typeBlewIt. This
causes thefinally clause to execute, after which the thread executingmain,
which is the only thread of the test program, terminates because of an unc
exception (§20.21.31), which results in printing the exception name and a si
backtrace.

BLOCKS AND STATEMENTS Unreachable Statements14.19

?

ified

 The
of the
tate-
pt for

s-
to

de:

e
a

ble.
” is

r is

 is
nor-
t in

ach-
is
14.19 Unreachable Statements

That looks like a path.
Is that the way to reach the top from here

—Robert Frost,The Mountain (1915)

It is a compile-time error if a statement cannot be executed because it isunreach-
able. Every Java compiler must carry out the conservative flow analysis spec
here to make sure all statements are reachable.

This section is devoted to a precise explanation of the word “reachable.”
idea is that there must be some possible execution path from the beginning
constructor, method, or static initializer that contains the statement to the s
ment itself. The analysis takes into account the structure of statements. Exce
the special treatment ofwhile, do, andfor statements whose condition expre
sion has the constant valuetrue, the values of expressions are not taken in
account in the flow analysis. For example, a Java compiler will accept the co

{
int n = 5;
while (n > 7) n = 2;

}

even though the value ofn is known at compile time and in principle it can b
known at compile time that the assignment tok can never be executed. A Jav
compiler must operate according to the rules laid out in this section.

The rules in this section define two technical terms:

• whether a statement isreachable

• whether a statementcan complete normally

The definitions here allow a statement to complete normally only if it is reacha
To shorten the description of the rules, the customary abbreviation “iff

used to mean “if and only if.”
The rules are as follows:

• The block that is the body of a constructor, method, or static initialize
reachable.

• An empty block that is not a switch block can complete normally iff it
reachable. A nonempty block that is not a switch block can complete
mally iff the last statement in it can complete normally. The first statemen
a nonempty block that is not a switch block is reachable iff the block is re
able. Every other statementS in a nonempty block that is not a switch block
reachable iff the statement precedingS can complete normally.
295

14.19 Unreachable Statements BLOCKS AND STATEMENTS

296

ch-

g is

le.

l
ion.

 is

roup.

 is

 con-

d

• A local variable declaration statement can complete normally iff it is rea
able.

• An empty statement can complete normally iff it is reachable.

• A labeled statement can complete normally if at least one of the followin
true:

◆ The contained statement can complete normally.

◆ There is a reachablebreak statement that exits the labeled statement.

The contained statement is reachable iff the labeled statement is reachab

• An expression statement can complete normally iff it is reachable.

• Theif statement, whether or not it has anelse part, is handled in an unusua
manner. For this reason, it is discussed separately at the end of this sect

• A switch statement can complete normally iff at least one of the following
true:

◆ The last statement in the switch block can complete normally.

◆ The switch block is empty or contains only switch labels.

◆ There is at least one switch label after the last switch block statement g

◆ There is a reachablebreak statement that exits theswitch statement.

• A switch block is reachable iff itsswitch statement is reachable.

• A statement in a switch block is reachable iff itsswitch statement is reach-
able and at least one of the following is true:

◆ It bears acase or default label.

◆ There is a statement preceding it in theswitch block and that preceding
statement can complete normally.

• A while statement can complete normally iff at least one of the following
true:

◆ Thewhile statement is reachable and the condition expression is not a
stant expression with valuetrue.

◆ There is a reachablebreak statement that exits thewhile statement.

The contained statement is reachable iff thewhile statement is reachable an
the condition expression is not a constant expression whose value isfalse.

BLOCKS AND STATEMENTS Unreachable Statements14.19

ue:

pres-

 is

 con-

d

.

te-
f the

ent

f

• A do statement can complete normally iff at least one of the following is tr

◆ The contained statement can complete normally and the condition ex
sion is not a constant expression with valuetrue.

◆ There is a reachablebreak statement that exits thedo statement.

The contained statement is reachable iff thedo statement is reachable.

• A for statement can complete normally iff at least one of the following
true:

◆ Thefor statement is reachable, there is a condition expression, and the
dition expression is not a constant expression with valuetrue.

◆ There is a reachablebreak statement that exits thefor statement.

The contained statement is reachable iff thefor statement is reachable an
the condition expression is not a constant expression whose value isfalse.

• A break, continue, return, orthrow statement cannot complete normally

• A synchronized statement can complete normally iff the contained sta
ment can complete normally. The contained statement is reachable if
synchronized statement is reachable.

• A try statement can complete normally iff both of the following are true:

◆ The try block can complete normally or anycatch block can complete
normally.

◆ If thetry statement has afinally block, then thefinally block can com-
plete normally.

• Thetry block is reachable iff thetry statement is reachable.

• A catch blockC is reachable iff both of the following are true:

◆ Some expression orthrow statement in thetry block is reachable and can
throw an exception whose type is assignable to the parameter of thecatch
clauseC. (An expression is considered reachable iff the innermost statem
containing it is reachable.)

◆ There is no earliercatch blockA in thetry statement such that the type o
C ’s parameter is the same as or a subclass of the type ofA ’s parameter.

• If a finally block is present, it is reachable iff thetry statement is reach-
able.
297

14.19 Unreachable Statements BLOCKS AND STATEMENTS

298

ut

st

ot a

d

f

ssion

xpres-

tures
y for

le.

-

that
 for
One might expect theif statement to be handled in the following manner, b
these are not the rules that Java actually uses:

• HYPOTHETICAL: An if–then statement can complete normally iff at lea
one of the following istrue:

◆ The if–then statement is reachable and the condition expression is n
constant expression whose value istrue.

◆ Thethen–statement can complete normally.

Thethen–statement is reachable iff theif–then statement is reachable an
the condition expression is not a constant expression whose value isfalse.

• HYPOTHETICAL: An if–then–else statement can complete normally if
the then–statement can complete normally or theelse–statement can com-
plete normally. Thethen-statement is reachable iff theif–then–else state-
ment is reachable and the condition expression is not a constant expre
whose value isfalse. Theelse statement is reachable iff theif–then–else
statement is reachable and the condition expression is not a constant e
sion whose value istrue.

This approach would be consistent with the treatment of other control struc
in Java. However, in order to allow the if statement to be used convenientl
“conditional compilation” purposes, the actual rules are as follows:

• ACTUAL: An if–then statement can complete normally iff it is reachab
Thethen–statement is reachable iff theif–then statement is reachable.

• ACTUAL: An if–then–else statement can complete normally iff thethen–
statement can complete normally or theelse–statement can complete nor
mally. Thethen-statement is reachable iff theif–then–else statement is
reachable. Theelse-statement is reachable iff theif–then–else statement
is reachable.

As an example, the following statement results in a compile-time error:

while (false) { x=3; }

because the statementx=3; is not reachable; but the superficially similar case:

if (false) { x=3; }

does not result in a compile-time error. An optimizing compiler may realize
the statementx=3; will never be executed and may choose to omit the code
that statement from the generatedclass file, but the statementx=3; is not
regarded as “unreachable” in the technical sense specified here.

BLOCKS AND STATEMENTS Unreachable Statements14.19

fine

er

la-
ag”
er to
on of
with
ity as

n
.

The rationale for this differing treatment is to allow programmers to de
“flag variables” such as:

static final boolean DEBUG = false;

and then write code such as:

if (DEBUG) { x=3; }

The idea is that it should be possible to change the value ofDEBUG from false to
true or from true to false and then compile the code correctly with no oth
changes to the program text.

This ability to “conditionally compile” has a significant impact on, and re
tionship to, binary compatibility (§13). If a set of classes that use such a “fl
variable are compiled and conditional code is omitted, it does not suffice lat
distribute just a new version of the class or interface that contains the definiti
the flag. A change to the value of a flag is, therefore, not binary compatible
preexisting binaries (§13.4.8). (There are other reasons for such incompatibil
well, such as the use of constants incase labels inswitch statements; see
§13.4.8.)

One ought not to be thrown into confusio
By a plain statement of relationship . .

—Robert Frost,The Generations of Men (1914)
299

C H A P T E R 15
out,
t it;
bers,
d:
ely,
ce.

hich
 execu-

r their

xpres-
 opera-

ion
ethod
Expressions

When you can measure what you are speaking ab
and express it in numbers, you know something abou

but when you cannot measure it, when you cannot express it in num
your knowledge of it is of a meager and unsatisfactory kin
it may be the beginning of knowledge, but you have scarc

in your thoughts, advanced to the stage of scien
—William Thompson, Lord Kelvin

M UCH of the work in a Java program is done by evaluatingexpressions, either
for their side effects, such as assignments to variables, or for their values, w
can be used as arguments or operands in larger expressions, or to affect the
tion sequence in statements, or both.

This chapter specifies the meanings of Java expressions and the rules fo
evaluation.

15.1 Evaluation, Denotation, and Result

When an expression in a Java program isevaluated (executed), theresult denotes
one of three things:

• A variable (§4.5) (in C, this would be called anlvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to bevoid)

Evaluation of an expression can also produce side effects, because e
sions may contain embedded assignments, increment operators, decrement
tors, and method invocations.

An expression denotes nothing if and only if it is a method invocat
(§15.11) that invokes a method that does not return a value, that is, a m
301

15.2 Variables as Values EXPRESSIONS

302

state-
ppear
at is a
 case

 type
tor

 eval-
sion

a type
 are

 the
atible
hose

 class

ion is
type,
nce to

e a
object
 of the
declaredvoid (§8.4). Such an expression can be used only as an expression
ment (§14.7), because every other context in which an expression can a
requires the expression to denote something. An expression statement th
method invocation may also invoke a method that produces a result; in this
the value returned by the method is quietly discarded.

Each expression occurs in the declaration of some (class or interface)
that is being declared: in a field initializer, in a static initializer, in a construc
declaration, or in the code for a method.

15.2 Variables as Values

If an expression denotes a variable, and a value is required for use in further
uation, then the value of that variable is used. In this context, if the expres
denotes a variable or a value, we may speak simply of thevalue of the expression.

15.3 Type of an Expression

If an expression denotes a variable or a value, then the expression has
known at compile time. The rules for determining the type of an expression
explained separately below for each kind of expression.

The value of an expression is always assignment compatible (§5.2) with
type of the expression, just as the value stored in a variable is always comp
with the type of the variable. In other words, the value of an expression w
type isT is always suitable for assignment to a variable of typeT .

Note that an expression whose type is a class typeF that is declaredfinal is
guaranteed to have a value that is either a null reference or an object whose
is F itself, becausefinal types have no subclasses.

15.4 Expressions and Run-Time Checks

If the type of an expression is a primitive type, then the value of the express
of that same primitive type. But if the type of an expression is a reference
then the class of the referenced object, or even whether the value is a refere
an object rather thannull, is not necessarily known at compile time. There ar
few places in the Java language where the actual class of a referenced
affects program execution in a manner that cannot be deduced from the type
expression. They are as follows:

EXPRESSIONS Expressions and Run-Time Checks15.4

tion
rface
ced
spe-
thod
oke

fer-
e
com-

-time
peci-
 that
 time,

.12,

r
ast.

error.

f the
 cast

ctual
atible
.12,

thod
• Method invocation (§15.11). The particular method used for an invoca
o.m(...) is chosen based on the methods that are part of the class or inte
that is the type ofo. For instance methods, the class of the object referen
by the run-time value ofo participates because a subclass may override a
cific method already declared in a parent class so that this overriding me
is invoked. (The overriding method may or may not choose to further inv
the original overriddenm method.)

• The instanceof operator (§15.19.2). An expression whose type is a re
ence type may be tested usinginstanceof to find out whether the class of th
object referenced by the run-time value of the expression is assignment
patible (§5.2) with some other reference type.

• Casting (§5.4, §15.15). The class of the object referenced by the run
value of the operand expression might not be compatible with the type s
fied by the cast. For reference types, this may require a run-time check
throws an error if the class of the referenced object, as determined at run
is not assignment compatible (§5.2) with the target type.

• Assignment to an array component of reference type (§10.10, §15
§15.25.1). The type-checking rules allow the array typeS[] to be treated as a
subtype ofT[] if S is a subtype ofT, but this requires a run-time check fo
assignment to an army component, similar to the check performed for a c

• Exception handling (§14.18). An exception is caught by acatch clause only
if the class of the thrown exception object is aninstanceof the type of the
formal parameter of thecatch clause.

The first two of the cases just listed ought never to result in detecting a type
Thus, a Java run-time type error can occur only in these situations:

• In a cast, when the actual class of the object referenced by the value o
operand expression is not compatible with the target type specified by the
operator (§5.4, §15.15); in this case aClassCastException is thrown.

• In an assignment to an array component of reference type, when the a
class of the object referenced by the value to be assigned is not comp
with the actual run-time component type of the array (§10.10, §15
§15.25.1); in this case anArrayStoreException is thrown.

• When an exception is not caught by anycatch handler (§11.3); in this case
the thread of control that encountered the exception first invokes the me
uncaughtException (§20.21.31) for its thread group and then terminates.
303

15.5 Normal and Abrupt Completion of Evaluation EXPRESSIONS

304

t.

ional
alua-
cep-

pres-
ed

ssion
s an

thod

o the

tor
d

s an
ith
15.5 Normal and Abrupt Completion of Evaluation

No more: the end is sudden and abrup
—William Wordsworth,Apology for the Foregoing Poems (1831)

Every expression has a normal mode of evaluation in which certain computat
steps are carried out. The following sections describe the normal mode of ev
tion for each kind of expression. If all the steps are carried out without an ex
tion being thrown, the expression is said tocomplete normally.

If, however, evaluation of an expression throws an exception, then the ex
sion is said tocomplete abruptly. An abrupt completion always has an associat
reason, which is always athrow with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

• A class instance creation expression (§15.8), array creation expre
(§15.9), or string concatenation operatior expression (§15.17.1) throw
OutOfMemoryError if there is insufficient memory available.

• An array creation expression throws anArrayNegativeSizeException if
the value of any dimension expression is less than zero (§15.9).

• A field access (§15.10) throws aNullPointerException if the value of the
object reference expression isnull.

• A method invocation expression (§15.11) that invokes an instance me
throws aNullPointerException if the target reference isnull.

• An array access (§15.12) throws aNullPointerException if the value of
the array reference expression isnull.

• An array access (§15.12) throws anIndexOutOfBoundsException if the
value of the array index expression is negative or greater than or equal t
length of the array.

• A cast (§15.15) throws aClassCastException if a cast is found to be imper-
missible at run time.

• An integer division (§15.16.2) or integer remainder (§15.16.3) opera
throws anArithmeticException if the value of the right-hand operan
expression is zero.

• An assignment to an array component of reference type (§15.25.1) throw
ArrayStoreException when the value to be assigned is not compatible w
the component type of the array.

EXPRESSIONS Evaluate Left-Hand Operand First15.6.1

 if an
ruptly.
hrown
plete
 the
t and

e ter-
such
ally”
4.1).
se an

brupt
letion
e nor-

r.

specific

ode
 as its
eption

efore
oper-
ains a
e will
A method invocation expression can also result in an exception being thrown
exception occurs that causes execution of the method body to complete ab
A class instance creation expression can also result in an exception being t
if an exception occurs that causes execution of the constructor to com
abruptly. Various linkage and virtual machine errors may also occur during
evaluation of an expression. By their nature, such errors are difficult to predic
difficult to handle.

If an exception occurs, then evaluation of one or more expressions may b
minated before all steps of their normal mode of evaluation are complete;
expressions are said to complete abruptly. The terms “complete norm
and “complete abruptly” are also applied to the execution of statements (§1
A statement may complete abruptly for a variety of reasons, not just becau
exception is thrown.

If evaluation of an expression requires evaluation of a subexpression, a
completion of the subexpression always causes the immediate abrupt comp
of the expression itself, with the same reason, and all succeeding steps in th
mal mode of evaluation are not performed.

15.6 Evaluation Order

Let all things be done decently and in orde
—I Corinthians 14:40

Java guarantees that the operands of operators appear to be evaluated in a
evaluation order, namely, from left to right.

It is recommended that Java code not rely crucially on this specification. C
is usually clearer when each expression contains at most one side effect,
outermost operation, and when code does not depend on exactly which exc
arises as a consequence of the left-to-right evaluation of expressions.

15.6.1 Evaluate Left-Hand Operand First

The left-hand operand of a binary operator appears to be fully evaluated b
any part of the right-hand operand is evaluated. For example, if the left-hand
and contains an assignment to a variable and the right-hand operand cont
reference to that same variable, then the value produced by the referenc
reflect the fact that the assignment occurred first.
305

15.6.1 Evaluate Left-Hand Operand First EXPRESSIONS

306

ation
hand
n the

 of the
is

hav-

ptly,
Thus:

class Test {
public static void main(String[] args) {

int i = 2;
int j = (i=3) * i;
System.out.println(j);

}
}

prints:

9

It is not permitted for it to print6 instead of9.
If the operator is a compound-assignment operator (§15.25.2), then evalu

of the left-hand operand includes both remembering the variable that the left-
operand denotes and fetching and saving that variable’s value for use i
implied combining operation. So, for example, the test program:

class Test {
public static void main(String[] args) {

int a = 9;
a += (a = 3); // first example
System.out.println(a);
int b = 9;
b = b + (b = 3); // second example
System.out.println(b);

}
}

prints:

12
12

because the two assignment statements both fetch and remember the value
left-hand operand, which is9, before the right-hand operand of the addition
evaluated, thereby setting the variable to3. It is not permitted for either example
to produce the result6. Note that both of these examples have unspecified be
ior in C, according to the ANSI/ISO standard.

If evaluation of the left-hand operand of a binary operator completes abru
no part of the right-hand operand appears to have been evaluated.

Thus, the test program:

EXPRESSIONS Evaluate Operands before Operation15.6.2

itional
he

r

been
class Test {

public static void main(String[] args) {

int j = 1;

try {
int i = forgetIt() / (j = 2);

} catch (Exception e) {
System.out.println(e);
System.out.println("Now j = " + j);

}
}

static int forgetIt() throws Exception {
throw new Exception("I’m outta here!");

}

}

prints:

java.lang.Exception: I'm outta here!
Now j = 1

because the left-hand operandforgetIt() of the operator/ throws an exception
before the right-hand operand and its embedded assignment of2 to j occurs.

15.6.2 Evaluate Operands before Operation

Java also guarantees that every operand of an operator (except the cond
operators&&, ||, and? :) appears to be fully evaluated before any part of t
operation itself is performed.

If the binary operator is an integer division/ (§15.16.2) or integer remainde
% (§15.16.3), then its execution may raise anArithmeticException, but this
exception is thrown only after both operands of the binary operator have
evaluated and only if these evaluations completed normally.

So, for example, the program:

class Test {

public static void main(String[] args) {
int divisor = 0;
try {

int i = 1 / (divisor * loseBig());
} catch (Exception e) {

System.out.println(e);
}

}

307

15.6.3 Evaluation Respects Parentheses and Precedence EXPRESSIONS

308

ero

era-

 . . .

licitly
may
write

roven
 side
read

t be

and

sso-
ust

er to
re,
se
static int loseBig() throws Exception {
throw new Exception("Shuffle off to Buffalo!");

}

}

always prints:

java.lang.Exception: Shuffle off to Buffalo!

and not:

java.lang.ArithmeticException: / by zero

since no part of the division operation, including signaling of a divide-by-z
exception, may appear to occur before the invocation ofloseBig completes, even
though the implementation may be able to detect or infer that the division op
tion would certainly result in a divide-by-zero exception.

15.6.3 Evaluation Respects Parentheses and Precedence

That is too weighty a subject to be discussed parenthetically
—John Stuart Mill,On Liberty (1869), Chapter IV

Java implementations must respect the order of evaluation as indicated exp
by parentheses and implicitly by operator precedence. An implementation
not take advantage of algebraic identities such as the associative law to re
expressions into a more convenient computational order unless it can be p
that the replacement expression is equivalent in value and in its observable
effects, even in the presence of multiple threads of execution (using the th
execution model in §17), for all possible computational values that migh
involved.

In the case of floating-point calculations, this rule applies also for infinity
not-a-number (NaN) values. For example,!(x<y) may not be rewritten asx>=y,
because these expressions have different values if eitherx or y is NaN.

Specifically, floating-point calculations that appear to be mathematically a
ciative are unlikely to be computationally associative. Such computations m
not be naively reordered. For example, it is not correct for a Java compil
rewrite 4.0*x*0.5 as2.0*x; while roundoff happens not to be an issue he
there are large values ofx for which the first expression produces infinity (becau
of overflow) but the second expression produces a finite result.

So, for example, the test program:

EXPRESSIONS Argument Lists are Evaluated Left-to-Right15.6.4

e to

 argu-
s. Each
ument
class Test {

public static void main(String[] args) {
double d = 8e+307;
System.out.println(4.0 * d * 0.5);
System.out.println(2.0 * d);

}
}

prints:

Infinity
1.6e+308

because the first expression overflows and the second does not.
In contrast, integer addition and multiplicationare provably associative in

Java; for examplea+b+c, wherea, b, andc are local variables (this simplifying
assumption avoids issues involving multiple threads andvolatile variables),
will always produce the same answer whether evaluated as(a+b)+c or a+(b+c);
if the expressionb+c occurs nearby in the code, a smart compiler may be abl
use this common subexpression.

15.6.4 Argument Lists are Evaluated Left-to-Right

In a method or constructor invocation or class instance creation expression,
ment expressions may appear within the parentheses, separated by comma
argument expression appears to be fully evaluated before any part of any arg
expression to its right.

Thus:

class Test {

public static void main(String[] args) {
String s = "going, ";
print3(s, s, s = "gone");

}

static void print3(String a, String b, String c) {
System.out.println(a + b + c);

}

}

always prints:

going, going, gone

because the assignment of the string"gone" to s occurs after the first two argu-
ments toprint3 have been evaluated.
309

15.6.5 Evaluation Order for Other Expressions EXPRESSIONS

310

 any

these
t times
ation
If evaluation of an argument expression completes abruptly, no part of
argument expression to its right appears to have been evaluated.

Thus, the example:

class Test {

static int id;

public static void main(String[] args) {
try {

test(id = 1, oops(), id = 3);
} catch (Exception e) {

System.out.println(e + ", id=" + id);
}

}

static int oops() throws Exception {
throw new Exception("oops");

}

static int test(int a, int b, int c) {
return a + b + c;

}

}

prints:

java.lang.Exception: oops, id=1

because the assignment of3 to id is not executed.

15.6.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by
general rules, because these expressions may raise exceptional conditions a
that must be specified. See, specifically, the detailed explanations of evalu
order for the following kinds of expressions:

• class instance creation expressions (§15.8.1)

• array creation expressions (§15.9.1)

• method invocation expressions (§15.11.4)

• array access expressions (§15.12.1)

• assignments involving array components (§15.25)

EXPRESSIONS Primary Expressions 15.7

from
, and
 a pri-

ar is
es of

hnical
when

ava

is the

at
be a
to the
 by

ax
15.7 Primary Expressions

Primary expressions include most of the simplest kinds of expressions,
which all others are constructed: literals, field accesses, method invocations
array accesses. A parenthesized expression is also treated syntactically as
mary expression.

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

As programming language grammars go, this part of the Java gramm
unusual, in two ways. First, one might expect simple names, such as nam
local variables and method parameters, to be primary expressions. For tec
reasons, names are lumped together with primary expressions a little later
postfix expressions are introduced (§15.13).

The technical reasons have to do with allowing left-to-right parsing of J
programs with only one-token lookahead. Consider the expressions(z[3]) and
(z[]). The first is a parenthesized array access (§15.12) and the second
start of a cast (§15.15). At the point that the look-ahead symbol is[, a left-to-right
parse will have reduced thez to the nonterminalName. In the context of a cast we
prefer not to have to reduce the name to aPrimary, but if Name were one of the
alternatives forPrimary, then we could not tell whether to do the reduction (th
is, we could not determine whether the current situation would turn out to
parenthesized array access or a cast) without looking ahead two tokens,
token following the[. The Java grammar presented here avoids the problem
keepingName andPrimary separate and allowing either in certain other synt
rules (those forMethodInvocation, ArrayAccess, PostfixExpression, but not for
FieldAccess, because this is covered byName). This strategy effectively defers the
question of whether aName should be treated as aPrimary until more context can
be examined. (Other problems remain with cast expressions; see §19.1.5.)
311

15.7.1 Literals EXPRESSIONS

312

 the

, but
d as

f

e.
The second unusual feature avoids a potential grammatical ambiguity in
expression:

new int[3][3]

which in Java always means a single creation of a multidimensional array
which, without appropriate grammatical finesse, might also be interprete
meaning the same as:

(new int[3])[3]

This ambiguity is eliminated by splitting the expected definition ofPrimary into
Primary and PrimaryNoNewArray. (This may be compared to the splitting o
Statement into Statement andStatementNoShortIf (§14.4) to avoid the “dangling
else” problem.)

15.7.1 Literals

A literal (§3.10) denotes a fixed, unchanging value.
The following production from §3.10 is repeated here for convenience:

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal that ends withL or l is long; the type of any
other integer literal isint.

• The type of a floating-point literal that ends withF or f is float; the type of
any other floating-point literal isdouble.

• The type of a boolean literal isboolean.

• The type of a character literal ischar.

• The type of a string literal isString.

• The type of the null literalnull is the null type; its value is the null referenc

Evaluation of a literal always completes normally.

EXPRESSIONS Parenthesized Expressions15.7.3

on-
any-

1), or

ay

.

isons.
 the

on

of the
ained
15.7.2 this

The keywordthis may be used only in the body of an instance method or c
structor, or in the initializer of an instance variable of a class. If it appears
where else, a compile-time error occurs.

When used as a primary expression, the keywordthis denotes a value, that is
a reference to the object for which the instance method was invoked (§15.1
to the object being constructed. The type ofthis is the classC within which the
keywordthis occurs. At run time, the class of the actual object referred to m
be the classC or any subclass ofC.

In the example:

class IntVector {

int[] v;

boolean equals(IntVector other) {
if (this == other)

return true;
if (v.length != other.v.length)

return false;
for (int i = 0; i < v.length; i++)

if (v[i] != other.v[i])
return false;

return true;
}

}

the classIntVector implements a methodequals, which compares two vectors
If the other vector is the same vector object as the one for which theequals
method was invoked, then the check can skip the length and value compar
The equals method implements this check by comparing the reference to
other object tothis.

The keywordthis is also used in a special explicit constructor invocati
statement, which can appear at the beginning of a constructor body (§8.6.5).

15.7.3 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type
contained expression and whose value at run time is the value of the cont
expression.
313

15.8 Class Instance Creation Expressions EXPRESSIONS

314

t are

t

uctor
 as for
thod
le to
rs.

pace
 com-

peci-
d, it is

val-
valu-
 same

This
 type.
§8.6)

newly
ted, a
15.8 Class Instance Creation Expressions

A class instance creation expression is used to create new objects tha
instances of classes.

ClassInstanceCreationExpression:
new ClassType (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

In a class instance creation expression, theClassTypemust name a class tha
is notabstract. This class type is the type of the creation expression.

The arguments in the argument list, if any, are used to select a constr
declared in the body of the named class type, using the same matching rules
method invocations (§15.11). As in method invocations, a compile-time me
matching error results if there is no unique constructor that is both applicab
the provided arguments and the most specific of all the applicable constructo

15.8.1 Run-time Evaluation of Class Instance Creation Expressions

At run time, evaluation of a class instance creation expression is as follows.
First, space is allocated for the new class instance. If there is insufficient s

to allocate the object, evaluation of the class instance creation expression
pletes abruptly by throwing anOutOfMemoryError (§15.8.2).

The new object contains new instances of all the fields declared in the s
fied class type and all its superclasses. As each new field instance is create
initialized to its standard default value (§4.5.4).

Next, the argument list is evaluated, left-to-right. If any of the argument e
uations completes abruptly, any argument expressions to its right are not e
ated, and the class instance creation expression completes abruptly for the
reason.

Next, the selected constructor of the specified class type is invoked.
results in invoking at least one constructor for each superclass of the class
This process can be directed by explicit constructor invocation statements (
and is described in detail in §12.5.

The value of a class instance creation expression is a reference to the
created object of the specified class. Every time the expression is evalua
fresh object is created.

EXPRESSIONS Array Creation Expressions 15.9

cient

ssion

hich
res-
15.8.2 Example: Evaluation Order and Out-of-Memory Detection

If evaluation of a class instance creation expression finds there is insuffi
memory to perform the creation operation, then anOutOfMemoryError is thrown.
This check occurs before any argument expressions are evaluated.

So, for example, the test program:

class List {
int value;
List next;
static List head = new List(0);
List(int n) { value = n; next = head; head = this; }

}

class Test {
public static void main(String[] args) {

int id = 0, oldid = 0;
try {

for (;;) {
++id;
new List(oldid = id);

}
} catch (Error e) {

System.out.println(e + ", " + (oldid==id));
}

}
}

prints:

java.lang.OutOfMemoryError: List, false

because the out-or-memory condition is detected before the argument expre
oldid = id is evaluated.

Compare this to the treatment of array creation expressions (§15.9), for w
the out-of-memory condition is detected after evaluation of the dimension exp
sions (§15.9.3).

15.9 Array Creation Expressions

An array instance creation expression is used to create new arrays (§10).

ArrayCreationExpression:
new PrimitiveType DimExprs Dimsopt
new TypeName DimExprs Dimsopt
315

15.9.1 Run-time Evaluation of Array Creation Expressions EXPRESSIONS

316

e ele-

-

 copy

on:

otion

 the
re not

f any

allo-
tly by
DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

Dims:
[]
Dims []

An array creation expression creates an object that is a new array whos
ments are of the type specified by thePrimitiveType or TypeName. TheTypeName
may name any reference type, even anabstract class type (§8.1.2.1) or an inter
face type (§9).

The type of the creation expression is an array type that can denoted by a
of the creation expression from which thenew keyword and everyDimExpr
expression have been deleted; for example, the type of the creation expressi

new double[3][3][]

is:

double[][][]

The type of each dimension expressionDimExpr must be an integral type, or a
compile-time error occurs. Each expression undergoes unary numeric prom
(§5.6.1). The promoted type must beint, or a compile-time error occurs; this
means, specifically, that the type of a dimension expression must not belong.

15.9.1 Run-time Evaluation of Array Creation Expressions

At run time, evaluation of an array creation expression behaves as follows.
First, the dimension expressions are evaluated, left-to-right. If any of

expression evaluations completes abruptly, the expressions to the right of it a
evaluated.

Next, the values of the dimension expressions are checked. If the value o
DimExpr expression is less than zero, then anNegativeArraySizeException is
thrown.

Next, space is allocated for the new array. If there is insufficient space to
cate the array, evaluation of the array creation expression completes abrup
throwing anOutOfMemoryError.

EXPRESSIONS Run-time Evaluation of Array Creation Expressions15.9.1

 of
dard

ys of

ed.
s of
th

g the

each
Then, if a singleDimExpr appears, a single-dimensional array is created
the specified length, and each component of the array is initialized to its stan
default value (§4.5.4).

If an array creation expression containsN DimExpr expressions, then it effec-
tively executes a set of nested loops of depth to create the implied arra
arrays. For example, the declaration:

float[][] matrix = new float[3][3];

is equivalent in behavior to:

float[][] matrix = new float[3][];
for (int d = 0; d < matrix.length; d++)

matrix[d] = new float[3];

and:

Age[][][][][] Aquarius = new Age[6][10][8][12][];

is equivalent to:

Age[][][][][] Aquarius = new Age[6][][][][];
for (int d1 = 0; d1 < Aquarius.length; d1++) {

Aquarius[d1] = new Age[8][][][];
for (int d2 = 0; d2 < Aquarius[d1].length; d2++) {

Aquarius[d1][d2] = new Age[10][][];
for (int d3 = 0; d3 < Aquarius[d1][d2].length; d3++) {

Aquarius[d1][d2][d3] = new Age[12][];
}

}
}

with d, d1, d2 andd3 replaced by names that are not already locally declar
Thus, a singlenew expression actually creates one array of length 6, 6 array
length 10, arrays of length 8, and arrays of leng
12. This example leaves the fifth dimension, which would be arrays containin
actual array elements (references toAge objects), initialized only to null refer-
ences. These arrays can be filled in later by other code, such as:

Age[] Hair = { new Age("quartz"), new Age("topaz") };
Aquarius[1][9][6][9] = Hair;

A multidimensional array need not have arrays of the same length at
level; thus, a triangular matrix may be created by:

float triang[][] = new float[100][];
for (int i = 0; i < triang.length; i++)

triang[i] = new float[i+1];

There is, however, no way to get this effect with a single creation expression.

N 1–

6 10× 60= 6 10 8×× 480=
317

15.9.2 Example: Array Creation Evaluation Order EXPRESSIONS

318

nsion
uated

s-

any
, the
15.9.2 Example: Array Creation Evaluation Order

In an array creation expression (§15.9), there may be one or more dime
expressions, each within brackets. Each dimension expression is fully eval
before any part of any dimension expression to its right.

Thus:

class Test {
public static void main(String[] args) {

int i = 4;
int ia[][] = new int[i][i=3];
System.out.println(

"[" + ia.length + "," + ia[0].length + "]");
}

}

prints:

[4,3]

because the first dimension is calculated as4 before the second dimension expre
sion setsi to 3.

If evaluation of a dimension expression completes abruptly, no part of
dimension expression to its right will appear to have been evaluated. Thus
example:

class Test {

public static void main(String[] args) {
int[][] a = { { 00, 01 }, { 10, 11 } };
int i = 99;
try {

a[val()][i = 1]++;
} catch (Exception e) {

System.out.println(e + ", i=" + i);
}

}

static int val() throws Exception {
throw new Exception("unimplemented");

}

}

prints:

java.lang.Exception: unimplemented, i=99

because the embedded assignment that setsi to 1 is never executed.

EXPRESSIONS Field Access Expressions15.10

ry to

ally.

ssion

ct the

nce to

imple

 rules
nnot
15.9.3 Example: Array Creation and Out-of-Memory Detection

If evaluation of an array creation expression finds there is insufficient memo
perform the creation operation, then anOutOfMemoryError is thrown. This check
occurs only after evaluation of all dimension expressions has completed norm

So, for example, the test program:

class Test {
public static void main(String[] args) {

int len = 0, oldlen = 0;
Object[] a = new Object[0];
try {

for (;;) {
++len;
Object[] temp = new Object[oldlen = len];
temp[0] = a;
a = temp;

}
} catch (Error e) {

System.out.println(e + ", " + (oldlen==len));
}

}
}

prints:

java.lang.OutOfMemoryError, true

because the out-of-memory condition is detected after the argument expre
oldlen = len is evaluated.

Compare this to class instance creation expressions (§15.8), which dete
out-of-memory condition before evaluating argument expressions (§15.8.2).

15.10 Field Access Expressions

A field access expression may access a field of an object or array, a refere
which is the value of either an expression or the special keywordsuper. (It is also
possible to refer to a field of the current instance or current class by using a s
name; see §15.13.1.)

FieldAccess:
Primary . Identifier
super . Identifier

The meaning of a field access expression is determined using the same
as for qualified names (§6.6), but limited by the fact that an expression ca
denote a package, class type, or interface type.
319

15.10.1 Field Access Using a Primary EXPRESSIONS

320

:

t run

ari-

ed

ce

ed

e
.

15.10.1 Field Access Using a Primary

The type of thePrimary must be a reference typeT, or a compile-time error
occurs. The meaning of the field access expression is determined as follows

• If the identifier names several accessible member fields of typeT, then the
field access is ambiguous and a compile-time error occurs.

• If the identifier does not name an accessible member field of typeT , then the
field access is undefined and a compile-time error occurs.

• Otherwise, the identifier names a single accessible member field of typeT and
the type of the field access expression is the declared type of the field. A
time, the result of the field access expression is computed as follows:

◆ If the field isstatic:

❖ If the field isfinal, then the result is the value of the specified class v
able in the class or interface that is the type of thePrimary expression.

❖ If the field is notfinal, then the result is a variable, namely, the specifi
class variable in the class that is the type of thePrimary expression.

◆ If the field is notstatic:

❖ If the value of thePrimary is null, then aNullPointerException is
thrown.

❖ If the field isfinal, then the result is the value of the specified instan
variable in the object referenced by the value of thePrimary.

❖ If the field is notfinal, then the result is a variable, namely, the specifi
instance variable in the object referenced by the value of thePrimary.

Note, specifically, that only the type of thePrimary expression, not the class of th
actual object referred to at run time, is used in determining which field to use

Thus, the example:

class S { int x = 0; }

class T extends S { int x = 1; }

class Test {

public static void main(String[] args) {

T t = new T();
System.out.println("t.x=" + t.x + when("t", t));

S s = new S();
System.out.println("s.x=" + s.x + when("s", s));

EXPRESSIONS Field Access Using a Primary15.10.1

 on the
f

ntly
g is
 same
s = t;
System.out.println("s.x=" + s.x + when("s", s));

}

static String when(String name, Object t) {
return " when " + name + " holds a "

+ t.getClass() + " at run time.";
}

}

produces the output:

t.x=1 when t holds a class T at run time.
s.x=0 when s holds a class S at run time.
s.x=0 when s holds a class T at run time.

The last line shows that, indeed, the field that is accessed does not depend
run-time class of the referenced object; even ifs holds a reference to an object o
classT, the expressions.x refers to thex field of classS, because the type of the
expressions is S. Objects of classT contain two fields namedx, one for classT
and one for its superclassS.

This lack of dynamic lookup for field accesses allows Java to run efficie
with straightforward implementations. The power of late binding and overridin
available in Java, but only when instance methods are used. Consider the
example using instance methods to access the fields:

class S { int x = 0; int z() { return x; } }

class T extends S { int x = 1; int z() { return x; } }

class Test {

public static void main(String[] args) {
T t = new T();
System.out.println("t.z()=" + t.z() + when("t", t));
S s = new S();
System.out.println("s.z()=" + s.z() + when("s", s));
s = t;
System.out.println("s.z()=" + s.z() + when("s", s));

}

static String when(String name, Object t) {
return " when " + name + " holds a "

+ t.getClass() + " at run time.";
}

}

Now the output is:
321

15.10.2 Accessing Superclass Members usingsuper EXPRESSIONS

322

s

d to

alue,

r
actly

.

an
t.z()=1 when t holds a class T at run time.
s.z()=0 when s holds a class S at run time.
s.z()=1 when s holds a class T at run time.

The last line shows that, indeed, the method that is accesseddoes depend on the
run-time class of referenced object; whens holds a reference to an object of clas
T, the expressions.z() refers to thez method of classT, despite the fact that the
type of the expressions is S. Methodz of classT overrides methodz of classS.

The following example demonstrates that a null reference may be use
access a class (static) variable without causing an exception:

class Test {

static String mountain = "Chocorua";

static Test favorite(){
System.out.print("Mount ");
return null;

}

public static void main(String[] args) {
System.out.println(favorite().mountain);

}

}

It compiles, executes, and prints:

Mount Chocorua

Even though the result offavorite() is null, aNullPointerException is not
thrown. That “Mount ” is printed demonstrates that thePrimary expression is
indeed fully evaluated at run time, despite the fact that only its type, not its v
is used to determine which field to access (because the fieldmountain isstatic).

15.10.2 Accessing Superclass Members usingsuper

The special form using the keywordsuper is valid only in an instance method o
constructor, or in the initializer of an instance variable of a class; these are ex
the same situations in which the keywordthis may be used (§15.7.2). The form
involving super may not be used anywhere in the classObject, sinceObject has
no superclass; ifsuper appears in classObject, then a compile-time error results

Suppose that a field access expressionsuper.name appears within classC,
and the immediate superclass ofC is classS. Thensuper.name is treated exactly
as if it had been the expression((S)this).name; thus, it refers to the field
namedname of the current object, but with the current object viewed as
instance of the superclass. Thus it can access the field namedname that is visible

EXPRESSIONS Method Invocation Expressions15.11

.

in classS , even if that field is hidden by a declaration of a field namedname in
classC .

The use ofsuper is demonstrated by the following example:

interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {

int x = 3;
void test() {

System.out.println("x=\t\t"+x);
System.out.println("super.x=\t\t"+super.x);
System.out.println("((T2)this).x=\t"+((T2)this).x);
System.out.println("((T1)this).x=\t"+((T1)this).x);
System.out.println("((I)this).x=\t"+((I)this).x);

}
}
class Test {

public static void main(String[] args) {
new T3().test();

}
}

which produces the output:

x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0

Within classT3, the expressionsuper.x is treated exactly as if it were:

((T2)this).x

15.11 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method

MethodInvocation:
MethodName (ArgumentListopt)
Primary . Identifier (ArgumentListopt)
super . Identifier (ArgumentListopt)

The definition ofArgumentList from §15.8 is repeated here for convenience:

ArgumentList:
Expression
ArgumentList , Expression
323

15.11.1 Compile-Time Step 1: Determine Class or Interface to Search EXPRESSIONS

324

lving
thod
ssibil-

res-
pile-

 the

 out
k for
pend-

d
lara-

 the
hen

e

aration
thod

than
ruc-
Resolving a method name at compile time is more complicated than reso
a field name because of the possibility of method overloading. Invoking a me
at run time is also more complicated than accessing a field because of the po
ity of instance method overriding.

Determining the method that will be invoked by a method invocation exp
sion involves several steps. The following three sections describe the com
time processing of a method invocation; the determination of the type of
method invocation expression is described in §15.11.3.

15.11.1 Compile-Time Step 1: Determine Class or Interface to Search

The first step in processing a method invocation at compile time is to figure
the name of the method to be invoked and which class or interface to chec
definitions of methods of that name. There are several cases to consider, de
ing on the form that precedes the left parenthesis, as follows:

• If the form isMethodName, then there are three subcases:

◆ If it is a simple name, that is, just anIdentifier, then the name of the metho
is theIdentifier and the class or interface to search is the one whose dec
tion contains the method invocation.

◆ If it is a qualified name of the formTypeName. Identifier, then the name of
the method is theIdentifier and the class to search is the one named by
TypeName. If TypeName is the name of an interface rather than a class, t
a compile-time error occurs, because this form can invoke onlystatic
methods and interfaces have nostatic methods.

◆ In all other cases, the qualified name has the formFieldName. Identifier;
then the name of the method is theIdentifier and the class or interface to
search is the declared type of the field named by theFieldName.

• If the form is Primary . Identifier, then the name of the method is th
Identifierand the class or interface to be searched is the type of thePrimary
expression.

• If the form issuper . Identifier, then the name of the method is theIdentifier
and the class to be searched is the superclass of the class whose decl
contains the method invocation. A compile-time error occurs if such a me
invocation occurs in an interface, or in the classObject, or in astatic
method, a static initializer, or the initializer for astatic variable. It follows
that a method invocation of this form may appear only in a class other
Object, and only in the body of an instance method, the body of a const
tor, or an initializer for an instance variable.

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.11.2

 . . .

tep for
 of the

rgu-
se the
most
h.

f

er of

 con-
tion
stants

.1 is
thod
 this

s

 and
15.11.2 Compile-Time Step 2: Determine Method Signature

The hand-writing experts were called upon for their opinion of the signature
—Agatha Christie,The Mysterious Affair at Styles (1920), Chapter 11

The second step searches the class or interface determined in the previous s
method declarations. This step uses the name of the method and the types
argument expressions to locate method declarations that are bothapplicable and
accessible, that is, declarations that can be correctly invoked on the given a
ments. There may be more than one such method declaration, in which ca
most specific one is chosen. The descriptor (signature plus return type) of the
specific method declaration is one used at run time to do the method dispatc

15.11.2.1 Find Methods that are Applicable and Accessible

A method declaration isapplicable to a method invocation if and only if both o
the following are true:

• The number of parameters in the method declaration equals the numb
argument expressions in the method invocation.

• The type of each actual argument can be converted by method invocation
version (§5.3) to the type of the corresponding parameter. Method invoca
conversion is the same as assignment conversion (§5.2), except that con
of typeint are never implicitly narrowed tobyte, short, orchar.

The class or interface determined by the process described in §15.11
searched for all method declarations applicable to this method invocation; me
definitions inherited from superclasses and superinterfaces are included in
search.

Whether a method declaration isaccessible to a method invocation depend
on the access modifier (public, none,protected, or private) in the method
declaration and on where the method invocation appears.

If the class or interface has no method declaration that is both applicable
accessible, then a compile-time error occurs.

In the example program:

public class Doubler {

static int two() { return two(1); }

private static int two(int i) { return 2*i; }

}

325

15.11.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

326

 one

t

.

uld
nver-

the
class Test extends Doubler {

public static long two(long j) {return j+j; }

public static void main(String[] args) {
System.out.println(two(3));
System.out.println(Doubler.two(3)); // compile-time error

}

}

for the method invocationtwo(1) within classDoubler, there are two accessible
methods namedtwo, but only the second one is applicable, and so that is the
invoked at run time. For the method invocationtwo(3) within classTest, there
are two applicable methods, but only the one in classTest is accessible, and so
that is the one to be invoked at run time (the argument3 is converted to type
long). For the method invocationDoubler.two(3), the classDoubler, not class
Test, is searched for methods namedtwo; the only applicable method is no
accessible, and so this method invocation causes a compile-time error.

Another example is:

class ColoredPoint {
int x, y;
byte color;
void setColor(byte color) { this.color = color; }

}

class Test {
public static void main(String[] args) {

ColoredPoint cp = new ColoredPoint();
byte color = 37;
cp.setColor(color);
cp.setColor(37); // compile-time error

}
}

Here, a compile-time error occurs for the second invocation ofsetColor, because
no applicable method can be found at compile time. The type of the literal37 is
int, and int cannot be converted tobyte by method invocation conversion
Assignment conversion, which is used in the initialization of the variablecolor,
performs an implicit conversion of the constant from typeint to byte, which is
permitted because the value37 is small enough to be represented in typebyte; but
such a conversion is not allowed for method invocation conversion.

If the methodsetColor had, however, been declared to take anint instead of
abyte, then both method invocations would be correct; the first invocation wo
be allowed because method invocation conversion does permit a widening co
sion frombyte to int. However, a narrowing cast would then be required in
body ofsetColor:

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.11.2

ation,
d dis-

han
o the

re
t

ars

ethod

ppli-
ks as

o or
ethod
void setColor(int color) { this.color = (byte)color; }

15.11.2.2 Choose the Most Specific Method

If more than one method is both accessible and applicable to a method invoc
it is necessary to choose one to provide the descriptor for the run-time metho
patch. Java uses the rule that themost specific method is chosen.

The informal intuition is that one method declaration is more specific t
another if any invocation handled by the first method could be passed on t
other one without a compile-time type error.

The precise definition is as follows. Letm be a name and suppose that the
are two declarations of methods namedm , each havingn parameters. Suppose tha
one declaration appears within a class or interfaceT and that the types of the
parameters areT1, . . . , Tn; suppose moreover that the other declaration appe
within a class or interfaceU and that the types of the parameters areU1, . . . , Un.
Then the methodm declared inT is more specific than the methodm declared inU
if and only if both of the following are true:

• T can be converted toU by method invocation conversion.

• Tj can be converted toUj by method invocation conversion, for allj from 1
to n.

A method is said to bemaximally specific for a method invocation if it is
applicable and accessible and there is no other applicable and accessible m
that is more specific.

If there is exactly one maximally specific method, then it is in factthe most
specific method; it is necessarily more specific than any other method that is a
cable and accessible. It is then subjected to some further compile-time chec
described in §15.11.3.

It is possible that no method is the most specific, because there are tw
more maximally specific method declarations. In this case, we say that the m
invocation isambiguous, and a compile-time error occurs.

15.11.2.3 Example: Overloading Ambiguity

Consider the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }
327

15.11.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

328

e two
spe-

tion
class Test {

static void test(ColoredPoint p, Point q) {
System.out.println("(ColoredPoint, Point)");

}

static void test(Point p, ColoredPoint q) {
System.out.println("(Point, ColoredPoint)");

}

public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
test(cp, cp); // compile-time error

}

}

This example produces an error at compile time. The problem is that there ar
declarations oftest that are applicable and accessible, and neither is more
cific than the other. Therefore, the method invocation is ambiguous.

If a third definition oftest were added:

static void test(ColoredPoint p, ColoredPoint q) {
System.out.println("(ColoredPoint, ColoredPoint)");

}

then it would be more specific than the other two, and the method invoca
would no longer be ambiguous.

15.11.2.4 Example: Return Type Not Considered

As another example, consider:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

static int test(ColoredPoint p) {
return color;

}

static String test(Point p) {
return "Point";

}

public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
String s = test(cp); // compile-time error

}

}

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.11.2

r

o not

uld

ines
class,
t use
en.
Here the most specific declaration of methodtest is the one taking a paramete
of typeColoredPoint. Because the result type of the method isint, a compile-
time error occurs because anint cannot be converted to aString by assignment
conversion. This example shows that, in Java, the result types of methods d
participate in resolving overloaded methods, so that the secondtest method,
which returns aString, is not chosen, even though it has a result type that wo
allow the example program to compile without error.

15.11.2.5 Example: Compile-Time Resolution

The most applicable method is chosen at compile time; its descriptor determ
what method is actually executed at run time. If a new method is added to a
then Java code that was compiled with the old definition of the class might no
the new method, even if a recompilation would cause this method to be chos

So, for example, consider two compilation units, one for classPoint:

package points;

public class Point {

public int x, y;

public Point(int x, int y) { this.x = x; this.y = y; }

public String toString() { return toString(""); }

public String toString(String s) {
return "(" + x + "," + y + s + ")";

}

}

and one for classColoredPoint:

package points;

public class ColoredPoint extends Point {

public static final int
RED = 0, GREEN = 1, BLUE = 2;

public static String[] COLORS =
{ "red", "green", "blue" };

public byte color;

public ColoredPoint(int x, int y, int color) {
super(x, y); this.color = (byte)color;

}

329

15.11.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

330

e

 for

able
a

er of
g a
/** Copy all relevant fields of the argument into
thisColoredPoint object. */

public void adopt(Point p) { x = p.x; y = p.y; }

public String toString() {
String s = "," + COLORS[color];
return super.toString(s);

}

}

Now consider a third compilation unit that usesColoredPoint:

import points.*;

class Test {
public static void main(String[] args) {

ColoredPoint cp =
new ColoredPoint(6, 6, ColoredPoint.RED);

ColoredPoint cp2 =
new ColoredPoint(3, 3, ColoredPoint.GREEN);

cp.adopt(cp2);
System.out.println("cp: " + cp);

}
}

The output is:

cp: (3,3,red)

The application programmer who coded classTest has expected to see th
word green, because the actual argument, aColoredPoint, has acolor field,
andcolor would seem to be a “relevant field” (of course, the documentation
the packagePoints ought to have been much more precise!).

Notice, by the way, that the most specific method (indeed, the only applic
method) for the method invocation ofadopt has a signature that indicates
method of one parameter, and the parameter is of typePoint. This signature
becomes part of the binary representation of classTest produced by the compiler
and is used by the method invocation at run time.

Suppose the programmer reported this software error and the maintain
the points package decided, after due deliberation, to correct it by addin
method to classColoredPoint:

public void adopt(ColoredPoint p) {
adopt((Point)p); color = p.color;

}

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.11.2

se

re
ific

d

 to a
of old

class

 on is
tained
ing

 code
 and
If the application programmer then runs the old binary file forTest with the
new binary file forColoredPoint, the output is still:

cp: (3,3,red)

because the old binary file forTest still has the descriptor “one parameter, who
type is Point; void” associated with the method callcp.adopt(cp2). If the
source code forTest is recompiled, the compiler will then discover that there a
now two applicableadopt methods, and that the signature for the more spec
one is “one parameter, whose type isColoredPoint; void”; running the program
will then produce the desired output:

cp: (3,3,green)

With forethought about such problems, the maintainer of thepoints package
could fix theColoredPoint class to work with both newly compiled and ol
code, by adding defensive code to the oldadopt method for the sake of old code
that still invokes it onColoredPoint arguments:

public void adopt(Point p) {
if (p instanceof ColoredPoint)

color = ((ColoredPoint)p).color;
x = p.x; y = p.y;

}

A similar consideration applies if a method is to be moved from a class
superclass. In this case a forwarding method can be left behind for the sake
code. The maintainer of thepoints package might choose to move theadopt
method that takes aPoint argument up to classPoint, so that allPoint objects
may enjoy theadopt functionality. To avoid compatibility problems with old
binary code, the maintainer should leave a forwarding method behind in
ColoredPoint:

public void adopt(Point p) {
if (p instanceof ColoredPoint)

color = ((ColoredPoint)p).color;
super.adopt(p);

}

Ideally, Java code should be recompiled whenever code that it depends
changed. However, in an environment where different Java classes are main
by different organizations, this is not always feasible. Defensive programm
with careful attention to the problems of class evolution can make upgraded
much more robust. See §13 for a detailed discussion of binary compatibility
type evolution.
331

15.11.3 Compile-Time Step 3: Is the Chosen Method Appropriate? EXPRESSIONS

332

alled
st

-
pile-
nnot

e
an
at a

 that

uch a
ation

od
15.11.3 Compile-Time Step 3: Is the Chosen Method Appropriate?

If there is a most specific method declaration for a method invocation, it is c
thecompile-time declaration for the method invocation. Two further checks mu
be made on the compile-time declaration:

• If the method invocation has, before the left parenthesis, aMethodName of
the form Identifier, and the method invocation appears within astatic
method, a static initializer, or the initializer for astatic variable, then the
compile-time declaration must bestatic. If, instead, the compile-time decla
ration for the method invocation is for an instance method, then a com
time error occurs. (The reason is that a method invocation of this form ca
be used to invoke an instance method in places wherethis (§15.7.2) is not
defined.)

• If the method invocation has, before the left parenthesis, aMethodName of
the formTypeName. Identifier, then the compile-time declaration should b
static. If the compile-time declaration for the method invocation is for
instance method, then a compile-time error occurs. (The reason is th
method invocation of this form does not specify a reference to an object
can serve asthis within the instance method.)

• If the compile-time declaration for the method invocation isvoid, then the
method invocation must be a top-level expression, that is, theExpression in an
expression statement (§14.7) or in theForInit or ForUpdate part of afor
statement (§14.12), or a compile-time error occurs. (The reason is that s
method invocation produces no value and so must be used only in a situ
where a value is not needed.)

The following compile-time information is then associated with the meth
invocation for use at run time:

• The name of the method.

• The class or interface that contains the compile-time declaration.

• The number of parameters and the types of the parameters, in order.

• The result type, orvoid, as declared in the compile-time declaration.

• The invocation mode, computed as follows:

◆ If the compile-time declaration has thestatic modifier, then the invocation
mode isstatic.

◆ Otherwise, if the compile-time declaration has theprivate modifier, then
the invocation mode isnonvirtual.

EXPRESSIONS Runtime Evaluation of Method Invocation15.11.4

is is

vo-

 the

ssibil-
thod
ation

ctions
◆ Otherwise, if the part of the method invocation before the left parenthes
of the formsuper . Identifier, then the invocation mode issuper.

◆ Otherwise, if the compile-time declaration is in an interface, then the in
cation mode isinterface.

◆ Otherwise, the invocation mode isvirtual.

If the compile-time declaration for the method invocation is notvoid, then
the type of the method invocation expression is the result type specified in
compile-time declaration.

15.11.4 Runtime Evaluation of Method Invocation

At run time, method invocation requires five steps. First, atarget reference may be
computed. Second, the argument expressions are evaluated. Third, the acce
ity of the method to be invoked is checked. Fourth, the actual code for the me
to be executed is located. Fifth, a new activation frame is created, synchroniz
is performed if necessary, and control is transferred to the method code.

15.11.4.1 Compute Target Reference (If Necessary)

There are several cases to consider, depending on which of the three produ
for MethodInvocation (§15.11) is involved:

• If the first production forMethodInvocation, which includes aMethodName,
is involved, then there are three subcases:

◆ If the MethodName is a simple name, that is, just anIdentifier, then there are
two subcases:

❖ If the invocation mode isstatic, then there is no target reference.

❖ Otherwise, the target reference is the value ofthis.

◆ If the MethodName is a qualified name of the formTypeName. Identifier,
then there is no target reference.

◆ If the MethodName is a qualified name of the formFieldName. Identifier,
then there are two subcases:

❖ If the invocation mode isstatic, then there is no target reference.

❖ Otherwise, the target reference is the value of the expressionFieldName.
333

15.11.4 Runtime Evaluation of Method Invocation EXPRESSIONS

334

e

he

,
d, and

alua-
ment
cation

,

nce
s not
• If the second production forMethodInvocation, which includes aPrimary, is
involved, then there are two subcases:

◆ If the invocation mode isstatic, then there is no target reference. Th
expressionPrimary is evaluated, but the result is then discarded.

◆ Otherwise, the expressionPrimary is evaluated and the result is used as t
target reference.

In either case, if the evaluation of thePrimary expression completes abruptly
then no part of any argument expression appears to have been evaluate
the method invocation completes abruptly for the same reason.

• If the third production forMethodInvocation, which includes the keyword
super, is involved, then the target reference is the value ofthis.

15.11.4.2 Evaluate Arguments

The argument expressions are evaluated in order, from left to right. If the ev
tion of any argument expression completes abruptly, then no part of any argu
expression to its right appears to have been evaluated, and the method invo
completes abruptly for the same reason.

15.11.4.3 Check Accessibility of Type and Method

Let C be the class containing the method invocation, and letT be the class or inter-
face that contained the method being invoked, andm be the name of the method
as determined at compile time (§15.11.3).

A Java Virtual Machine must insure, as part of linkage, that the methodm still
exists in the typeT. If this is not true, then aNoSuchMethodError (which is a
subclass ofIncompatibleClassChangeError) occurs. If the invocation mode is
interface, then the virtual machine must also check that the target refere
type still implements the specified interface. If the target reference type doe
still implement the interface, then anIncompatibleClassChangeError occurs.

The virtual machine must also insure, during linkage, that the typeT and the
methodm are accessible. For the typeT :

• If T is in the same package asC, thenT is accessible.

• If T is in a different package thanC, andT is public, thenT is accessible.

EXPRESSIONS Runtime Evaluation of Method Invocation15.11.4

ng

rence.

s

s

s

 return
time
For the methodm:

• If m is public, thenm is accessible. (All members of interfaces arepublic
(§9.2)).

• If m is protected, thenm is accessible if and only if eitherT is in the same
package asC, orC is T or a subclass ofT.

• If m has default (package) access, thenm is accessible if and only ifT is in the
same package asC .

• If m is private, thenm is accessible if and only if andC is T.

If eitherT or m is not accessible, then anIllegalAccessError occurs (§12.3).

15.11.4.4 Locate Method to Invoke

The strategy for method lookup depends on the invocation mode.
If the invocation mode isstatic, no target reference is needed and overridi

is not allowed. Methodm of classT is the one to be invoked.
Otherwise, an instance method is to be invoked and there is a target refe

If the target reference isnull, aNullPointerException is thrown at this point.
Otherwise, the target reference is said to refer to atarget object and will be used as
the value of the keywordthis in the invoked method. The other four possibilitie
for the invocation mode are then considered.

If the invocation mode isnonvirtual, overriding is not allowed. Methodm of
classT is the one to be invoked.

Otherwise, the invocation mode isinterface, virtual, orsuper, and over-
riding may occur. Adynamic method lookupis used. The dynamic lookup proces
starts from a classS, determined as follows:

• If the invocation mode isinterface or virtual, thenS is initially the actual
run-time classR of the target object. If the target object is an array,R is the
class Object. (Note that for invocation modeinterface, R necessarily
implementsT; for invocation modevirtual, R is necessarily eitherT or a
subclass ofT.)

• If the invocation mode issuper, thenS is initially the superclass of the clas
C that contains the method invocation.

The dynamic method lookup uses the following procedure to search classS, and
then the superclasses of classS, as necessary, for methodm.

1. If classS contains a declaration for a method namedm with the same descriptor
(same number of parameters, the same parameter types, and the same
type) required by the method invocation as determined at compile
335

15.11.4 Runtime Evaluation of Method Invocation EXPRESSIONS

336

ates.
hine

ridden

the

re-

 will
tion
r-class

y)
iables
ation
refer-

ory

. The
ated
ble as

n-
erwise

e

e
 can

other-

eted,
s if
(§15.11.3), then this is the method to be invoked, and the procedure termin
(We note that as part of the loading and linking process that the virtual mac
checks that an overriding method is at least as accessible as the over
method; anIncompatibleClassChangeError occurs if this is not the case.)

2. Otherwise, ifS is notT, this same lookup procedure is performed using
superclass ofS; whatever it comes up with is the result of this lookup.

This procedure will find a suitable method when it reaches classT, because other-
wise anIllegalAccessError would have been thrown by the checks of the p
vious section §15.11.4.3.

We note that the dynamic lookup process, while described here explicitly,
often be implemented implicitly, for example as a side-effect of the construc
and use of per-class method dispatch tables, or the construction of other pe
structures used for efficient dispatch.

15.11.4.5 Create Frame, Synchronize, Transfer Control

A methodm in some classS has been identified as the one to be invoked.
Now a newactivation frame is created, containing the target reference (if an

and the argument values (if any), as well as enough space for the local var
and stack for the method to be invoked and any other bookkeeping inform
that may be required by the implementation (stack pointer, program counter,
ence to previous activation frame, and the like). If there is not sufficient mem
available to create such an activation frame, anOutOfMemoryError is thrown.

The newly created activation frame becomes the current activation frame
effect of this is to assign the argument values to corresponding freshly cre
parameter variables of the method, and to make the target reference availa
this, if there is a target reference.

If the methodm is anative method but the necessary native, implementatio
dependent binary code has not been loaded (§20.16.14, §20.16.13) or oth
cannot be dynamically linked, then anUnsatisfiedLinkError is thrown.

If the methodm is notsynchronized, control is transferred to the body of th
methodm to be invoked.

If the methodm is synchronized, then an object must be locked before th
transfer of control. No further progress can be made until the current thread
obtain the lock. If there is a target reference, then the target must be locked;
wise theClass object for classS, the class of the methodm, must be locked. Con-
trol is then transferred to the body of the methodm to be invoked. The object is
automatically unlocked when execution of the body of the method has compl
whether normally or abruptly. The locking and unlocking behavior is exactly a
the body of the method were embedded in asynchronized statement (§14.17).

EXPRESSIONS Runtime Evaluation of Method Invocation15.11.4

mit-
cation

n

ass

cation

 that
uated
ated.
15.11.4.6 Implementation Note: Combining Frames

In order to allow certain kinds of code optimization, implementations are per
ted some freedom to combine activation frames. Suppose that a method invo
within classC is to invoke a methodm within classS . Then the current activation
frame may be used to provide space forS instead of creating a new activatio
frame only if one of the following conditions is true:

• ClassC and classS have the same class loader (§20.14) and classS is not
SecurityManager or a subclass ofSecurityManager.

• ClassS has no class loader (this fact indicates that it is a system class); clS
is notSecurityManager or a subclass ofSecurityManager; and methodm
is known not to call, directly or indirectly, any method ofSecurityManager
(§20.17) or any of its subclasses.

15.11.4.7 Example: Target Reference and Static Methods

When a target reference is computed and then discarded because the invo
mode isstatic, the reference is not examined to see whether it isnull:

class Test {

static void mountain() {
System.out.println("Monadnock");

}

static Test favorite(){
System.out.print("Mount ");
return null;

}

public static void main(String[] args) {
favorite().mountain();

}

}

which prints:

Mount Monadnock

Herefavorite returnsnull, yet noNullPointerException is thrown.

15.11.4.8 Example: Evaluation Order

As part of an instance method invocation (§15.11), there is an expression
denotes the object to be invoked. This expression appears to be fully eval
before any part of any argument expression to the method invocation is evalu
337

15.11.4 Runtime Evaluation of Method Invocation EXPRESSIONS

338

t

string
t

t

So, for example, in:

class Test {
public static void main(String[] args) {

String s = "one";
if (s.startsWith(s = "two"))

System.out.println("oops");
}

}

the occurrence ofs before “.startsWith” is evaluated first, before the argumen
expressions="two". Therefore, a reference to the string"one" is remembered as
the target reference before the local variable s is changed to refer to the
"two". As a result, thestartsWith method (§20.12.20) is invoked for targe
object"one" with argument"two", so the result of the invocation isfalse, as the
string"one" does not start with"two". It follows that the test program does no
print “oops”.

15.11.4.9 Example: Overriding

In the example:

class Point {

final int EDGE = 20;
int x, y;

void move(int dx, int dy) {
x += dx; y += dy;
if (Math.abs(x) >= EDGE || Math.abs(y) >= EDGE)

clear();
}

void clear() {
System.out.println("\tPoint clear");
x = 0; y = 0;

}

}

class ColoredPoint extends Point {

int color;

void clear() {
System.out.println("\tColoredPoint clear");
super.clear();

EXPRESSIONS Runtime Evaluation of Method Invocation15.11.4

-

n of

le it

e,

ea in
color = 0;
}

}

the subclassColoredPoint extends theclear abstraction defined by its super
classPoint. It does so by overriding theclear method with its own method,
which invokes theclear method of its superclass, using the formsuper.clear.

This method is then invoked whenever the target object for an invocatio
clear is aColoredPoint. Even the methodmove in Point invokes theclear
method of classColoredPoint when the class ofthis is ColoredPoint, as
shown by the output of this test program:

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println("p.move(20,20):");
p.move(20, 20);
ColoredPoint cp = new ColoredPoint();
System.out.println("cp.move(20,20):");
cp.move(20, 20);
p = new ColoredPoint();
System.out.println("p.move(20,20), p colored:");
p.move(20, 20);

}
}

which is:

p.move(20,20):
Point clear

cp.move(20,20):
ColoredPoint clear
Point clear

p.move(20,20), p colored:
ColoredPoint clear
Point clear

Overriding is sometimes called “late-bound self-reference”; in this examp
means that the reference toclear in the body ofPoint.move (which is really
syntactic shorthand forthis.clear) invokes a method chosen “late” (at run tim
based on the run-time class of the object referenced bythis) rather than a method
chosen “early” (at compile time, based only on the type ofthis). This provides
the Java programmer a powerful way of extending abstractions and is a key id
object-oriented programming.
339

15.11.4 Runtime Evaluation of Method Invocation EXPRESSIONS

340

e key-
g any

is is

use
of the
nly
15.11.4.10 Example: Method Invocation usingsuper

An overridden instance method of a superclass may be accessed by using th
word super to access the members of the immediate superclass, bypassin
overriding declaration in the class that contains the method invocation.

When accessing an instance variable,super means the same as a cast ofthis
(§15.10.2), but this equivalence does not hold true for method invocation. Th
demonstrated by the example:

class T1 {
String s() { return "1"; }

}

class T2 extends T1 {
String s() { return "2"; }

}

class T3 extends T2 {

String s() { return "3"; }

void test() {
System.out.println("s()=\t\t"+s());
System.out.println("super.s()=\t"+super.s());
System.out.print("((T2)this).s()=\t");

System.out.println(((T2)this).s());
System.out.print("((T1)this).s()=\t");

System.out.println(((T1)this).s());
}

}

class Test {
public static void main(String[] args) {

T3 t3 = new T3();
t3.test();

}
}

which produces the output:

s()= 3
super.s()= 2
((T2)this).s()= 3
((T1)this).s()= 3

The casts to typesT1 andT2 do not change the method that is invoked, beca
the instance method to be invoked is chosen according to the run-time class
object referred to bethis. A cast does not change the class of an object; it o
checks that the class is compatible with the specified type.

EXPRESSIONS Runtime Evaluation of Array Access15.12.1

ay.

ession

n

 pro-

 vari-

letes
nd the

letes

to an
an or

lting
15.12 Array Access Expressions

An array access expression refers to a variable that is a component of an arr

ArrayAccess:
ExpressionName [Expression]
PrimaryNoNewArray [Expression]

An array access expression contains two subexpressions, thearray reference
expression (before the left bracket) and theindex expression (within the brackets).
Note that the array reference expression may be a name or any primary expr
that is not an array creation expression (§15.9).

The type of the array reference expression must be an array type (call itT[],
an array whose components are of typeT) or a compile-time error results. The
the type of the array access expression isT.

The index expression undergoes unary numeric promotion (§5.6.1); the
moted type must beint.

The result of an array reference is a variable of typeT, namely the variable
within the array selected by the value of the index expression. This resulting
able, which is a component of the array, is never consideredfinal, even if the
array reference was obtained from afinal variable.

15.12.1 Runtime Evaluation of Array Access

An array access expression is evaluated using the following procedure:

• First, the array reference expression is evaluated. If this evaluation comp
abruptly, then the array access completes abruptly for the same reason a
index expression is not evaluated.

• Otherwise, the index expression is evaluated. If this evaluation comp
abruptly, then the array access completes abruptly for the same reason.

• Otherwise, if the value of the array reference expression isnull, then a
NullPointerException is thrown.

• Otherwise, the value of the array reference expression indeed refers
array. If the value of the index expression is less than zero, or greater th
equal to the array’s length, then anIndexOutOfBoundsException is thrown.

• Otherwise, the result of the array reference is the variable of typeT, within the
array, selected by the value of the index expression. (Note that this resu
variable, which is a component of the array, is never consideredfinal, even
if the array reference expression is afinal variable.)
341

15.12.2 Examples: Array Access Evaluation Order EXPRESSIONS

342

e fully
. For

l

d by

ptly,
ated.
15.12.2 Examples: Array Access Evaluation Order

In an array access, the expression to the left of the brackets appears to b
evaluated before any part of the expression within the brackets is evaluated
example, in the (admittedly monstrous) expressiona[(a=b)[3]], the expression
a is fully evaluated before the expression(a=b)[3]; this means that the origina
value ofa is fetched and remembered while the expression(a=b)[3] is evalu-
ated. This array referenced by the original value ofa is then subscripted by a value
that is element3 of another array (possibly the same array) that was reference
b and is now also referenced bya.

Thus, the example:

class Test {
public static void main(String[] args) {

int[] a = { 11, 12, 13, 14 };
int[] b = { 0, 1, 2, 3 };
System.out.println(a[(a=b)[3]]);

}
}

prints:

14

because the monstrous expression’s value is equivalent toa[b[3]] or a[3] or 14.

If evaluation of the expression to the left of the brackets completes abru
no part of the expression within the brackets will appear to have been evalu
Thus, the example:

class Test {
public static void main(String[] args) {

int index = 1;
try {

skedaddle()[index=2]++;
} catch (Exception e) {

System.out.println(e + ", index=" + index);
}

}
static int[] skedaddle() throws Exception {

throw new Exception("Ciao");
}

}

prints:

java.lang.Exception: Ciao, index=1

because the embedded assignment of2 to index never occurs.

EXPRESSIONS Examples: Array Access Evaluation Order15.12.2

l
e eval-

ll

t be
 that
If the array reference expression producesnull instead of a reference to an
array, then aNullPointerException is thrown at run time, but only after al
parts of the array reference expression have been evaluated and only if thes
uations completed normally. Thus, the example:

class Test {

public static void main(String[] args) {
int index = 1;
try {

nada()[index=2]++;
} catch (Exception e) {

System.out.println(e + ", index=" + index);
}

}

static int[] nada() { return null; }

}

prints:

java.lang.NullPointerException, index=2

because the embedded assignment of2 toindex occurs before the check for a nu
pointer. As a related example, the program:

class Test {

public static void main(String[] args) {
int[] a = null;
try {

int i = a[vamoose()];
System.out.println(i);

} catch (Exception e) {
System.out.println(e);

}
}

static int vamoose() throws Exception {
throw new Exception("Twenty-three skidoo!");

}

}

always prints:

java.lang.Exception: Twenty-three skidoo!

A NullPointerException never occurs, because the index expression mus
completely evaluated before any part of the indexing operation occurs, and
includes the check as to whether the value of the left-hand operand isnull.
343

15.13 Postfix Expressions EXPRESSIONS

344

re han-
ome

ble

f the
elf.

ld

A

15.13 Postfix Expressions

Postfix expressions include uses of the postfix++ and-- operators. Also, as dis-
cussed in §15.7, names are not considered to be primary expressions, but a
dled separately in the grammar to avoid certain ambiguities. They bec
interchangeable only here, at the level of precedence of postfix expressions.

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

15.13.1 Names

A name occurring in an expression may be, syntactically, anExpressionName
(§6.5). The meaning of such anExpressionName depends on its form:

• If it is a simple name, that is, just anIdentifier, then there are two cases:

◆ If the Identifier occurs within the scope of a parameter or local varia
named by that sameIdentifier, then the type of theExpressionName is the
declared type of the parameter or local variable; moreover, the value o
ExpressionName is a variable, namely, the parameter or local variable its

◆ Otherwise, theExpressionName is treated exactly as if it had been the fie
access expression (§15.10):

 this.Identifier

containing the keywordthis (§15.7.2).

• Otherwise, if it is a qualified name of the formPackageName. Identifier, then
a compile-time error occurs.

• Otherwise, if it is a qualified name of the formTypeName. Identifier, then it
is refers to astatic field of the class or interface named by theTypeName. A
compile-time error occurs ifTypeName does not name a class or interface.
compile-time error occurs if the class or interface named byTypeName does
not contain an accessible static field named by theIdentifier. The type of the
ExpressionName is the declared type of thestatic field. The value of the
ExpressionName is a variable, namely, thestatic field itself.

EXPRESSIONS Postfix Decrement Operator-- 15.13.3

-
, or a
 the
vari-

then
nd no
e

eric
f
3) to
ent

an
ot a
tor.

s-
, or a

s the
 vari-

then
nd no

e

• Otherwise, it is a qualified name of the formEname. Identifier, whereEname
is itself anExpressionName, and theExpressionName is treated exactly as if it
had been the field access expression (§15.10):

(Ename).Identifier

containing a parenthesized expression (§15.7.3).

15.13.2 Postfix Increment Operator++

PostIncrementExpression:
PostfixExpression ++

A postfix expression followed by a++ operator is a postfix increment expres
sion. The result of the postfix expression must be a variable of a numeric type
compile-time error occurs. The type of the postfix increment expression is
type of the variable. The result of the postfix increment expression is not a
able, but a value.

At run time, if evaluation of the operand expression completes abruptly,
the postfix increment expression completes abruptly for the same reason a
incrementation occurs. Otherwise, the value1 is added to the value of the variabl
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. I
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.
the type of the variable before it is stored. The value of the postfix increm
expression is the value of the variablebeforethe new value is stored.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix increment opera

15.13.3 Postfix Decrement Operator--

PostDecrementExpression:
PostfixExpression --

A postfix expression followed by a-- operator is a postfix decrement expre
sion. The result of the postfix expression must be a variable of a numeric type
compile-time error occurs. The type of the postfix decrement expression i
type of the variable. The result of the postfix decrement expression is not a
able, but a value.

At run time, if evaluation of the operand expression completes abruptly,
the postfix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of th
345

15.14 Unary Operators EXPRESSIONS

346

ction,

con-
f the

 an
ot a
ator.

s

ntial

ype
variable and the difference is stored back into the variable. Before the subtra
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
version (§5.1.3) to the type of the variable before it is stored. The value o
postfix decrement expression is the value of the variablebeforethe new value is
stored.

A variable that is declaredfinal cannot be decremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix decrement oper

15.14 Unary Operators

The unary operators include+, -, ++, --, ~, !, and cast operators. Expression
with unary operators group right-to-left, so that-~x means the same as-(~x).

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

The following productions from §15.15 are repeated here for convenience:

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

This portion of the Java grammar contains some tricks to avoid two pote
syntactic ambiguities.

The first potential ambiguity would arise in expressions such as(p)+q, which
looks, to a C or C++ programmer, as though it could be either be a cast to tp

EXPRESSIONS Prefix Increment Operator++ 15.14.1

t of

,
ords.

ilar

ich in

sized

ut
g the

as

es

fix

f

n.
 com-
e of
but a

then
nd no
e

of a unary+ operating onq, or a binary addition of two quantitiesp andq. In C
and C++, the parser handles this problem by performing a limited amoun
semantic analysis as it parses, so that it knows whetherp is the name of a type or
the name of a variable.

Java takes a different approach. The result of the+ operator must be numeric
and all type names involved in casts on numeric values are known keyw
Thus, ifp is a keyword naming a primitive type, then(p)+q can make sense only
as a cast of a unary expression. However, ifp is not a keyword naming a primitive
type, then(p)+q can make sense only as a binary arithmetic operation. Sim
remarks apply to the- operator. The grammar shown above splitsCastExpression
into two cases to make this distinction. The nonterminalUnaryExpression
includes all unary operator, but the nonterminalUnaryExpressionNotPlusMinus
excludes uses of all unary operators that could also be binary operators, wh
Java are+ and-.

The second potential ambiguity is that the expression(p)++ could, to a C or
C++ programmer, appear to be either a postfix increment of a parenthe
expression or the beginning of a cast, for example, in(p)++q. As before, parsers
for C and C++ know whetherp is the name of a type or the name of a variable. B
a parser using only one-token lookahead and no semantic analysis durin
parse would not be able to tell, when++ is the lookahead token, whether(p)
should be considered aPrimary expression or left alone for later consideration
part of aCastExpression.

In Java, the result of the++ operator must be numeric, and all type nam
involved in casts on numeric values are known keywords. Thus, ifp is a keyword
naming a primitive type, then(p)++ can make sense only as a cast of a pre
increment expression, and there had better be an operand such asq following the
++. However, ifp is not a keyword naming a primitive type, then(p)++ can make
sense only as a postfix increment ofp. Similar remarks apply to the-- operator.
The nonterminalUnaryExpressionNotPlusMinus therefore also excludes uses o
the prefix operators++ and--.

15.14.1 Prefix Increment Operator++

A unary expression preceded by a++ operator is a prefix increment expressio
The result of the unary expression must be a variable of a numeric type, or a
pile-time error occurs. The type of the prefix increment expression is the typ
the variable. The result of the prefix increment expression is not a variable,
value.

At run time, if evaluation of the operand expression completes abruptly,
the prefix increment expression completes abruptly for the same reason a
incrementation occurs. Otherwise, the value1 is added to the value of the variabl
347

15.14.2 Prefix Decrement Operator-- EXPRESSIONS

348

eric
f
3) to
ent

an
ot a
or.

e.

n.
 com-
pe of
 but a

then
nd no

e
ction,

con-
 pre-

 an
ot a
tor.

6.1)
 pro-
 vari-

e of
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. I
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.
the type of the variable before it is stored. The value of the prefix increm
expression is the value of the variableafter the new value is stored.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix increment operat

15.14.2 Prefix Decrement Operator--

He must increase, but I must decreas
—John 3:30

A unary expression preceded by a-- operator is a prefix decrement expressio
The result of the unary expression must be a variable of a numeric type, or a
pile-time error occurs. The type of the prefix decrement expression is the ty
the variable. The result of the prefix decrement expression is not a variable,
value.

At run time, if evaluation of the operand expression completes abruptly,
the prefix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of th
variable and the difference is stored back into the variable. Before the subtra
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive
version (§5.1.3) to the type of the variable before it is stored. The value of the
fix decrement expression is the value of the variableafter the new value is stored.

A variable that is declaredfinal cannot be decremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix decrement opera

15.14.3 Unary Plus Operator+

The type of the operand expression of the unary+ operator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (§5.
is performed on the operand. The type of the unary plus expression is the
moted type of the operand. The result of the unary plus expression is not a
able, but a value, even if the result of the operand expression is a variable.

At run time, the value of the unary plus expression is the promoted valu
the operand.

EXPRESSIONS Logical Complement Operator! 15.14.6

6.1)
 pro-

tion

 uses
ment

t no

zero,

1) is
ssion

 bit-
ases,

sion
15.14.4 Unary Minus Operator-

The type of the operand expression of the unary- operator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (§5.
is performed on the operand. The type of the unary minus expression is the
moted type of the operand.

At run time, the value of the unary plus expression is the arithmetic nega
of the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. Java
two’s-complement representation for integers, and the range of two’s-comple
values is not symmetric, so negation of the maximum negativeint orlong results
in that same maximum negative number. Overflow occurs in this case, bu
exception is thrown. For all integer valuesx, -x equals(~x)+1.

For floating-point values, negation is not the same as subtraction from
because ifx is +0.0, then0.0-x equals+0.0, but-x equals-0.0. Unary minus
merely inverts the sign of a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).

• If the operand is an infinity, the result is the infinity of opposite sign.

• If the operand is a zero, the result is the zero of opposite sign.

15.14.5 Bitwise Complement Operator~

The type of the operand expression of the unary~ operator must be a primitive
integral type, or a compile-time error occurs. Unary numeric promotion (§5.6.
performed on the operand. The type of the unary bitwise complement expre
is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the
wise complement of the promoted value of the operand; note that, in all c
~x equals(-x)-1.

15.14.6 Logical Complement Operator!

The type of the operand expression of the unary! operator must beboolean, or a
compile-time error occurs. The type of the unary logical complement expres
is boolean.

At run time, the value of the unary logical complement expression istrue if
the operand value isfalse andfalse if the operand value istrue.
349

15.15 Cast Expressions EXPRESSIONS

350

,

imilar
f an
 an

n the
lled the
en if

o the

 error
ence
 time.
 of its
 some
mpile
15.15 Cast Expressions

My days among the dead are passed;
 Around me I behold,
Where’er these casual eyes are cast,
 The mighty minds of old . . .

—Robert Southey (1774–1843)
Occasional Pieces, xviii

A cast expression converts, at run time, a value of one numeric type to a s
value of another numeric type; or confirms, at compile time, that the type o
expression isboolean; or checks, at run time, that a reference value refers to
object whose class is compatible with a specified reference type.

CastExpression:
(PrimitiveType Dimsopt) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

See §15.14 for a discussion of the distinction betweenUnaryExpression and
UnaryExpressionNotPlusMinus.

The type of a cast expression is the type whose name appears withi
parentheses. (The parentheses and the type they contain are sometimes ca
cast operator.) The result of a cast expression is not a variable, but a value, ev
the result of the operand expression is a variable.

At run time, the operand value is converted by casting conversion (§5.4) t
type specified by the cast operator.

Not all casts are permitted by the Java language. Some casts result in an
at compile time. For example, a primitive value may not be cast to a refer
type. Some casts can be proven, at compile time, always to be correct at run
For example, it is always correct to convert a value of a class type to the type
superclass; such a cast should require no special action at run time. Finally,
casts cannot be proven to be either always correct or always incorrect at co
time. Such casts require a test at run time. AClassCastException is thrown if a
cast is found at run time to be impermissible.

EXPRESSIONS Multiplication Operator* 15.16.1

ht).

rimi-
n is
is the

.

er-
have
s are

 of
ple-

ot be

EE

ave

e

15.16 Multiplicative Operators

The operators*, /, and% are called themultiplicative operators. They have the
same precedence and are syntactically left-associative (they group left-to-rig

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be a p
tive numeric type, or a compile-time error occurs. Binary numeric promotio
performed on the operands (§5.6.2). The type of a multiplicative expression
promoted type of its operands. If this promoted type isint or long, then integer
arithmetic is performed; if this promoted type isfloat or double, then floating-
point arithmetic is performed.

15.16.1 Multiplication Operator *

Entia non sunt multiplicanda praeter necessitatem
—William of Occam (c. 1320)

The binary* operator performs multiplication, producing the product of its op
ands. Multiplication is a commutative operation if the operand expressions
no side effects. While integer multiplication is associative when the operand
all of the same type, floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits
the mathematical product as represented in some sufficiently large two’s-com
ment format. As a result, if overflow occurs, then the sign of the result may n
the same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IE
754 arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, and negative if the operands have different signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signed infinity. Th
sign is determined by the rule stated above.
351

15.16.2 Division Operator/ EXPRESSIONS

352

rod-
t, we
ign.
ows;
nded
e. The
 754

cur,

.

ds.
or.
ds
ger

;

that
sible
e
 this

 of

ave

 is

 is
• In the remaining cases, where neither an infinity or NaN is involved, the p
uct is computed. If the magnitude of the product is too large to represen
say the operation overflows. The result is then an infinity of appropriate s
If the magnitude is too small to represent, we say the operation underfl
the result is then a zero of appropriate sign. Otherwise, the product is rou
to the nearest representable value using IEEE 754 round-to-nearest mod
Java language requires support of gradual underflow as defined by IEEE
(§4.2.4).

Despite the fact that overflow, underflow, or loss of information may oc
evaluation of a multiplication operator* never throws a run-time exception.

15.16.2 Division Operator/

Gallia est omnis divisa in partes tres
—Julius Caesar, Commentaries on the Gallic Wars (58 B.C.)

The binary/ operator performs division, producing the quotient of its operan
The left-hand operand is the dividend and the right-hand operand is the divis

Integer division rounds toward0. That is, the quotient produced for operan
n andd that are integers after binary numeric promotion (§5.6.2) is an inte
value q whose magnitude is as large as possible while satisfying
moreover,q is positive when andn andd have the same sign, butq is neg-
ative when andn andd have opposite signs. There is one special case
does not satisfy this rule: if the dividend is the negative integer of largest pos
magnitude for its type, and the divisor is-1, then integer overflow occurs and th
result is equal to the dividend. Despite the overflow, no exception is thrown in
case. On the other hand, if the value of the divisor in an integer division is0, then
anArithmeticException is thrown.

The result of a floating-point division is determined by the specification
IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign
determined by the rule stated above.

• Division of a finite value by an infinity results in a signed zero. The sign
determined by the rule stated above.

d q⋅ n≤
n d≥

n d≥

EXPRESSIONS Remainder Operator% 15.16.3

nite
bove.

he

N is
too
finity
 the
ther-
IEEE
adual

a-

 an
rand

ut in

eric

ative

 be
d is
itude

s

• Division of a zero by a zero results in NaN; division of zero by any other fi
value results in a signed zero. The sign is determined by the rule stated a

• Division of a nonzero finite value by a zero results in a signed infinity. T
sign is determined by the rule stated above.

• In the remaining cases, where neither an infinity, nor a zero, nor Na
involved, the quotient is computed. If the magnitude of the quotient is
large to represent, we say the operation overflows; the result is then an in
of appropriate sign. If the magnitude is too small to represent, we say
operation underflows and the result is then a zero of appropriate sign. O
wise, the quotient is rounded to the nearest representable value using
754 round-to-nearest mode. The Java language requires support of gr
underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of inform
tion may occur, evaluation of a floating-point division operator/ never throws a
run-time exception.

15.16.3 Remainder Operator%

And on the pedestal these words appear:
“My name is Ozymandias, king of kings:
Look on my works, ye Mighty, and despair!”
Nothing beside remains.

—Percy Bysshe Shelley,Ozymandias(1817)

The binary% operator is said to yield the remainder of its operands from
implied division; the left-hand operand is the dividend and the right-hand ope
is the divisor.

In C and C++, the remainder operator accepts only integral operands, b
Java, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary num
promotion (§5.6.2) produces a result value such that(a/b)*b+(a%b) is equal to
a. This identity holds even in the special case that the dividend is the neg
integer of largest possible magnitude for its type and the divisor is-1 (the remain-
der is0). It follows from this rule that the result of the remainder operation can
negative only if the dividend is negative, and can be positive only if the dividen
positive; moreover, the magnitude of the result is always less than the magn
of the divisor. If the value of the divisor for an integer remainder operator i0,
then anArithmeticException is thrown.
353

15.16.3 Remainder Operator% EXPRESSIONS

354

IEEE
nding

teger

utine

 the

nd.

aN.

ivi-

end.

N is

 is
g the

s of
Examples:

5%3 produces 2 (note that 5/3 produces 1)
5%(-3) produces 2 (note that 5/(-3) produces -1)
(-5)%3 produces -2 (note that (-5)/3 produces -1)
(-5)%(-3) produces -2 (note that (-5)/(-3) produces 1)

The result of a floating-point remainder operation as computed by the% oper-
ator isnot the same as that produced by the remainder operation defined by
754. The IEEE 754 remainder operation computes the remainder from a rou
division, not a truncating division, and so its behavior isnot analogous to that of
the usual integer remainder operator. Instead, the Java language defines% on float-
ing-point operations to behave in a manner analogous to that of the Java in
remainder operator; this may be compared with the C library functionfmod. The
IEEE 754 remainder operation may be computed by the Java library ro
Math.IEEEremainder (§20.11.14).

The result of a Java floating-point remainder operation is determined by
rules of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result equals the sign of the divide

• If the dividend is an infinity, or the divisor is a zero, or both, the result is N

• If the dividend is finite and the divisor is an infinity, the result equals the d
dend.

• If the dividend is a zero and the divisor is finite, the result equals the divid

• In the remaining cases, where neither an infinity, nor a zero, nor Na
involved, the floating-point remainderr from the division of a dividendn by a
divisor d is defined by the mathematical relation whereq is an
integer that is negative only if is negative and positive only if
positive, and whose magnitude is as large as possible without exceedin
magnitude of the true mathematical quotient ofn andd.

Evaluation of a floating-point remainder operator% never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or los
precision cannot occur.

Examples:

5.0%3.0 produces 2.0
5.0%(-3.0) produces 2.0
(-5.0)%3.0 produces -2.0
(-5.0)%(-3.0) produces -2.0

r n d q⋅()–=
n d⁄ n d⁄

EXPRESSIONS String Concatenation Operator+ 15.17.1

-

-
refer-
o
ters of

y
:

15.17 Additive Operators

The operators+ and- are called theadditive operators. They have the same pre
cedence and are syntactically left-associative (they group left-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If the type of either operand of a + operator isString, then the operation is
string concatenation.

Otherwise, the type of each of the operands of the+ operator must be a primi-
tive numeric type, or a compile-time error occurs.

In every case, the type of each of the operands of the binary- operator must
be a primitive numeric type, or a compile-time error occurs.

15.17.1 String Concatenation Operator+

If only one operand expression is of typeString, then string conversion is per
formed on the other operand to produce a string at run time. The result is a
ence to a newly createdString object that is the concatenation of the tw
operand strings. The characters of the left-hand operand precede the charac
the right-hand operand in the newly created string.

15.17.1.1 String Conversion

Any type may be converted to typeString by string conversion.
A valuex of primitive typeT is first converted to a reference value as if b

giving it as an argument to an appropriate class instance creation expression

• If T is boolean, then usenew Boolean(x) (§20.4).

• If T is char, then usenew Character(x) (§20.5).

• If T is byte, short, orint, then usenew Integer(x) (§20.7).

• If T is long, then usenew Long(x) (§20.8).

• If T is float, then usenew Float(x) (§20.9).

• If T is double, then usenew Double(x) (§20.10).

This reference value is then converted to typeString by string conversion.
355

15.17.1 String Concatenation Operator+ EXPRESSIONS

356

e

 one

r may
ber
.
tion

ater
some
:

Now only reference values need to be considered. If the reference isnull, it is
converted to the string "null" (four ASCII charactersn, u, l, l). Otherwise, the
conversion is performed as if by an invocation of thetoString method of the ref-
erenced object with no arguments; but if the result of invoking thetoString
method isnull, then the string "null" is used instead. ThetoString method
(§20.1.2) is defined by the primordial classObject (§20.1); many classes overrid
it, notablyBoolean, Character, Integer, Long, Float, Double, andString.

15.17.1.2 Optimization of String Concatenation

An implementation may choose to perform conversion and concatenation in
step to avoid creating and then discarding an intermediateString object. To
increase the performance of repeated string concatenation, a Java compile
use theStringBuffer class (§20.13) or a similar technique to reduce the num
of intermediateString objects that are created by evaluation of an expression

For primitive objects, an implementation may also optimize away the crea
of a wrapper object by converting directly from a primitive type to a string.

15.17.1.3 Examples of String Concatenation

The example expression:

"The square root of 2 is " + Math.sqrt(2)

produces the result:

"The square root of 2 is 1.4142135623730952"

The + operator is syntactically left-associative, no matter whether it is l
determined by type analysis to represent string concatenation or addition. In
cases care is required to get the desired result. For example, the expression

a + b + c

is always regarded as meaning:

(a + b) + c

Therefore the result of the expression:

1 + 2 + " fiddlers"

is:

"3 fiddlers"

but the result of:

"fiddlers " + 1 + 2

EXPRESSIONS String Concatenation Operator+ 15.17.1

s

is:

"fiddlers 12"

In this jocular little example:

class Bottles {

static void printSong(Object stuff, int n) {
String plural = "s";
loop: while (true) {

System.out.println(n + " bottle" + plural
+ " of " + stuff + " on the wall,");

System.out.println(n + " bottle" + plural
+ " of " + stuff + ";");

System.out.println("You take one down "
+ "and pass it around:");

--n;
plural = (n == 1) ? "" : "s";
if (n == 0)

break loop;
System.out.println(n + " bottle" + plural

+ " of " + stuff + " on the wall!");
System.out.println();

}
System.out.println("No bottles of " +

stuff + " on the wall!");
}

}

the methodprintSong will print a version of a children’s song. Popular value
for stuff include"pop" and"beer"; the most popular value forn is 100. Here is
the output that results fromBottles.printSong("slime", 3):

3 bottles of slime on the wall,
3 bottles of slime;
You take one down and pass it around:
2 bottles of slime on the wall!

2 bottles of slime on the wall,
2 bottles of slime;
You take one down and pass it around:
1 bottle of slime on the wall!

1 bottle of slime on the wall,
1 bottle of slime;
You take one down and pass it around:
No bottles of slime on the wall!
357

15.17.2 Additive Operators (+ and-) for Numeric Types EXPRESSIONS

358

eric
-

e of
rands.
s

 side
 type,

the
ment
ign of

les

rand.

osite

N is
udes,
t, we
In the code, note the careful conditional generation of the singular “bottle”
when appropriate rather than the plural “bottles”; note also how the string con-
catenation operator was used to break the long constant string:

"You take one down and pass it around:"

into two pieces to avoid an inconveniently long line in the source code.

15.17.2 Additive Operators (+ and -) for Numeric Types

The binary+ operator performs addition when applied to two operands of num
type, producing the sum of the operands. The binary- operator performs subtrac
tion, producing the difference of two numeric operands.

Binary numeric promotion is performed on the operands (§5.6.2). The typ
an additive expression on numeric operands is the promoted type of its ope
If this promoted type isint or long, then integer arithmetic is performed; if thi
promoted type isfloat or double, then floating-point arithmetic is performed.

Addition is a commutative operation if the operand expressions have no
effects. Integer addition is associative when the operands are all of the same
but floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of
mathematical sum as represented in some sufficiently large two’s-comple
format. If overflow occurs, then the sign of the result is not the same as the s
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following ru
of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros of opposite sign is positive zero.

• The sum of two zeros of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero ope

• The sum of two nonzero finite values of the same magnitude and opp
sign is positive zero.

• In the remaining cases, where neither an infinity, nor a zero, nor Na
involved, and the operands have the same sign or have different magnit
the sum is computed. If the magnitude of the sum is too large to represen

EXPRESSIONS Shift Operators 15.18

n. If
s; the
to the
e Java
754

s of
is the
 float-
s
ega-

cur,

s?
?”

ft-
erand

inte-
) is
 per-
 pro-

 if the
say the operation overflows; the result is then an infinity of appropriate sig
the magnitude is too small to represent, we say the operation underflow
result is then a zero of appropriate sign. Otherwise, the sum is rounded
nearest representable value using IEEE 754 round-to-nearest mode. Th
language requires support of gradual underflow as defined by IEEE
(§4.2.4).

The binary- operator performs subtraction when applied to two operand
numeric type producing the difference of its operands; the left-hand operand
minuend and the right-hand operand is the subtrahend. For both integer and
ing-point subtraction, it is always the case thata-b produces the same result a
a+(-b). Note that, for integer values, subtraction from zero is the same as n
tion. However, for floating-point operands, subtraction from zero isnot the same
as negation, because ifx is +0.0, then0.0-x equals+0.0, but-x equals-0.0.

Despite the fact that overflow, underflow, or loss of information may oc
evaluation of a numeric additive operator never throws a run-time exception.

15.18 Shift Operators

What, I say, is to become of those wretche
. . . What more can you say to them than “shift for yourselves

—Thomas Paine, The American Crisis (1780)

Theshift operators include left shift<<, signed right shift>>, and unsigned right
shift >>>; they are syntactically left-associative (they group left-to-right). The le
hand operand of a shift operator is the value to be shifted; the right-hand op
specifies the shift distance.

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

The type of each of the operands of a shift operator must be a primitive
gral type, or a compile-time error occurs. Binary numeric promotion (§5.6.2
not performed on the operands; rather, unary numeric promotion (§5.6.1) is
formed on each operand separately. The type of the shift expression is the
moted type of the left-hand operand.

If the promoted type of the left-hand operand isint, only the five lowest-
order bits of the right-hand operand are used as the shift distance. It is as
359

15.19 Relational Operators EXPRESSIONS

360

 in

 if the

 in

ger

f

and

-

right-hand operand were subjected to a bitwise logical AND operator& (§15.21.1)
with the mask value0x1f. The shift distance actually used is therefore always
the range 0 to 31, inclusive.

If the promoted type of the left-hand operand islong, then only the six low-
est-order bits of the right-hand operand are used as the shift distance. It is as
right-hand operand were subjected to a bitwise logical AND operator& (§15.21.1)
with the mask value0x3f. The shift distance actually used is therefore always
the range 0 to 63, inclusive.

At run time, shift operations are performed on the two’s complement inte
representation of the value of the left operand.

The value ofn<<s is n left-shifteds bit positions; this is equivalent (even i
overflow occurs) to multiplication by two to the powers.

The value ofn>>s is n right-shifteds bit positions with sign-extension. The
resulting value is . For nonnegative values ofn, this is equivalent to trun-
cating integer division, as computed by the integer division operator/, by two to
the powers.

The value ofn>>>s is n right-shifteds bit positions with zero-extension. Ifn
is positive, then the result is the same as that ofn>>s; if n is negative, the result is
equal to that of the expression(n>>s)+(2<<~s) if the type of the left-hand oper-
and isint, and to the result of the expression(n>>s)+(2L<<~s) if the type of the
left-hand operand islong. The added term(2<<~s) or (2L<<~s) cancels out the
propagated sign bit. (Note that, because of the implicit masking of the right-h
operand of a shift operator,~s as a shift distance is equivalent to31-s when shift-
ing anint value and to63-s when shifting along value.)

15.19 Relational Operators

The relational operators are syntactically left-associative (they group left-to
right), but this fact is not useful; for example,a<b<c parses as(a<b)<c, which is
always a compile-time error, because the type ofa<b is alwaysboolean and< is
not an operator onboolean values.

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

The type of a relational expression is alwaysboolean.

n 2
s⁄

EXPRESSIONS Type Comparison Operatorinstanceof 15.19.2

t be a
tion
s
e is

tion

 all

-

ules

ise is

other-

ise is

, and

e

15.19.1 Numerical Comparison Operators<, <=, >, and>=

The type of each of the operands of a numerical comparison operator mus
primitive numeric type, or a compile-time error occurs. Binary numeric promo
is performed on the operands (§5.6.2). If the promoted type of the operands iint
or long, then signed integer comparison is performed; if this promoted typ
float or double, then floating-point comparison is performed.

The result of a floating-point comparison, as determined by the specifica
of the IEEE 754 standard, is:

• If either operand is NaN, then the result isfalse.

• All values other than NaN are ordered, with negative infinity less than
finite values, and positive infinity greater than all finite values.

• Positive zero and negative zero are considered equal. Therefore,-0.0<0.0 is
false, for example, but-0.0<=0.0 is true. (Note, however, that the meth
odsMath.min (§20.11.27, §20.11.28) andMath.max (§20.11.31, §20.11.32)
treat negative zero as being strictly smaller than positive zero.)

Subject to these considerations for floating-point numbers, the following r
then hold for integer operands or for floating-point operands other than NaN:

• The value produced by the< operator istrue if the value of the left-hand
operand is less than the value of the right-hand operand, and otherw
false.

• The value produced by the<= operator istrue if the value of the left-hand
operand is less than or equal to the value of the right-hand operand, and
wise isfalse.

• The value produced by the> operator istrue if the value of the left-hand
operand is greater than the value of the right-hand operand, and otherw
false.

• The value produced by the>= operator istrue if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand
otherwise isfalse.

15.19.2 Type Comparison Operatorinstanceof

The type of aRelationalExpression operand of theinstanceof operator must be
a reference type or the null type; otherwise, a compile-time error occurs. TheRef-
erenceType mentioned after theinstanceof operator must denote a referenc
type; otherwise, a compile-time error occurs.
361

15.20 Equality Operators EXPRESSIONS

362

the

-

wn

 class
):

d the

e of

ht),
At run time, the result of theinstanceof operator istrue if the value of the
RelationalExpression is notnull and the reference could be cast (§15.15) to
ReferenceType without raising aClassCastException. Otherwise the result is
false.

If a cast of theRelationalExpression to theReferenceType would be rejected
as a compile-time error, then theinstanceof relational expression likewise pro
duces a compile-time error. In such a situation, the result of theinstanceof
expression could never betrue.

Consider the example program:

class Point { int x, y; }

class Element { int atomicNumber; }

class Test {
public static void main(String[] args) {

Point p = new Point();
Element e = new Element();
if (e instanceof Point) { // compile-time error

System.out.println("I get your point!");
p = (Point)e; // compile-time error

}
}

}

This example results in two compile-time errors. The cast(Point)e is incorrect
because no instance ofElement or any of its possible subclasses (none are sho
here) could possibly be an instance of any subclass ofPoint. Theinstanceof
expression is incorrect for exactly the same reason. If, on the other hand, the
Point were a subclass ofElement (an admittedly strange notion in this example

class Point extends Element { int x, y; }

then the cast would be possible, though it would require a run-time check, an
instanceof expression would then be sensible and valid. The cast(Point)e
would never raise an exception because it would not be executed if the value
could not correctly be cast to typePoint.

15.20 Equality Operators

The equality operators are syntactically left-associative (they group left-to-rig
but this fact is essentially never useful; for example,a==b==c parses as
(a==b)==c. The result type ofa==b is alwaysboolean, andc must therefore be
of typeboolean or a compile-time error occurs. Thus,a==b==c doesnot test to
see whethera, b, andc are all equal.

EXPRESSIONS Numerical Equality Operators== and!= 15.20.1

 rela-

eric
f-

 The

nary
pe of
o-

s of

 the
nfin-
ly to

ules
EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The == (equal to) and the != (not equal to) operators are analogous to the
tional operators except for their lower precedence. Thus,a<b==c<d istrue when-
evera<b andc<d have the same truth value.

The equality operators may be used to compare two operands of num
type, or two operands of typeboolean, or two operands that are each of either re
erence type or the null type. All other cases result in a compile-time error.
type of an equality expression is alwaysboolean.

In all cases,a!=b produces the same result as!(a==b). The equality opera-
tors are commutative if the operand expressions have no side effects.

15.20.1 Numerical Equality Operators== and !=

If the operands of an equality operator are both of primitive numeric type, bi
numeric promotion is performed on the operands (§5.6.2). If the promoted ty
the operands isint or long, then an integer equality test is performed; if the pr
moted type isfloat or double, then a floating-point equality test is performed.

Floating-point equality testing is performed in accordance with the rule
the IEEE 754 standard:

• If either operand is NaN, then the result of== is false but the result of!= is
true. Indeed, the testx!=x is true if and only if the value ofx is NaN. (The
methodsFloat.isNaN (§20.9.19) andDouble.isNaN (§20.10.17) may also
be used to test whether a value is NaN.)

• Positive zero and negative zero are considered equal. Therefore,-0.0==0.0 is
true, for example.

• Otherwise, two distinct floating-point values are considered unequal by
equality operators. In particular, there is one value representing positive i
ity and one value representing negative infinity; each compares equal on
itself, and each compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following r
then hold for integer operands or for floating-point operands other than NaN:
363

15.20.2 Boolean Equality Operators== and!= EXPRESSIONS

364

sult is

, the

ore.

e null

her
 val-
• The value produced by the== operator istrue if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, the re
false.

• The value produced by the!= operator istrue if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise
result isfalse.

15.20.2 Boolean Equality Operators== and !=

If the operands of an equality operator are both of typeboolean, then the opera-
tion is boolean equality. Theboolean equality operators are associative.

The result of== is true if the operands are bothtrue or bothfalse; other-
wise, the result isfalse.

The result of!= is false if the operands are bothtrue or bothfalse; other-
wise, the result istrue. Thus!= behaves the same as^ (§15.21.2) when applied
to boolean operands.

15.20.3 Reference Equality Operators== and !=

Things are more like they are now than they ever were bef
—Dwight D. Eisenhower

If the operands of an equality operator are both of either reference type or th
type, then the operation is object equality.

A compile-time error occurs if it is impossible to convert the type of eit
operand to the type of the other by a casting conversion (§5.4). The run-time
ues of the two operands would necessarily be unequal.

At run time, the result of== is true if the operand values are bothnull or
both refer to the same object or array; otherwise, the result isfalse.

The result of!= is false if the operand values are bothnull or both refer to
the same object or array; otherwise, the result istrue.

While == may be used to compare references of typeString, such an equal-
ity test determines whether or not the two operands refer to the sameString
object. The result isfalse if the operands are distinctString objects, even if
they contain the same sequence of characters. The contents of two stringss andt
can be tested for equality by the method invocations.equals(t) (§20.12.9). See
also §3.10.5 and §20.12.47.

EXPRESSIONS Boolean Logical Operators&, ^, and| 15.21.2

t
.
ight).
ffects.

ds of
-

e bit-
15.21 Bitwise and Logical Operators

The bitwise operators andlogical operators include the AND operator&, exclu-
sive OR operator̂ , and inclusive OR operator|. These operators have differen
precedence, with& having the highest precedence and| the lowest precedence
Each of these operators is syntactically left-associative (each groups left-to-r
Each operator is commutative if the operand expressions have no side e
Each operator is associative.

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

The bitwise and logical operators may be used to compare two operan
numeric type or two operands of typeboolean. All other cases result in a com
pile-time error.

15.21.1 Integer Bitwise Operators&, ^, and|

When both operands of an operator&, ^, or| are of primitive integral type, binary
numeric promotion is first performed on the operands (§5.6.2). The type of th
wise operator expression is the promoted type of the operands.

For&, the result value is the bitwise AND of the operand values.
For^, the result value is the bitwise exclusive OR of the operand values.
For|, the result value is the bitwise inclusive OR of the operand values.
For example, the result of the expression0xff00 & 0xf0f0 is 0xf000. The

result of0xff00 ^ 0xf0f0 is 0x0ff0.The result of0xff00 | 0xf0f0 is 0xfff0.

15.21.2 Boolean Logical Operators&, ^, and|

When both operands of a&, ^, or| operator are of typeboolean, then the type of
the bitwise operator expression isboolean.

For&, the result value istrue if both operand values aretrue; otherwise, the
result isfalse.
365

15.22 Conditional-And Operator&& EXPRESSIONS

366

e,

 if

and

cur-

.

e is

 of the

ated

 if

and

cur-
For ^, the result value istrue if the operand values are different; otherwis
the result isfalse.

For |, the result value isfalse if both operand values arefalse; otherwise,
the result istrue.

15.22 Conditional-And Operator&&

The&& operator is like& (§15.21.2), but evaluates its right-hand operand only
the value of its left-hand operand istrue. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects
result value; that is, for any expressionsa, b, andc, evaluation of the expression
((a)&&(b))&&(c) produces the same result, with the same side effects oc
ring in the same order, as evaluation of the expression(a)&&((b)&&(c)).

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

Each operand of&& must be of typeboolean, or a compile-time error occurs
The type of a conditional-and expression is alwaysboolean.

At run time, the left-hand operand expression is evaluated first; if its valu
false, the value of the conditional-and expression isfalse and the right-hand
operand expression is not evaluated. If the value of the left-hand operand istrue,
then the right-hand expression is evaluated and its value becomes the value
conditional-and expression. Thus,&& computes the same result as& on boolean
operands. It differs only in that the right-hand operand expression is evalu
conditionally rather than always.

15.23 Conditional-Or Operator||

The|| operator is like| (§15.21.2), but evaluates its right-hand operand only
the value of its left-hand operand isfalse. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects
result value; that is, for any expressionsa, b, andc, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects oc
ring in the same order, as evaluation of the expression(a)||((b)||(c)).

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

EXPRESSIONS Conditional Operator? : 15.24

.

e is

 of the

ated

ide

-to-

ird

.
 third

e. All

res-
i-
Each operand of|| must be of typeboolean, or a compile-time error occurs
The type of a conditional-or expression is alwaysboolean.

At run time, the left-hand operand expression is evaluated first; if its valu
true, the value of the conditional-or expression istrue and the right-hand oper-
and expression is not evaluated. If the value of the left-hand operand isfalse,
then the right-hand expression is evaluated and its value becomes the value
conditional-or expression. Thus,|| computes the same result as| on boolean
operands. It differs only in that the right-hand operand expression is evalu
conditionally rather than always.

15.24 Conditional Operator? :

The conditional operator? : uses the boolean value of one expression to dec
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right
left), so thata?b:c?d:e?f:g means the same asa?b:(c?d:(e?f:g)).

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions;? appears between
the first and second expressions, and: appears between the second and th
expressions.

The first expression must be of typeboolean, or a compile-time error occurs
The conditional operator may be used to choose between second and

operands of numeric type, or second and third operands of typeboolean, or sec-
ond and third operands that are each of either reference type or the null typ
other cases result in a compile-time error.

Note that it is not permitted for either the second or the third operand exp
sion to be an invocation of avoid method. In fact, it is not permitted for a cond
tional expression to appear in any context where an invocation of avoid method
could appear (§14.7).
367

15.24 Conditional Operator? : EXPRESSIONS

368

e null

re are

-

and
f the

f the
 that

must
e
is
the

eval-
hird

 is

is

s con-
stated
r eval-
The type of a conditional expression is determined as follows:

• If the second and third operands have the same type (which may be th
type), then that is the type of the conditional expression.

• Otherwise, if the second and third operands have numeric type, then the
several cases:

◆ If one of the operands is of typebyte and the other is of typeshort, then
the type of the conditional expression isshort.

◆ If one of the operands is of typeT whereT is byte, short, orchar, and the
other operand is a constant expression of typeint whose value is represent
able in typeT, then the type of the conditional expression isT.

◆ Otherwise, binary numeric promotion (§5.6.2) is applied to the oper
types, and the type of the conditional expression is the promoted type o
second and third operands.

• If one of the second and third operands is of the null type and the type o
other is a reference type, then the type of the conditional expression is
reference type.

• If the second and third operands are of different reference types, then it
be possible to convert one of the types to the other type (call this latter typT)
by assignment conversion (§5.2); the type of the conditional expression T.
It is a compile-time error if neither type is assignment compatible with
other type.

At run time, the first operand expression of the conditional expression is
uated first; itsboolean value is then used to choose either the second or the t
operand expression:

• If the value of the first operand istrue, then the second operand expression
chosen.

• If the value of the first operand isfalse, then the third operand expression
chosen.

The chosen operand expression is then evaluated and the resulting value i
verted to the type of the conditional expression as determined by the rules
above. The operand expression not chosen is not evaluated for that particula
uation of the conditional expression.

EXPRESSIONS Simple Assignment Operator= 15.25.1

y

le, or
 as a

 vari-
). The

iable
 is not

an
ot a
.

con-

and
ps are

alua-
ruptly
15.25 Assignment Operators

There are 12assignment operators; all are syntactically right-associative (the
group right-to-left). Thus,a=b=c meansa=(b=c), which assigns the value ofc to
b and then assigns the value ofb to a.

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

The result of the first operand of an assignment operator must be a variab
a compile-time error occurs. This operand may be a named variable, such
local variable or a field of the current object or class, or it may be a computed
able, as can result from a field access (§15.10) or an array access (§15.12
type of the assignment expression is the type of the variable.

At run time, the result of the assignment expression is the value of the var
after the assignment has occurred. The result of an assignment expression
itself a variable.

A variable that is declaredfinal cannot be assigned to, because when
access of afinal variable is used as an expression, the result is a value, n
variable, and so it cannot be used as the operand of an assignment operator

15.25.1 Simple Assignment Operator=

A compile-time error occurs if the type of the right-hand operand cannot be
verted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of two ways. If the left-h
operand expression is not an array access expression, then three ste
required:

• First, the left-hand operand is evaluated to produce a variable. If this ev
tion completes abruptly, then the assignment expression completes ab
369

15.25.1 Simple Assignment Operator= EXPRESSIONS

370

ssign-

letes
e rea-

f the
le.

, then

ccess
sign-
xpres-
hand

ccess
sign-
-hand

letes
e rea-

 to an
eater
d an

onent
. This

.

for the same reason; the right-hand operand is not evaluated and no a
ment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation comp
abruptly, then the assignment expression completes abruptly for the sam
son and no assignment occurs.

• Otherwise, the value of the right-hand operand is converted to the type o
left-hand variable and the result of the conversion is stored into the variab

If the left-hand operand expression is an array access expression (§15.12)
many steps are required:

• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index sube
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and the right
operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation comp
abruptly, then the assignment expression completes abruptly for the sam
son and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gr
than or equal to the length of the array, then no assignment occurs an
IndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a comp
of the array referred to by the value of the array reference subexpression
component is a variable; call its typeSC. Also, letTC be the type of the left-
hand operand of the assignment operator as determined at compile time

◆ If TC is a primitive type, thenSC is necessarily the same asTC. The value of
the right-hand operand is converted to a value of typeTC and stored into the
selected array component.

EXPRESSIONS Simple Assignment Operator= 15.25.1

o

po-

e of
 that

.15),

n

o the

wing
◆ If T is a reference type, thenSC may not be the same asT, but rather a type
that extends or implementsTC. Let RC be the class of the object referred t
by the value of the right-hand operand at run time.

The compiler may be able to prove at compile time that the array com
nent will be of typeTC exactly (for example,TC might befinal). But if the
compiler cannot prove at compile time that the array component will b
typeTC exactly, then a check must be performed at run time to ensure
the classRC is assignment compatible (§5.2) with the actual typeSC of the
array component. This check is similar to a narrowing cast (§5.4, §15
except that if the check fails, anArrayStoreException is thrown rather
than aClassCastException. Therefore:

❖ If classRC is not assignable to typeSC, then no assignment occurs and a
ArrayStoreException is thrown.

❖ Otherwise, the reference value of the right-hand operand is stored int
selected array component.

The rules for assignment to an array component are illustrated by the follo
example program:

class ArrayReferenceThrow extends RuntimeException { }

class IndexThrow extends RuntimeException { }

class RightHandSideThrow extends RuntimeException { }

class IllustrateSimpleArrayAssignment {

static Object[] objects = { new Object(), new Object() };

static Thread[] threads = { new Thread(), new Thread() };

static Object[] arrayThrow() {
throw new ArrayReferenceThrow();

}

static int indexThrow() { throw new IndexThrow(); }

static Thread rightThrow() {
throw new RightHandSideThrow();

}

static String name(Object q) {
String sq = q.getClass().getName();
int k = sq.lastIndexOf('.');
return (k < 0) ? sq : sq.substring(k+1);

}

static void testFour(Object[] x, int j, Object y) {
String sx = x == null ? "null" : name(x[0]) + "s";
String sy = name(y);
371

15.25.1 Simple Assignment Operator= EXPRESSIONS

372
System.out.println();
try {

System.out.print(sx + "[throw]=throw => ");
x[indexThrow()] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[throw]=" + sy + " => ");
x[indexThrow()] = y;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]=throw => ");
x[j] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]=" + sy + " => ");
x[j] = y;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
}

public static void main(String[] args) {
try {

System.out.print("throw[throw]=throw => ");
arrayThrow()[indexThrow()] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]=Thread => ");
arrayThrow()[indexThrow()] = new Thread();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]=throw => ");
arrayThrow()[1] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]=Thread => ");
arrayThrow()[1] = new Thread();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

testFour(null, 1, new StringBuffer());
testFour(null, 1, new StringBuffer());
testFour(null, 9, new Thread());
testFour(null, 9, new Thread());
testFour(objects, 1, new StringBuffer());
testFour(objects, 1, new Thread());
testFour(objects, 9, new StringBuffer());

EXPRESSIONS Simple Assignment Operator= 15.25.1
testFour(objects, 9, new Thread());
testFour(threads, 1, new StringBuffer());
testFour(threads, 1, new Thread());
testFour(threads, 9, new StringBuffer());
testFour(threads, 9, new Thread());

}

}

This program prints:

throw[throw]=throw => ArrayReferenceThrow
throw[throw]=Thread => ArrayReferenceThrow
throw[1]=throw => ArrayReferenceThrow
throw[1]=Thread => ArrayReferenceThrow

null[throw]=throw => IndexThrow
null[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
null[9]=Thread => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
null[9]=Thread => NullPointerException

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=StringBuffer => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=Thread => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=StringBuffer => IndexOutOfBoundsException

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=Thread => IndexOutOfBoundsException
373

15.25.2 Compound Assignment Operators EXPRESSIONS

374

ide of

type,
ft-

-
 fol-
Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=StringBuffer => ArrayStoreException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=Thread => Okay!

Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=StringBuffer => IndexOutOfBoundsException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=Thread => IndexOutOfBoundsException

The most interesting case of the lot is the one thirteenth from the end:

Threads[1]=StringBuffer => ArrayStoreException

which indicates that the attempt to store a reference to aStringBuffer into an
array whose components are of typeThread throws anArrayStoreException.
The code is type-correct at compile time: the assignment has a left-hand s
typeObject[] and a right-hand side of typeObject. At run time, the first actual
argument to methodtestFour is a reference to an instance of “array ofThread”
and the third actual argument is a reference to an instance of classStringBuffer.

15.25.2 Compound Assignment Operators

All compound assignment operators require both operands to be of primitive
except for+=, which allows the right-hand operand to be of any type if the le
hand operand is of typeString.

A compound assignment expression of the formE1 op= E2 is equivalent to
E1 = (T)((E1) op (E2)), whereT is the type ofE1, except thatE1 is evaluated
only once. Note that the implied cast to typeT may be either an identity conver
sion (§5.1.1) or a narrowing primitive conversion (§5.1.3). For example, the
lowing code is correct:

short x = 3;
x += 4.6;

and results inx having the value7 because it is equivalent to:

short x = 3;
x = (short)(x + 4.6);

EXPRESSIONS Compound Assignment Operators15.25.2

and
quired:

alua-
ruptly
ssign-

-hand
sign-
nment

right-
com-
only
ment
ccurs.

f the
le.

, then

ccess
sign-
xpres-
hand

ccess
sign-
-hand

 to an
eater
d an

onent
. The
At run time, the expression is evaluated in one of two ways. If the left-h
operand expression is not an array access expression, then four steps are re

• First, the left-hand operand is evaluated to produce a variable. If this ev
tion completes abruptly, then the assignment expression completes ab
for the same reason; the right-hand operand is not evaluated and no a
ment occurs.

• Otherwise, the value of the left-hand operand is saved and then the right
operand is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and no assig
occurs.

• Otherwise, the saved value of the left-hand variable and the value of the
hand operand are used to perform the binary operation indicated by the
pound assignment operator. If this operation completes abruptly (the
possibility is an integer division by zero—see §15.16.2), then the assign
expression completes abruptly for the same reason and no assignment o

• Otherwise, the result of the binary operation is converted to the type o
left-hand variable and the result of the conversion is stored into the variab

If the left-hand operand expression is an array access expression (§15.12)
many steps are required:

• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index sube
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and the right
operand is not evaluated and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gr
than or equal to the length of the array, then no assignment occurs an
IndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a comp
of the array referred to by the value of the array reference subexpression
375

15.25.2 Compound Assignment Operators EXPRESSIONS

376

ated.
com-
imple
efore
ssion,
and

hose

ed at

hand
om-
only
ign-
sign-

f the
rray

s
d for

hand
tion)
arily
sion

e

y the
value of this component is saved and then the right-hand operand is evalu
If this evaluation completes abruptly, then the assignment expression
pletes abruptly for the same reason and no assignment occurs. (For a s
assignment operator, the evaluation of the right-hand operand occurs b
the checks of the array reference subexpression and the index subexpre
but for a compound assignment operator, the evaluation of the right-h
operand occurs after these checks.)

• Otherwise, consider the array component selected in the previous step, w
value was saved. This component is a variable; call its typeS. Also, letT be
the type of the left-hand operand of the assignment operator as determin
compile time.

◆ If T is a primitive type, thenS is necessarily the same asT.

❖ The saved value of the array component and the value of the right-
operand are used to perform the binary operation indicated by the c
pound assignment operator. If this operation completes abruptly (the
possibility is an integer division by zero—see §15.16.2), then the ass
ment expression completes abruptly for the same reason and no as
ment occurs.

❖ Otherwise, the result of the binary operation is converted to the type o
array component and the result of the conversion is stored into the a
component.

◆ If T is a reference type, then it must beString. Because classString is a
final class,S must also beString. Therefore the run-time check that i
sometimes required for the simple assignment operator is never require
a compound assignment operator.

❖ The saved value of the array component and the value of the right-
operand are used to perform the binary operation (string concatena
indicated by the compound assignment operator (which is necess
+=). If this operation completes abruptly, then the assignment expres
completes abruptly for the same reason and no assignment occurs.

❖ Otherwise, theString result of the binary operation is stored into th
array component.

The rules for compound assignment to an array component are illustrated b
following example program:

class ArrayReferenceThrow extends RuntimeException { }

class IndexThrow extends RuntimeException { }

EXPRESSIONS Compound Assignment Operators15.25.2
class RightHandSideThrow extends RuntimeException { }

class IllustrateCompoundArrayAssignment {

static String[] strings = { "Simon", "Garfunkel" };

static double[] doubles = { Math.E, Math.PI };

static String[] stringsThrow() {
throw new ArrayReferenceThrow();

}

static double[] doublesThrow() {
throw new ArrayReferenceThrow();

}

static int indexThrow() { throw new IndexThrow(); }

static String stringThrow() {
throw new RightHandSideThrow();

}

static double doubleThrow() {
throw new RightHandSideThrow();

}

static String name(Object q) {
String sq = q.getClass().getName();
int k = sq.lastIndexOf('.');
return (k < 0) ? sq : sq.substring(k+1);

}

static void testEight(String[] x, double[] z, int j) {
String sx = (x == null) ? "null" : "Strings";
String sz = (z == null) ? "null" : "doubles";
System.out.println();
try {

System.out.print(sx + "[throw]+=throw => ");
x[indexThrow()] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[throw]+=throw => ");
z[indexThrow()] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print(sx + "[throw]+=\"heh\" => ");
x[indexThrow()] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[throw]+=12345 => ");
z[indexThrow()] += 12345;
System.out.println("Okay!");
377

15.25.2 Compound Assignment Operators EXPRESSIONS

378
} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]+=throw => ");
x[j] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[" + j + "]+=throw => ");
z[j] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]+=\"heh\" => ");
x[j] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[" + j + "]+=12345 => ");
z[j] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
}

public static void main(String[] args) {
try {

System.out.print("throw[throw]+=throw => ");
stringsThrow()[indexThrow()] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]+=throw => ");
doublesThrow()[indexThrow()] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]+=\"heh\" => ");
stringsThrow()[indexThrow()] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print("throw[throw]+=12345 => ");
doublesThrow()[indexThrow()] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=throw => ");
stringsThrow()[1] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=throw => ");

EXPRESSIONS Compound Assignment Operators15.25.2
doublesThrow()[1] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=\"heh\" => ");
stringsThrow()[1] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=12345 => ");
doublesThrow()[1] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

testEight(null, null, 1);
testEight(null, null, 9);
testEight(strings, doubles, 1);
testEight(strings, doubles, 9);

}

}

This program prints:

throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+="heh" => ArrayReferenceThrow
throw[throw]+=12345 => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+="heh" => ArrayReferenceThrow
throw[1]+=12345 => ArrayReferenceThrow

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[1]+=throw => NullPointerException
null[1]+=throw => NullPointerException
null[1]+="heh" => NullPointerException
null[1]+=12345 => NullPointerException

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[9]+=throw => NullPointerException
null[9]+=throw => NullPointerException
null[9]+="heh" => NullPointerException
null[9]+=12345 => NullPointerException

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
379

15.25.2 Compound Assignment Operators EXPRESSIONS

380

ly gets
 This
ter the

ide

d

doubles[throw]+=12345 => IndexThrow
Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow
Strings[1]+="heh" => Okay!
doubles[1]+=12345 => Okay!

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[9]+=throw => IndexOutOfBoundsException
doubles[9]+=throw => IndexOutOfBoundsException
Strings[9]+="heh" => IndexOutOfBoundsException
doubles[9]+=12345 => IndexOutOfBoundsException

The most interesting cases of the lot are tenth and eleventh from the end:

Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow

They are the cases where a right-hand side that throws an exception actual
to throw the exception; moreover, they are the only such cases in the lot.
demonstrates that the evaluation of the right-hand operand indeed occurs af
checks for a null array reference value and an out-of-bounds index value.

The following program illustrates the fact that the value of the left-hand s
of a compound assignment is saved before the right-hand side is evaluated:

class Test {
public static void main(String[] args) {

int k = 1;
int[] a = { 1 };
k += (k = 4) * (k + 2);
a[0] += (a[0] = 4) * (a[0] + 2);
System.out.println("k==" + k + " and a[0]==" + a[0]);

}
}

This program prints:

k==25 and a[0]==25

The value1 of k is saved by the compound assignment operator+= before its
right-hand operand(k = 4) * (k + 2) is evaluated. Evaluation of this right-han
operand then assigns4 to k, calculates the value6 for k + 2, and then multiplies
4 by 6 to get24. This is added to the saved value1 to get25, which is then stored
into k by the+= operator. An identical analysis applies to the case that usesa[0].
In short, the statements

k += (k = 4) * (k + 2);
a[0] += (a[0] = 4) * (a[0] + 2);

EXPRESSIONS Constant Expression15.27

f

nt
behave in exactly the same manner as the statements:

k = k + (k = 4) * (k + 2);
a[0] = a[0] + (a[0] = 4) * (a[0] + 2);

15.26 Expression

An Expression is any assignment expression:

Expression:
AssignmentExpression

Unlike C and C++, the Java language has no comma operator.

15.27 Constant Expression

ConstantExpression:
Expression

A compile-time constant expression is an expression denoting a value o
primitive type or aString that is composed using only the following:

• Literals of primitive type and literals of typeString

• Casts to primitive types and casts to typeString

• The unary operators+, -, ~, and! (but not++ or --)

• The multiplicative operators*, /, and%

• The additive operators+ and-

• The shift operators<<, >>, and>>>

• The relational operators<, <=, >, and>= (but notinstanceof)

• The equality operators== and!=

• The bitwise and logical operators&, ^, and|

• The conditional-and operator&& and the conditional-or operator||

• The ternary conditional operator? :

• Simple names that refer tofinal variables whose initializers are consta
expressions
381

15.27 Constant Expression EXPRESSIONS

382

tared
 . . .
• Qualified names of the formTypeName. Identifier that refer tofinal vari-
ables whose initializers are constant expressions

Compile-time constant expressions are used incase labels inswitch statements
(§14.9) and have a special significance for assignment conversion (§5.2).

Examples of constant expressions:

true

(short)(1*2*3*4*5*6)

Integer.MAX_VALUE / 2

2.0 * Math.PI

"The integer " + Long.MAX_VALUE + " is mighty big."

. . . when faces of the throng turned toward him and ambiguous eyes s
into his, he assumed the most romantic of expressions

—F. Scott Fitzgerald,This Side of Paradise (1920)

C H A P T E R 16

t

nite.

f
riable
imple

ake
itely

ords
iable
ing of
alysis
ides a

ons.

:

Definite Assignmen

All the evolution we know of proceeds from the vague to the defi
—Charles Peirce

EACH local variable must have adefinitely assigned value when any access o
its value occurs. An access to its value consists of the simple name of the va
occurring anywhere in an expression except as the left-hand operand of the s
assignment operator=.

A Java compiler must carry out a specific conservative flow analysis to m
sure that, for every access of a local variable, the local variable is defin
assigned before the access; otherwise a compile-time error must occur.

The remainder of this chapter is devoted to a precise explanation of the w
“definitely assigned before”. The idea is that an assignment to the local var
must occur on every possible execution path to the access from the beginn
the constructor, method, or static initializer that contains the access. The an
takes into account the structure of statements and expressions; it also prov
special treatment of the expression operators!, &&, ||, and? :, the operators&, |,
^, ==, and!= with boolean operands, and boolean-valued constant expressi
For example, a Java compiler recognizes thatk is definitely assigned before its
access (as an argument of a method invocation) in the code:

{
int k;
if (v > 0 && (k = System.in.read()) >= 0)

System.out.println(k);
}

because the access occurs only if the value of the expression:

v > 0 && (k = System.in.read()) >= 0

is true, and the value can betrue only if the assignment tok is executed (more
properly, evaluated). Similarly, a Java compiler will recognize that in the code
383

16 Definite Assignment DEFINITE ASSIGNMENT

384

n

lean-
ccount
-time

e

d out
e, the

his
{
int k;
while (true) {

k = n;
if (k >= 5) break;
n = 6;

}
System.out.println(k);

}

the variablek is definitely assigned by thewhile statement because the conditio
expressiontrue never has the valuefalse, so only thebreak statement can
cause thewhile statement to complete normally, andk is definitely assigned
before thebreak statement.

Except for the special treatment of certain boolean operators and of boo
valued constant expressions, the values of expressions are not taken into a
in the flow analysis. For example, a Java compiler must produce a compile
error for the code:

{
int k;
int n = 5;
if (n > 2)

k = 3;
System.out.println(k);// k is not “definitely assigned” before this

}

even though the value ofn is known at compile time, and in principle it can b
known at compile time that the assignment tok will always be executed (more
properly, evaluated). A Java compiler must operate according to the rules lai
in this section. The rules recognize only constant expressions; in this exampl
expressionn > 2 is not a constant expression as defined in §15.27.

As another example, a Java compiler will accept the code:

void flow(boolean flag) {
int k;
if (flag)

k = 3;
else

k = 4;
System.out.println(k);

}

as far as definite assignment ofk is concerned, because the rules outlined in t
section allow it to tell thatk is assigned no matter whether the flag istrue or
false. But the rules do not accept the variation:

DEFINITE ASSIGNMENT Definite Assignment 16

es in

-

.

 into

le,
ssion

ve
uence

t

and
void flow(boolean flag) {
int k;
if (flag)

k = 3;
if (!flag)

k = 4;
System.out.println(k); // k is not “definitely assigned” before here

}

and so compiling this program must cause a compile-time error to occur.
In order to precisely specify all the cases of definite assignment, the rul

this section define two technical terms:

• whether a local variable isdefinitely assigned before a statement or expres
sion, and

• whether a local variable isdefinitely assigned aftera statement or expression

In order to specify boolean-valued expressions, the latter notion is refined
two cases:

• whether a local variable isdefinitely assigned after the expressionwhen true,
and

• whether a local variable isdefinitely assigned after the expressionwhen false.

Herewhen true andwhen false refer to the value of the expression. For examp
the local variable k is definitely assigned a value after evaluation of the expre

a && ((k=m) > 5)

when the expression istrue but not when the expression isfalse (because ifa is
false, then the assignment tok is not executed (more properly, evaluated)).

The statement “V is definitely assigned afterX ” (whereV is a local variable
andX is a statement or expression) means “V is definitely assigned afterX if X
completes normally”. IfX completes abruptly, the assignment may not ha
occurred, and the rules stated here take this into account. A peculiar conseq
of this definition is that “V is definitely assigned afterbreak;” is always true!
Because abreak statement never completes normally, it is vacuously true thaV
has been assigned a value if thebreak statement completes normally.

To shorten the rules, the customary abbreviation “iff” is used to mean “if
only if”.

Let V be a local variable. Leta, b, c, ande be expressions. LetS andT be
statements.
385

16.1 Definite Assignment and Expressions DEFINITE ASSIGNMENT

386

lving

lies
16.1 Definite Assignment and Expressions

16.1.1 Boolean Constant Expressions

V is definitely assigned after any constant expression whose value istrue when
false.V is definitely assigned after any constant expression whose value isfalse
when true.

A constant expression whose value istrue never has the valuefalse, and a
constant expression whose value isfalse never has the valuetrue, these defini-
tions are vacuously satisfied. They are helpful in analyzing expressions invo
the boolean operators&&, ||, and! (§16.1.3, §16.1.4, §16.1.5).

16.1.2 Boolean-valued Expressions

For every boolean-valued expression:

• If the expression has no subexpressions,V is definitely assigned after the
expression iffV is definitely assigned before the expression. This case app
to literals and simple names.

• Otherwise,V is definitely assigned after the expression iffV is definitely
assigned after the expression when true andV is definitely assigned after the
expression when false.

16.1.3 The Boolean Operator&&

• V is definitely assigned aftera && b when true iffV is definitely assigned after
a when true orV is definitely assigned afterb when true.

• V is definitely assigned aftera && b when false iffV is definitely assigned after
a when false andV is definitely assigned afterb when false.

• V is definitely assigned beforea iff V is definitely assigned beforea && b.

• V is definitely assigned beforeb iff V is definitely assigned aftera when true.

16.1.4 The Boolean Operator||

• V is definitely assigned aftera || b when true iffV is definitely assigned after
a when true andV is definitely assigned afterb when true.

• V is definitely assigned aftera || b when false iffV is definitely assigned after
a when false orV is definitely assigned afterb when false.

DEFINITE ASSIGNMENT The Boolean Operator| 16.1.7
• V is definitely assigned beforea iff V is definitely assigned beforea || b.

• V is definitely assigned beforeb iff V is definitely assigned aftera when false.

16.1.5 The Boolean Operator!

• V is definitely assigned after!a when true iffV is definitely assigned aftera
when false.

• V is definitely assigned after!a when false iffV is definitely assigned aftera
when true.

• V is definitely assigned beforea iff V is definitely assigned before!a.

16.1.6 The Boolean Operator&

• V is definitely assigned aftera & b when true iffV is definitely assigned aftera
when true orV is definitely assigned afterb when true.

• V is definitely assigned aftera & b when false iff at least one of the following
is true:

◆ V is definitely assigned afterb. (Note that ifV is definitely assigned aftera,
it follows thatV is definitely assigned afterb.)

◆ V is definitely assigned aftera when false andV is definitely assigned afterb
when false.

• V is definitely assigned beforea iff V is definitely assigned beforea & b.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

16.1.7 The Boolean Operator|

• V is definitely assigned aftera | b when true iff at least one of the following is
true:

◆ V is definitely assigned afterb. (Note that ifV is definitely assigned aftera,
it follows thatV is definitely assigned afterb.)

◆ V is definitely assigned aftera when true andV is definitely assigned afterb
when true.
387

16.1.8 The Boolean Operator̂ DEFINITE ASSIGNMENT

388
• V is definitely assigned aftera | b when false iffV is definitely assigned after
a when false orV is definitely assigned afterb when false.

• V is definitely assigned beforea iff V is definitely assigned beforea | b.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

16.1.8 The Boolean Operator̂

• V is definitely assigned aftera ^ b when true iff at least one of the following is
true:

◆ V is definitely assigned afterb.

◆ V is definitely assigned aftera when true andV is definitely assigned afterb
when true.

◆ V is definitely assigned aftera when false andV is definitely assigned afterb
when false.

• V is definitely assigned aftera ^ b when false iff at least one of the following
is true:

◆ V is definitely assigned afterb.

◆ V is definitely assigned aftera when true andV is definitely assigned afterb
when false.

◆ V is definitely assigned aftera when false andV is definitely assigned afterb
when true.

• V is definitely assigned beforea iff V is definitely assigned beforea ^ b.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

16.1.9 The Boolean Operator==

• V is definitely assigned aftera == b when true iff at least one of the following
is true:

◆ V is definitely assigned afterb.

◆ V is definitely assigned aftera when true andV is definitely assigned afterb
when false.

◆ V is definitely assigned aftera when false andV is definitely assigned afterb
when true.

DEFINITE ASSIGNMENT The Boolean Operator? : 16.1.11
• V is definitely assigned aftera == b when false iff at least one of the following
is true:

◆ V is definitely assigned afterb.

◆ V is definitely assigned aftera when true andV is definitely assigned afterb
when true.

◆ V is definitely assigned aftera when false andV is definitely assigned afterb
when false.

• V is definitely assigned beforea iff V is definitely assigned beforea == b.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

16.1.10 The Boolean Operator!=

The rules fora != b are identical to the rules fora ^ b (§16.1.8).

16.1.11 The Boolean Operator? :

Suppose thatb andc are boolean-valued expressions.

• V is definitely assigned aftera ? b : c when true iff both of the following are
true:

◆ V is definitely assigned beforeb or V is definitely assigned afterb when
true.

◆ V is definitely assigned beforec orV is definitely assigned afterc when true.

• V is definitely assigned aftera ? b : c when false iff both of the following are
true:

◆ V is definitely assigned beforeb or V is definitely assigned afterb when
false.

◆ V is definitely assigned beforec or V is definitely assigned afterc when
false.

• V is definitely assigned beforea iff V is definitely assigned beforea ? b : c.

• V is definitely assigned beforeb iff V is definitely assigned aftera when true.

• V is definitely assigned beforec iff V is definitely assigned aftera when false.
389

16.1.12 The Conditional Operator? : DEFINITE ASSIGNMENT

390

n-
16.1.12 The Conditional Operator? :

Suppose thatb andc are expressions that are not boolean-valued.

• V is definitely assigned aftera ? b : c iff both of the following are true:

◆ V is definitely assigned afterb.

◆ V is definitely assigned afterc.

• V is definitely assigned beforea iff V is definitely assigned beforea ? b : c.

• V is definitely assigned beforeb iff V is definitely assigned aftera when true.

• V is definitely assigned beforec iff V is definitely assigned aftera when false.

16.1.13 Boolean Assignment Expressions

Suppose that an assignment expressiona = b, a &= b, a |= b, or a ^= b is boolean-
valued.

• V is definitely assigned beforea iff V is definitely assigned before the assig
ment expression.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

• V is definitely assigned aftera = b when true iff eithera is V or V is definitely
assigned after the right-hand operand expression when true.

• V is definitely assigned aftera = b when false iff eithera is V or V is definitely
assigned after the right-hand operand expression when false.

• V is definitely assigned aftera &= b when true iff eithera is V or V would be
definitely assigned aftera & b (in the same context) when true.

• V is definitely assigned aftera &= b when false iff eithera is V or V would be
definitely assigned aftera & b (in the same context) when false.

• V is definitely assigned aftera |= b when true iff eithera is V or V would be
definitely assigned aftera | b (in the same context) when true.

• V is definitely assigned aftera |= b when false iff eithera is V or V would be
definitely assigned aftera | b (in the same context) when false.

• V is definitely assigned aftera ^= b when true iff eithera is V or V would be
definitely assigned aftera ^ b (in the same context) when true.

• V is definitely assigned aftera ^= b when false iff eithera is V or V would be
definitely assigned aftera ^ b (in the same context) when false.

DEFINITE ASSIGNMENT Other Expressions16.1.16

gn-
les

esult

 error

n-

nt, or

decre-

ssion

lies

-
n.
Note that ifa is V andV is not definitely assigned before a compound assi
ment such asa &= b, then a compile-time error will necessarily occur. The ru
stated above include the disjunct “a isV ” so thatV will be considered to have been
definitely assigned at later points in the code. Including the disjunct “a is V ” does
not affect the binary decision as to whether a program is acceptable or will r
in a compile-time error, but it affectshow many different points in the code may
be regarded as erroneous, and so in practice it can improve the quality of
reporting.

16.1.14 Other Assignment Expressions

Suppose that an assignment expressiona = b, a += b, a -= b, a *= b, a /= b, a %= b,
a <<= b, a >>= b, a >>>= b, a &= b, a |= b, ora ^= b is not boolean-valued.

• V is definitely assigned after the assignment expression iff eithera is V or V is
definitely assigned afterb.

• V is definitely assigned beforea iff V is definitely assigned before the assig
ment expression.

• V is definitely assigned beforeb iff V is definitely assigned aftera.

16.1.15 Operators++ and --

• V is definitely assigned after a preincrement, predecrement, postincreme
postdecrement expression iff either the operand expression isV or V is defi-
nitely assigned after the operand expression.

• V is definitely assigned before the operand expression iffV is definitely
assigned before the preincrement, predecrement, postincrement, or post
ment expression.

16.1.16 Other Expressions

If an expression is not boolean-valued and is not a conditional-operator expre
or assignment expression, the following rules apply:

• If the expression has no subexpressions,V is definitely assigned after the
expression iffV is definitely assigned before the expression. This case app
to literals, simple names,this, super, andnull.

• If the expression has subexpressions,V is definitely assigned after the expres
sion iff V is definitely assigned after its rightmost immediate subexpressio
391

16.2 Definite Assignment and Statements DEFINITE ASSIGNMENT

392

ssion
nthe-

n;

t
 left

ned

fore

fter

tely
For any immediate subexpressiony of an expressionx, V is definitely assigned
beforey iff V is definitely assigned beforex or one of the following situations is
true:

• y is the right-hand operand of a binary operator andV is definitely assigned
after the left-hand operand.

• x is an array reference,y is the subexpression within the brackets, andV is def-
initely assigned after the subexpression before the brackets.

• x is a method invocation expression for an object;y is the first argument
expression in the method invocation expression; there is a subexpre
whose value is an object to the left of the dot, method name, and left pare
sis of the method invocation expression; andV is definitely assigned after this
subexpression.

• x is a method invocation expression or class instance creation expressioy is
an argument expression, but not the first; andV is definitely assigned after the
argument expression to the left ofy.

• x is an class instance creation expression;y is a dimension expression, but no
the first; andV is definitely assigned after the dimension expression to the
of y.

16.2 Definite Assignment and Statements

16.2.1 Empty Statements

• V is definitely assigned after an empty statement iff it is definitely assig
before the empty statement.

16.2.2 Blocks

• V is definitely assigned after an empty block iff it is definitely assigned be
the empty block.

• V is definitely assigned after a nonempty block iff it is definitely assigned a
the last statement in the block.

• V is definitely assigned before the first statement of the block iff it is defini
assigned before the block.

DEFINITE ASSIGNMENT if Statements 16.2.6

con-
cla-

con-
er
lizer

ely

edi-
ra-
• V is definitely assigned before any other statementS of the block iff it is defi-
nitely assigned after the statement immediately precedingS in the block.

16.2.3 Local Variable Declaration Statements

• V is definitely assigned after a local variable declaration statement that
tains no initializers iff it is definitely assigned before the local variable de
ration statement.

• V is definitely assigned after a local variable declaration statement that
tains initializers iff either it is definitely assigned after the last initializ
expression in the local variable declaration statement or the last initia
expression in the declaration is in the declarator that declaresV.

• V is definitely assigned before the first initializer expression iff it is definit
assigned before the local variable declaration statement.

• V is definitely assigned before any other initializer expressione iff either it is
definitely assigned after the initializer expression immediately precedinge in
the local variable declaration statement or the initializer expression imm
ately precedinge in the local variable declaration statement is in the decla
tor that declaresV.

16.2.4 Labeled Statements

• V is definitely assigned after a labeled statementL:S (whereL is a label) iffV
is definitely assigned afterS andV is definitely assigned before everybreak
statement that may exit the labeled statementL:S.

• V is definitely assigned beforeS iff V is definitely assigned beforeL:S.

16.2.5 Expression Statements

• V is definitely assigned after an expression statemente; iff it is definitely
assigned aftere.

• V is definitely assigned beforee iff it is definitely assigned beforee;.

16.2.6 if Statements

• V is definitely assigned afterif (e) S iff V is definitely assigned afterS andV
is definitely assigned aftere when false.
393

16.2.7 switch Statements DEFINITE ASSIGNMENT

394

t

tate-
• V is definitely assigned beforee iff V is definitely assigned beforeif (e) S.
V is definitely assigned beforeS iff V is definitely assigned aftere when true.

• V is definitely assigned afterif (e) S else T iff V is definitely assigned after
S andV is definitely assigned afterT.

• V is definitely assigned beforee iff V is definitely assigned beforeif (e) S
else T. V is definitely assigned beforeS iff V is definitely assigned aftere
when true.V is definitely assigned beforeT iff V is definitely assigned aftere
when false.

16.2.7 switch Statements

• V is definitely assigned after aswitch statement iff both of the following are
true:

◆ Either theswitch block is empty orV is definitely assigned after the las
statement of theswitch block.

◆ V is definitely assigned before everybreak statement that may exit the
switch statement.

• V is definitely assigned before the switch expression iffV is definitely
assigned before theswitch statement.

• V is definitely assigned before a statement or local variable declaration s
mentS in the switch block iff at least one of the following is true:

◆ V is definitely assigned after the switch expression.

◆ S is not labeled by acase or default label andV is definitely assigned
after the preceding statement.

16.2.8 while Statements

• V is definitely assigned afterwhile (e) S iff V is definitely assigned aftere
when false andV is definitely assigned before everybreak statement that may
exit thewhile statement.

• V is definitely assigned beforee iff V is definitely assigned before thewhile
statement.

• V is definitely assigned beforeS iff V is definitely assigned aftere when true.

DEFINITE ASSIGNMENT for Statements16.2.10

y

:

low-

-

-

n

16.2.9 do Statements

• V is definitely assigned afterdo S while (e); iff V is definitely assigned after
e when false andV is definitely assigned before everybreak statement that
may exit thedo statement.

• V is definitely assigned beforeS iff V is definitely assigned before thedo
statement.

• V is definitely assigned beforee iff V is definitely assigned afterS andV is
definitely assigned before everycontinue statement that may exit the bod
of thedo statement.

16.2.10 for Statements

• V is definitely assigned after afor statement iff both of the following are true

◆ Either a condition expression is not present orV is definitely assigned after
the condition expression when false.

◆ V is definitely assigned before everybreak statement that may exit thefor
statement.

• V is definitely assigned before the initialization part of thefor statement iffV
is definitely assigned before thefor statement.

• V is definitely assigned before the condition part of thefor statement iffV is
definitely assigned after the initialization part of thefor statement.

• V is definitely assigned before the contained statement iff either of the fol
ing is true:

◆ A condition expression is present andV is definitely assigned after the con
dition expression when true.

◆ No condition expression is present andV is definitely assigned after the ini
tialization part of thefor statement.

• V is definitely assigned before the incrementation part of thefor statement iff
V is definitely assigned after the contained statement andV is definitely
assigned before everycontinue statement that may exit the body of thefor
statement.

16.2.10.1 Initialization Part

• If the initialization part of thefor statement is a local variable declaratio
statement, the rules of §16.2.3 apply.
395

16.2.11 break, continue, return, andthrow Statements DEFINITE ASSIGNMENT

396

.

liza-

te-

cre-

n

d
n

ly
igned
• Otherwise, if the initialization part is empty, thenV is definitely assigned after
the initialization part iffV is definitely assigned before the initialization part

• Otherwise, three rules apply:

◆ V is definitely assigned after the initialization part iffV is definitely assigned
after the last expression statement in the initialization part.

◆ V is definitely assigned before the first expression statement in the initia
tion part iffV is definitely assigned before the initialization part.

◆ V is definitely assigned before an expression statementE other than the first
in the initialization part iffV is definitely assigned after the expression sta
ment immediately precedingE.

16.2.10.2 Incrementation Part

• If the incrementation part of thefor statement is empty, thenV is definitely
assigned after the incrementation part iffV is definitely assigned before the
incrementation part.

• Otherwise, three rules apply:

◆ V is definitely assigned after the incrementation part iffV is definitely
assigned after the last expression statement in the incrementation part.

◆ V is definitely assigned before the first expression statement in the in
mentation part iffV is definitely assigned before the incrementation part.

◆ V is definitely assigned before an expression statementE other than the first
in the incrementation part iffV is definitely assigned after the expressio
statement immediately precedingE.

16.2.11 break, continue, return, andthrow Statements

Fiorello: Hey, look! Why can't the first part of the secon
party be the second part of the first party? The
you've got something!

—Chico Marx,A Night at the Opera (1935)

• By convention, we say thatV is definitely assigned after anybreak, con-
tinue, return, or throw statement. The notion that a variable is “definite
assigned after” a statement or expression really means “is definitely ass
after the statement or expression completes normally”. Because abreak,

DEFINITE ASSIGNMENT try Statements16.2.13

u-

-

 . .

at.
continue, return, or throw statement never completes normally, it vac
ously satisfies this notion.

• In areturn statement with an expression or athrow statement,V is definitely
assigned before the expression iffV is definitely assigned before thereturn
or throw statement.

16.2.12 synchronized Statements

• V is definitely assigned aftersynchronized (e) S iff V is definitely assigned
afterS.

• V is definitely assigned beforee iff V is definitely assigned before the state
mentsynchronized (e) S .

• V is definitely assigned beforeS iff V is definitely assigned aftere.

16.2.13 try Statements

• V is definitely assigned after atry statement iff one of the following is true:

◆ V is definitely assigned after the try block andV is definitely assigned after
every catch block in the try statement.

◆ The try statement has afinally block andV is definitely assigned after
thefinally block.

• V is definitely assigned before thetry block iff V is definitely assigned before
thetry statement.

• V is definitely assigned before acatch block iff V is definitely assigned
before thetry statement.

V is definitely assigned before afinally block iff V is definitely assigned before
thetry statement.

I resolved to assign Bartleby a corner by the folding-doors .
—Herman Melville,Bartleby, the Scrivener(1853)

It does not strike me that there is any thing definite about th
—Herman Melville,Bartleby, the Scrivener(1853)
397

16.2.13 try Statements DEFINITE ASSIGNMENT

398

C H A P T E R 17

s

n
,
r;
!

 with
a time,
 of
ates on
e sup-
ware

hibit

on of
s of

ant
t but
er

l
 and
which
Threads and Lock

And oft-times in the most forbidding de
Of solitude, with love of science strong

How patiently the yoke of thought they bea
How subtly glide its finest threads along

—William Wordsworth, Monks and Schoolmen,
in Ecclesiastical Sonnets (1822)

WHILE most of the discussion in the preceding chapters is concerned only
the behavior of Java code as executed a single statement or expression at
that is, by a singlethread, each Java Virtual Machine can support many threads
execution at once. These threads independently execute Java code that oper
Java values and objects residing in a shared main memory. Threads may b
ported by having many hardware processors, by time-slicing a single hard
processor, or by time-slicing many hardware processors.

Java supports the coding of programs that, though concurrent, still ex
deterministic behavior, by providing mechanisms forsynchronizing the concur-
rent activity of threads. To synchronize threads, Java usesmonitors, which are a
high-level mechanism for allowing only one thread at a time to execute a regi
code protected by the monitor. The behavior of monitors is explained in term
locks; there is a lock associated with each object.

Thesynchronized statement (§14.17) performs two special actions relev
only to multithreaded operation: (1) after computing a reference to an objec
before executing its body, itlocks a lock associated with the object, and (2) aft
execution of the body has completed, either normally or abruptly, itunlocks that
same lock. As a convenience, a method may be declaredsynchronized; such a
method behaves as if its body were contained in asynchronized statement.

The methodswait (§20.1.6, §20.1.7, §20.1.8),notify (§20.1.9), and
notifyAll (§20.1.10) of classObject support an efficient transfer of contro
from one thread to another. Rather than simply “spinning” (repeatedly locking
unlocking an object to see whether some internal state has changed),
399

17 Threads and Locks THREADS AND LOCKS

400

oper-
g to

d may
-

o not
 vari-
ing-
gram-
 pro-

lues
cess a

em-
 the

cks a
ack

 and
bout
n any

redict
 inten-
tan-
d and

 of
les.

act a
his is
. For
e ref-
bject
rence
consumes computational effort, a thread can suspend itself usingwait until such
time as another thread awakens it usingnotify. This is especially appropriate in
situations where threads have a producer-consumer relationship (actively co
ating on a common goal) rather than a mutual exclusion relationship (tryin
avoid conflicts while sharing a common resource).

As a thread executes code, it carries out a sequence of actions. A threa
use the value of a variable orassign it a new value. (Other actions include arith
metic operations, conditional tests, and method invocations, but these d
involves variables directly.) If two or more concurrent threads act on a shared
able, there is a possibility that the actions on the variable will produce tim
dependent results. This dependence on timing is inherent in concurrent pro
ming, producing one of the few places in Java where the result of executing a
gram is not determined solely by this specification.

Each thread has a working memory, in which it may keep copies of the va
of variables from the main memory that is shared between all threads. To ac
shared variable, a thread usually first obtains a lock and flushes its working m
ory. This guarantees that shared values will be thereafter be loaded from
shared main memory to the threads working memory. When a thread unlo
lock it guarantees the values it holds in its working memory will be written b
to the main memory.

This chapter explains the interaction of threads with the main memory,
thus with each other, in terms of certain low-level actions. There are rules a
the order in which these actions may occur. These rules impose constraints o
implementation of Java, and a Java programmer may rely on the rules to p
the possible behaviors of a concurrent Java program. The rules do, however,
tionally give the implementor certain freedoms; the intent is to permit certain s
dard hardware and software techniques that can greatly improve the spee
efficiency of concurrent code.

Briefly put, these are the important consequences of the rules:

• Proper use of synchronization constructs will allow reliable transmission
values or sets of values from one thread to another through shared variab

• When a thread uses the value of a variable, the value it obtains is in f
value stored into the variable by that thread or by some other thread. T
true even if the program does not contain code for proper synchronization
example, if two threads store references to different objects into the sam
erence value, the variable will subsequently contain a reference to one o
or the other, not a reference to some other object or a corrupted refe
value. (There is a special exception forlong anddouble values; see §17.4.)

THREADS AND LOCKS Terminology and Framework 17.1

e to
 the

niza-

his
nts of
se
other

t of as
 that

it oper-

ed to
 vice

h

these

xe-

main
work-
 to a

ain
-

nd a
thus
read
main
• In the absence of explicit synchronization, a Java implementation is fre
update the main memory in an order that may be surprising. Therefore
programmer who prefers to avoid surprises should use explicit synchro
tion.

17.1 Terminology and Framework

A variable is any location within a Java program that may be stored into. T
includes not only class variables and instance variables but also compone
arrays. Variables are kept in amain memory that is shared by all threads. Becau
it is impossible for one thread to access parameters or local variables of an
thread, it doesn’t matter whether parameters and local variables are though
residing in the shared main memory or in the working memory of the thread
owns them.

Every thread has aworking memory in which it keeps its ownworking copy of
variables that it must use or assign. As the thread executes a Java program,
ates on these working copies. The main memory contains themaster copy of
every variable. There are rules about when a thread is permitted or requir
transfer the contents of its working copy of a variable into the master copy or
versa

The main memory also containslocks; there is one lock associated with eac
object. Threads may compete to acquire a lock.

For the purposes of this chapter, the verbsuse, assign, load, store, lock, and
unlock nameactions that a thread can perform. The verbsread, write, lock, and
unlock name actions that the main memory subsystem can perform. Each of
actions isatomic (indivisible).

A use or assign action is a tightly coupled interaction between a thread’s e
cution engine and the thread’s working memory. Alock or unlock action is a
tightly coupled interaction between a thread’s execution engine and the
memory. But the transfer of data between the main memory and a thread’s
ing memory is loosely coupled. When data is copied from the main memory
working memory, two actions must occur: aread action performed by the main
memory followed some time later by a correspondingload action performed by
the working memory. When data is copied from a working memory to the m
memory, two actions must occur: astore action performed by the working mem
ory followed some time later by a correspondingwrite action performed by the
main memory. There may be some transit time between main memory a
working memory, and the transit time may be different for each transaction;
actions initiated by a thread on different variables may viewed by another th
as occurring in a different order. For each variable, however, the actions in
401

17.1 Terminology and Framework THREADS AND LOCKS

402

 corre-

 Java

low.
ation
iably
d to be
and
ghput

opy
hen-
 of a

tion
med
 to a

opy

y a

ing

the
e

s a

ses
memory on behalf of any one thread are performed in the same order as the
sponding actions by that thread. (This is explained in greater detail below.)

A single Java thread issues a stream ofuse, assign, lock, andunlock actions as
dictated by the semantics of the Java program it is executing. The underlying
implementation is then required additionally to perform appropriateload, store,
read, andwrite actions so as to obey a certain set of constraints, explained be
If the Java implementation correctly follows these rules and the Java applic
programmer follows certain other rules of programming, then data can be rel
transferred between threads through shared variables. The rules are designe
“tight” enough to make this possible but “loose” enough to allow hardware
software designers considerable freedom to improve speed and throu
through such mechanisms as registers, queues, and caches.

Here are the detailed definitions of each of the actions:

• A use action (by a thread) transfers the contents of the thread’s working c
of a variable to the thread’s execution engine. This action is performed w
ever a thread executes a virtual machine instruction that uses the value
variable.

• An assign action (by a thread) transfers a value from the thread’s execu
engine into the thread's working copy of a variable. This action is perfor
whenever a thread executes a virtual machine instruction that assigns
variable.

• A read action (by the main memory) transmits the contents of the master c
of a variable to a thread’s working memory for use by a laterload action.

• A load action (by a thread) puts a value transmitted from main memory b
read action into the thread's working copy of a variable.

• A store action (by a thread) transmits the contents of the thread’s work
copy of a variable to main memory for use by a laterwrite action.

• A write action (by the main memory) puts a value transmitted from
thread’s working memory by astore action into the master copy of a variabl
in main memory.

• A lock action (by a thread tightly synchronized with main memory) cause
thread to acquire one claim on a particular lock.

• An unlock action (by a thread tightly synchronized with main memory) cau
a thread to release one claim on a particular lock.

THREADS AND LOCKS Execution Order 17.2

of a

s on

may
:

r any

tally
 the

ally
 the

xplic-
ions
s that

ared
ons of

in
Thus the interaction of a thread with a variable over time consists
sequence ofuse, assign, load, andstore actions. Main memory performs aread
action for everyload and awrite action for everystore. A thread’s interactions
with a lock over time consists of a sequence oflock andunlock actions. All the
globally visible behavior of a thread thus comprises all the thread’s action
variables and locks.

17.2 Execution Order

The rules of execution order constrain the order in which certain events
occur. There are four general constraints on the relationships among actions

• The actions performed by any one thread are totally ordered; that is, fo
two actions performed by a thread, one action precedes the other.

• The actions performed by the main memory for any one variable are to
ordered; that is, for any two actions performed by the main memory on
same variable, one action precedes the other.

• The actions performed by the main memory for any one lock are tot
ordered; that is, for any two actions performed by the main memory on
same lock, one action precedes the other.

• It is not permitted for an action to follow itself.

The last rule may seem trivial, but it does need to be stated separately and e
itly for completeness. Without it, it would be possible to propose a set of act
by two or more threads and precedence relationships among the action
would satisfy all the other rules but would require an action to follow itself.

Threads do not interact directly; they communicate only through the sh
main memory. The relationships between the actions of a thread and the acti
main memory are constrained in three ways:

• Eachlock or unlock action is performed jointly by some thread and the ma
memory.

• Eachload action by a thread is uniquely paired with aread action by the main
memory such that theload action follows theread action.

• Eachstore action by a thread is uniquely paired with awrite action by the
main memory such that thewrite action follows thestore action.
403

17.3 Rules about Variables THREADS AND LOCKS

404

ich
follow

o

r-
ll the

ions

l. For

f

 the

its

to

a

Most of the rules in the following sections further constrain the order in wh
certain actions take place. A rule may state that one action must precede or
some other action. Note that this relationship is transitive: if actionA must precede
actionB, andB must precedeC, thenA must precedeC. The programmer must
remember that these rules are theonly constraints on the ordering of actions; if n
rule or combination of rules implies that actionA must precede actionB, then a
Java implementation is free to perform actionB before actionA, or to perform
actionB concurrently with actionA. This freedom can be the key to good perfo
mance. Conversely, an implementation is not required to take advantage of a
freedoms given it.

In the rules that follow, the phrasing “B must intervene betweenA andC”
means that actionB must follow actionA and precede actionC.

17.3 Rules about Variables

Let T be a thread andV be a variable. There are certain constraints on the act
performed byT with respect toV:

• An use or assign by T of V is permitted only when dictated by execution byT
of the Java program according to the standard Java execution mode
example, an occurrence ofV as an operand of the+ operator requires that a
singleuse action occur onV; an occurrence ofV as the left-hand operand o
the assignment operator= requires that a singleassign action occur. Alluse
andassign actions by a given thread must occur in the order specified by
program being executed by the thread. If the following rules forbidT to per-
form a requireduse as its next action, it may be necessary forT to perform a
loadfirst in order to make progress.

• A store action byT on V must intervene between anassign by T of V and a
subsequentload by T of V. (Less formally: a thread is not permitted to lose
most recent assign.)

• An assign action byT onV must intervene between aload or store by T of V
and a subsequentstore by T of V. (Less formally: a thread is not permitted
write data from its working memory back to main memory for no reason.)

• After a thread is created, it must perform anassign or load action on a vari-
able before performing ause or store action on that variable. (Less formally:
new thread starts with an empty working memory.)

THREADS AND LOCKS Nonatomic Treatment ofdouble andlong 17.4

 in

of the

r

d by

 of
ns are

en-
• After a variable is created, every thread must perform anassign or load action
on that variable before performing ause or store action on that variable. (Less
formally: a new variable is created only in main memory and is not initially
any thread’s working memory.)

Provided that all the constraints above and below are obeyed, aload or store
action may be issued at any time by any thread on any variable, at the whim
implementation.

There are also certain constraints on theread andwrite actions performed by
main memory:

• For everyload action performed by any threadT on its working copy of a
variableV, there must be a corresponding precedingread action by the main
memory on the master copy ofV, and theload action must put into the work-
ing copy the data transmitted by the correspondingread action.

• For everystore action performed by any threadT on its working copy of a
variableV, there must be a corresponding followingwrite action by the main
memory on the master copy ofV, and thewrite action must put into the maste
copy the data transmitted by the correspondingstore action.

• Let actionA be aload or store by threadT on variableV, and let actionP be
the correspondingread or write by the main memory on variableV. Similarly,
let actionB be some otherload or store by threadT on that same variableV,
and let actionQ be the correspondingread or write by the main memory on
variableV. If A precedesB, thenP must precedeQ. (Less formally: actions on
the master copy of any given variable on behalf of a thread are performe
the main memory in exactly the order that the thread requested.)

Note that this last rule appliesonly to actions by a thread on thesame variable.
However, there is a more stringent rule forvolatile variables (§17.7).

17.4 Nonatomic Treatment ofdouble and long

If a double or long variable is not declaredvolatile, then for the purposes of
load, store, read, andwrite actions they are treated as if they were two variables
32 bits each: wherever the rules require one of these actions, two such actio
performed, one for each 32-bit half. The manner in which the 64 bits of adouble
or long variable are encoded into two 32-bit quantities is implementation-dep
dent.

This matters only because aread or write of adouble or long variable may
be handled by an actual main memory as two 32-bitread or write actions that may
405

17.5 Rules about Locks THREADS AND LOCKS

406

tly, if

 that
ndent

ly
l cur-
ns-

e all
ition
nces-
plic-

,
s.

per-

g
ed
 mul-
r of

-
g
 a

e con-
be separated in time, with other actions coming between them. Consequen
two threads concurrently assign distinct values to the same shared non-volatile
double orlong variable, a subsequent use of that variable may obtain a value
is not equal to either of the assigned values, but some implementation-depe
mixture of the two values.

An implementation is free to implementload, store, read, andwrite actions
for double and long values as atomic 64-bit actions; in fact, this is strong
encouraged. The model divides them into 32-bit halves for the sake of severa
rently popular microprocessors that fail to provide efficient atomic memory tra
actions on 64-bit quantities. It would have been simpler for Java to defin
memory transactions on single variables as atomic; this more complex defin
is a pragmatic concession to current hardware practice. In the future this co
sion may be eliminated. Meanwhile, programmers are cautioned always to ex
itly synchronize access to shareddouble andlong variables.

17.5 Rules about Locks

By the pricking of my thumbs
Something wicked this way come

Open, locks,
Whoever knocks!

—William Shakespeare, Macbeth, Act IV, scene i

Let T be a thread andL be a lock. There are certain constraints on the actions
formed byT with respect toL:

• A lock action byT onL may occur only if, for every threadS other thanT, the
number of precedingunlock actions byS onL equals the number of precedin
lock actions byS onL. (Less formally: only one thread at a time is permitt
to lay claim to a lock, and moreover a thread may acquire the same lock
tiple times and doesn’t relinquish ownership of it until a matching numbe
unlock actions have been performed.)

• An unlock action by threadT on lockL may occur only if the number of pre
cedingunlock actions byT onL is strictly less than the number of precedin
lock actions byT on L. (Less formally: a thread is not permitted to unlock
lock it doesn’t own.)

With respect to a lock, thelock and unlock actions performed by all the
threads are performed in some total sequential order. This total order must b
sistent with the total order on the actions of each thread.

THREADS AND LOCKS Rules for Volatile Variables 17.7

-

in

ust

ns

les
rder
17.6 Rules about the Interaction of Locks and Variables

Let T be any thread, letV be any variable, and letL be any lock. There are certain
constraints on the actions performed byT with respect toV andL:

• Between anassign action byT onV and a subsequentunlock action byT onL,
a store action byT on V must intervene; moreover, thewrite action corre-
sponding to thatstore must precede theunlock action, as seen by main mem
ory. (Less formally: if a thread is to perform anunlock action onany lock, it
must first copyall assigned values in its working memory back out to ma
memory.)

• Between alock action byT onL and a subsequentuse or store action byT on
a variableV, anassign or load action onV must intervene; moreover, if it is a
load action, then theread action corresponding to thatload must follow the
lock action, as seen by main memory. (Less formally: alock action acts as if it
flushesall variables from the thread’s working memory; before use they m
be assigned or loaded from main memory.)

17.7 Rules for Volatile Variables

If a variable is declaredvolatile, then additional constraints apply to the actio
of each thread. LetT be a thread and letV andW be volatile variables.

• An use action byT onV is permitted only if the previous action byT onV was
load, and aload action byT onV is permitted only if the next action byT onV
is use. Theuse action is said to be “associated” with theread action that corre-
sponds to theload.

• A store action byT onV is permitted only if the previous action byT onV was
assign, and anassign action byT onV is permitted only if the next action byT
onV is store. Theassign action is said to be “associated” with thewrite action
that corresponds to thestore.

• Let actionA be ause or assign by threadT on variableV, let actionF be the
load or store associated withA, and let actionP be theread or write of V that
corresponds toF. Similarly, let actionB be ause or assign by threadT on
variableW, let actionG be theload or store associated withB, and let actionQ
be theread or write of V that corresponds toG. If A precedesB, thenP must
precedeQ . (Less formally: actions on the master copies of volatile variab
on behalf of a thread are performed by the main memory in exactly the o
that the thread requested.)
407

17.8 Prescient Store Actions THREADS AND LOCKS

408

re
e
s to
 prop-

ory

hat

re
. No

uch
side
, for

 any
d

t or a
ys to
17.8 Prescient Store Actions

If a variable is not declaredvolatile, then the rules in the previous sections a
relaxed slightly to allowstore actions to occur earlier than would otherwise b
permitted. The purpose of this relaxation is to allow optimizing Java compiler
perform certain kinds of code rearrangement that preserve the semantics of
erly synchronized programs but might be caught in the act of performing mem
actions out of order by programs that are not properly synchronized.

Suppose that astore by T of V would follow a particularassign by T of V
according to the rules of the previous sections, with no interveningload or assign
by T of V. Then thatstore action would send to the main memory the value t
the assign action put into the working memory of threadT . The special rule
allows thestore action to instead occur before theassign action, if the following
restrictions are obeyed:

• If the store action occurs, theassign is bound to occur. (Remember, these a
restrictions on what actually happens, not on what a thread plans to do
fair performing astore and then throwing an exception before theassign
occurs!)

• No lock action intervenes between the relocatedstore and theassign.

• No load of V intervenes between the relocatedstore and theassign.

• No otherstore of V intervenes between the relocatedstore and theassign.

• The store action sends to the main memory the value that theassign action
will put into the working memory of threadT.

This last property inspires us to call such an earlystore actionprescient: it has to
know ahead of time, somehow, what value will be stored by theassign that it
should have followed. In practice, optimized compiled code will compute s
values early (which is permitted if, for example, the computation has no
effects and throws no exceptions), store them early (before entering a loop
example), and keep them in working registers for later use within the loop.

17.9 Discussion

Any association between locks and variables is purely conventional. Locking
lock conceptually flushesall variables from a thread’s working memory, an
unlocking any lock forces the writing out to main memory ofall variables that the
thread has assigned. That a lock may be associated with a particular objec
class is purely a convention. In some applications, it may be appropriate alwa

THREADS AND LOCKS Example: Possible Swap17.10

 syn-
ppli-
large

 lock
 will

ed to
-
itted

e

 exe-
ect to

the

call
lock an object before accessing any of its instance variables, for example;
chronized methods are a convenient way to follow this convention. In other a
cations, it may suffice to use a single lock to synchronize access to a
collection of objects.

If a thread uses a particular shared variable only after locking a particular
and before the corresponding unlocking of that same lock, then the thread
read the shared value of that variable from main memory after thelock action, if
necessary, and will copy back to main memory the value most recently assign
that variable before theunlock action. This, in conjunction with the mutual exclu
sion rules for locks, suffices to guarantee that values are correctly transm
from one thread to another through shared variables.

The rules forvolatile variables effectively require that main memory b
touched exactly once for eachuse or assign of avolatile variable by a thread,
and that main memory be touched in exactly the order dictated by the thread
cution semantics. However, such memory actions are not ordered with resp
read andwrite actions on nonvolatile variables.

17.10 Example: Possible Swap

Consider a class that has class variablesa andb and methodshither andyon:

class Sample {
int a = 1, b = 2;
void hither() {

a = b;
}
void yon() {

b = a;
}

}

Now suppose that two threads are created, and that one thread callshither while
the other thread callsyon. What is the required set of actions and what are
ordering constraints?

Let us consider the thread that callshither. According to the rules, this
thread must perform anuse of b followed by anassign of a. That is the bare mini-
mum required to execute a call to the methodhither.

Now, the first action on variableb by the thread cannot beuse. But it may be
assign or load. An assign tob cannot occur because the program text does not
for such anassign action, so aload of b is required. Thisload action by the thread
in turn requires a precedingread action forb by the main memory.
409

17.10 Example: Possible Swap THREADS AND LOCKS

410

raint

m
 not
e
 its
The thread may optionallystore the value ofa after theassign has occurred. If
it does, then thestore action in turn requires a followingwrite action fora by the
main memory.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.

The total set of actions may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the actions by the main memory occur? The only const

is that it is not possible both for thewrite of a to precede theread of a and for the
write of b to precede theread of b, because the causality arrows in the diagra
would form a loop so that an action would have to precede itself, which is
allowed. Assuming that the optionalstore andwrite actions are to occur, there ar
three possible orderings in which the main memory might legitimately perform
actions. Letha andhb be the working copies ofa andb for thehither thread, let
ya andyb be the working copies for theyon thread, and letma andmb be the mas-
ter copies in main memory. Initiallyma=1 and mb=2. Then the three possible
orderings of actions and the resulting states are as follows:

loadb

useb

assigna

[storea]

readb

[write a]

loada

usea

assignb

[storeb]

reada

[write b]

hither thread main memory yon thread

THREADS AND LOCKS Example: Possible Swap17.10

he
 that
hich

s.

r-
• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

• reada→write a, readb→write b (thenha=2, hb=2, ma=2, mb=1, ya=1, yb=1)

Thus the net result might be that, in main memory,b is copied intoa, a is copied
into b, or the values ofa andb are swapped; moreover, the working copies of t
variables might or might not agree. It would be incorrect, of course, to assume
any one of these outcomes is more likely than another. This is one place in w
the behavior of a Java program is necessarily timing-dependent.

Of course, an implementation might also choose not to perform thestore and
write actions, or only one of the two pairs, leading to yet other possible result

Now suppose that we modify the example to usesynchronized methods:

class SynchSample {
int a = 1, b = 2;
synchronized void hither() {

a = b;
}
synchronized void yon() {

b = a;
}

}

Let us again consider the thread that callshither. According to the rules, this
thread must perform alock action (on the class object for classSynchSample)
before the body of methodhither is executed. This is followed by ause of b and
then anassign of a. Finally, anunlock action on the class object must be pe
formed after the body of methodhither completes. That is the bare minimum
required to execute a call to the methodhither.

As before, aload of b is required, which in turn requires a precedingread
action forb by the main memory. Because theload follows thelock action, the
correspondingread must also follow thelock action.

Because anunlock action follows theassign of a, astore action ona is man-
datory, which in turn requires a followingwrite action fora by the main memory.
Thewrite must precede theunlock action.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.
411

17.10 Example: Possible Swap THREADS AND LOCKS

412

ns

le:

reads
The total set of actions may be pictured as follows:

The lock andunlock actions provide further constraints on the order of actio
by the main memory; thelock action by one thread cannot occur between thelock
andunlock actions of the other thread. Moreover, theunlock actions require that
thestore andwrite actions occur. It follows that only two sequences are possib

• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

While the resulting state is timing-dependent, it can be seen that the two th
will necessarily agree on the values ofa andb.

loadb

useb

assigna

storea

readb

write a

loada

usea

assignb

storeb

reada

write b

hither thread main memory yon thread

lock classSynchSample lock classSynchSample

unlock classSynchSample unlock classSynchSample

THREADS AND LOCKS Example: Out-of-Order Writes17.11

thod
ider a

der-

 it

in
17.11 Example: Out-of-Order Writes

This example is similar to that in the preceding section, except that one me
assigns to both variables and the other method reads both variables. Cons
class that has class variablesa andb and methodsto andfro:

class Simple {
int a = 1, b = 2;
void to() {

a = 3;
b = 4;

}
void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

Now suppose that two threads are created, and that one thread callsto while the
other thread callsfro. What is the required set of actions and what are the or
ing constraints?

Let us consider the thread that callsto. According to the rules, this thread
must perform anassign of a followed by anassign of b. That is the bare minimum
required to execute a call to the methodto. Because there is no synchronization,
is at the option of the implementation whether or not tostore the assigned values
back to main memory! Therefore the thread that callsfro may obtain either1 or3
for the value ofa, and independently may obtain either2 or 4 for the value ofb.

Now suppose thatto is synchronized butfro is not:

class SynchSimple {
int a = 1, b = 2;
synchronized void to() {

a = 3;
b = 4;

}
void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

In this case the methodto will be forced tostore the assigned values back to ma
memory before theunlock action at the end of the method. The methodfro must,
of course, usea andb (in that order) and so mustload values fora andb from
main memory.
413

17.11 Example: Out-of-Order Writes THREADS AND LOCKS

414

rules

od
.)

d

The total set of actions may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the actions by the main memory occur? Note that the

do not require thatwrite a occur beforewrite b; neither do they require thatreada
occur beforereadb. Also, even though methodto is synchronized, methodfro
is notsynchronized, so there is nothing to prevent theread actions from occur-
ring between thelock andunlock actions. (The point is that declaring one meth
synchronized does not of itself make that method behave as if it were atomic

As a result, the methodfro could still obtain either1 or 3 for the value ofa,
and independently could obtain either2 or 4 for the value ofb. In particular,fro
might observe the value1 for a and4 for b. Thus, even thoughto does anassign
to a and then anassign to b, thewrite actions to main memory may be observe
by another thread to occur as if in the opposite order.

assigna

assignb

storeb

reada

write a

loada

usea

useb

printing

readb

write b

to thread main memory fro thread

loadblock classSynchSimple

unlock classSynchSimple

storea

THREADS AND LOCKS Locks and Synchronization17.13

s

he
ve; it

g
ce to
t the

used

vide a
-
ectly.
Finally, suppose thatto andfro are bothsynchronized:

class SynchSynchSimple {
int a = 1, b = 2;
synchronized void to() {

a = 3;
b = 4;

}
synchronized void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

In this case, the actions of methodfro cannot be interleaved with the action
of methodto, and sofro will print either “a=1, b=2” or “a=3, b=4”.

17.12 Threads

They plant dead trees for living, and the dead
They string together with a living thread . . .
But in no hush they string it . . . With a laugh, . . .
They bring the telephone and telegraph.

—Robert Frost,The Line-gang (1920)

Threads are created and managed by the built-in classesThread (§20.20) and
ThreadGroup (§20.21). Creating aThread object creates a thread and that is t
only way to create a thread. When the thread is created, it is not yet acti
begins to run when itsstart method (§20.20.14) is called.

Every thread has apriority. When there is competition for processin
resources, threads with higher priority are generally executed in preferen
threads with lower priority. Such preference is not, however, a guarantee tha
highest priority thread will always be running, and thread priorities cannot be
to reliably implement mutual exclusion.

17.13 Locks and Synchronization

There is a lock associated with every object. The Java language does not pro
way to perform separatelock andunlock actions; instead, they are implicitly per
formed by high-level constructs that arrange always to pair such actions corr
(We note, however, that the Java Virtual Machine provides separatemonitorenter
andmonitorexit instructions that implement thelock andunlock actions.)
415

17.14 Wait Sets and Notification THREADS AND LOCKS

416

t; it
er

ating

, an

 with
 as

h
ither
e

 used
sed in

rams
use
king

.

-

ad

e cur-

:

Thesynchronized statement (§14.17) computes a reference to an objec
then attempts to perform alock action on that object and does not proceed furth
until the lock action has successfully completed. (Alock action may be delayed
because the rules about locks can prevent the main memory from particip
until some other thread is ready to perform one or moreunlock actions.) After the
lock action has been performed, the body of thesynchronized statement is exe-
cuted. If execution of the body is ever completed, either normally or abruptly
unlock action is automatically performed on that same lock.

A synchronized method (§8.4.3.5) automatically performs alock action
when it is invoked; its body is not executed until thelock action has successfully
completed. If the method is an instance method, it locks the lock associated
the instance for which it was invoked (that is, the object that will be known
this during execution of the body of the method). If the method isstatic, it
locks the lock associated with theClass object that represents the class in whic
the method is defined. If execution of the method’s body is ever completed, e
normally or abruptly, anunlock action is automatically performed on that sam
lock.

Best practice is that if a variable is ever to be assigned by one thread and
or assigned by another, then all accesses to that variable should be enclo
synchronized methods orsynchronized statements.

Java does not prevent, nor require detection of, deadlock conditions. Prog
where threads hold (directly or indirectly) locks on multiple objects should
conventional techniques for deadlock avoidance, creating higher-level loc
primitives that don’t deadlock, if necessary.

17.14 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associatedwait set,
which is a set of threads. When an object is first created, its wait set is empty

Wait sets are used by the methodswait (§20.1.6, §20.1.7, §20.1.8),notify
(§20.1.9), andnotifyAll (§20.1.10) of classObject. These methods also inter
act with the scheduling mechanism for threads (§20.20).

The methodwait should be called for an object only when the current thre
(call it T) has already locked the object’s lock. Suppose that threadT has in fact
performedN lock actions that have not been matched byunlock actions. Thewait
method then adds the current thread to the wait set for the object, disables th
rent thread for thread scheduling purposes, and performsN unlock actions to relin-
quish the lock. The threadT then lies dormant until one of three things happens

THREADS AND LOCKS Wait Sets and Notification17.14

e

dul-
ual
rms

is

ent
 not
d re-
ceed

ent
r the
. (Of
relin-

,

• Some other thread invokes thenotify method for that object and threadT
happens to be the one arbitrarily chosen as the one to notify.

• Some other thread invokes thenotifyAll method for that object.

• If the call by threadT to the wait method specified a timeout interval, th
specified amount of real time has elapsed.

The threadT is then removed from the wait set and re-enabled for thread sche
ing. It then locks the object again (which may involve competing in the us
manner with other threads); once it has gained control of the lock, it perfo

 additional lock actions and then returns from the invocation of thewait
method. Thus, on return from thewait method, the state of the object’s lock
exactly as it was when thewait method was invoked.

The notify method should be called for an object only when the curr
thread has already locked the object’s lock. If the wait set for the object is
empty, then some arbitrarily chosen thread is removed from the wait set an
enabled for thread scheduling. (Of course, that thread will not be able to pro
until the current thread relinquishes the object’s lock.)

ThenotifyAll method should be called for an object only when the curr
thread has already locked the object’s lock. Every thread in the wait set fo
object is removed from the wait set and re-enabled for thread scheduling
course, those threads will not be able to proceed until the current thread
quishes the object’s lock.)

N 1–

These pearls of thought in Persian gulfs were bred
Each softly lucent as a rounded moon;
The diver Omar plucked them from their bed,
Fitzgerald strung them on an English thread.

—James Russell Lowell,
in a copy of Omar Khayyam
417

C H A P T E R 18

s

 is
ed
ce.
an
g.

 doc-
ass or
ation.
de of

s. A
arts
cu-

e
r
r
.

Documentation Comment

The view that documentation is something that
added to a program after it has been commission

seems to be wrong in principle, and counterproductive in practi
Instead, documentation must be regarded as

integral part of the process of design and codin
—C. A. R. Hoare,

Hints on Programming Language Design (1973)

JAVA programs can include documentation in their source code, in special
umentation comments (§3.7). Such comments can appear before each cl
interface declaration and before each method, constructor, or field declar
Hypertext web pages can then be produced automatically from the source co
the program and these documentation comments.

This chapter gives an informal description of documentation comment
complete formal specification would require a detailed description of those p
of the Hypertext Markup Language (HTML) that can be used within the do
mentation comments, which is beyond the scope of this specification.

18.1 The Text of a Documentation Comment

The text of a documentation comment consists of the characters between th/**
that begins the comment and the*/ that ends it. The text is divided into one o
more lines. On each of these lines, leading* characters are ignored; for lines othe
than the first, blanks and tabs preceding the initial* characters are also discarded

So, for example, in the comment:

/**XYZ
** Initialize to pre-trial defaults.
123*/
419

18.2 HTML in a Documentation Comment DOCUMENTATION COMMENTS

420

ith

 used
ite
e at
e
.

 sen-
 This
ator,

 sen-

cerned.

gged
om-

 the

ture,
at the
the text of the comment has three lines. The first line consists of the text “XYZ”;
the second line consists of the text “Initialize to pre-trial defaults.”
and the third line consists of the text “123”

18.2 HTML in a Documentation Comment

Text in a documentation comment may use HTML markers for formatting, w
the exception that the specific markers<H1>, <H2>, <H3>, <H4>, <H5>, <H6>, and
<HR> are reserved for use by the documentation generator and should not be
in the text. A complete description of HTML is available from the web s
http://www.w3.org and also through the Internet documentation databas
http://www.internic.net, where the document “Hypertext Markup Languag
—Version 2.0” by T. Berners-Lee and D. Connolly may be found as RFC1866

18.3 Summary Sentence and General Description

The first sentence of each documentation comment should be a summary
tence, containing a concise but complete description of the declared entity.
sentence ends at the first period that is followed by a blank, tab, or line termin
or at the first tagline (as defined below). This simple rule means that a first
tence such as:

This is a simulation of Prof. Knuth’s MIX computer.

will not work properly, because the period after the abbreviation “Prof” ends the
first sentence, as far as the Java documentation comment processor is con
Take care to avoid such difficulties.

Sentences following the summary sentence but preceding the first ta
paragraph (if any) form the general description part of the documentation c
ment.

18.4 Tagged Paragraphs

A line of a documentation comment that begins with the character@ followed by
one of a few special keywords starts atagged paragraph. The tagged paragraph
also includes any following lines up to, but not including, either the first line of
next tagged paragraph or the end of the documentation comment.

Tagged paragraphs identify certain information that has a routine struc
such as the intended purpose of each parameter of a method, in a form th

DOCUMENTATION COMMENTS The@author Tag 18.4.2

phical

 dec-

u-
thod,

elds,
s may
od or

n-

in all
documentation comment processor can easily marshal into standard typogra
formats for purposes of presentation and cross-reference.

Different kinds of tagged paragraphs are available for class and interface
larations and for method, field, and constructor declarations.

18.4.1 The@see Tag

The following are examples of@see paragraphs, which may be used in any doc
mentation comment to indicate a cross-reference to a class, interface, me
constructor, field, or URL:

@see java.lang.String
@see String
@see java.io.InputStream;
@see String#equals
@see java.lang.Object#wait(int)
@see java.io.RandomAccessFile#RandomAccessFile(File, String)
@see Character#MAX_RADIX
@see Java Spec

The character# separates the name of a class from the name of one of its fi
methods, or constructors. One of several overloaded methods or constructor
be selected by including a parenthesized list of argument types after the meth
constructor name.

A documentation comment may contain more than one@see tag.

18.4.2 The@author Tag

The following are examples of@author taglines, which may be used in docume
tation comments for class and interface declarations:

@author Mary Wollstonecraft
@author Hildegard von Bingen
@author Dorothy Parker

The information in an@author paragraph has no special internal structure.
A documentation comment may contain more than one@author tag. Alterna-

tively, a single@author paragraph may mention several authors:

@author Jack Kent, Peggy Parish, Crockett Johnson,
James Marshall, Marjorie Weinman Sharmat,
Robert McCloskey, and Madeleine L'Engle

However, we recommend specifying one author per@author paragraph, which
allows the documentation processing tool to provide the correct punctuation
circumstances.
421

18.4.3 The@version Tag DOCUMENTATION COMMENTS

422

c-

u-

he

m-
e
in

c-

he
.

n

18.4.3 The@version Tag

The following is an example of a@version paragraph, which may be used in do
umentation comments for class and interface declarations:

@version 493.0.1beta

The information in a@version paragraph has no special internal structure.
A documentation comment may contain at most one@version tag.

18.4.4 The@param Tag

The following are examples of@param paragraphs, which may be used in doc
mentation comments for method and constructor declarations:

@param file the file to be searched
@param pattern

the pattern to be matched during the search
@param count the number of lines to print for each match

The information in a@param paragraph should consist of the name of t
parameter followed by a short description.

A documentation comment may contain more than one@param tag. The usual
convention is that if any@param paragraphs are present in a documentation co
ment, then there should be one@param paragraph for each parameter of th
method or constructor, and the@param paragraphs should appear in the order
which the parameters are declared.

18.4.5 The@return Tag

The following is an example of a@return paragraph, which may be used in do
umentation comments for declarations of methods whose result type is notvoid:

@return the number of widgets that pass the quality test

The information in a@return paragraph has no special internal structure. T
usual convention is that it consists of a short description of the returned value

A documentation comment may contain at most one@return tag.

18.4.6 The@exception Tag

The following is an example of an@exception paragraph, which may be used i
documentation comments for method and constructor declarations:

DOCUMENTATION COMMENTS Example 18.5

of
d by
n.
@exception IndexOutOfBoundsException
the matrix is too large

@exception UnflangedWidgetException the widget does not
have a flange, or its flange has size zero

@exception java.io.FileNotFoundException the file
does not exist

The information in an@exception paragraph should consist of the name
an exception class (which may be a simple name or a qualified name) followe
a short description of the circumstances that cause the exception to be throw

A documentation comment may contain more than one@exception tag.

18.5 Example

Here, as an example, is a version of the source code for the classObject of the
packagejava.lang, including its documentation comments.

/*
 * @(#)Object.java 1.37 96/06/26
 *
 * Copyright (c) 1994, 1995, 1996 Sun Microsystems, Inc.
 * All Rights Reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software and its documentation for NON-COMMERCIAL purposes
 * and without fee is hereby granted provided that this
 * copyright notice appears in all copies. Please refer to
 * the file "copyright.html" for further important copyright
 * and licensing information.
 *
 * SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE
 * SUITABILITY OF THE SOFTWARE, EITHER EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
 * NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES
 * SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING OR
 * DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.
 */

package java.lang;

/**
 * The root of the Class hierarchy. Every Class in the
 * system has Object as its ultimate parent. Every variable
 * and method defined here is available in every Object.
 * @see Class
 * @version 1.37, 26 Jun 1996
 */
423

18.5 Example DOCUMENTATION COMMENTS

424
public class Object {
/**
 * Returns the Class of this Object. Java has a runtime
 * representation for classes--a descriptor of type Class
 * --which the method getClass() returns for any Object.
 */
public final native Class getClass();

/**
 * Returns a hashcode for this Object.
 * Each Object in the Java system has a hashcode.
 * The hashcode is a number that is usually different
 * for different Objects. It is used when storing Objects
 * in hashtables.
 * Note: hashcodes can be negative as well as positive.
 * @see java.util.Hashtable
 */
public native int hashCode();

/**
 * Compares two Objects for equality.
 * Returns a boolean that indicates whether this Object
 * is equivalent to the specified Object. This method is
 * used when an Object is stored in a hashtable.
 * @param obj the Object to compare with
 * @return true if these Objects are equal;
 * false otherwise.
 * @see java.util.Hashtable
 */
public boolean equals(Object obj) {

return (this == obj);
}

/**
 * Creates a clone of the object. A new instance is
 * allocated and a bitwise clone of the current object
 * is placed in the new object.
 * @return a clone of this Object.
 * @exception OutOfMemoryError If there is not enough
 * memory.
 * @exception CloneNotSupportedException Object
 * explicitly does not want to be
 * cloned, or it does not support
 * the Cloneable interface.
 */
protected native Object clone()

throws CloneNotSupportedException;

DOCUMENTATION COMMENTS Example 18.5
/**
 * Returns a String that represents this Object.
 * It is recommended that all subclasses override
 * this method.
 */
public String toString() {

return getClass().getName() + "@" +
Integer.toHexString(hashCode());

}

/**
 * Notifies a single waiting thread on a change in
 * condition of another thread. The thread effecting
 * the change notifies the waiting thread using notify().
 * Threads that want to wait for a condition to change
 * before proceeding can call wait(). <p>
 * The method notify() can be called only by the
 * thread that is the owner of the current object's
 * monitor lock.
 *
 * @exception IllegalMonitorStateException If the
 * current thread is not the owner
 * of the Object's monitor lock.
 * @see Object#wait
 * @see Object#notifyAll
 */
public final native void notify();

/**
 * Notifies all the threads waiting for a condition to
 * change. Threads that are waiting are generally waiting
 * for another thread to change some condition. Thus, the
 * thread effecting a change that more than one thread is
 * waiting for notifies all the waiting threads using
 * the method notifyAll(). Threads that want to wait for
 * a condition to change before proceeding can call
 * wait(). <p>
 * The method notifyAll() can be called only by the
 * thread that is the owner of the current object's
 * monitor lock.
 *
 * @exception IllegalMonitorStateException If the
 * current thread is not the owner
 * of the Object's monitor lock.
 * @see Object#wait
 * @see Object#notify
 */
public final native void notifyAll();
425

18.5 Example DOCUMENTATION COMMENTS

426
/**
 * Causes a thread to wait until it is notified or the
 * specified timeout expires. <p>
 * The method wait(millis) can be called only by
 * the thread that is the owner of the current object's
 * monitor lock.
 *
 * @param millis the maximum time to wait,
 * in milliseconds
 * @exception IllegalMonitorStateException If the
 * current thread is not the owner
 * of the Object's monitor lock.
 * @exception InterruptedException Another thread has
 * interrupted this thread.
 */
public final native void wait(long millis)

throws InterruptedException;

/**
 * More accurate wait.
 * The method wait(millis, nanos) can be called only
 * by the thread that is the owner of the current
 * object's monitor lock.
 *
 * @param millis the maximum time to wait,
 * in milliseconds
 * @param nano additional time to wait,
 * in nanoseconds
 * (range 0-999999)
 * @exception IllegalMonitorStateException If the
 * current thread is not the owner
 * of the Object's monitor lock.
 * @exception InterruptedException Another thread has
 * interrupted this thread.
 */
public final void wait(long millis, int nanos)

throws InterruptedException
{

if (nanos >= 500000 || (nanos != 0 && millis==0))
timeout++;

wait(timeout);
}

/**
 * Causes a thread to wait forever until it is notified.
 * <p>
 * The method wait() can be called only by the
 * thread that is the owner of the current object's
 * monitor lock.
 *

DOCUMENTATION COMMENTS Example 18.5
 * @exception IllegalMonitorStateException If the
 * current thread is not the owner
 * of the Object's monitor lock.
 * @exception InterruptedException Another thread has
 * interrupted this thread.
 */
public final void wait() throws InterruptedException {

wait(0);
}

/**
 * Code to perform when this object is garbage collected.
 * The default is that nothing needs to be performed.
 *
 * Any exception thrown by a finalize method causes the
 * finalization to halt. But otherwise, it is ignored.
 */
protected void finalize() throws Throwable { }

}

From this source code, thejavadoc tool produced the following HTML file,
which is available for browsing athttp://java.sun.com/Series, our Java
Series web site:

<!--NewPage-->
<html>
<head>
<!-- Generated by javadoc on Wed Jun 26 11:40:38 EDT 1996 -->

<title>
 Class java.lang.Object
</title>
</head>
<body>
<pre>
All Packages Class Hierarchy¬
 This Package <a href="java.lang.N¬
umber.html#_top_">Previous <a href="java.lang.OutOfMemoryError.html#_top¬
_">Next Index</pre>
<hr>
<h1>
 Class java.lang.Object
</h1>
<pre>
java.lang.Object
</pre>
<hr>
<dl>
 <dt> public class Object
</dl>
The root of the Class hierarchy. Every Class in the
system has Object as its ultimate parent. Every variable
and method defined here is available in every Object.
<dl>
 <dt> Version:
 <dd> 1.37, 26 Jun 1996
 <dt> See Also:
 <dd> Class
</dl>
<hr>

427

18.5 Example DOCUMENTATION COMMENTS

428
<h2>
 <img src="images/constructor-index.gif" width=275 height=38 alt="Constructo¬
r Index">
</h2>
<dl>
 <dt>

Object()
 <dd>
</dl>
<h2>

</h2>
<dl>
 <dt>

clone()
 <dd> Creates a clone of the object.
 <dt>

equals(Object)
 <dd> Compares two Objects for equality.
 <dt>

finalize()
 <dd> Code to perform when this object is garbage collected.
 <dt>

getClass()
 <dd> Returns the Class of this Object.
 <dt>

hashCode()
 <dd> Returns a hashcode for this Object.
 <dt>

notify()
 <dd> Notifies a single waiting thread on a change in
condition of another thread.
 <dt>

notifyAll()
 <dd> Notifies all the threads waiting for a condition to
change.
 <dt>

toString()
 <dd> Returns a String that represents this Object.
 <dt>

wait()
 <dd> Causes a thread to wait forever until it is notified.
 <dt>

wait(long)
 <dd> Causes a thread to wait until it is notified or the
specified timeout expires.
 <dt>

wait(long, int)
 <dd> More accurate wait.
</dl>

<h2>

</h2>

<img src="images/yellow-ball.gif" width=12 height=12 alt="¬
o ">
Object
<pre>
 public Object()
</pre>

<h2>

</h2>
<img src="images/red-ball.gif" width=12 height=12 alt=" ¬
o ">
getClass
<pre>
 public final Class getClass()
</pre>

DOCUMENTATION COMMENTS Example 18.5
<dl>
 <dd> Returns the Class of this Object. Java has a runtime
representation for classes--a descriptor of type Class
--which the method getClass() returns for any Object.
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt=" ¬
o ">
hashCode
<pre>
 public int hashCode()
</pre>
<dl>
 <dd> Returns a hashcode for this Object.
Each Object in the Java system has a hashcode.
The hashcode is a number that is usually different
for different Objects. It is used when storing Objects
in hashtables.
Note: hashcodes can be negative as well as positive.
 <dl>
 <dt> See Also:
 <dd> Hashtable
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 he¬
ight=12 alt=" o ">
equals
<pre>
 public boolean equals(Object obj)
</pre>
<dl>
 <dd> Compares two Objects for equality.
Returns a boolean that indicates whether this Object
is equivalent to the specified Object. This method is
used when an Object is stored in a hashtable.
 <dl>
 <dt> Parameters:
 <dd> obj - the Object to compare with
 <dt> Returns:
 <dd> true if these Objects are equal;

false otherwise.
 <dt> See Also:
 <dd> Hashtable
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt=" o "¬
>
clone
<pre>
 protected Object clone() throws <a href="java.lang.Clo¬
neNotSupportedException.html#_top_">CloneNotSupportedException
</pre>
<dl>
 <dd> Creates a clone of the object. A new instance is
allocated and a bitwise clone of the current object
is placed in the new object.
 <dl>
 <dt> Returns:
 <dd> a clone of this Object.
 <dt> Throws: OutOf¬
MemoryError
 <dd> If there is not enough

memory.
 <dt> Throws: <a href="java.lang.CloneNotSupportedException.html#_t¬
op_">CloneNotSupportedException
 <dd> Object

explicitly does not want to be
cloned, or it does not support
the Cloneable interface.

 </dl>
</dl>
429

18.5 Example DOCUMENTATION COMMENTS

430
<img src="images/red-ball.gif" width=12 height=12 alt=" ¬
o ">
toString
<pre>
 public String toString()
</pre>
<dl>
 <dd> Returns a String that represents this Object.
It is recommended that all subclasses override
this method.
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt=" o ¬
">
notify
<pre>
 public final void notify()
</pre>
<dl>
 <dd> Notifies a single waiting thread on a change in
condition of another thread. The thread effecting
the change notifies the waiting thread using notify().
Threads that want to wait for a condition to change
before proceeding can call wait(). <p>
The method notify() can be called only by the
thread that is the owner of the current object's
monitor lock.
 <dl>
 <dt> Throws: <a href="java.lang.IllegalMonitorStateException.html#¬
top">IllegalMonitorStateException
 <dd> If the

current thread is not the owner
of the Object's monitor lock.

 <dt> See Also:
 <dd> wait, notifyAll
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt="¬
o ">
notifyAll
<pre>
 public final void notifyAll()
</pre>
<dl>
 <dd> Notifies all the threads waiting for a condition to
change. Threads that are waiting are generally waiting
for another thread to change some condition. Thus, the
thread effecting a change that more than one thread is
waiting for notifies all the waiting threads using
the method notifyAll(). Threads that want to wait for
a condition to change before proceeding can call
wait(). <p>
The method notifyAll() can be called only by the
thread that is the owner of the current object's
monitor lock.
 <dl>
 <dt> Throws: <a href="java.lang.IllegalMonitorStateException.html#¬
top">IllegalMonitorStateException
 <dd> If the

current thread is not the owner
of the Object's monitor lock.

 <dt> See Also:
 <dd> wait, notify
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt=" ¬
o ">
wait
<pre>
 public final void wait(long millis) throws <a href="java.lang.InterruptedEx¬
ception.html#_top_">InterruptedException
</pre>

DOCUMENTATION COMMENTS Example 18.5
<dl>
 <dd> Causes a thread to wait until it is notified or the
specified timeout expires. <p>
The method wait(millis) can be called only by
the thread that is the owner of the current object's
monitor lock.
 <dl>
 <dt> Parameters:
 <dd> millis - the maximum time to wait,

in milliseconds
 <dt> Throws: <a href="java.lang.IllegalMonitorStateException.html#¬
top">IllegalMonitorStateException
 <dd> If the

current thread is not the owner
of the Object's monitor lock.

 <dt> Throws: I¬
nterruptedException
 <dd> Another thread has

interrupted this thread.
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 height=12 a¬
lt=" o ">
wait
<pre>
 public final void wait(long millis,
 int nanos) throws <a href="java.lang.InterruptedExce¬
ption.html#_top_">InterruptedException
</pre>
<dl>
 <dd> More accurate wait.
The method wait(millis, nanos) can be called only
by the thread that is the owner of the current
object's monitor lock.
 <dl>
 <dt> Parameters:
 <dd> millis - the maximum time to wait,

in milliseconds
 <dd> nano - additional time to wait,

in nanoseconds
(range 0-999999)

 <dt> Throws: <a href="java.lang.IllegalMonitorStateException.html#¬
top">IllegalMonitorStateException
 <dd> If the

current thread is not the owner
of the Object's monitor lock.

 <dt> Throws: I¬
nterruptedException
 <dd> Another thread has

interrupted this thread.
 </dl>
</dl>
¬

wait
<pre>
 public final void wait() throws <a href="java.lang.InterruptedException.htm¬
l#_top_">InterruptedException
</pre>
<dl>
 <dd> Causes a thread to wait forever until it is notified.
<p>
The method wait() can be called only by the
thread that is the owner of the current object's
monitor lock.
 <dl>
 <dt> Throws: <a href="java.lang.IllegalMonitorStateException.html#¬
top">IllegalMonitorStateException
 <dd> If the

current thread is not the owner
of the Object's monitor lock.
431

18.5 Example DOCUMENTATION COMMENTS

432

We
e

ation
e

,
.

 <dt> Throws: I¬
nterruptedException
 <dd> Another thread has

interrupted this thread.
 </dl>
</dl>
<img src="images/red-ball.gif" width=12 height=12 alt=" ¬
o ">
finalize
<pre>
 protected void finalize() throws T¬
hrowable
</pre>
<dl>
 <dd> Code to perform when this object is garbage collected.
The default is that nothing needs to be performed.
Any exception thrown by a finalize method causes the
finalization to halt. But otherwise, it is ignored.
</dl>
<hr>
<pre>
All Packages Class Hierarchy¬
 This Package <a href="java.lang.N¬
umber.html#_top_">Previous <a href="java.lang.OutOfMemoryError.html#_top¬
_">Next Index</pre>
</body>
</html>

Many of the lines in this HTML file are far too long to fit onto these pages.
have used the character “¬” at the end of a line to indicate that the following lin
of text on the page is part of the same line in the generated file.

This generated HTML file is meant only as an example, not as a specific
of the behavior of thejavadoc tool, which may be changed over time to improv
the HTML presentation of the documentation information.

 Very few facts are able to tell their own story
without comments to bring out their meaning

—John Stuart Mill,On Liberty(1869)

C H A P T E R 19
nically

 much
ka-
 and

r are
LALR(1) Grammar

THIS chapter presents a grammar for Java. The grammar has been mecha
checked to insure that it is LALR(1).

The grammar for Java presented piecemeal in the preceding chapters is
better for exposition, but it cannot be parsed left-to-right with one token of loo
head because of certain syntactic peculiarities, some of them inherited from C
C++. These problems and the solutions adopted for the LALR(1) gramma
presented below, followed by the grammar itself.

19.1 Grammatical Difficulties

There are five problems with the grammar presented in preceding chapters.

19.1.1 Problem #1: Names Too Specific

Consider the two groups of productions:

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageName . Identifier

and:

MethodName:
Identifier
AmbiguousName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier
433

19.1.1 Problem #1: Names Too Specific LALR(1) GRAMMAR

434

(1).
s of

me or
Now consider the partial input:

class Problem1 { int m() { hayden.

When the parser is considering the tokenhayden, with one-token lookahead to
symbol “.”, it cannot yet tell whetherhayden should be aPackageName that
qualifies a type name, as in:

hayden.Dinosaur rex = new hayden.Dinosaur(2);

or anAmbiguousName that qualifies a method name, as in:

hayden.print("Dinosaur Rex!");

Therefore, the productions shown above result in a grammar that is not LALR
There are also other problems with drawing distinctions among different kind
names in the grammar.

The solution is to eliminate the nonterminalsPackageName, TypeName,
ExpressionName, MethodName, andAmbiguousName, replacing them all with a
single nonterminalName:

Name:
SimpleName
QualifiedName

SimpleName:
Identifier

QualifiedName:
Name . Identifier

A later stage of compiler analysis then sorts out the precise role of each na
name qualifier.

For related reasons, these productions in §4.3:

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
TypeName

InterfaceType:
TypeName

were changed to:

ClassOrInterfaceType:
Name

LALR(1) GRAMMAR Problem #2: Modifiers Too Specific19.1.2
ClassType:
ClassOrInterfaceType

InterfaceType:
ClassOrInterfaceType

19.1.2 Problem #2: Modifiers Too Specific

Consider the two groups of productions:

FieldDeclaration:
FieldModifiersopt Type VariableDeclarators ;

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
public protected private
final static transient volatile

and:

MethodHeader:
MethodModifiersopt ResultType MethodDeclarator Throwsopt

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private
static
abstract final native synchronized

Now consider the partial input:

class Problem2 { public static int

When the parser is considering the tokenstatic, with one-token lookahead to
symbol int—or, worse yet, considering the tokenpublic with lookahead to
static—it cannot yet tell whether this will be a field declaration such as:

public static int maddie = 0;

or a method declaration such as:
435

19.1.3 Problem #3: Field Declaration versus Method Declaration LALR(1) GRAMMAR

436

(1).
s of

om-
the

n-

difier
public static int maddie(String art) { return art.length(); }

Therefore, the parser cannot tell with only one-token lookahead whetherstatic
(or, similarly, public) should be reduced toFieldModifier or MethodModifier.
Therefore, the productions shown above result in a grammar that is not LALR
There are also other problems with drawing distinctions among different kind
modifiers in the grammar.

While not all contexts provoke the problem, the simplest solution is to c
bine all contexts in which such modifiers are used, eliminating all six of
nonterminalsClassModifiers(§8.1.2),FieldModifiers (§8.3.1),MethodModifiers
(§8.4.3), ConstructorModifiers (§8.6.3), InterfaceModifiers (§9.1.2), and
ConstantModifiers(§9.3) from the grammar, replacing them all with a single no
terminalModifiers:

Modifiers:
Modifier
Modifiers Modifier

Modifier: one of
public protected private
static
abstract final native synchronized transient volatile

A later stage of compiler analysis then sorts out the precise role of each mo
and whether it is permitted in a given context.

19.1.3 Problem #3: Field Declaration versus Method Declaration

Consider the two productions (shown after problem #2 has been corrected):

FieldDeclaration:
Modifiersopt Type VariableDeclarators ;

and:

MethodHeader:
Modifiersopt ResultType MethodDeclarator Throwsopt

whereResultType is defined as:

LALR(1) GRAMMAR Problem #4: Array Type versus Array Access19.1.4

is

 the

e

g
ress.
ResultType:
Type
void

Now consider the partial input:

class Problem3 { int julie

Note that, in this simple example, noModifiers are present. When the parser
considering the tokenint, with one-token lookahead to symboljulie, it cannot
yet tell whether this will be a field declaration such as:

int julie = 14;

or a method declaration such as:

int julie(String art) { return art.length(); }

Therefore, after the parser reducesint to the nonterminalType, it cannot tell with
only one-token lookahead whetherType should be further reduced toResultType
(for a method declaration) or left alone (for a field declaration). Therefore,
productions shown above result in a grammar that is not LALR(1).

The solution is to eliminate theResultType production and to have separat
alternatives forMethodHeader:

MethodHeader:
Modifiersopt Type MethodDeclarator Throwsopt
Modifiersopt void MethodDeclarator Throwsopt

This allows the parser to reduceint to Type and then leave it as is, delayin
the decision as to whether a field declaration or method declaration is in prog

19.1.4 Problem #4: Array Type versus Array Access

Consider the productions (shown after problem #1 has been corrected):

ArrayType:
Type []

and:

ArrayAccess:
Name [Expression]
PrimaryNoNewArray [Expression]

Now consider the partial input:
437

19.1.5 Problem #5: Cast versus Parenthesized Expression LALR(1) GRAMMAR

438

duc-

g

-

class Problem4 { Problem4() { peter[

When the parser is considering the tokenpeter, with one-token lookahead to
symbol[, it cannot yet tell whetherpeter will be part of a type name, as in:

peter[] team;

or part of an array access, as in:

peter[3] = 12;

Therefore, after the parser reducespeter to the nonterminalName, it cannot tell
with only one-token lookahead whetherName should be reduced ultimately to
Type (for an array type) or left alone (for an array access). Therefore, the pro
tions shown above result in a grammar that is not LALR(1).

The solution is to have separate alternatives forArrayType:

ArrayType:
PrimitiveType []
Name []
ArrayType []

This allows the parser to reducepeter to Name and then leave it as is, delayin
the decision as to whether an array type or array access is in progress.

19.1.5 Problem #5: Cast versus Parenthesized Expression

Consider the production:

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

Now consider the partial input:

class Problem5 { Problem5() { super((matthew)

When the parser is considering the tokenmatthew, with one-token lookahead to
symbol), it cannot yet tell whether(matthew) will be a parenthesized expres
sion, as in:

super((matthew), 9);

or a cast, as in:

super((matthew)baz, 9);

Therefore, after the parser reducesmatthew to the nonterminalName, it cannot
tell with only one-token lookahead whetherName should be further reduced to

LALR(1) GRAMMAR Productions from §2.3: The Syntactic Grammar19.2

r

es

t is in

 for
PostfixExpression and ultimately toExpression (for a parenthesized expression) o
to ClassOrInterfaceType and then toReferenceType (for a cast). Therefore, the
productions shown above result in a grammar that is not LALR(1).

The solution is to eliminate the use of the nonterminalReferenceType in the
definition ofCastExpression, which requires some reworking of both alternativ
to avoid other ambiguities:

CastExpression:
(PrimitiveType Dimsopt) UnaryExpression
(Expression) UnaryExpressionNotPlusMinus
(Name Dims) UnaryExpressionNotPlusMinus

This allows the parser to reducematthew to Expression and then leave it there,
delaying the decision as to whether a parenthesized expression or a cas
progress. Inappropriate variants such as:

(int[])+3

and:

(matthew+1)baz

must then be weeded out and rejected by a later stage of compiler analysis.

The remaining sections of this chapter constitute a LALR(1) grammar
Java syntax, in which the five problems described above have been solved.

19.2 Productions from §2.3: The Syntactic Grammar

Goal:
CompilationUnit
439

19.3 Productions from §3: Lexical Structure LALR(1) GRAMMAR

440
19.3 Productions from §3: Lexical Structure

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

19.4 Productions from §4: Types, Values, and Variables

Type:
PrimitiveType
ReferenceType

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

ReferenceType:
ClassOrInterfaceType
ArrayType

ClassOrInterfaceType:
Name

ClassType:
ClassOrInterfaceType

InterfaceType:
ClassOrInterfaceType

LALR(1) GRAMMAR Productions from §7: Packages 19.6
ArrayType:
PrimitiveType []
Name []
ArrayType []

19.5 Productions from §6: Names

Name:
SimpleName
QualifiedName

SimpleName:
Identifier

QualifiedName:
Name . Identifier

19.6 Productions from §7: Packages

CompilationUnit:
PackageDeclarationopt ImportDeclarationsopt TypeDeclarationsopt

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

PackageDeclaration:
package Name ;

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration
441

19.7 Productions Used Only in the LALR(1) Grammar LALR(1) GRAMMAR

442
SingleTypeImportDeclaration:
import Name ;

TypeImportOnDemandDeclaration:
import Name . * ;

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

19.7 Productions Used Only in the LALR(1) Grammar

Modifiers:
Modifier
Modifiers Modifier

Modifier: one of
public protected private
static
abstract final native synchronized transient volatile

19.8 Productions from §8: Classes

19.8.1 Productions from §8.1: Class Declaration

ClassDeclaration:
Modifiersopt class Identifier Superopt Interfacesopt ClassBody

Super:
extends ClassType

Interfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType
InterfaceTypeList , InterfaceType

ClassBody:
{ ClassBodyDeclarationsopt }

LALR(1) GRAMMAR Productions from §8.4: Method Declarations19.8.3
ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration

19.8.2 Productions from §8.3: Field Declarations

FieldDeclaration:
Modifiersopt Type VariableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

19.8.3 Productions from §8.4: Method Declarations

MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
Modifiersopt Type MethodDeclarator Throwsopt
Modifiersopt void MethodDeclarator Throwsopt
443

19.8.4 Productions from §8.5: Static Initializers LALR(1) GRAMMAR

444
MethodDeclarator:
Identifier (FormalParameterListopt)
MethodDeclarator []

FormalParameterList:
FormalParameter
FormalParameterList , FormalParameter

FormalParameter:
Type VariableDeclaratorId

Throws:
throws ClassTypeList

ClassTypeList:
ClassType
ClassTypeList , ClassType

MethodBody:
Block
;

19.8.4 Productions from §8.5: Static Initializers

StaticInitializer:
static Block

19.8.5 Productions from §8.6: Constructor Declarations

ConstructorDeclaration:
Modifiersopt ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
SimpleName (FormalParameterListopt)

ConstructorBody:
{ ExplicitConstructorInvocationopt BlockStatementsopt }

ExplicitConstructorInvocation:
this (ArgumentListopt) ;
super (ArgumentListopt) ;

LALR(1) GRAMMAR Productions from §14: Blocks and Statements19.11
19.9 Productions from §9: Interfaces

19.9.1 Productions from §9.1: Interface Declarations

InterfaceDeclaration:
Modifiersopt interface Identifier ExtendsInterfacesopt InterfaceBody

ExtendsInterfaces:
extends InterfaceType
ExtendsInterfaces , InterfaceType

InterfaceBody:
{ InterfaceMemberDeclarationsopt }

InterfaceMemberDeclarations:
InterfaceMemberDeclaration
InterfaceMemberDeclarations InterfaceMemberDeclaration

InterfaceMemberDeclaration:
ConstantDeclaration
AbstractMethodDeclaration

ConstantDeclaration:
FieldDeclaration

AbstractMethodDeclaration:
MethodHeader ;

19.10 Productions from §10: Arrays

ArrayInitializer:
{ VariableInitializersopt ,opt }

VariableInitializers:
VariableInitializer
VariableInitializers , VariableInitializer

19.11 Productions from §14: Blocks and Statements

Block:
{ BlockStatementsopt }
445

19.11 Productions from §14: Blocks and Statements LALR(1) GRAMMAR

446
BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationStatement
Statement

LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
Type VariableDeclarators

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

EmptyStatement:
;

LALR(1) GRAMMAR Productions from §14: Blocks and Statements19.11
LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsopt SwitchLabelsopt }

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel
447

19.11 Productions from §14: Blocks and Statements LALR(1) GRAMMAR

448
SwitchLabel:
case ConstantExpression :
default :

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

DoStatement:
do Statement while (Expression) ;

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

Statement

ForStatementNoShortIf:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression
StatementExpressionList , StatementExpression

BreakStatement:
break Identifieropt ;

ContinueStatement:
continue Identifieropt ;

LALR(1) GRAMMAR Productions from §15: Expressions19.12
ReturnStatement:
return Expressionopt ;

ThrowStatement:
throw Expression ;

SynchronizedStatement:
synchronized (Expression) Block

TryStatement:
try Block Catches
try Block Catchesopt Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

19.12 Productions from §15: Expressions

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

ClassInstanceCreationExpression:
new ClassType (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression
449

19.12 Productions from §15: Expressions LALR(1) GRAMMAR

450
ArrayCreationExpression:
new PrimitiveType DimExprs Dimsopt
new ClassOrInterfaceType DimExprs Dimsopt

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

Dims:
[]
Dims []

FieldAccess:
Primary . Identifier
super . Identifier

MethodInvocation:
Name (ArgumentListopt)
Primary . Identifier (ArgumentListopt)
super . Identifier (ArgumentListopt)

ArrayAccess:
Name [Expression]
PrimaryNoNewArray [Expression]

PostfixExpression:
Primary
Name
PostIncrementExpression
PostDecrementExpression

PostIncrementExpression:
PostfixExpression ++

PostDecrementExpression:
PostfixExpression --

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

LALR(1) GRAMMAR Productions from §15: Expressions19.12
PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

CastExpression:
(PrimitiveType Dimsopt) UnaryExpression
(Expression) UnaryExpressionNotPlusMinus
(Name Dims) UnaryExpressionNotPlusMinus

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType
451

19.12 Productions from §15: Expressions LALR(1) GRAMMAR

452
EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
Name
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

Expression:
AssignmentExpression

LALR(1) GRAMMAR Productions from §15: Expressions19.12
ConstantExpression:
Expression
453

C H A P T E R 20
ggn of

e an

nce
vide a
rting

ine,

ation
, and
The Packagejava.lang

The Package java.lanTHE java.lang package contains classes that are fundamental to the desi
the Java language. The most important classes areObject, which is the root of the
class hierarchy, andClass, instances of which represent classes at run time.

Frequently it is necessary to represent a value of primitive type as if it wer
object. The wrapper classesBoolean, Character, Integer, Long, Float, and
Double serve this purpose. An object of typeDouble, for example, contains a
field whose type isdouble, representing that value in such a way that a refere
to it can be stored in a variable of reference type. These classes also pro
number of methods for converting among primitive values, as well as suppo
such standard methods asequals andhashCode.

The classMath provides commonly used mathematical functions such as s
cosine, and square root. The classesString andStringBuffer similarly provide
commonly used operations on character strings.

ClassesClassLoader, Process, Runtime, SecurityManager, andSystem
provide “system operations” that manage the dynamic loading of classes, cre
of external processes, host environment inquiries such as the time of day
enforcement of security policies.

ClassThrowable encompasses objects that may be thrown by thethrow
statement (§14.16). Subclasses ofThrowable represent errors and exceptions.

The hierarchy of classes defined in packagejava.lang is as follows.

Object §20.1
interface Cloneable §20.2
Class §20.3
Boolean §20.4
Character §20.5
Number §20.6

Integer §20.7
Long §20.8
Float §20.9
Double §20.10

Math §20.11
String §20.12
455

20 java.lang THE PACKAGE JAVA.LANG

456
StringBuffer §20.13
ClassLoader §20.14
Process §20.15
Runtime §20.16
SecurityManager §20.17
System §20.18
interface Runnable §20.19
Thread §20.20
ThreadGroup §20.21
Throwable §20.22

Error
LinkageError

ClassCircularityError
ClassFormatError
ExceptionInInitializerError
IncompatibleClassChangeError

AbstractMethodError
IllegalAccessError
InstantiationError
NoSuchFieldError
NoSuchMethodError

NoClassDefFoundError
UnsatisfiedLinkError
VerifyError

VirtualMachineError
InternalError
OutOfMemoryError
StackOverflowError
UnknownError

ThreadDeath
Exception

ClassNotFoundException
CloneNotSupportedException
IllegalAccessException
InstantiationException
InterruptedException
RuntimeException

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException

IllegalThreadStateException
NumberFormatException

IllegalMonitorStateException

THE PACKAGE JAVA.LANG java.lang 20
IndexOutOfBoundsException
NegativeArraySizeException
NullPointerException
SecurityException
457

20.1 java.lang.Object THE PACKAGE JAVA.LANG

458

ng

y

-
ation

f
racter
20.1 The Classjava.lang.Object

The classObject is the single root of the class hierarchy. All objects, includi
arrays, implement the methods of this class.

public class Object {
public final Class getClass();
public String toString();
public boolean equals(Object obj);
public int hashCode();
protected Object clone()

throws CloneNotSupportedException;
public final void wait()

throws IllegalMonitorStateException,
InterruptedException;

public final void wait(long millis)
throws IllegalMonitorStateException,

InterruptedException;
public final void wait(long millis, int nanos)

throws IllegalMonitorStateException,
InterruptedException;

public final void notify()
throws IllegalMonitorStateException;

public final void notifyAll()
throws IllegalMonitorStateException;

protected void finalize()
throws Throwable;

}

20.1.1 public final Class getClass()

This method returns a reference to the unique object of typeClass (§20.3) that
represents the class of this object. ThatClass object is the object that is locked b
static synchronized methods of the represented class.

20.1.2 public String toString()

The general contract oftoString is that it returns a string that “textually repre
sents” this object. The idea is to provide a concise but informative represent
that will be useful to a person reading it.

ThetoString method defined by classObject returns a string consisting o
the name of the class of which the object is an instance, a commercial at cha

THE PACKAGE JAVA.LANG java.lang.Object 20.1

bject.

:

ues

those

xecu-
e

'@', and the unsigned hexadecimal representation of the hashcode of the o
In other words, this method returns a string equal to the value of:

getClass().getName() + '@' + Integer.toHexString(hashCode())

Overridden byClass (§20.3),Boolean (§20.4),Character (§20.5),Inte-
ger (§20.7),Long (§20.8),Float (§20.9),Double (§20.10),String (§20.12),
StringBuffer (§20.13),Thread (§20.20),ThreadGroup (§20.21),Throwable
(§20.22.4), andBitset (§21.2).

20.1.3 public boolean equals(Object obj)

This method indicates whether some other object is “equal to” this one.
The general contract ofequals is that it implements an equivalence relation

• It is reflexive: for any reference valuex, x.equals(x) should returntrue.

• It is symmetric: for any reference valuesx andy, x.equals(y) should return
true if and only ify.equals(x) returnstrue.

• It is transitive: for any reference valuesx, y, andz, if x.equals(y) returns
true andy.equals(z) returnstrue, thenx.equals(z) should returntrue.

• It is consistent: for any reference valuesx and y, multiple invocations of
x.equals(y) consistently returntrue or consistently returnfalse, provided
no information used byx andy in equals comparisons is modified.

• For any non-null reference valuex, x.equals(null) should returnfalse.

Theequals method defined by classObject implements the most discrimi-
nating possible equivalence relation on objects; that is, for any reference valx
andy, ((Object)x).equals(y) returnstrue if and only ifx andy refer to the
same object.

Overridden byBoolean (§20.4),Character (§20.5),Integer (§20.7),Long
(§20.8),Float (§20.9),Double (§20.10),String (§20.12), andBitset (§21.2).

20.1.4 public int hashCode()

This method is supported principally for the benefit of hash tables such as
provided by the Java library classjava.util.Hashtable (§21.5).

The general contract ofhashCode is as follows:

• Whenever it is invoked on the same object more than once during an e
tion of a Java application,hashCode must consistently return the sam
459

20.1 java.lang.Object THE PACKAGE JAVA.LANG

460

 not,
er, or
ppli-

ame

mer
jects

le-
t this

bject.
neral

ase

lly
nter-

.

integer. The integer may be positive, negative, or zero. This integer does
however, have to remain consistent from one Java application to anoth
from one execution of an application to another execution of the same a
cation.

• If two objects are equal according to theequals method (§20.1.3), then call-
ing thehashCode method on each of the two objects must produce the s
integer result.

• It is not required that if two objects are unequal according to theequals
method (§20.1.3), then calling thehashCode method on each of the two
objects must produce distinct integer results. However, the program
should be aware that producing distinct integer results for unequal ob
may improve the performance of hashtables.

As much as is reasonably practical, thehashCode method defined by class
Object does return distinct integers for distinct objects. (This is typically imp
mented by converting the internal address of the object into an integer, bu
implementation technique is not required by the Java language.)

Overridden byBoolean (§20.4),Character (§20.5),Integer (§20.7),Long
(§20.8),Float (§20.9),Double (§20.10),String (§20.12), andBitset (§21.2).

20.1.5 protected Object clone()

throws CloneNotSupportedException

The general contract of clone is that it creates and returns a copy of this o
The precise meaning of “copy” may depend on the class of the object. The ge
intent is that, for any objectx, the expression:

x.clone() != x

will be true, and that the expression:

x.clone.getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the c
that:

x.clone.equals(x)

will be true, this is not an absolute requirement. Copying an object will typica
entail creating a new instance of its class, but it also may require copying of i
nal data structures as well.

The methodclone for classObject performs a specific cloning operation
First, if the class of this object does not implement the interfaceCloneable, then

THE PACKAGE JAVA.LANG java.lang.Object 20.1

d
w
con-
nts of
opy”

rface
-

s the

 call

read

hro-
t, an

ims
 lies
a CloneNotSupportedException is thrown. Note that all arrays are considere
to implement the interfaceCloneable. Otherwise, this method creates a ne
instance of the class of this object and initializes all its fields with exactly the
tents of the corresponding fields of this object, as if by assignment; the conte
the fields are not themselves cloned. Thus, this method performs a “shallow c
of this object, not a “deep copy” operation.

The classObject doesnot itself implement the interfaceCloneable, so call-
ing theclone method on an object whose class isObject will result in throwing
an exception at run time. Theclone method is implemented by the classObject
as a convenient, general utility for subclasses that implement the inte
Cloneable, possibly also overriding theclone method, in which case the over
riding definition can refer to this utility definition by the call:

super.clone()

20.1.6 public final void wait()

throws IllegalMonitorStateException,

InterruptedException

This method causes the current thread to wait until some other thread invoke
notify method (§20.1.9) or thenotifyAll method (§20.1.10) for this object.

In other words, this method behaves exactly as if it simply performs the
wait(0) (§20.1.7).

20.1.7 public final void wait(long millis)

throws IllegalMonitorStateException,

InterruptedException

This method causes the current thread to wait until either some other th
invokes thenotify method (§20.1.9) or thenotifyAll method (§20.1.10) for
this object, or a certain amount of real time has elapsed.

This method may be called only when the current thread is already sync
nized on this object. If the current thread does not own the lock on this objec
IllegalMonitorStateException is thrown.

This method causes the current thread (call itT) to place itself in the wait set
(§17.14) for this object and then to relinquish any and all synchronization cla
on this object. ThreadT becomes disabled for thread scheduling purposes and
dormant until one of four things happens:
461

20.1 java.lang.Object THE PACKAGE JAVA.LANG

462

nt of

mply

 for
or the
ll its
t is, to

it is

 for
read

read

ount
• Some other thread invokes thenotify method for this object and threadT
happens to be arbitrarily chosen as the thread to be awakened.

• Some other thread invokes thenotifyAll method for this object.

• Some other thread interrupts (§20.20.31) threadT.

• The specified amount of real time has elapsed, more or less. The amou
real time, measured in milliseconds, is given bymillis. If millis is zero,
however, then real time is not taken into consideration and the thread si
waits until notified.

The threadT is then removed from the wait set for this object and re-enabled
thread scheduling. It then competes in the usual manner with other threads f
right to synchronize on the object; once it has gained control of the object, a
synchronization claims on the object are restored to the status quo ante—tha
the situation as of the time that thewait method was invoked. ThreadT then
returns from the invocation of thewait method. Thus, on return from thewait
method, the synchronization state of the object and of threadT is exactly as it was
when thewait method was invoked.

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then anInterruptedException is thrown. This exception is not thrown
until the lock status of this object has been restored as described above.

Note that thewait method, as it places the current thread into the wait set
this object, unlocks only this object; any other objects on which the current th
may be synchronized remain locked while the thread waits.

20.1.8 public final void wait(long millis, int nanos)

throws IllegalMonitorStateException,

InterruptedException

This method causes the current thread to wait until either some other th
invokes thenotify method (§20.1.9) or thenotifyAll method (§20.1.10) for
this object, or some other thread interrupts the current thread, or a certain am
of real time has elapsed.

The amount of real time, measured in nanoseconds, is given by:

1000000*millis+nanos

In all other respects, this method does the same thing as the methodwait of one
argument (§20.1.7). In particular,wait(0, 0) means the same thing aswait(0).

THE PACKAGE JAVA.LANG java.lang.Object 20.1

to be
.
ady
 this

relin-
usual
e on
 dis-

ady
 this

read
 the

chro-
ilege

l
bject
lt of an

to be
is

xam-
tion
ject
20.1.9 public final void notify()

throws IllegalMonitorStateException

If any threads are waiting (§20.1.7) on this object, one of them is chosen
awakened. The choice is arbitrary and at the discretion of the implementation

The notify method may be called only when the current thread is alre
synchronized on this object. If the current thread does not own the lock on
object, anIllegalMonitorStateException is thrown.

The awakened thread will not be able to proceed until the current thread
quishes the lock on this object. The awakened thread will compete in the
manner with any other threads that might be actively competing to synchroniz
this object; for example, the awakened thread enjoys no reliable privilege or
advantage in being the next thread to lock this object.

20.1.10 public final void notifyAll()

throws IllegalMonitorStateException

All the threads waiting (§20.1.7) on this object are awakened.
ThenotifyAll method may be called only when the current thread is alre

synchronized on this object. If the current thread does not own the lock on
object, anIllegalMonitorStateException is thrown.

The awakened threads will not be able to proceed until the current th
relinquishes the lock on this object. The awakened threads will compete in
usual manner with any other threads that might be actively competing to syn
nize on this object; for example, the awakened threads enjoy no reliable priv
or disadvantage in being the next thread to lock this object.

20.1.11 protected void finalize() throws Throwable

The general contract offinalize is that it is invoked if and when the Java Virtua
Machine has determined that there is no longer any means by which this o
can be accessed by any thread that has not yet died (§12.7), except as a resu
action taken by the finalization of some other object or class which is ready
finalized. Thefinalize method may take any action, including making th
object available again to other threads; the usual purpose offinalize, however,
is to perform cleanup actions before the object is irrevocably discarded. For e
ple, thefinalize method for an object that represents an input/output connec
might perform explicit I/O transactions to break the connection before the ob
is permanently discarded.
463

20.1 java.lang.Object THE PACKAGE JAVA.LANG

464

ion
is no
as not
dy to

ual
Thefinalize method of classObject performs no special action; it simply
returns normally. Subclasses ofObject may override this definition.

Java does not guarantee which thread will invoke thefinalize method for
any given object. It is guaranteed, however, that the thread that invokesfinalize
will not be holding any user-visible synchronization locks whenfinalize is
invoked. If an uncaught exception is thrown by thefinalize method, the excep-
tion is ignored and finalization of that object terminates.

After thefinalize method has been invoked for an object, no further act
is taken until the Java Virtual Machine has again determined that there
longer any means by which this object can be accessed by any thread that h
yet died, including possible actions by other objects or classes which are rea
be finalized, at which point the object may be discarded.

The finalize method is never invoked more than once by a Java Virt
Machine for any given object.

THE PACKAGE JAVA.LANG java.lang.Cloneable 20.2

d to

d!
20.2 The Interfacejava.lang.Cloneable

TheCloneable interface should be implemented by any class that is intende
support or override the methodclone (§20.1.5).

public interface Cloneable { }

The interfaceCloneable declares no methods.

I am disappointed in Japp. He has no metho
—Agatha Christie,The Mysterious Affair at Styles (1920), Chapter 8
465

20.3 java.lang.Class THE PACKAGE JAVA.LANG

466

n be
repre-
ent

nnot

 array
f

20.3 The Classjava.lang.Class

Instances of the classClass represent classes and interfaces in a way that ca
manipulated by a running Java program. Every array also belongs to a class
sented by aClass object that is shared among all arrays with the same elem
type and number of dimensions.

There is no public constructor for the classClass. The Java Virtual Machine
automatically constructsClass objects as classes are loaded; such objects ca
be created by user programs.

public final class Class {
public String toString();
public String getName();
public boolean isInterface();
public Class getSuperclass();
public Class[] getInterfaces();
public Object newInstance()

throws InstantiationException, IllegalAccessException;
public ClassLoader getClassLoader();
public static Class forName(String className)

throws ClassNotFoundException;
}

20.3.1 public String toString()

If this Class object represents a class (which may be a declared class or an
class), a string is returned consisting of the wordclass, a space, and the name o
the class as returned by thegetName method (§20.3.2). If thisClass object repre-
sents an interface, a string is returned consisting of the wordinterface, a space,
and the name of the interface as returned by thegetName method.

In other words, this method returns a string equal to the value of:

(isInterface() ? "interface " : "class ") + getName()

Overrides thetoString method ofObject (§20.1.2).

20.3.2 public String getName()

The fully qualified name of the class or interface represented by thisClass object
is returned as aString. For example:

new Object().getClass().getName()

returns"java.lang.Object".

THE PACKAGE JAVA.LANG java.lang.Class 20.3

 of the
re “

on the

ay be

nting
jects
If this class object represents a class of arrays, then the name consists
name of the element type in Java signature format, preceded by one or mo[”
characters representing the depth of array nesting. For example:

(new Object[3]).getClass().getName()

returns"[Ljava.lang.Object;" and:

(new int[3][4][5][6][7][8][9]).getClass().getName()

returns"[[[[[[[I". The encoding of element type names is as follows:

B byte
C char
D double
F float
I int
J long
Lclassname; class or interface
S short
Z boolean

A class or interface nameclassname is given in fully qualified form as shown in
the example above. For a full description of type descriptors see the chapter
format of class files in theJava Virtual Machine Specification.

20.3.3 public boolean isInterface()

If this Class object represents an interface,true is returned. If thisClass object
represents a class,false is returned.

20.3.4 public Class getSuperclass()

If this Class object represents any class other than the classObject, then the
Class that represents the superclass of that class is returned. If thisClass object
is the one that represents the classObject, or if it represents an interface,null is
returned. If thisClass object represents an array class, then theClass that repre-
sents classObject is returned.

20.3.5 public Class[] getInterfaces()

This method returns an array of objects that represent interfaces. The array m
empty.

If this Class object represents a class, the array contains objects represe
all interfaces directly implemented by the class. The order of the interface ob
467

20.3 java.lang.Class THE PACKAGE JAVA.LANG

468

pre-
diate
y cor-

by this
ssion

om-

 class.

, and
in the array corresponds to the order of the interface names in theimplements
clause of the declaration of the class represented by thisClass object. For exam-
ple, given the class declaration:

class Shimmer implements FloorWax, DessertTopping { ... }

suppose the value ofs is an instance ofShimmer; the value of the expression:

s.getClass().getInterfaces()[0]

is theClass object that represents interfaceFloorWax; and the value of:

s.getClass().getInterfaces()[1]

is theClass object that represents interfaceDessertTopping.
If this Class object represents an interface, the array contains objects re

senting all interfaces directly extended by the interface—that is, the imme
superinterfaces of the interface. The order of the interface objects in the arra
responds to the order of the interface names in theextends clause of the declara-
tion of the interface represented by thisClass object.

20.3.6 public Object newInstance()

throws InstantiationException, IllegalAccessException

This method creates and returns a new instance of the class represented
Class object. This is done exactly as if by a class instance creation expre
(§15.8) with an empty argument list; for example, ift is theClass object that rep-
resents classThread, thent.newInstance() does exactly the same thing asnew
Thread(). If evaluation of such a class instance creation expression would c
plete abruptly, then the call to thenewInstance method will complete abruptly
for the same reason. See also §11.5.1.2 for more onInstantiationException.

20.3.7 public ClassLoader getClassLoader()

This method returns a reference to the class loader (§20.14) that loaded this
If this class has no class loader, thennull is returned.

20.3.8 public static Class forName(String className)

throws ClassNotFoundException

Given the fully-qualified name of a class, this method attempts to locate, load
link the class (§12.2). If it succeeds, then a reference to theClass object for the
class is returned. If it fails, then aClassNotFoundException is thrown.

THE PACKAGE JAVA.LANG java.lang.Boolean 20.4

e

20.4 The Classjava.lang.Boolean

Objects of typeBoolean represent primitive values of typeboolean.

public final class Boolean {
public static final Boolean TRUE = new Boolean(true);
public static final Boolean FALSE = new Boolean(false);
public Boolean(boolean value);
public Boolean(String s);
public String toString();
public boolean equals(Object obj);
public int hashCode();
public boolean booleanValue();
public static Boolean valueOf(String s);
public static boolean getBoolean(String name);

}

20.4.1 public static final Boolean TRUE = new Boolean(true);

The constant value of this field is aBoolean object corresponding to the primitive
valuetrue.

20.4.2 public static final Boolean FALSE = new Boolean(false);

The constant value of this field is aBoolean object corresponding to the primitive
valuefalse.

20.4.3 public Boolean(boolean value)

This constructor initializes a newly createdBoolean object so that it represents
the primitive value that is the argument.

20.4.4 public Boolean(String s)

This constructor initializes a newly createdBoolean object so that it represents
true if and only if the argument is notnull and is equal, ignoring case, to th
string"true".

Examples:

new Boolean("True") produces aBoolean object that representstrue.
new Boolean("yes") produces aBoolean object that representsfalse.
469

20.4 java.lang.Boolean THE PACKAGE JAVA.LANG

470

ed

,
,
n.
20.4.5 public String toString()

If this Boolean object representstrue, a string equal to"true" is returned. If
thisBoolean object representsfalse, a string equal to"false" is returned.

Overrides thetoString method ofObject (§20.1.2).

20.4.6 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aBoolean object
that represents the sameboolean value as thisBoolean object.

Overrides theequals method ofObject (§20.1.3).

20.4.7 public int hashCode()

If this Boolean object representstrue, the integer1231 is returned. If this
Boolean object representsfalse, the integer1237 is returned.

Overrides thehashCode method ofObject (§20.1.4).

20.4.8 public boolean booleanValue()

The primitiveboolean value represented by thisBoolean object is returned.

20.4.9 public static boolean valueOf(String s)

The result istrue if and only if the argument is notnull and is equal, ignoring
case, to the string"true".

Example:Boolean.valueOf("True") returnstrue.
Example:Boolean.valueOf("yes") returnsfalse.

20.4.10 public static boolean getBoolean(String name)

The result istrue if and only if the value of the system property (§20.18.9) nam
by the argument is equal, ignoring case, to the string"true".

This above all: to thine ownself be true
And it must follow, as the night the day

Thou canst not then be false to any ma
—William Shakespeare,Hamlet, Act I, scene iii

THE PACKAGE JAVA.LANG java.lang.Character 20.5

rd.

 well
lent, a
meth-
cribed
pilers
20.5 The Classjava.lang.Character

Here is the whole set! a character dead at every wo
—Richard Brinsley Sheridan,The School for Scandal, Act 2, scene 2

Objects of typeCharacter represent primitive values of typechar.

public final class Character {
public static final char MIN_VALUE = '\u0000';
public static final char MAX_VALUE = '\uffff';
public static final int MIN_RADIX = 2;
public static final int MAX_RADIX = 36;
public Character(char value);
public String toString();
public boolean equals(Object obj);
public int hashCode();
public char charValue();
public static boolean isDefined(char ch);
public static boolean isLowerCase(char ch);
public static boolean isUpperCase(char ch);
public static boolean isTitleCase(char ch);
public static boolean isDigit(char ch);
public static boolean isLetter(char ch);
public static boolean isLetterOrDigit(char ch);
public static boolean isJavaLetter(char ch);
public static boolean isJavaLetterOrDigit(char ch);)
public static boolean isSpace(char ch);
public static char toLowerCase(char ch);
public static char toUpperCase(char ch);
public static char toTitleCase(char ch);
public static int digit(char ch, int radix);
public static char forDigit(int digit, int radix);

}

Many of the methods of classCharacter are defined in terms of a “Unicode
attribute table” that specifies a name for every defined Unicode character as
as other possible attributes, such as a decimal value, an uppercase equiva
lowercase equivalent, and/or a titlecase equivalent. Prior to Java 1.1, these
ods were internal to the Java compiler and based on Unicode 1.1.5, as des
here. The most recent versions of these methods should be used in Java com
that are to run on Java systems that do not yet include these methods.

The Unicode 1.1.5 attribute table is available on the World Wide Web as:

ftp://unicode.org/pub/MappingTables/UnicodeData-1.1.5.txt
471

20.5 java.lang.Character THE PACKAGE JAVA.LANG

472

 the
ons

re:

.
 1.1.5
0. The
ide

s.
orean

ven
es in
imal
However, this file contains a few errors. The term “Unicode attribute table” in
following sections refers to the contents of this file after the following correcti
have been applied:

• The following entries should have titlecase mappings as shown here:

03D0;GREEK BETA SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER CURLED BETA;;0392;;0392
03D1;GREEK THETA SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER SCRIPT THETA;;0398;;0398
03D5;GREEK PHI SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER SCRIPT PHI;;03A6;;03A6
03D6;GREEK PI SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER OMEGA PI;;03A0;;03A0
03F0;GREEK KAPPA SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER SCRIPT KAPPA;;039A;;039A
03F1;GREEK RHO SYMBOL;Ll;0;L;;;;;N;GREEK SMALL LETTER TAILED RHO;;03A1;;03A1

• The following entries should have numeric values as shown here:

FF10;FULLWIDTH DIGIT ZERO;Nd;0;EN;0030;0;0;0;N;;;;;
FF11;FULLWIDTH DIGIT ONE;Nd;0;EN;0031;1;1;1;N;;;;;
FF12;FULLWIDTH DIGIT TWO;Nd;0;EN;0032;2;2;2;N;;;;;
FF13;FULLWIDTH DIGIT THREE;Nd;0;EN;0033;3;3;3;N;;;;;
FF14;FULLWIDTH DIGIT FOUR;Nd;0;EN;0034;4;4;4;N;;;;;
FF15;FULLWIDTH DIGIT FIVE;Nd;0;EN;0035;5;5;5;N;;;;;
FF16;FULLWIDTH DIGIT SIX;Nd;0;EN;0036;6;6;6;N;;;;;
FF17;FULLWIDTH DIGIT SEVEN;Nd;0;EN;0037;7;7;7;N;;;;;
FF18;FULLWIDTH DIGIT EIGHT;Nd;0;EN;0038;8;8;8;N;;;;;
FF19;FULLWIDTH DIGIT NINE;Nd;0;EN;0039;9;9;9;N;;;;;

• The following entries should have no lowercase equivalents:

03DA;GREEK LETTER STIGMA;Lu;0;L;;;;;N;GREEK CAPITAL LETTER STIGMA;;;;
03DC;GREEK LETTER DIGAMMA;Lu;0;L;;;;;N;GREEK CAPITAL LETTER DIGAMMA;;;;
03DE;GREEK LETTER KOPPA;Lu;0;L;;;;;N;GREEK CAPITAL LETTER KOPPA;;;;
03E0;GREEK LETTER SAMPI;Lu;0;L;;;;;N;GREEK CAPITAL LETTER SAMPI;;;;

• This entry should have uppercase and titlecase equivalents as shown he

03C2;GREEK SMALL LETTER FINAL SIGMA;Ll;0;L;;;;;N;;;03A3;;03A3

It is anticipated that these problems will be corrected for Unicode version 2.0
Java 1.1 will include the methods defined here, either based on Unicode

or, we hope, updated versions of the methods that use the newer Unicode 2.
character attribute table for Unicode 2.0 is currently available on the World W
Web as the file:

ftp://unicode.org/pub/MappingTables/UnicodeData-2.0.12.txt

If you are implementing a Java compiler or system, please refer to the page:

http://java.sun.com/Series

which will be updated with information about the Unicode-dependent method
The biggest change in Unicode 2.0 is a complete rearrangement of the K

Hangul characters. There are numerous smaller improvements as well.
It is our intention that Java will track Unicode as it evolves over time. Gi

that full Unicode support is just emerging in the marketplace, and that chang
Unicode are in areas which are not yet widely used, this should cause min
problems and further Java’s goal of worldwide language support.

THE PACKAGE JAVA.LANG java.lang.Character 20.5

rgu-

rgu-

i-
20.5.1 public static final char MIN_VALUE = '\u0000';

The constant value of this field is the smallest value of typechar.
[This field is scheduled for introduction in Java version 1.1.]

20.5.2 public static final char MAX_VALUE = '\uffff';

The constant value of this field is the smallest value of typechar.
[This field is scheduled for introduction in Java version 1.1.]

20.5.3 public static final int MIN_RADIX = 2;

The constant value of this field is the smallest value permitted for the radix a
ment in radix-conversion methods such as thedigit method (§20.5.23), the
forDigit method (§20.5.24), and thetoString method of classInteger
(§20.7).

20.5.4 public static final int MAX_RADIX = 36;

The constant value of this field is the largest value permitted for the radix a
ment in radix-conversion methods such as thedigit method (§20.5.23), thefor-
Digit method (§20.5.24), and thetoString method of classInteger (§20.7).

20.5.5 public Character(char value)

This constructor initializes a newly createdCharacter object so that it represents
the primitive value that is the argument.

20.5.6 public String toString()

The result is aString whose length is1 and whose sole component is the prim
tive char value represented by thisCharacter object.

Overrides thetoString method ofObject (§20.1.2).

20.5.7 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aCharacter
object that represents the samechar value as thisCharacter object.

Overrides theequals method ofObject (§20.1.3).
473

20.5 java.lang.Character THE PACKAGE JAVA.LANG

474

ar-

 fol-

Uni-
tains
20.5.8 public int hashCode()

The result is the primitivechar value represented by thisCharacter object, cast
to typeint.

Overrides thehashCode method ofObject (§20.1.4).

20.5.9 public char charValue()

The primitivechar value represented by thisCharacter object is returned.

20.5.10 public static boolean isDefined(char ch)

The result istrue if and only if the character argument is a defined Unicode ch
acter.

A character is a defined Unicode character if and only if at least one of the
lowing is true:

• It has an entry in the Unicode attribute table.

• It is not less than\u3040 and not greater than\u9FA5.

• It is not less than\uF900 and not greater than\uFA2D.

It follows, then, that for Unicode 1.1.5 as corrected above, the defined
code characters are exactly those with codes in the following list, which con
both single codes and inclusive ranges: 0000–01F5, 01FA–0217, 0250–02A8,
02B0–02DE, 02E0–02E9, 0300–0345, 0360–0361, 0374–0375, 037A,
037E, 0384–038A, 038C, 038E–03A1, 03A3–03CE, 03D0–03D6, 03DA,
03DC, 03DE, 03E0, 03E2–03F3, 0401–040C, 040E–044F, 0451–045C,
045E–0486, 0490–04C4, 04C7–04C8, 04CB–04CC, 04D0–04EB, 04EE–
04F5, 04F8–04F9, 0531–0556, 0559–055F, 0561–0587, 0589, 05B0–
05B9, 05BB–05C3, 05D0–05EA, 05F0–05F4, 060C, 061B, 061F, 0621–
063A, 0640–0652, 0660–066D, 0670–06B7, 06BA–06BE, 06C0–06CE,
06D0–06ED, 06F0–06F9, 0901–0903, 0905–0939, 093C–094D, 0950–
0954, 0958–0970, 0981–0983, 0985–098C, 098F–0990, 0993–09A8,
09AA–09B0, 09B2, 09B6–09B9, 09BC, 09BE–09C4, 09C7–09C8, 09CB–
09CD, 09D7, 09DC–09DD, 09DF–09E3, 09E6–09FA, 0A02, 0A05–0A0A,
0A0F–0A10, 0A13–0A28, 0A2A–0A30, 0A32–0A33, 0A35–0A36, 0A38–
0A39, 0A3C, 0A3E–0A42, 0A47–0A48, 0A4B–0A4D, 0A59–0A5C, 0A5E,
0A66–0A74, 0A81–0A83, 0A85–0A8B, 0A8D, 0A8F–0A91, 0A93–0AA8,
0AAA–0AB0, 0AB2–0AB3, 0AB5–0AB9, 0ABC–0AC5, 0AC7–0AC9, 0ACB–
0ACD, 0AD0, 0AE0, 0AE6–0AEF, 0B01–0B03, 0B05–0B0C, 0B0F–0B10,

THE PACKAGE JAVA.LANG java.lang.Character 20.5

r as
0B13–0B28, 0B2A–0B30, 0B32–0B33, 0B36–0B39, 0B3C–0B43, 0B47–
0B48, 0B4B–0B4D, 0B56–0B57, 0B5C–0B5D, 0B5F–0B61, 0B66–0B70,
0B82–0B83, 0B85–0B8A, 0B8E–0B90, 0B92–0B95, 0B99–0B9A, 0B9C,
0B9E–0B9F, 0BA3–0BA4, 0BA8–0BAA, 0BAE–0BB5, 0BB7–0BB9, 0BBE–
0BC2, 0BC6–0BC8, 0BCA–0BCD, 0BD7, 0BE7–0BF2, 0C01–0C03, 0C05–
0C0C, 0C0E–0C10, 0C12–0C28, 0C2A–0C33, 0C35–0C39, 0C3E–0C44,
0C46–0C48, 0C4A–0C4D, 0C55–0C56, 0C60–0C61, 0C66–0C6F, 0C82–
0C83, 0C85–0C8C, 0C8E–0C90, 0C92–0CA8, 0CAA–0CB3, 0CB5–0CB9,
0CBE–0CC4, 0CC6–0CC8, 0CCA–0CCD, 0CD5–0CD6, 0CDE, 0CE0–0CE1,
0CE6–0CEF, 0D02–0D03, 0D05–0D0C, 0D0E–0D10, 0D12–0D28, 0D2A–
0D39, 0D3E–0D43, 0D46–0D48, 0D4A–0D4D, 0D57, 0D60–0D61, 0D66–
0D6F, 0E01–0E3A, 0E3F–0E5B, 0E81–0E82, 0E84, 0E87–0E88, 0E8A,
0E8D, 0E94–0E97, 0E99–0E9F, 0EA1–0EA3, 0EA5, 0EA7, 0EAA–0EAB,
0EAD–0EB9, 0EBB–0EBD, 0EC0–0EC4, 0EC6, 0EC8–0ECD, 0ED0–0ED9,
0EDC–0EDD, 10A0–10C5, 10D0–10F6, 10FB, 1100–1159, 115F–11A2,
11A8–11F9, 1E00–1E9A, 1EA0–1EF9, 1F00–1F15, 1F18–1F1D, 1F20–
1F45, 1F48–1F4D, 1F50–1F57, 1F59, 1F5B, 1F5D, 1F5F–1F7D, 1F80–
1FB4, 1FB6–1FC4, 1FC6–1FD3, 1FD6–1FDB, 1FDD–1FEF, 1FF2–1FF4,
1FF6–1FFE, 2000–202E, 2030–2046, 206A–2070, 2074–208E, 20A0–
20AA, 20D0–20E1, 2100–2138, 2153–2182, 2190–21EA, 2200–22F1,
2300, 2302–237A, 2400–2424, 2440–244A, 2460–24EA, 2500–2595,
25A0–25EF, 2600–2613, 261A–266F, 2701–2704, 2706–2709, 270C–
2727, 2729–274B, 274D, 274F–2752, 2756, 2758–275E, 2761–2767,
2776–2794, 2798–27AF, 27B1–27BE, 3000–3037, 303F, 3041–3094,
3099–309E, 30A1–30FE, 3105–312C, 3131–318E, 3190–319F, 3200–
321C, 3220–3243, 3260–327B, 327F–32B0, 32C0–32CB, 32D0–32FE,
3300–3376, 337B–33DD, 33E0–33FE, 3400–9FA5, F900–FA2D, FB00–
FB06, FB13–FB17, FB1E–FB36, FB38–FB3C, FB3E, FB40–FB41, FB43–
FB44, FB46–FBB1, FBD3–FD3F, FD50–FD8F, FD92–FDC7, FDF0–FDFB,
FE20–FE23, FE30–FE44, FE49–FE52, FE54–FE66, FE68–FE6B, FE70–
FE72, FE74, FE76–FEFC, FEFF, FF01–FF5E, FF61–FFBE, FFC2–FFC7,
FFCA–FFCF, FFD2–FFD7, FFDA–FFDC, FFE0–FFE6, FFE8–FFEE, FFFD.

[This method is scheduled for introduction in Java version 1.1, eithe
defined here, or updated for Unicode 2.0; see §20.5.]
475

20.5 java.lang.Character THE PACKAGE JAVA.LANG

476

er.
 are

 this
rs).

char-

ords

 Uni-
tains

wer-

§20.5.
20.5.11 public static boolean isLowerCase(char ch)

The result istrue if and only if the character argument is a lowercase charact
A character is considered to be lowercase if and only if all of the following

true:

• The characterch is not in the range\u2000 through\u2FFF.

• The Unicode attribute table does not specify a mapping to lowercase for
character (the purpose of this requirement is to exclude titlecase characte

• At least one of the following is true:

◆ The Unicode attribute table specifies a mapping to uppercase for this
acter.

◆ The name for the character in the Unicode attribute table contains the w
SMALL LETTER or the wordsSMALL LIGATURE.

It follows, then, that for Unicode 1.1.5 as corrected above, the lowercase
code characters are exactly those with codes in the following list, which con
both single codes and inclusive ranges: 0061–007A, 00DF–00F6, 00F8–00FF,
0101–0137 (odds only),0138–0148 (evens only),0149–0177 (odds only),017A–
017E (evens only),017F–0180, 0183, 0185, 0188, 018C–018D, 0192, 0195,
0199–019B, 019E, 01A1–01A5 (odds only),01A8, 01AB, 01AD, 01B0, 01B4, 01B6,
01B9–01BA, 01BD, 01C6, 01C9, 01CC–01DC (evens only),01DD–01EF (odds only),
01F0, 01F3, 01F5, 01FB–0217 (odds only),0250–0261, 0263–0269, 026B–0273,
0275, 0277–027F, 0282–028E, 0290–0293, 029A, 029D–029E, 02A0, 02A3–02A8,
0390, 03AC–03CE, 03D0–03D1, 03D5–03D6, 03E3–03EF (odds only),03F0–03F1,
0430–044F, 0451–045C, 045E–045F, 0461–0481 (odds only),0491–04BF (odds
only), 04C2, 04C4, 04C8, 04CC, 04D1–04EB (odds only),04EF–04F5 (odds only),
04F9, 0561–0587, 1E01–1E95 (odds only),1E96–1E9A, 1EA1–1EF9 (odds only),
1F00–1F07, 1F10–1F15, 1F20–1F27, 1F30–1F37, 1F40–1F45, 1F50–1F57,
1F60–1F67, 1F70–1F7D, 1F80–1F87, 1F90–1F97, 1FA0–1FA7, 1FB0–1FB4,
1FB6–1FB7, 1FC2–1FC4, 1FC6–1FC7, 1FD0–1FD3, 1FD6–1FD7, 1FE0–1FE7,
1FF2–1FF4, 1FF6–1FF7, FB00–FB06, FB13–FB17, FF41–FF5A.

Of the first 128 Unicode characters, exactly 26 are considered to be lo
case:

abcdefghijklmnopqrstuvwxyz

[This specification for the methodisLowerCase is scheduled for introduction
in Java version 1.1, either as defined here, or updated for Unicode 2.0; see
In previous versions of Java, this method returnsfalse for all arguments larger
than\u00FF.]

THE PACKAGE JAVA.LANG java.lang.Character 20.5

ter.
 are

r this
rs).

har-

ords

 Uni-
tains

pper-

§20.5.
20.5.12 public static boolean isUpperCase(char ch)

The result istrue if and only if the character argument is an uppercase charac
A character is considered to be uppercase if and only if all of the following

true:

• The characterch is not in the range\u2000 through\u2FFF.

• The Unicode attribute table does not specify a mapping to uppercase fo
character (the purpose of this requirement is to exclude titlecase characte

• At least one of the following is true:

◆ The Unicode attribute table specifies a mapping to lowercase for this c
acter.

◆ The name for the character in the Unicode attribute table contains the w
CAPITAL LETTER or the wordsCAPITAL LIGATURE.

It follows, then, that for Unicode 1.1.5 as corrected above, the uppercase
code characters are exactly those with codes in the following list, which con
both single codes and inclusive ranges: 0041–005A, 00C0–00D6, 00D8–00DE,
0100–0136 (evens only),0139–0147 (odds only),014A–0178 (evens only),0179–
017D (odds only),0181–0182, 0184, 0186, 0187, 0189–018B, 018E–0191, 0193–
0194, 0196–0198, 019C–019D, 019F–01A0, 01A2, 01A4, 01A7, 01A9, 01AC, 01AE,
01AF, 01B1–01B3, 01B5, 01B7, 01B8, 01BC, 01C4, 01C7, 01CA, 01CD–01DB (odds
only), 01DE–01EE (evens only),01F1, 01F4, 01FA–0216 (evens only),0386,
0388–038A, 038C, 038E, 038F, 0391–03A1, 03A3–03AB, 03E2–03EE (evens only),
0401–040C, 040E–042F, 0460–0480 (evens only),0490–04BE (evens only),
04C1, 04C3, 04C7, 04CB, 04D0–04EA (evens only),04EE–04F4 (evens only),
04F8, 0531–0556, 10A0–10C5, 1E00–1E94 (evens only),1EA0–1EF8 (evens
only), 1F08–1F0F, 1F18–1F1D, 1F28–1F2F, 1F38–1F3F, 1F48–1F4D, 1F59–1F5F
(odds only),1F68–1F6F, 1F88–1F8F, 1F98–1F9F, 1FA8–1FAF, 1FB8–1FBC, 1FC8–
1FCC, 1FD8–1FDB, 1FE8–1FEC, 1FF8–1FFC, FF21–FF3A.

Of the first 128 Unicode characters, exactly 26 are considered to be u
case:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

[This specification for the methodisUpperCase is scheduled for introduction
in Java version 1.1, either as defined here, or updated for Unicode 2.0; see
In previous versions of Java, this method returnsfalse for all arguments larger
than\u00FF.]
477

20.5 java.lang.Character THE PACKAGE JAVA.LANG

478

.
 sit-
e looks
ode
r.

s
illic
se the
re

-one
and
rcase

third

n-
ain-

ing

r as

are
20.5.13 public static boolean isTitleCase(char ch)

The result istrue if and only if the character argument is a titlecase character
The notion of “titlecase” was introduced into Unicode to handle a peculiar

uation: there are single Unicode characters whose appearance in each cas
exactly like two ordinary Latin letters. For example, there is a single Unic
character ‘LJ’ (\u01C7) that looks just like the characters ‘L’ and ‘J’ put togethe
There is a corresponding lowercase letter ‘lj’ (\u01C9) as well. These character
are present in Unicode primarily to allow one-to-one translations from the Cyr
alphabet, as used in Serbia, for example, to the Latin alphabet. Now suppo
word “LJUBINJE” (which hassix characters, not eight, because two of them a
the single Unicode characters ‘LJ’ and ‘NJ’, perhaps produced by one-to
translation from the Cyrillic) is to be written as part of a book title, in capitals
lowercase. The strategy of making the first letter uppercase and the rest lowe
results in “LJubinje”—most unfortunate. The solution is that there must be a
form, called atitlecase form. The titlecase form of ‘LJ’ is ‘Lj’ (\u01C8) and the
titlecase form of ‘NJ’ is ‘Nj’. A word for a book title is then best rendered by co
verting the first letter to titlecase if possible, otherwise to uppercase; the rem
ing letters are then converted to lowercase.

A character is considered to be titlecase if and only if both of the follow
are true:

• The characterch is not in the range\u2000 through\u2FFF.

• The Unicode attribute table specifies a mapping to uppercaseand a mapping
to lowercase for this character.

There are exactly four Unicode 1.1.5 characters for whichisTitleCase returns
true:

\u01C5 LATIN CAPITAL LETTER D WITH SMALL LETTER Z WITH CARON
\u01C8 LATIN CAPITAL LETTER L WITH SMALL LETTER J
\u01CB LATIN CAPITAL LETTER N WITH SMALL LETTER J
\u01F2 LATIN CAPITAL LETTER D WITH SMALL LETTER Z

[This method is scheduled for introduction in Java version 1.1, eithe
defined here, or updated for Unicode 2.0; see §20.5.]

20.5.14 public static boolean isDigit(char ch)

The result istrue if and only if the character argument is a digit.
A character is considered to be a digit if and only if both of the following

true:

THE PACKAGE JAVA.LANG java.lang.Character 20.5

word

0.5. In

igit

r as
• The characterch is not in the range\u2000 through\u2FFF.

• The name for the character in the Unicode attribute table contains the
DIGIT.

The digits are those characters with the following codes:

0030–0039 ISO-Latin-1 (and ASCII) digits ('0'–'9')
0660–0669 Arabic-Indic digits
06F0–06F9 Eastern Arabic-Indic digits
0966–096F Devanagari digits
09E6–09EF Bengali digits
0A66–0A6F Gurmukhi digits
0AE6–0AEF Gujarati digits
0B66–0B6F Oriya digits
0BE7–0BEF Tamil digits (there are only nine of these—no zero digit)
0C66–0C6F Telugu digits
0CE6–0CEF Kannada digits
0D66–0D6F Malayalam digits
0E50–0E59 Thai digits
0ED0–0ED9 Lao digits
FF10–FF19 Fullwidth digits

Of the first 128 Unicode characters, exactly 10 are considered to be digits:

0123456789

[This specification for the methodisDigit is scheduled for introduction in
Java version 1.1, either as defined here, or updated for Unicode 2.0; see §2
previous versions of Java, this method returnsfalse for all arguments larger than
\u00FF.]

20.5.15 public static boolean isLetter(char ch)

The result istrue if and only if the character argument is a letter.
A character is considered to be a letter if and only if it is a letter or d

(§20.5.16) but is not a digit (§20.5.14).
[This method is scheduled for introduction in Java version 1.1, eithe

defined here, or updated for Unicode 2.0; see §20.5.]
479

20.5 java.lang.Character THE PACKAGE JAVA.LANG

480

ned
:

ic

,

d,

tters
oth
20.5.16 public static boolean isLetterOrDigit(char ch)

The result istrue if and only if the character argument is a letter-or-digit.
A character is considered to be a letter-or-digit if and only if it is a defi

Unicode character (§20.5.10) and its code lies in one of the following ranges

0030–0039 ISO-Latin-1 (and ASCII) digits ('0'–'9')
0041–005A ISO-Latin-1 (and ASCII) uppercase Latin letters ('A'–'Z')
0061–007A ISO-Latin-1 (and ASCII) lowercase Latin letters ('a'–'z')
00C0–00D6 ISO-Latin-1 supplementary letters
00D8–00F6 ISO-Latin-1 supplementary letters
00F8–00FF ISO-Latin-1 supplementary letters
0100–1FFF Latin extended-A, Latin extended-B, IPA extensions,

spacing modifier letters, combining diacritical marks, bas
Greek, Greek symbols and Coptic, Cyrillic, Armenian,
Hebrew extended-A, Basic Hebrew, Hebrew extended-B
Basic Arabic, Arabic extended, Devanagari, Bengali,
Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
Malayalam, Thai, Lao, Basic Georgian, Georgian extende
Hanguljamo, Latin extended additional, Greek extended

3040–9FFF Hiragana, Katakana, Bopomofo, Hangul compatibility
Jamo, CJK miscellaneous, enclosed CJK characters and
months, CJK compatibility, Hangul, Hangul
supplementary-A, Hangul supplementary-B, CJK unified
ideographs

F900–FDFF CJK compatibility ideographs, alphabetic presentation
forms, Arabic presentation forms-A

FE70–FEFE Arabic presentation forms-B
FF10–FF19 Fullwidth digits
FF21–FF3A Fullwidth Latin uppercase
FF41–FF5A Fullwidth Latin lowercase
FF66–FFDC Halfwidth Katakana and Hangul

It follows, then, that for Unicode 1.1.5 as corrected above, the Unicode le
and digits are exactly those with codes in the following list, which contains b
single codes and inclusive ranges: 0030–0039, 0041–005A, 0061–007A, 00C0–
00D6, 00D8–00F6, 00F8–01F5, 01FA–0217, 0250–02A8, 02B0–02DE, 02E0–02E9,
0300–0345, 0360–0361, 0374–0375, 037A, 037E, 0384–038A, 038C, 038E,
038F–03A1, 03A3–03CE, 03D0–03D6, 03DA–03E2, 03DA, 03DC, 03DE, 03E0,
03E2–03F3, 0401–040C, 040E–044F, 0451–045C, 045E–0486, 0490–04C4,
04C7–04C8, 04CB–04CC, 04D0–04EB, 04EE–04F5, 04F8–04F9, 0531–0556,
0559–055F, 0561–0587, 0589, 05B0–05B9, 05BB–05C3, 05D0–05EA, 05F0–05F4,

THE PACKAGE JAVA.LANG java.lang.Character 20.5

r as
060C, 061B, 061F, 0621, 0622–063A, 0640–0652, 0660–066D, 0670–06B7,
06BA–06BE, 06C0–06CE, 06D0–06ED, 06F0–06F9, 0901–0903, 0905–0939,
093C–094D, 0950–0954, 0958–0970, 0981–0983, 0985–098C, 098F–0990,
0993–09A8, 09AA–09B0, 09B2, 09B6–09B9, 09BC, 09BE, 09BF–09C4, 09C7–09C8,
09CB–09CD, 09D7, 09DC–09DD, 09DF–09E3, 09E6–09FA, 0A02, 0A05–0A0A,
0A0F–0A10, 0A13–0A28, 0A2A–0A30, 0A32–0A33, 0A35–0A36, 0A38–0A39, 0A3C,
0A3E, 0A3F–0A42, 0A47–0A48, 0A4B–0A4D, 0A59–0A5C, 0A5E, 0A66–0A74,
0A81–0A83, 0A85–0A8B, 0A8D, 0A8F, 0A90–0A91, 0A93–0AA8, 0AAA–0AB0,
0AB2–0AB3, 0AB5–0AB9, 0ABC–0AC5, 0AC7–0AC9, 0ACB–0ACD, 0AD0, 0AE0,
0AE6–0AEF, 0B01–0B03, 0B05–0B0C, 0B0F–0B10, 0B13–0B28, 0B2A–0B30,
0B32–0B33, 0B36–0B39, 0B3C–0B43, 0B47–0B48, 0B4B–0B4D, 0B56–0B57,
0B5C–0B5D, 0B5F–0B61, 0B66–0B70, 0B82–0B83, 0B85–0B8A, 0B8E–0B90,
0B92–0B95, 0B99–0B9A, 0B9C, 0B9E, 0B9F, 0BA3–0BA4, 0BA8–0BAA, 0BAE–0BB5,
0BB7–0BB9, 0BBE–0BC2, 0BC6–0BC8, 0BCA–0BCD, 0BD7, 0BE7–0BF2, 0C01–0C03,
0C05–0C0C, 0C0E–0C10, 0C12–0C28, 0C2A–0C33, 0C35–0C39, 0C3E–0C44,
0C46–0C48, 0C4A–0C4D, 0C55–0C56, 0C60–0C61, 0C66–0C6F, 0C82–0C83,
0C85–0C8C, 0C8E–0C90, 0C92–0CA8, 0CAA–0CB3, 0CB5–0CB9, 0CBE–0CC4,
0CC6–0CC8, 0CCA–0CCD, 0CD5–0CD6, 0CDE, 0CE0, 0CE1, 0CE6–0CEF, 0D02–0D03,
0D05–0D0C, 0D0E–0D10, 0D12–0D28, 0D2A–0D39, 0D3E–0D43, 0D46–0D48,
0D4A–0D4D, 0D57, 0D60–0D61, 0D66–0D6F, 0E01–0E3A, 0E3F–0E5B, 0E81–0E82,
0E84, 0E87–0E88, 0E8A, 0E8D, 0E94–0E97, 0E99–0E9F, 0EA1–0EA3, 0EA5, 0EA7,
0EAA–0EAB, 0EAD–0EB9, 0EBB–0EBD, 0EC0–0EC4, 0EC6, 0EC8, 0EC9–0ECD,
0ED0–0ED9, 0EDC–0EDD, 10A0–10C5, 10D0–10F6, 10FB, 1100–1159, 115F–11A2,
11A8–11F9, 1E00–1E9A, 1EA0–1EF9, 1F00–1F15, 1F18–1F1D, 1F20–1F45,
1F48–1F4D, 1F50–1F57, 1F59, 1F5B, 1F5D, 1F5F–1F7D, 1F80–1FB4, 1FB6–1FC4,
1FC6–1FD3, 1FD6–1FDB, 1FDD–1FEF, 1FF2–1FF4, 1FF6–1FFE, 3041–3094,
3099–309E, 30A1–30FE, 3105–312C, 3131–318E, 3190–319F, 3200–321C,
3220–3243, 3260–327B, 327F–32B0, 32C0–32CB, 32D0–32FE, 3300–3376,
337B–33DD, 33E0–33FE, 3400–9FA5, F900–FA2D, FB00–FB06, FB13–FB17,
FB1E–FB36, FB38–FB3C, FB3E, FB40, FB41, FB43, FB44, FB46, FB47–FBB1,
FBD3–FD3F, FD50–FD8F, FD92–FDC7, FDF0–FDFB, FE70–FE72, FE74, FE76,
FE77–FEFC, FF10–FF19, FF21–FF3A, FF41–FF5A, FF66–FFBE, FFC2–FFC7,
FFCA–FFCF, FFD2–FFD7, FFDA–FFDC.

[This method is scheduled for introduction in Java version 1.1, eithe
defined here, or updated for Unicode 2.0; see §20.5.]
481

20.5 java.lang.Character THE PACKAGE JAVA.LANG

482

begin

tter

r as

occur

tter-

r as

ute
 argu-

Uni-
right of
rows:
20.5.17 public static boolean isJavaLetter(char ch)

The result is true if and only if the character argument is a character that can
a Java identifier.

A character is considered to be a Java letter if and only if it is a le
(§20.5.15) or is the dollar sign character'$' (\u0024) or the underscore (“low
line”) character'_' (\u005F).

[This method is scheduled for introduction in Java version 1.1, eithe
defined here, or updated for Unicode 2.0; see §20.5.]

20.5.18 public static boolean isJavaLetterOrDigit(char ch)

The result is true if and only if the character argument is a character that can
in a Java identifier after the first character.

A character is considered to be a Java letter-or-digit if and only if it is a le
or-digit (§20.5.16) or is the dollar sign character'$' (\u0024) or the underscore
(“low line”) character'_' (\u005F).

[This method is scheduled for introduction in Java version 1.1, eithe
defined here, or updated for Unicode 2.0; see §20.5.]

20.5.19 public static boolean isSpace(char ch)

The result istrue if the argumentch is one of the following characters:

'\t' \u0009 HT HORIZONTAL TABULATION
'\n' \u000A LF LINE FEED (also known asNEW LINE)
'\f' \u000C FF FORM FEED
'\r' \u000D CR CARRIAGE RETURN
' ' \u0020 SP SPACE

Otherwise, the result isfalse.

20.5.20 public static char toLowerCase(char ch)

If the characterch has a lowercase equivalent specified in the Unicode attrib
table, then that lowercase equivalent character is returned. Otherwise, the
mentch is returned.

The lowercase equivalents specified in the Unicode attribute table, for
code 1.1.5 as corrected above, are as follows, where character codes to the
arrows are the lowercase equivalents of character codes to the left of ar
0041–005A⇒0061–007A, 00C0–00D6⇒00E0–00F6, 00D8–00DE⇒00F8–00FE,
0100–012E⇒0101–012F (evens to odds),0132–0136⇒0133–0137 (evens to

THE PACKAGE JAVA.LANG java.lang.Character 20.5

§20.5.
ents
odds),0139–0147⇒013A–0148 (odds to evens),014A–0176⇒014B–0177 (evens
to odds),0178⇒00FF, 0179–017D⇒017A–017E (odds to evens),0181⇒0253,
0182⇒0183, 0184⇒0185, 0186⇒0254, 0187⇒0188, 018A⇒0257, 018B⇒018C,
018E⇒0258, 018F⇒0259, 0190⇒025B, 0191⇒0192, 0193⇒0260, 0194⇒0263,
0196⇒0269, 0197⇒0268, 0198⇒0199, 019C⇒026F, 019D⇒0272, 01A0–
01A4⇒01A1–01A5 (evens to odds),01A7⇒01A8, 01A9⇒0283, 01AC⇒01AD,
01AE⇒0288, 01AF⇒01B0, 01B1⇒028A, 01B2⇒028B, 01B3⇒01B4, 01B5⇒01B6,
01B7⇒0292, 01B8⇒01B9, 01BC⇒01BD, 01C4⇒01C6, 01C5⇒01C6, 01C7⇒01C9,
01C8⇒01C9, 01CA⇒01CC, 01CB–01DB⇒01CC–01DC (odds to evens),01DE–
01EE⇒01DF–01EF (evens to odds),01F1⇒01F3, 01F2⇒01F3, 01F4⇒01F5,
01FA–0216⇒01FB–0217 (evens to odds),0386⇒03AC, 0388–038A⇒03AD–03AF,
038C⇒03CC, 038E⇒03CD, 038F⇒03CE, 0391–03A1⇒03B1–03C1, 03A3–
03AB⇒03C3–03CB, 03E2–03EE⇒03E3–03EF (evens to odds),0401–040C⇒0451–
045C, 040E⇒045E, 040F⇒045F, 0410–042F⇒0430–044F, 0460–0480⇒0461–
0481 (evens to odds),0490–04BE⇒0491–04BF (evens to odds),04C1⇒04C2,
04C3⇒04C4, 04C7⇒04C8, 04CB⇒04CC, 04D0–04EA⇒04D1–04EB (evens to
odds), 04EE–04F4⇒04EF–04F5 (evens to odds), 04F8⇒04F9, 0531–
0556⇒0561–0586, 10A0–10C5⇒10D0–10F5, 1E00–1E94⇒1E01–1E95 (evens to
odds),1EA0–1EF8⇒1EA1–1EF9 (evens to odds),1F08–1F0F⇒1F00–1F07, 1F18–
1F1D⇒1F10–1F15, 1F28–1F2F⇒1F20–1F27, 1F38–1F3F⇒1F30–1F37, 1F48–
1F4D⇒1F40–1F45, 1F59⇒1F51, 1F5B⇒1F53, 1F5D⇒1F55, 1F5F⇒1F57, 1F68–
1F6F⇒1F60–1F67, 1F88–1F8F⇒1F80–1F87, 1F98–1F9F⇒1F90–1F97, 1FA8–
1FAF⇒1FA0–1FA7, 1FB8⇒1FB0, 1FB9⇒1FB1, 1FBA⇒1F70, 1FBB⇒1F71,
1FBC⇒1FB3, 1FC8–1FCB⇒1F72–1F75, 1FCC⇒1FC3, 1FD8⇒1FD0, 1FD9⇒1FD1,
1FDA⇒1F76, 1FDB⇒1F77, 1FE8⇒1FE0, 1FE9⇒1FE1, 1FEA⇒1F7A, 1FEB⇒1F7B,
1FEC⇒1FE5, 1FF8⇒1F78, 1FF9⇒1F79, 1FFA⇒1F7C, 1FFB⇒1F7D, 1FFC⇒1FF3,
2160–216F⇒2170–217F, 24B6–24CF⇒24D0–24E9, FF21–FF3A⇒FF41–FF5A.

Note that the methodisLowerCase (§20.5.11) will not necessarily return
true when given the result of thetoLowerCase method.

[This specification for the methodtoLowerCase is scheduled for introduction
in Java version 1.1, either as defined here, or updated for Unicode 2.0; see
In previous versions of Java, this method returns its argument for all argum
larger than\u00FF.]
483

20.5 java.lang.Character THE PACKAGE JAVA.LANG

484

bute
 argu-

code
ght of
rrows:
20.5.21 public static char toUpperCase(char ch)

If the characterch has an uppercase equivalent specified in the Unicode attri
table, then that uppercase equivalent character is returned. Otherwise, the
mentch is returned.

The uppercase equivalents specified in the Unicode attribute table for Uni
1.1.5 as corrected above, are as follows, where character codes to the ri
arrows are the uppercase equivalents of character codes to the left of a
0061–007A⇒0041–005A, 00E0–00F6⇒00C0–00D6, 00F8–00FE⇒00D8–00DE,
00FF⇒0178, 0101–012F⇒0100–012E (odds to evens),0133–0137⇒0132–0136
(odds to evens),013A–0148⇒0139–0147 (evens to odds),014B–0177⇒014A–
0176 (odds to evens),017A–017E⇒0179–017D (evens to odds),017F⇒0053,
0183–0185⇒0182–0184 (odds to evens),0188⇒0187, 018C⇒018B, 0192⇒0191,
0199⇒0198, 01A1–01A5⇒01A0–01A4 (odds to evens), 01A8⇒01A7,
01AD⇒01AC, 01B0⇒01AF, 01B4⇒01B3, 01B6⇒01B5, 01B9⇒01B8, 01BD⇒01BC,
01C5⇒01C4, 01C6⇒01C4, 01C8⇒01C7, 01C9⇒01C7, 01CB⇒01CA, 01CC⇒01CA,
01CE–01DC⇒01CD–01DB (evens to odds),01DF–01EF⇒01DE–01EE (odds to
evens),01F2⇒01F1, 01F3⇒01F1, 01F5⇒01F4, 01FB–0217⇒01FA–0216 (odds
to evens),0253⇒0181, 0254⇒0186, 0257⇒018A, 0258⇒018E, 0259⇒018F,
025B⇒0190, 0260⇒0193, 0263⇒0194, 0268⇒0197, 0269⇒0196, 026F⇒019C,
0272⇒019D, 0283⇒01A9, 0288⇒01AE, 028A⇒01B1, 028B⇒01B2, 0292⇒01B7,
03AC⇒0386, 03AD–03AF⇒0388–038A, 03B1–03C1⇒0391–03A1, 03C2⇒03A3,
03C3–03CB⇒03A3–03AB, 03CC⇒038C, 03CD⇒038E, 03CE⇒038F, 03D0⇒0392,
03D1⇒0398, 03D5⇒03A6, 03D6⇒03A0, 03E3–03EF⇒03E2–03EE (odds to
evens),03F0⇒039A, 03F1⇒03A1, 0430–044F⇒0410–042F, 0451–045C⇒0401–
040C, 045E⇒040E, 045F⇒040F, 0461–0481⇒0460–0480 (odds to evens),0491–
04BF⇒0490–04BE (odds to evens),04C2⇒04C1, 04C4⇒04C3, 04C8⇒04C7,
04CC⇒04CB, 04D1–04EB⇒04D0–04EA (odds to evens),04EF–04F5⇒04EE–04F4
(odds to evens),04F9⇒04F8, 0561–0586⇒0531–0556, 1E01–1E95⇒1E00–1E94
(odds to evens),1EA1–1EF9⇒1EA0–1EF8 (odds to evens),1F00–1F07⇒1F08–
1F0F, 1F10–1F15⇒1F18–1F1D, 1F20–1F27⇒1F28–1F2F, 1F30–1F37⇒1F38–
1F3F, 1F40–1F45⇒1F48–1F4D, 1F51⇒1F59, 1F53⇒1F5B, 1F55⇒1F5D,
1F57⇒1F5F, 1F60–1F67⇒1F68–1F6F, 1F70⇒1FBA, 1F71⇒1FBB, 1F72–
1F75⇒1FC8–1FCB, 1F76⇒1FDA, 1F77⇒1FDB, 1F78⇒1FF8, 1F79⇒1FF9,
1F7A⇒1FEA, 1F7B⇒1FEB, 1F7C⇒1FFA, 1F7D⇒1FFB, 1F80–1F87⇒1F88–1F8F,
1F90–1F97⇒1F98–1F9F, 1FA0–1FA7⇒1FA8–1FAF, 1FB0⇒1FB8, 1FB1⇒1FB9,
1FB3⇒1FBC, 1FC3⇒1FCC, 1FD0⇒1FD8, 1FD1⇒1FD9, 1FE0⇒1FE8, 1FE1⇒1FE9,
1FE5⇒1FEC, 1FF3⇒1FFC, 2170–217F⇒2160–216F, 24D0–24E9⇒24B6–24CF,
FF41–FF5A⇒FF21–FF3A.

Note that the methodisUpperCase (§20.5.12) will not necessarily return
true when given the result of thetoUpperCase method.

THE PACKAGE JAVA.LANG java.lang.Character 20.5

§20.5.
ents

r-
1

ute
ument

harac-

d

it
 than
[This specification for the methodtoUpperCase is scheduled for introduction
in Java version 1.1, either as defined here, or updated for Unicode 2.0; see
In previous versions of Java, this method returns its argument for all argum
larger than\u00FE. Note that although\u00FF is a lowercase character, its uppe
case equivalent is\u0178; toUpperCase in versions of Java prior to version 1.
simply do not consistently handle or use Unicode character codes above\u00FF.]

20.5.22 public static char toTitleCase(char ch)

If the characterch has a titlecase equivalent specified in the Unicode attrib
table, then that titlecase equivalent character is returned; otherwise, the arg
ch is returned.

Note that the methodisTitleCase (§20.5.13) will not necessarily return
true when given the result of thetoTitleCase method. The Unicode attribute
table always has the titlecase attribute equal to the uppercase attribute for c
ters that have uppercase equivalents but no separate titlecase form.

Example:Character.toTitleCase('a') returns'A'
Example:Character.toTitleCase('Q') returns'Q'
Example:Character.toTitleCase('lj') returns'Lj' where'lj' is the

Unicode character\u01C9 and'Lj' is its titlecase equivalent character\u01C8.
[This method is scheduled for introduction in Java version 1.1.]

20.5.23 public static int digit(char ch, int radix)

Returns the numeric value of the characterch considered as a digit in the specifie
radix. If the value ofradix is not a valid radix, or the characterch is not a valid
digit in the specified radix, then-1 is returned.

A radix is valid if and only if its value is not less thanCharacter.MIN_RADIX
(§20.5.3) and not greater thanCharacter.MAX_RADIX (§20.5.4).

A character is a valid digit if and only if one of the following is true:

• The methodisDigit returnstrue for the character, and the decimal dig
value of the character, as specified in the Unicode attribute table, is less
the specified radix. In this case, the decimal digit value is returned.

• The character is one of the uppercase Latin letters'A'–'Z' (\u0041–\u005A)
and its code is less thanradix+'A'-10. In this casech-'A'+10 is returned.

• The character is one of the lowercase Latin letters'a'–'z' (\u0061–\u007A)
and its code is less thanradix+'a'-10. In this casech-'a'+10 is returned.
485

20.5 java.lang.Character THE PACKAGE JAVA.LANG

486

previ-
n

If the
[This specification for the methoddigit is scheduled for introduction in Java
version 1.1, either as defined here, or updated for Unicode 2.0; see §20.5. In
ous versions of Java, this method returns-1 for all character codes larger tha
\u00FF.]

20.5.24 public static char forDigit(int digit, int radix)

Returns a character that represents the given digit in the specified radix.
value ofradix is not a valid radix, or the value ofdigit is not a valid digit in the
specified radix, the null character'\u0000' is returned.

A radix is valid if and only if its value is not less thanCharacter.MIN_RADIX
(§20.5.3) and not greater thanCharacter.MAX_RADIX (§20.5.4).

A digit is valid if and only if it is nonnegative and less than theradix.
If the digit is less than10, then the character value'0'+digit is returned;

otherwise,'a'+digit-10 is returned. Thus, the digits produced byforDigit, in
increasing order of value, are the ASCII characters:

0123456789abcdefghijklmnopqrstuvwxyz

(these are'\u0030' through'\u0039' and '\u0061' through'\u007a'). If
uppercase letters are desired, thetoUpperCase method may be called on the
result:

Character.toUpperCase(Character.forDigit(digit, radix))

THE PACKAGE JAVA.LANG java.lang.Number 20.6

nted

e

e

c

c

20.6 The Classjava.lang.Number

The abstract classNumber has subclassesInteger, Long, Float, andDouble
which wrap primitive types, defining abstract methods to convert the represe
numeric value toint, long, float, anddouble.

public abstract class Number {
public abstract int intValue();
public abstract long longValue();
public abstract float floatValue();
public abstract double doubleValue();

}

20.6.1 public abstract int intValue()

The general contract of theintValue method is that it returns the numeric valu
represented by thisNumber object after converting it to typeint.

Overridden byInteger (§20.7.8),Long (§20.8.8),Float (§20.9.12), and
Double (§20.10.11).

20.6.2 public abstract long longValue()

The general contract of thelongValue method is that it returns the numeric valu
represented by thisNumber object after converting it to typelong.

Overridden byInteger (§20.7.9),Long (§20.8.9),Float (§20.9.13), and
Double (§20.10.12).

20.6.3 public abstract float floatValue()

The general contract of thefloatValue method is that it returns the numeri
value represented by thisNumber object after converting it to typefloat.

Overridden byInteger (§20.7.10),Long (§20.8.10),Float (§20.9.14), and
Double (§20.10.13).

20.6.4 public abstract double doubleValue()

The general contract of thedoubleValue method is that it returns the numeri
value represented by thisNumber object after converting it to typedouble.

Overridden byInteger (§20.7.11),Long (§20.8.11),Float (§20.9.15), and
Double (§20.10.14).
487

20.7 java.lang.Integer THE PACKAGE JAVA.LANG

488
20.7 The Classjava.lang.Integer

public final class Integer extends Number {
public static final int MIN_VALUE = 0x80000000;
public static final int MAX_VALUE = 0x7fffffff;
public Integer(int value);
public Integer(String s)

throws NumberFormatException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int intValue();
public long longValue();
public float floatValue();
public double doubleValue();
public static String toString(int i);
public static String toString(int i, int radix);
public static String toHexString(long i);
public static String toOctalString(long i);
public static String toBinaryString(long i);
public static int parseInt(String s)

throws NumberFormatException;
public static int parseInt(String s, int radix)

throws NumberFormatException;
public static Integer valueOf(String s)

throws NumberFormatException;
public static Integer valueOf(String s, int radix)

throws NumberFormatException;
public static Integer getInteger(String nm);
public static Integer getInteger(String nm, int val);
public static Integer getInteger(String nm, Integer val);

}

20.7.1 public static final int MIN_VALUE = 0x80000000;

The constant value of this field is-2147483648, the lowest value of typeint.

20.7.2 public static final int MAX_VALUE = 0x7fffffff;

The constant value of this field is2147483647, the highest value of typeint.

THE PACKAGE JAVA.LANG java.lang.Integer 20.7

 to an

i-
 were
2).
20.7.3 public Integer(int value)

This constructor initializes a newly createdInteger object so that it represents
the primitive value that is the argument.

20.7.4 public Integer(String s) throws NumberFormatException

This constructor initializes a newly createdInteger object so that it represents
the integer represented by the string in decimal form. The string is converted
int in exactly the manner used by theparseInt method (§20.7.18) for radix 10.

20.7.5 public String toString()

The integer value represented by thisInteger object is converted to signed dec
mal representation and returned as a string, exactly as if the integer value
given as an argument to thetoString method that takes one argument (§20.7.1

Overrides thetoString method ofObject (§20.1.2).

20.7.6 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is anInteger
object that represents the sameint value as thisInteger object.

Overrides theequals method ofObject (§20.1.3).

20.7.7 public int hashCode()

The result is the primitiveint value represented by thisInteger object.
Overrides thehashCode method ofObject (§20.1.4).

20.7.8 public int intValue()

Theint value represented by thisInteger object is returned.
Overrides theintValue method ofNumber (§20.6.1).

20.7.9 public long longValue()

The int value represented by thisInteger object is converted (§5.1.2) to type
long and the result of the conversion is returned.

Overrides thelongValue method ofNumber (§20.6.2).
489

20.7 java.lang.Integer THE PACKAGE JAVA.LANG

490

 as a
e

ed by

 the
ter

 first
r

tude
its:
20.7.10 public float floatValue()

The int value represented by thisInteger object is converted (§5.1.2) to type
float and the result of the conversion is returned.

Overrides thefloatValue method ofNumber (§20.6.3).

20.7.11 public double doubleValue()

The int value represented by thisInteger object is converted (§5.1.2) to type
double and the result of the conversion is returned.

Overrides thedoubleValue method ofNumber (§20.6.4).

20.7.12 public static String toString(int i)

The argument is converted to signed decimal representation and returned
string, exactly as if the argument and the radix10 were given as arguments to th
toString method that takes two arguments (§20.7.13).

20.7.13 public static String toString(int i, int radix)

The first argument is converted to a signed representation in the radix specifi
the second argument; this representation is returned as a string.

If the radix is smaller thanCharacter.MIN_RADIX (§20.5.3) or larger than
Character.MAX_RADIX (§20.5.4), then the value10 is used instead.

If the first argument is negative, the first character of the result will be
character'-' ('\u002d'). If the first argument is not negative, no sign charac
appears in the result.

The remaining characters of the result represent the magnitude of the
argument. If the magnitude is zero, it is represented by a single zero characte'0'
('\u0030'); otherwise, the first character of the representation of the magni
will not be the zero character.The following ASCII characters are used as dig

0123456789abcdefghijklmnopqrstuvwxyz

These are'\u0030' through'\u0039' and'\u0061' through'\u007a'. If the
radix is N, then the firstN of these characters are used as radix-N digits in the
order shown. Thus, the digits for hexadecimal (radix 16) are0123456789abcdef.
If uppercase letters are desired, thetoUpperCase method (§20.12.36) of class
String may be called on the result:

Integer.toString(n, 16).toUpperCase()

THE PACKAGE JAVA.LANG java.lang.Integer 20.7

 radix

ls the
ent.
racter
the
s are

se 8);

ls the
ent.
racter
the

se 2);

ls the
ent.
racter
the
20.7.14 public static String toHexString(int i)

The argument is converted to an unsigned representation in hexadecimal
(base 16); this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The following character
used as hexadecimal digits:

0123456789abcdef

These are the characters'\u0030' through'\u0039' and '\u0061' through
'\u0066'. If uppercase letters are desired, thetoUpperCase method (§20.12.36)
of classString may be called on the result:

Long.toHexString(n).toUpperCase()

20.7.15 public static String toOctalString(int i)

The argument is converted to an unsigned representation in octal radix (ba
this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The octal digits are:

01234567

These are the characters'\u0030' through'\u0037'.

20.7.16 public static String toBinaryString(int i)

The argument is converted to an unsigned representation in binary radix (ba
this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The characters'0'
('\u0030') and'1' ('\u0031') are used as binary digits.

232

232

232
491

20.7 java.lang.Integer THE PACKAGE JAVA.LANG

492

ompo-
ay be
 is

 spec-
its of

d.
20.7.17 public static int parseInt(String s)

throws NumberFormatException

The argument is interpreted as representing a signed decimal integer. The c
nents of the string must all be decimal digits, except that the first character m
'-' ('\u002d') to indicate a negative value. The resulting integer value
returned, exactly as if the argument and the radix10 were given as arguments to
theparseInt method that takes two arguments (§20.7.18).

20.7.18 public static int parseInt(String s, int radix)

throws NumberFormatException

The first argument is interpreted as representing a signed integer in the radix
ified by the second argument. The components of the string must all be dig
the specified radix (as determined by whetherCharacter.digit (§20.5.23)
returns a nonnegative value), except that the first character may be'-'
('\u002d') to indicate a negative value. The resulting integer value is returne

An exception of typeNumberFormatException is thrown if any of the fol-
lowing situations occurs:

• The first argument isnull or is a string of length zero.

• Theradix is either smaller thanCharacter.MIN_RADIX (§20.5.3) or larger
thanCharacter.MAX_RADIX (§20.5.4).

• Any character of the string is not a digit of the specifiedradix, except that the
first character maybe a minus sign'-' ('\u002d') provided that the string
is longer than length 1.

• The integer value represented by the string is not a value of typeint.

Examples:

parseInt("0", 10) returns 0
parseInt("473", 10) returns 473
parseInt("-0", 10) returns 0
parseInt("-FF", 16) returns -255
parseInt("1100110", 2) returns 102
parseInt("2147483647", 10) returns 2147483647
parseInt("-2147483648", 10) returns -2147483648
parseInt("2147483648", 10) throws a NumberFormatException
parseInt("99", 8) throws a NumberFormatException
parseInt("Kona", 10) throws a NumberFormatException
parseInt("Kona", 27) returns 411787

THE PACKAGE JAVA.LANG java.lang.Integer 20.7

y as if
t

ec-

 spec-
 the

d as if
-

erty

d as if
-

en an
20.7.19 public static Integer valueOf(String s)

throws NumberFormatException

The argument is interpreted as representing a signed decimal integer, exactl
the argument were given to theparseInt method that takes one argumen
(§20.7.17). The result is anInteger object that represents the integer value sp
ified by the string.

In other words, this method returns anInteger object equal to the value of:

new Integer(Integer.parseInt(s))

20.7.20 public static Integer valueOf(String s, int radix)

throws NumberFormatException

The first argument is interpreted as representing a signed integer in the radix
ified by the second argument, exactly as if the arguments were given to
parseInt method that takes two arguments (§20.7.18). The result is anInteger
object that represents the integer value specified by the string.

In other words, this method returns anInteger object equal to the value of:

new Integer(Integer.parseInt(s, radix))

20.7.21 public static Integer getInteger(String nm)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and anInteger object representing this
value is returned. If there is no property of the specified name, or if the prop
does not have the correct numeric format, thennull is returned.

In other words, this method returns anInteger object equal to the value of:

getInteger(nm, null)

20.7.22 public static Integer getInteger(String nm, int val)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and anInteger object representing this
value is returned. If the property does not have the correct numeric format, th
Integer object that represents the value of the second argument is returned.
493

20.7 java.lang.Integer THE PACKAGE JAVA.LANG

494

d as if
-

s a

or the

of the
 then
In other words, this method returns anInteger object equal to the value of:

getInteger(nm, new Integer(val))

but in practice it may be implemented in a manner such as:

Integer result = getInteger(nm, null);
return (result == null) ? new Integer(val) : result;

to avoid the unnecessary allocation of anInteger object when the default value is
not needed.

20.7.23 public static Integer getInteger(String nm, Integer val)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and anInteger object representing this
value is returned.

• If the property value begins with the two ASCII characters0x or the ASCII
character#, not followed by a minus sign, then the rest of it is parsed a
hexadecimal integer exactly as for the methodInteger.valueOf (§20.7.20)
with radix16.

• If the property value begins with the ASCII character0 followed by another
character, it is parsed as an octal integer exactly as for the methodInte-
ger.valueOf (§20.7.20) with radix8.

• Otherwise, the property value is parsed as a decimal integer exactly as f
methodInteger.valueOf (§20.7.20) with radix10.

The second argument serves as a default value. If there is no property
specified name, or if the property does not have the correct numeric format,
the second argument is returned.

THE PACKAGE JAVA.LANG java.lang.Long 20.8
20.8 The Classjava.lang.Long

public final class Long extends Number {
public static final long MIN_VALUE = 0x8000000000000000L;
public static final long MAX_VALUE = 0x7fffffffffffffffL;
public Long(long value);
public Long(String s)

throws NumberFormatException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int intValue();
public long longValue();
public float floatValue();
public double doubleValue();
public static String toString(long i);
public static String toString(long i, int radix);
public static String toHexString(long i);
public static String toOctalString(long i);
public static String toBinaryString(long i);
public static long parseLong(String s)

throws NumberFormatException;
public static long parseLong(String s, int radix)

throws NumberFormatException;
public static Long valueOf(String s)

throws NumberFormatException;
public static Long valueOf(String s, int radix)

throws NumberFormatException;
public static Long getLong(String nm);
public static Long getLong(String nm, long val);
public static Long getLong(String nm, Long val);

}

20.8.1 public static final long MIN_VALUE = 0x8000000000000000L;

The constant value of this field is the lowest value of typelong.

20.8.2 public static final long MAX_VALUE = 0x7fffffffffffffffL;

The constant value of this field is the highest value of typelong.
495

20.8 java.lang.Long THE PACKAGE JAVA.LANG

496

e

e
 to a

-
 were
2).

:

20.8.3 public Long(long value)

This constructor initializes a newly createdLong object so that it represents th
primitive value that is the argument.

20.8.4 public Long(String s) throws NumberFormatException

This constructor initializes a newly createdLong object so that it represents th
integer represented by the string in decimal form. The string is converted
long value in exactly the manner used by theparseLong method (§20.8.17) for
radix 10.

20.8.5 public String toString()

Thelong integer value represented by thisLong object is converted to signed dec
imal representation and returned as a string, exactly as if the integer value
given as an argument to thetoString method that takes one argument (§20.7.1

Overrides thetoString method ofObject (§20.1.2).

20.8.6 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aLong object that
represents the samelong value as thisLong object.

Overrides theequals method ofObject (§20.1.3).

20.8.7 public int hashCode()

The result is the exclusive OR of the two halves of the primitivelong value repre-
sented by thisLong object. That is, the hashcode is the value of the expression

(int)(this.longValue()^(this.longValue()>>>32))

Overrides thehashCode method ofObject (§20.1.4).

20.8.8 public int intValue()

Thelong value represented by thisLong object is converted (§5.1.3) to typeint
and the result of the conversion is returned.

Overrides theintValue method ofNumber (§20.6.1).

THE PACKAGE JAVA.LANG java.lang.Long 20.8

 as a
e

ed by

 the
ter

 first
r

tude
its:
20.8.9 public long longValue()

Thelong value represented by thisLong object is returned.
Overrides thelongValue method ofNumber (§20.6.2).

20.8.10 public float floatValue()

The long value represented by thisLong object is converted (§5.1.2) to type
float and the result of the conversion is returned.

Overrides thefloatValue method ofNumber (§20.6.3).

20.8.11 public double doubleValue()

The long value represented by thisLong object is converted (§5.1.2) to type
double and the result of the conversion is returned.

Overrides thedoubleValue method ofNumber (§20.6.4).

20.8.12 public static String toString(long i)

The argument is converted to signed decimal representation and returned
string, exactly as if the argument and the radix10 were given as arguments to th
toString method that takes two arguments (§20.8.13).

20.8.13 public static String toString(long i, int radix)

The first argument is converted to a signed representation in the radix specifi
the second argument; this representation is returned as a string.

If the radix is smaller thanCharacter.MIN_RADIX (§20.5.3) or larger than
Character.MAX_RADIX (§20.5.4), then the value10 is used instead.

If the first argument is negative, the first character of the result will be
character'-' ('\u002d'). If the first argument is not negative, no sign charac
appears in the result.

The remaining characters of the result represent the magnitude of the
argument. If the magnitude is zero, it is represented by a single zero characte'0'
('\u0030'); otherwise, the first character of the representation of the magni
will not be the zero character. The following ASCII characters are used as dig

0123456789abcdefghijklmnopqrstuvwxyz

These are'\u0030' through'\u0039' and'\u0061' through'\u007a'. If the
radix is N, then the firstN of these characters are used as radix-N digits in the
497

20.8 java.lang.Long THE PACKAGE JAVA.LANG

498

 radix

ls the
ent.
racter
the
s are

se 8);

ls the
ent.
racter
the
s are
order shown. Thus, the digits for hexadecimal (radix 16) are0123456789abcdef.
If uppercase letters are desired, thetoUpperCase method (§20.12.36) of class
String may be called on the result:

Long.toString(n, 16).toUpperCase()

20.8.14 public static String toHexString(long i)

The argument is converted to an unsigned representation in hexadecimal
(base 16); this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The following character
used as hexadecimal digits:

0123456789abcdef

These are the characters'\u0030' through'\u0039' and '\u0061' through
'\u0066'. If uppercase letters are desired, thetoUpperCase method (§20.12.36)
of classString may be called on the result:

Long.toHexString(n).toUpperCase()

20.8.15 public static String toOctalString(long i)

The argument is converted to an unsigned representation in octal radix (ba
this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The following character
used as octal digits:

01234567

These are the characters'\u0030' through'\u0037'.

264

264

THE PACKAGE JAVA.LANG java.lang.Long 20.8

se 2);

ls the
ent.
racter
the

ompo-
ay be

e

s a

 spec-
its of

s a
t that
20.8.16 public static String toBinaryString(long i)

The argument is converted to an unsigned representation in binary radix (ba
this representation is returned as a string.

The result represents the unsigned magnitude of the argument. This equa
argument plus if the argument is negative; otherwise, it equals the argum

If the unsigned magnitude is zero, it is represented by a single zero cha
'0' ('\u0030'); otherwise, the first character of the representation of
unsigned magnitude will not be the zero character. The characters'0'
('\u0030') and'1' ('\u0031') are used as binary digits.

20.8.17 public static long parseLong(String s)

throws NumberFormatException

The argument is interpreted as representing a signed decimal integer. The c
nents of the string must all be decimal digits, except that the first character m
'-' ('\u002d') to indicate a negative value. The resultinglong value is returned,
exactly as if the argument and the radix10 were given as arguments to th
parseLong method that takes two arguments (§20.8.18).

Note that neitherL nor l is permitted to appear at the end of the string a
type indicator, as would be permitted in Java source code (§3.10.1).

20.8.18 public static long parseLong(String s, int radix)

throws NumberFormatException

The first argument is interpreted as representing a signed integer in the radix
ified by the second argument. The components of the string must all be dig
the specified radix (as determined by whetherCharacter.digit (§20.5.23)
returns a nonnegative value), except that the first character may be'-'
('\u002d') to indicate a negative value. The resultinglong value is returned.

Note that neitherL nor l is permitted to appear at the end of the string a
type indicator, as would be permitted in Java source code (§3.10.1)—excep
eitherL or l may appear as a digit for a radix greater than22.

An exception of typeNumberFormatException is thrown if any of the fol-
lowing situations occurs:

• The first argument isnull or is a string of length zero.

• Theradix is either smaller thanCharacter.MIN_RADIX (§20.5.3) or larger
thanCharacter.MAX_RADIX (§20.5.4).

264
499

20.8 java.lang.Long THE PACKAGE JAVA.LANG

500

1.

alue of

y as if
t
ed

 spec-
 the
• The first character of the string is not a digit of the specifiedradix and is not
a minus sign'-' ('\u002d').

• The first character of the string is a minus sign and the string is of length

• Any character of the string after the first is not a digit of the specifiedradix.

• The integer value represented by the string cannot be represented as a v
typelong.

Examples:

parseLong("0", 10) returns0L
parseLong("473", 10) returns473L
parseLong("-0", 10) returns0L
parseLong("-FF", 16) returns-255L
parseLong("1100110", 2) returns102L
parseLong("99", 8) throws aNumberFormatException
parseLong("Hazelnut", 10) throws aNumberFormatException
parseLong("Hazelnut", 36) returns1356099454469L

20.8.19 public static Long valueOf(String s)

throws NumberFormatException

The argument is interpreted as representing a signed decimal integer, exactl
the argument were given to theparseLong method that takes one argumen
(§20.8.17). The result is aLong object that represents the integer value specifi
by the string.

In other words, this method returns aLong object equal to the value of:

new Long(Long.parseLong(s))

20.8.20 public static Long valueOf(String s, int radix)

throws NumberFormatException

The first argument is interpreted as representing a signed integer in the radix
ified by the second argument, exactly as if the arguments were given to
parseLong method that takes two arguments (§20.8.18). The result is aLong
object that represents the integer value specified by the string.

In other words, this method returns aLong object equal to the value of:

new Long(Long.parseLong(s, radix))

THE PACKAGE JAVA.LANG java.lang.Long 20.8

d as if
-

erty

d as if
-

erty

t

d as if
-

s a
20.8.21 public static Long getLong(String nm)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and aLong object representing this
value is returned. If there is no property of the specified name, or if the prop
does not have the correct numeric format, thennull is returned.

In other words, this method returns aLong object equal to the value of:

getLong(nm, null)

20.8.22 public static Long getLong(String nm, long val)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and aLong object representing this
value is returned. If there is no property of the specified name, or if the prop
does not have the correct numeric format, then aLong object that represents the
value of the second argument is returned.

In other words, this method returns aLong object equal to the value of:

getLong(nm, new Long(val))

but in practice it may be implemented in a manner such as:

Long result = getLong(nm, null);
return (result == null) ? new Long(val) : result;

to avoid the unnecessary allocation of aLong object when the default value is no
needed.

20.8.23 public static Long getLong(String nm, Long val)

The first argument is treated as the name of a system property to be obtaine
by the methodSystem.getProperty (§20.18.9). The string value of this prop
erty is then interpreted as an integer value and aLong object representing this
value is returned.

• If the property value begins with the two ASCII characters0x or the ASCII
character#, not followed by a minus sign, then the rest of it is parsed a
hexadecimal integer exactly as for the methodLong.valueOf (§20.7.20) with
radix16.
501

20.8 java.lang.Long THE PACKAGE JAVA.LANG

502

r the

e
 code

of the
 then
• If the property value begins with the character0 followed by another charac-
ter, it is parsed as an octal integer exactly as for the methodLong.valueOf
(§20.7.20) with radix8.

• Otherwise the property value is parsed as a decimal integer exactly as fo
methodLong.valueOf (§20.7.20) with radix10.

Note that, in every case, neitherL norl is permitted to appear at the end of th
property value as a type indicator, as would be permitted in Java source
(§3.10.1).

The second argument serves as a default value. If there is no property
specified name, or if the property does not have the correct numeric format,
the second argument is returned.

THE PACKAGE JAVA.LANG java.lang.Float 20.9

type
20.9 The Classjava.lang.Float

public final class Float extends Number {
public static final float MIN_VALUE = 1.4e-45f;
public static final float MAX_VALUE = 3.4028235e+38f;
public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
public static final float POSITIVE_INFINITY = 1.0f/0.0f;
public static final float NaN = 0.0f/0.0f;
public Float(float value);
public Float(double value);
public Float(String s)

throws NumberFormatException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int intValue();
public long longValue();
public float floatValue();
public double doubleValue();
public static String toString(float f);
public static Float valueOf(String s)

throws NullPointerException, NumberFormatException;
public boolean isNaN();
public static boolean isNaN(float v);
public boolean isInfinite();
public static boolean isInfinite(float v);
public static int floatToIntBits(float value);
public static float intBitsToFloat(int bits);

}

20.9.1 public static final float MIN_VALUE = 1.4e-45f;

The constant value of this field is the smallest positive nonzero value of
float. It is equal to the value returned byFloat.intBitsToFloat(0x1).

20.9.2 public static final float MAX_VALUE = 3.4028235e+38f;

The constant value of this field is the largest positive finite value of typefloat. It
is equal to the value returned byFloat.intBitsToFloat(0x7f7fffff).
503

20.9 java.lang.Float THE PACKAGE JAVA.LANG

504

e

e

e
n-
20.9.3 public static final float NEGATIVE_INFINITY =

-1.0f/0.0f;

The constant value of this field is the negative infinity of typefloat. It is equal to
the value returned byFloat.intBitsToFloat(0xff800000).

20.9.4 public static final float POSITIVE_INFINITY =

1.0f/0.0f;

The constant value of this field is the positive infinity of typefloat. It is equal to
the value returned byFloat.intBitsToFloat(0x7f800000).

20.9.5 public static final float NaN = 0.0f/0.0f;

The constant value of this field is the Not-a-Number value of typefloat. It is
equal to the value returned byFloat.intBitsToFloat(0x7fc00000).

20.9.6 public Float(float value)

This constructor initializes a newly createdFloat object so that it represents th
primitive value that is the argument.

20.9.7 public Float(double value)

This constructor initializes a newly createdFloat object so that it represents th
result of narrowing (§5.1.3) the argument from typedouble to typefloat.

20.9.8 public Float(String s) throws NumberFormatException

This constructor initializes a newly createdFloat object so that it represents th
floating-point value of typefloat represented by the string. The string is co
verted to afloat value in exactly the manner used by thevalueOf method
(§20.9.17).

20.9.9 public String toString()

The primitive float value represented by thisFloat object is converted to a
string exactly as if by the methodtoString of one argument (§20.9.16).

Overrides thetoString method ofObject (§20.1.2).

THE PACKAGE JAVA.LANG java.lang.Float 20.9

thod
.

e
e
tive
t
erate

ethod
20.9.10 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aFloat object
that represents the samefloat value as thisFloat object. For this purpose, two
float values are considered to be the same if and only if the me
floatToIntBits (§20.9.22) returns the sameint value when applied to each
Note that even though the== operator returnsfalse if both operands are NaN,
this equals method will returntrue if this Float object and the argument ar
both Float objects that represent NaN. On the other hand, even though th==
operator returnstrue if one operand is positive zero and the other is nega
zero, thisequals method will returnfalse if this Float object and the argumen
represent zeroes of different sign. This definition allows hashtables to op
properly.

Overrides theequals method ofObject (§20.1.3).

20.9.11 public int hashCode()

The result is the integer bit representation, exactly as produced by the m
floatToIntBits (§20.9.22), of the primitivefloat value represented by this
Float object.

Overrides thehashCode method ofObject (§20.1.4).

20.9.12 public int intValue()

The float value represented by thisFloat object is converted (§5.1.3) to type
int and the result of the conversion is returned.

Overrides theintValue method ofNumber (§20.6.1).

20.9.13 public long longValue()

The float value represented by thisFloat object is converted (§5.1.3) to type
long and the result of the conversion is returned.

Overrides thelongValue method ofNumber (§20.6.2).

20.9.14 public float floatValue()

Thefloat value represented by thisFloat object is returned.
Overrides thefloatValue method ofNumber (§20.6.3).
505

20.9 java.lang.Float THE PACKAGE JAVA.LANG

506

cters

abso-
f the
 in

nted
y
he

lled
t

 part

-

y, but
ment

y this
20.9.15 public double doubleValue()

The float value represented by thisFloat object is converted (§5.1.2) to type
double and the result of the conversion is returned.

Overrides thedoubleValue method ofNumber (§20.6.4).

20.9.16 public static String toString(float f)

The argument is converted to a readable string format as follows. All chara
and characters in strings mentioned below are ASCII characters.

• If the argument is NaN, the result is the string"NaN".

• Otherwise, the result is a string that represents the sign and magnitude (
lute value) of the argument. If the sign is negative, the first character o
result is'-' ('\u002d'); if the sign is positive, no sign character appears
the result. As for the magnitudem:

◆ If m is infinity, it is represented by the characters “Infinity”; thus, positive
infinity produces the result"Infinity" and negative infinity produces the
result"-Infinity".

◆ If m is zero, it is represented by the characters"0.0"; thus, negative zero
produces the result"-0.0" and positive zero produces the result"0.0".

◆ If m is greater than or equal to but less than , then it is represe
as the integer part ofm, in decimal form with no leading zeroes, followed b
'.' (\u002E), followed by one or more decimal digits representing t
fractional part ofm.

◆ If m is less than or not less than , then it is represented in so-ca
“computerized scientific notation.” Letn be the unique integer such tha

; then leta be the mathematically exact quotient ofm and
 so that . The magnitude is then represented as the integer

of a, as a single decimal digit, followed by'.' (\u002E), followed by deci-
mal digits representing the fractional part ofa, followed by the letter'E'
(\u0045), followed by a representation ofn as a decimal integer, as pro
duced by the methodInteger.toString of one argument (§20.7.12).

How many digits must be printed for the fractional part ofm or a? There must
be at least one digit to represent the fractional part, and beyond that as man
only as many, more digits as are needed to uniquely distinguish the argu
value from adjacent values of typefloat. That is, suppose thatx is the exact
mathematical value represented by the decimal representation produced b

10 3– 107

10 3– 107

10n m 10n 1+<≤
10n 1 a 10<≤

THE PACKAGE JAVA.LANG java.lang.Float 20.9

 the
se

d a

ve

rized
o an

ject
method for a finite nonzero argumentf . Thenf must be thefloat value nearest
to x; or, if twofloat values are equally close tox, thenf must be one of them and
the least significant bit of the significand off must be0.

[This specification for the methodtoString is scheduled for introduction in
Java version 1.1. In previous versions of Java, this method producesInf instead of
Infinity for infinite values. Also, it renders finite values in the same form as
%g format of theprintf function in the C programming language, which can lo
precision because it produces at most six digits after the decimal point.]

20.9.17 public static Float valueOf(String s)

throws NullPointerException, NumberFormatException

The strings is interpreted as the representation of a floating-point value an
Float object representing that value is created and returned.

If s is null, then aNullPointerException is thrown.
Leading and trailing whitespace (§20.5.19) characters ins are ignored. The

rest ofs should constitute aFloatValue as described by the lexical syntax rules:

FloatValue:
Signopt Digits . Digitsopt ExponentPartopt
Signopt . Digits ExponentPartopt

whereSign, Digits, andExponentPart are as defined in §3.10.2. If it does not ha
the form of aFloatValue, then aNumberFormatException is thrown. Otherwise,
it is regarded as representing an exact decimal value in the usual “compute
scientific notation”; this exact decimal value is then conceptually converted t
“infinitely precise” binary value that is then rounded to typefloat by the usual
round-to-nearest rule of IEEE 754 floating-point arithmetic. Finally, a new ob
of classFloat is created to represent thisfloat value.

Note that neitherF nor f is permitted to appear ins as a type indicator, as
would be permitted in Java source code (§3.10.1).

20.9.18 public boolean isNaN()

The result istrue if and only if the value represented by thisFloat object is
NaN.

20.9.19 public static boolean isNaN(float v)

The result istrue if and only if the value of the argument is NaN.
507

20.9 java.lang.Float THE PACKAGE JAVA.LANG

508

r

IEEE

nt to

cord-
int
20.9.20 public boolean isInfinite()

The result istrue if and only if the value represented by thisFloat object is pos-
itive infinity or negative infinity.

20.9.21 public static boolean isInfinite(float v)

The result istrue if and only if the value of the argument is positive infinity o
negative infinity.

20.9.22 public static int floatToIntBits(float value)

The result is a representation of the floating-point argument according to the
754 floating-point “single format” bit layout:

• Bit 31 (the bit that is selected by the mask0x80000000) represents the sign of
the floating-point number.

• Bits 30–23 (the bits that are selected by the mask0x7f800000) represent the
exponent.

• Bits 22–0 (the bits that are selected by the mask0x007fffff) represent the
significand (sometimes called the mantissa) of the floating-point number.

• If the argument is positive infinity, the result will be0x7f800000.

• If the argument is negative infinity, the result will be0xff800000.

• If the argument is NaN, the result will be0x7fc00000.

In all cases, the result is an integer that, when given to theintBitsToFloat
method (§20.9.23), will produce a floating-point value equal to the argume
floatToIntBits.

20.9.23 public static float intBitsToFloat(int bits)

The argument is considered to be a representation of a floating-point value ac
ing to the IEEE 754 floating-point “single format” bit layout. That floating-po
value is returned as the result.

• If the argument is0x7f800000, the result will be positive infinity.

• If the argument is0xff800000, the result will be negative infinity.

THE PACKAGE JAVA.LANG java.lang.Float 20.9

uage

the

ssion
• If the argument is any value in the range0x7f800001 through0x7fffffff or
in the range0xff800001 through0xffffffff, the result will be NaN. (All
IEEE 754 NaN values are, in effect, lumped together by the Java lang
into a single value called NaN.)

• In all other cases, lets, e, andm be three values that can be computed from
argument:

int s = ((bits >> 31) == 0) ? 1 : -1;
int e = ((bits >> 23) & 0xff);
int m = (e == 0) ?

(bits & 0x7fffff) << 1 :
(bits & 0x7fffff) | 0x800000;

Then the floating-point result equals the value of the mathematical expre
.s m 2e 150–⋅ ⋅
509

20.10 java.lang.Double THE PACKAGE JAVA.LANG

510

type
20.10 The Classjava.lang.Double

public final class Double extends Number {
public static final double MIN_VALUE =

5e-324;
public static final double MAX_VALUE =

1.7976931348623157e+308;
public static final double NEGATIVE_INFINITY = -1.0/0.0;
public static final double POSITIVE_INFINITY = 1.0/0.0;
public static final double NaN = 0.0/0.0;
public Double(double value);
public Double(String s)

throws NumberFormatException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int intValue();
public long longValue();
public float floatValue();
public double doubleValue();
public static String toString(double d);
public static Double valueOf(String s)

throws NullPointerException, NumberFormatException;
public boolean isNaN();
public static boolean isNaN(double v);
public boolean isInfinite();
public static boolean isInfinite(double v);
public static long doubleToLongBits(double value);
public static double longBitsToDouble(long bits);

}

20.10.1 public static final double MIN_VALUE = 5e-324;

The constant value of this field is the smallest positive nonzero value of
double. It is equal to the value returned byDouble.longBitsToDouble(0x1L).

20.10.2 public static final double MAX_VALUE =

1.7976931348623157e+308;

The constant value of this field is the largest positive finite value of typedouble.
It is equal to the returned by:

THE PACKAGE JAVA.LANG java.lang.Double 20.10

e

e
n-
Double.longBitsToDouble(0x7fefffffffffffffL)

20.10.3 public static final double NEGATIVE_INFINITY = -1.0/0.0;

The constant value of this field is the negative infinity of typedouble. It is equal
to the value returned byDouble.longBitsToDouble(0xfff0000000000000L).

20.10.4 public static final double POSITIVE_INFINITY = 1.0/0.0;

The constant value of this field is the positive infinity of typedouble. It is equal to
the value returned byDouble.longBitsToDouble(0x7ff0000000000000L).

20.10.5 public static final double NaN = 0.0/0.0;

The constant value of this field is the Not-a-Number of typedouble. It is equal to
the value returned byDouble.longBitsToDouble(0x7ff8000000000000L).

20.10.6 public Double(double value)

This constructor initializes a newly createdDouble object so that it represents th
primitive value that is the argument.

20.10.7 public Double(String s)

throws NumberFormatException

This constructor initializes a newly createdDouble object so that it represents th
floating-point value of typedouble represented by the string. The string is co
verted to adouble value in exactly the manner used by thevalueOf method
(§20.9.17).

20.10.8 public String toString()

The primitivedouble value represented by thisDouble object is converted to a
string exactly as if by the methodtoString of one argument (§20.10.15).

Overrides thetoString method ofObject (§20.1.2).
511

20.10 java.lang.Double THE PACKAGE JAVA.LANG

512

thod

t
 the

tive

perly.

enta-

s

20.10.9 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aDouble object
that represents the samedouble value as thisDouble object. For this purpose,
two double values are considered to be the same if and only if the me
doubleToLongBits (§20.10.21) returns the samelong value when applied to
each. Note that even though the== operator returnsfalse if both operands are
NaN, thisequals method will returntrue if this Double object and the argumen
are bothDouble objects that represent NaN. On the other hand, even though
== operator returnstrue if one operand is positive zero and the other is nega
zero, thisequals method will returnfalse if this Double object and the argu-
ment represent zeroes of different sign. This allows hashtables to operate pro

Overrides theequals method ofObject (§20.1.3).

20.10.10 public int hashCode()

The result is the exclusive OR of the two halves of the long integer bit repres
tion, exactly as produced by the methoddoubleToLongBits (§20.10.21), of the
primitive double value represented by thisDouble object. That is, the hashcode i
the value of the expression:

(int)(v^(v>>>32))

wherev is defined by:

long v = Double.doubleToLongBits(this.longValue());

Overrides thehashCode method ofObject (§20.1.4).

20.10.11 public int intValue()

Thedouble value represented by thisDouble object is converted (§5.1.3) to type
int and the result of the conversion is returned.

Overrides theintValue method ofNumber (§20.6.1).

20.10.12 public long longValue()

Thedouble value represented by thisDouble object is converted (§5.1.3) to type
long and the result of the conversion is returned.

Overrides thelongValue method ofNumber (§20.6.2).

THE PACKAGE JAVA.LANG java.lang.Double 20.10

cters

abso-
f the
 in

nted
y
he

lled
t

 part

-

20.10.13 public float floatValue()

Thedouble value represented by thisDouble object is converted (§5.1.3) to type
float and the result of the conversion is returned.

Overrides thefloatValue method ofNumber (§20.6.3).

20.10.14 public double doubleValue()

Thedouble value represented by thisDouble object is returned.
Overrides thedoubleValue method ofNumber (§20.6.4).

20.10.15 public static String toString(double d)

The argument is converted to a readable string format as follows. All chara
mentioned below are ASCII characters.

• If the argument is NaN, the result is the string"NaN".

• Otherwise, the result is a string that represents the sign and magnitude (
lute value) of the argument. If the sign is negative, the first character o
result is'-' ('\u002d'); if the sign is positive, no sign character appears
the result. As for the magnitudem:

◆ If m is infinity, it is represented by the characters"Infinity"; thus, posi-
tive infinity produces the result"Infinity" and negative infinity produces
the result"-Infinity".

◆ If m is zero, it is represented by the characters"0.0"; thus, negative zero
produces the result"-0.0" and positive zero produces the result"0.0".

◆ If m is greater than or equal to but less than , then it is represe
as the integer part ofm, in decimal form with no leading zeroes, followed b
'.' (\u002E), followed by one or more decimal digits representing t
fractional part ofm.

◆ If m is less than or not less than , then it is represented in so-ca
“computerized scientific notation.” Letn be the unique integer such tha

; then leta be the mathematically exact quotient ofm and
 so that . The magnitude is then represented as the integer

of a, as a single decimal digit, followed by'.' (\u002E), followed by deci-
mal digits representing the fractional part ofa, followed by the letter'E'
(\u0045), followed by a representation ofn as a decimal integer, as pro
duced by the methodInteger.toString of one argument (§20.7.12).

10 3– 107

10 3– 107

10n m 10n 1+<≤
10n 1 a 10<≤
513

20.10 java.lang.Double THE PACKAGE JAVA.LANG

514

y, but
ment

y this

 as
n

t.]

d a

ve

rized
o an

ject
How many digits must be printed for the fractional part ofm or a? There must
be at least one digit to represent the fractional part, and beyond that as man
only as many, more digits as are needed to uniquely distinguish the argu
value from adjacent values of typedouble. That is, suppose thatx is the exact
mathematical value represented by the decimal representation produced b
method for a finite nonzero argumentd. Thend must be thedouble value nearest
to x; or if two double values are equally close tox, thend must be one of them
and the least significant bit of the significand ofd must be0.

[This specification for the methodtoString is scheduled for introduction in
Java version 1.1. In previous versions of Java, this method producesInf instead of
Infinity for infinite values. Also, it rendered finite values in the same form
the%g format of theprintf function in the C programming language, which ca
lose information because it produces at most six digits after the decimal poin

20.10.16 public static Double valueOf(String s)

throws NullPointerException, NumberFormatException

The strings is interpreted as the representation of a floating-point value an
Double object representing that value is created and returned.

If s is null, then aNullPointerException is thrown.
Leading and trailing whitespace (§20.5.19) characters ins are ignored. The

rest ofs should constitute aFloatValue as described by the lexical syntax rule:

FloatValue:
Signopt Digits . Digitsopt ExponentPartopt
Signopt . Digits ExponentPartopt

whereSign, Digits, andExponentPart are as defined in §3.10.2. If it does not ha
the form of aFloatValue, then aNumberFormatException is thrown. Otherwise,
it is regarded as representing an exact decimal value in the usual “compute
scientific notation”; this exact decimal value is then conceptually converted t
“infinitely precise” binary value that is then rounded to typedouble by the usual
round-to-nearest rule of IEEE 754 floating-point arithmetic. Finally, a new ob
of classDouble is created to represent thedouble value.

Note that neitherD nor d is permitted to appear ins as a type indicator, as
would be permitted in Java source code (§3.10.1).

20.10.17 public boolean isNaN()

The result istrue if and only if the value represented by thisDouble object is
NaN.

THE PACKAGE JAVA.LANG java.lang.Double 20.10

r

IEEE

point

e

20.10.18 public static boolean isNaN(double v)

The result istrue if and only if the value of the argument is NaN.

20.10.19 public boolean isInfinite()

The result istrue if and only if the value represented by thisDouble object is
positive infinity or negative infinity.

20.10.20 public static boolean isInfinite(double v)

The result istrue if and only if the value of the argument is positive infinity o
negative infinity.

20.10.21 public static long doubleToLongBits(double value)

The result is a representation of the floating-point argument according to the
754 floating-point “double format” bit layout:

• Bit 63 (the bit that is selected by the mask0x8000000000000000L) repre-
sents the sign of the floating-point number.

• Bits 62–52 (the bits that are selected by the mask0x7ff0000000000000L)
represent the exponent.

• Bits 51–0 (the bits that are selected by the mask0x000fffffffffffffL) rep-
resent the significand (sometimes called the mantissa) of the floating-
number.

• If the argument is positive infinity, the result will be0x7ff0000000000000L.

• If the argument is negative infinity, the result will be0xfff0000000000000L.

• If the argument is NaN, the result will be0x7ff8000000000000L.

In all cases, the result is along integer that, when given to the
longBitsToDouble method (§20.10.22), will produce a floating-point valu
equal to the argument todoubleToLongBits.
515

20.10 java.lang.Double THE PACKAGE JAVA.LANG

516

cord-
int

s
alled

the

ssion
20.10.22 public static double longBitsToDouble(long bits)

The argument is considered to be a representation of a floating-point value ac
ing to the IEEE 754 floating-point “double format” bit layout. That floating-po
value is returned as the result.

• If the argument is0x7f80000000000000L, the result will be positive infinity.

• If the argument is0xff80000000000000L, the result will be negative infinity.

• If the argument is any value in the range0x7ff0000000000001L through
0x7fffffffffffffffL or in the range0xfff0000000000001L through
0xffffffffffffffffL, the result will be NaN. (All IEEE 754 NaN value
are, in effect, lumped together by the Java language into a single value c
NaN.)

• In all other cases, lets, e, andm be three values that can be computed from
argument:

int s = ((bits >> 63) == 0) ? 1 : -1;
int e = (int)((bits >> 52) & 0x7ffL);
long m = (e == 0) ?

(bits & 0xfffffffffffffL) << 1 :
(bits & 0xfffffffffffffL) | 0x10000000000000L;

Then the floating-point result equals the value of the mathematical expre
.s m 2e 1075–⋅ ⋅

Let beeves and home-bred kine partake
The sweets of Burn-mill meadow;

The swan on still St. Mary's Lake
Float double, swan and shadow!

—William Wordsworth,Yarrow Unvisited (1803)

THE PACKAGE JAVA.LANG java.lang.Math 20.11

op,
p,

urs!
20.11 The Classjava.lang.Math

Oh, back to the days that were free from care in the ’Ology ’varsity sh
With nothing to do but analyse air in an anemometrical to

Or the differentiation of the trigonometrical pow’rs
Of the constant pi that made me sigh in those happy days of o

—I. W. Litchfield,Take Me Back to Tech (1885)

The classMath contains useful basic numerical constants and methods.

public final class Math {
public static final double E = 2.7182818284590452354;
public static final double PI = 3.14159265358979323846;
public static double sin(double a);
public static double cos(double a);
public static double tan(double a);
public static double asin(double a);
public static double acos(double a);
public static double atan(double a);
public static double atan2(double a, double b);
public static double exp(double a);
public static double log(double a);
public static double sqrt(double a);
public static double pow(double a, double b);
public static double IEEEremainder(double f1, double f2);
public static double ceil(double a);
public static double floor(double a);
public static double rint(double a);
public static int round(float a);
public static long round(double a);
public static double random();
public static int abs(int a);
public static long abs(long a);
public static float abs(float a);
public static double abs(double a);
public static int min(int a, int b);
public static long min(long a, long b);
public static float min(float a, float b);
public static double min(double a, double b);
public static int max(int a, int b);
public static long max(long a, long b);
public static float max(float a, float b);
public static double max(double a, double b);

}

517

20.11 java.lang.Math THE PACKAGE JAVA.LANG

518

 the
lts as
own

ge,
point

:

to
-
e

 for
also

ple-

r

r

g the

rgu-
To ensure portability of Java programs, the specifications of many of
numerical functions in this package require that they produce the same resu
certain published algorithms. These algorithms are available from the well-kn
network library netlib as the packagefdlibm (“Freely Distributable Math
Library”). These algorithms, which are written in the C programming langua
are to be understood as if executed in Java execution order with all floating-
operations following the rules of Java floating-point arithmetic.

The network library may be found athttp://netlib.att.com on the World
Wide Web; then perform a keyword search forfdlibm. The library may also be
retrieved by E-mail; to begin the process, send a message containing the line

send index from fdlibm

to netlib@research.att.com. The Java math library is defined with respect
the version offdlibm dated 95/01/04. Wherefdlibm provides more than one def
inition for a function (such asacos), the “IEEE754 core function” version is to b
used (residing in a file whose name begins with the lettere).

A complete and self-contained description of the algorithms to be used
these functions will be provided in a future version of this specification. It is
anticipated that the algorithms will be coded in Java to provide a reference im
mentation that is not tied tofdlibm.

20.11.1 public static final double E = 2.7182818284590452354;

The constant value of this field is thedouble value that is closer than any othe
to e, the base of the natural logarithms.

20.11.2 public static final double PI = 3.14159265358979323846;

The constant value of this field is thedouble value that is closer than any othe
to π, the ratio of the circumference of a circle to its diameter.

20.11.3 public static double sin(double a)

This method computes an approximation to the sine of the argument, usin
sin algorithm as published infdlibm (see the introduction to this section).

Special cases:

• If the argument is NaN or an infinity, then the result is NaN.

• If the argument is positive zero, then the result is positive zero; if the a
ment is negative zero, then the result is negative zero.

THE PACKAGE JAVA.LANG java.lang.Math 20.11

g the

g the

rgu-

g the

ult is

rgu-

using

ult is
20.11.4 public static double cos(double a)

This method computes an approximation to the cosine of the argument, usin
cos algorithm as published infdlibm (see the introduction to this section).

Special case:

• If the argument is NaN or an infinity, then the result is NaN.

20.11.5 public static double tan(double a)

This method computes an approximation to the tangent of the argument, usin
tan algorithm as published infdlibm (see the introduction to this section).

Special cases:

• If the argument is NaN or an infinity, then the result is NaN.

• If the argument is positive zero, then the result is positive zero; if the a
ment is negative zero, then the result is negative zero.

20.11.6 public static double asin(double a)

This method computes an approximation to the arc sine of the argument, usin
asin algorithm as published infdlibm (see the introduction to this section).

Special cases:

• If the argument is NaN or its absolute value is greater than 1, then the res
NaN.

• If the argument is positive zero, then the result is positive zero; if the a
ment is negative zero, then the result is negative zero.

20.11.7 public static double acos(double a)

This method computes an approximation to the arc cosine of the argument,
theacos algorithm as published infdlibm (see the introduction to this section).

Special case:

• If the argument is NaN or its absolute value is greater than 1, then the res
NaN.
519

20.11 java.lang.Math THE PACKAGE JAVA.LANG

520

 using

rgu-

 of

e, or
sitive

e, or
sitive

e, or
ative

ve, or
ative

ro or
rgu-

ro or
rgu-
20.11.8 public static double atan(double a)

This method computes an approximation to the arc tangent of the argument,
the atan algorithm as published infdlibm (see the introduction to this section).

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is positive zero, then the result is positive zero; if the a
ment is negative zero, then the result is negative zero.

20.11.9 public static double atan2(double y, double x)

This method computes an approximation to the arc tangent of the quotient
the arguments, using the atan2 algorithm as published infdlibm (see the intro-
duction to this section).

Special cases:

• If either argument is NaN, then the result is NaN.

• If the first argument is positive zero and the second argument is positiv
the first argument is positive and finite and the second argument is po
infinity, then the result is positive zero.

• If the first argument is negative zero and the second argument is positiv
the first argument is negative and finite and the second argument is po
infinity, then the result is negative zero.

• If the first argument is positive zero and the second argument is negativ
the first argument is positive and finite and the second argument is neg
infinity, then the result is thedouble value closest to .

• If the first argument is negative zero and the second argument is negati
the first argument is negative and finite and the second argument is neg
infinity, then the result is thedouble value closest to .

• If the first argument is positive and the second argument is positive ze
negative zero, or the first argument is positive infinity and the second a
ment is finite, then the result is thedouble value closest to .

• If the first argument is negative and the second argument is positive ze
negative zero, or the first argument is negative infinity and the second a
ment is finite, then the result is thedouble value closest to .

• If both arguments are positive infinity, then the result is thedouble value
closest to .

y x⁄

π

π–

π 2⁄

π 2⁄–

π 4⁄

THE PACKAGE JAVA.LANG java.lang.Math 20.11

tive

itive

rgu-
-

ent,
-

ative

.
,

• If the first argument is positive infinity and the second argument is nega
infinity, then the result is thedouble value closest to .

• If the first argument is negative infinity and the second argument is pos
infinity, then the result is thedouble value closest to .

• If both arguments are negative infinity, then the result is thedouble value
closest to .

20.11.10 public static double exp(double a)

This method computes an approximation to the exponential function of the a
ment (e raised to the power of the argument, wheree is the base of the natural log
arithms (§20.11.1)), using theexp algorithm as published infdlibm (see the
introduction to this section).

Special cases:

• If the argument is NaN, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is negative infinity, then the result is positive zero.

20.11.11 public static double log(double a)

This method computes an approximation to the natural logarithm of the argum
using thelog algorithm as published infdlibm (see the introduction to this sec
tion).

Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is neg
infinity.

20.11.12 public static double sqrt(double a)

Whanne that April with his shoures sote
The droughte of March hath perced to the rote . .

—Geoffrey Chaucer (1328–1400)
The Canterbury Tales, Prologue

3π 4⁄

π 4⁄–

3π 4⁄–
521

20.11 java.lang.Math THE PACKAGE JAVA.LANG

522

e as

re

ising

nt.

n the

cond
 less
sitive

cond
 less
itive

ent is

 than
 less
This method computes an approximation to the square root of the argument.
Special cases:

• If the argument is NaN or less than zero, then the result is NaN.

• If the argument is positive infinity, then the result is positive infinity.

• If the argument is positive zero or negative zero, then the result is the sam
the argument.

Otherwise, the result is thedouble value closest to the true mathematical squa
root of the argument value.

20.11.13 public static double pow(double a, double b)

This method computes an approximation to the mathematical operation of ra
the first argument to the power of the second argument, using thepow algorithm as
published infdlibm (see the introduction to this section).

Special cases:

• If the second argument is positive or negative zero, then the result is1.0.

• If the second argument is1.0, then the result is the same as the first argume

• If the second argument is NaN, then the result is NaN.

• If the first argument is NaN and the second argument is nonzero, the
result is NaN.

• If the absolute value of the first argument is greater than 1 and the se
argument is positive infinity, or the absolute value of the first argument is
than 1 and the second argument is negative infinity, then the result is po
infinity.

• If the absolute value of the first argument is greater than 1 and the se
argument is negative infinity, or the absolute value of the first argument is
than 1 and the second argument is positive infinity, then the result is pos
zero.

• If the absolute value of the first argument equals 1 and the second argum
infinite, then the result is NaN.

• If the first argument is positive zero and the second argument is greater
zero, or the first argument is positive infinity and the second argument is
than zero, then the result is positive zero.

THE PACKAGE JAVA.LANG java.lang.Math 20.11

 zero,
ater

r than
and
n the

sitive
ond

n zero
 the
n the

ative
ond
.

 even
of the

e odd
abso-

ent is

athe-
rgu-

teger

d to
• If the first argument is positive zero and the second argument is less than
or the first argument is positive infinity and the second argument is gre
than zero, then the result is positive infinity.

• If the first argument is negative zero and the second argument is greate
zero but not a finite odd integer, or the first argument is negative infinity
the second argument is less than zero but not a finite odd integer, the
result is positive zero.

• If the first argument is negative zero and the second argument is a po
finite odd integer, or the first argument is negative infinity and the sec
argument is a negative finite odd integer, then the result is negative zero.

• If the first argument is negative zero and the second argument is less tha
but not a finite odd integer, or the first argument is negative infinity and
second argument is greater than zero but not a finite odd integer, the
result is positive infinity.

• If the first argument is negative zero and the second argument is a neg
finite odd integer, or the first argument is negative infinity and the sec
argument is a positive finite odd integer, then the result is negative infinity

• If the first argument is less than zero and the second argument is a finite
integer, then the result is equal to the result of raising the absolute value
first argument to the power of the second argument.

• If the first argument is less than zero and the second argument is a finit
integer, then the result is equal to the negative of the result of raising the
lute value of the first argument to the power of the second argument.

• If the first argument is finite and less than zero and the second argum
finite and not an integer, then the result is NaN.

• If both arguments are integers, then the result is exactly equal to the m
matical result of raising the first argument to the power of the second a
ment if that result can in fact be represented exactly as adouble value.

(In the foregoing descriptions, a floating-point value is considered to be an in
if and only if it is a fixed point of the methodceil (§20.11.15) or, which is the
same thing, a fixed point of the methodfloor (§20.11.16). A value is a fixed
point of a one-argument method if and only if the result of applying the metho
the value is equal to the value.)
523

20.11 java.lang.Math THE PACKAGE JAVA.LANG

524

cribed
al to
tical

as the

rgu-

 the

 the

 the

 the

 the
20.11.14 public static double IEEEremainder(double x, double y)

This method computes the remainder operation on two arguments as pres
by the IEEE 754 standard: the remainder value is mathematically equ

 where is the mathematical integer closest to the exact mathema
value of the quotient ; if two mathematical integers are equally close to
thenn is the integer that is even. If the remainder is zero, its sign is the same
sign of the first argument.

Special cases:

• If either argument is NaN, or the first argument is infinite, or the second a
ment is positive zero or negative zero, then the result is NaN.

• If the first argument is finite and the second argument is infinite, then
result is the same as the first argument.

20.11.15 public static double ceil(double a)

The result is the smallest (closest to negative infinity)double value that is not less
than the argument and is equal to a mathematical integer.

Special cases:

• If the argument value is already equal to a mathematical integer, then
result is the same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then
result is the same as the argument.

• If the argument value is less than zero but greater than-1.0, then the result is
negative zero.

Note that the value ofMath.ceil(x) is exactly the value of-Math.floor(-x).

20.11.16 public static double floor(double a)

The result is the largest (closest to positive infinity)double value that is not
greater than the argument and is equal to a mathematical integer.

Special cases:

• If the argument value is already equal to a mathematical integer, then
result is the same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then
result is the same as the argument.

x y n×– n
x y⁄ x y⁄

THE PACKAGE JAVA.LANG java.lang.Math 20.11

ual
re

hat is

 the

 the

.
)

sult,

al to
of

al to
of

sult,
20.11.17 public static double rint(double a)

The result is thedouble value that is closest in value to the argument and is eq
to a mathematical integer. If twodouble values that are mathematical integers a
equally close to the value of the argument, the result is the integer value t
even.

Special cases:

• If the argument value is already equal to a mathematical integer, then
result is the same as the argument.

• If the argument is NaN or an infinity or positive zero or negative zero, then
result is the same as the argument.

20.11.18 public static int round(float a)

Round numbers are always false
—Samuel Johnson (1709–1784

The result is rounded to an integer by adding , taking the floor of the re
and casting the result to typeint.

In other words, the result is equal to the value of the expression:

(int)Math.floor(a + 0.5f)

Special cases:

• If the argument is NaN, the result is0.

• If the argument is negative infinity, or indeed any value less than or equ
the value ofInteger.MIN_VALUE (§20.7.1), the result is equal to the value
Integer.MIN_VALUE.

• If the argument is positive infinity, or indeed any value greater than or equ
the value ofInteger.MAX_VALUE (§20.7.2), the result is equal to the value
Integer.MAX_VALUE.

20.11.19 public static long round(double a)

The result is rounded to an integer by adding , taking the floor of the re
and casting the result to typelong.

In other words, the result is equal to the value of the expression:

(long)Math.floor(a + 0.5d)

1 2⁄

1 2⁄
525

20.11 java.lang.Math THE PACKAGE JAVA.LANG

526

al to
of

al to
of

o but
on

num-

lls to

 one
rs at a
ndom

 that
Special cases:

• If the argument is NaN, the result is0.

• If the argument is negative infinity, or indeed any value less than or equ
the value ofLong.MIN_VALUE (§20.7.1), the result is equal to the value
Long.MIN_VALUE.

• If the argument is positive infinity, or indeed any value greater than or equ
the value ofLong.MAX_VALUE (§20.7.2), the result is equal to the value
Long.MAX_VALUE.

20.11.20 public static double random()

The result is a double value with positive sign, greater than or equal to zer
less than1.0, chosen pseudorandomly with (approximately) uniform distributi
from that range.

When this method is first called, it creates a single new pseudorandom-
ber generator, exactly as if by the expression

new java.util.Random()

This new pseudorandom-number generator is used thereafter for all ca
this method and is used nowhere else.

This method is properly synchronized to allow correct use by more than
thread. However, if many threads need to generate pseudorandom numbe
great rate, it may reduce contention for each thread to have its own pseudora
number generator.

20.11.21 public static int abs(int a)

The result is the absolute value of the argument, if possible.
If the argument is not negative, the argument is returned.
If the argument is negative, the negation of the argument is returned. Note

if the argument is equal to the value ofInteger.MIN_VALUE (§20.7.1), the most
negative representableint value, the result will be that same negative value.

20.11.22 public static long abs(long a)

The result is the absolute value of the argument, if possible.
If the argument is not negative, the argument is returned.

THE PACKAGE JAVA.LANG java.lang.Math 20.11

 that

.

.

If the argument is negative, the negation of the argument is returned. Note
if the argument is equal to the value ofLong.MIN_VALUE (§20.8.1), the most neg-
ative representablelong value, the result will be that same negative value.

20.11.23 public static float abs(float a)

The argument is returned with its sign changed to be positive.
Special cases:

• If the argument is positive zero or negative zero, the result is positive zero

• If the argument is infinite, the result is positive infinity.

• If the argument is NaN, the result is NaN.

In other words, the result is equal to the value of the expression:

Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))

[This specification for the methodabs is scheduled for introduction in Java
version 1.1. In previous versions of Java,abs(-0.0f) returns-0.0f, which is not
correct.]

20.11.24 public static double abs(double a)

The argument is returned with its sign changed to be positive.
Special cases:

• If the argument is positive zero or negative zero, the result is positive zero

• If the argument is infinite, the result is positive infinity.

• If the argument is NaN, the result is NaN.

In other words, the result is equal to the value of the expression:

Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)

[This specification for the methodabs is scheduled for introduction in Java
version 1.1. In previous versions of Java,abs(-0.0d) returns-0.0d, which is not
correct.]
527

20.11 java.lang.Math THE PACKAGE JAVA.LANG

528

.

value
the

e.
,

value
lt is

n.
,

ative

ult is
20.11.25 public static int min(int a, int b)

E duobus malis minimum eligendum
—Marcus Tullius Cicero (106–43B. C.), De officiis, iii

The result is the smaller of the two arguments—that is, the one closer to the
of Integer.MIN_VALUE (§20.7.1). If the arguments have the same value,
result is that same value.

20.11.26 public static long min(long a, long b)

Of harmes two the lesse is for to chees
—Geoffrey Chaucer (1328–1400)

Troilus and Creseide, Book ii

The result is the smaller of the two arguments—that is, the one closer to the
of Long.MIN_VALUE (§20.8.1). If the arguments have the same value, the resu
that same value.

20.11.27 public static float min(float a, float b)

Of two evils, the less is always to be chose
—Thomas à Kempis (1380–1471)

Imitation of Christ, Book iii, chapter 12

The result is the smaller of the two arguments—that is, the one closer to neg
infinity. If the arguments have the same value, the result is that same value.

Special cases:

• If one argument is positive zero and the other is negative zero, the res
negative zero.

• If either argument is NaN, the result is NaN.

[This specification for the methodmin is scheduled for introduction in Java
version 1.1. In previous versions of Java,min(0.0f, -0.0f) returns0.0f, which
is not correct.]

THE PACKAGE JAVA.LANG java.lang.Math 20.11

t.

ative

ult is

lue of
sult

lue of
lt is

sitive

ult is
20.11.28 public static double min(double a, double b)

Of two evils I have chose the leas
—Matthew Prior (1664–1721),

Imitation of Horace

The result is the smaller of the two arguments—that is, the one closer to neg
infinity. If the arguments have the same value, the result is that same value.

Special cases:

• If one argument is positive zero and the other is negative zero, the res
negative zero.

• If either argument is NaN, the result is NaN.

[This specification for the methodmin is scheduled for introduction in Java
version 1.1. In previous versions of Java,min(0.0d, -0.0d) returns0.0d, which
is not correct.]

20.11.29 public static int max(int a, int b)

The result is the larger of the two arguments—that is, the one closer to the va
Integer.MAX_VALUE (§20.7.2). If the arguments have the same value, the re
is that same value.

20.11.30 public static long max(long a, long b)

The result is the larger of the two arguments—that is, the one closer to the va
Long.MAX_VALUE (§20.8.2). If the arguments have the same value, the resu
that same value.

20.11.31 public static float max(float a, float b)

The result is the larger of the two arguments—that is, the one closer to po
infinity. If the arguments have the same value, the result is that same value.

Special cases:

• If one argument is positive zero and the other is negative zero, the res
positive zero.

• If either argument is NaN, the result is NaN.
529

20.11 java.lang.Math THE PACKAGE JAVA.LANG

530

sitive

ult is
[This specification for the methodmax is scheduled for introduction in Java
version 1.1. In previous versions of Java,max(-0.0f, 0.0f) returns-0.0f,
which is not correct.]

20.11.32 public static double max(double a, double b)

The result is the larger of the two arguments—that is, the one closer to po
infinity. If the arguments have the same value, the result is that same value.

Special cases:

• If one argument is positive zero and the other is negative zero, the res
positive zero.

• If either argument is NaN, the result is NaN.

[This specification for the methodmax is scheduled for introduction in Java
version 1.1. In previous versions of Java,max(-0.0d, 0.0d) returns-0.0d,
which is not correct.].

In mathematics he was greater
Than Tycho Brahe or Erra Pater
For he, by geometric scale,
Could take the size of pots of ale;
Resolve, by sines and tangents straight
Whether bread or butter wanted weight;
And wisely tell what hour o’ the day
The clock does strike, by algebra.

—Samuel Butler,Hudibras, Part I, canto i

THE PACKAGE JAVA.LANG java.lang.String 20.12

gth

he
rings,
 low-
20.12 The Classjava.lang.String

An object of typeString, once created, is immutable. It represents a fixed-len
sequence of characters. Compare this to the classStringBuffer (§20.13), which
represents a modifiable, variable-length sequence of characters.

The classString has methods for examining individual characters of t
sequence, for comparing strings, for searching strings, for extracting subst
for creating a copy of a string with all characters translated to uppercase or to
ercase, and so on.

public final class String {
public String();
public String(String value)

throws NullPointerException;
public String(StringBuffer buffer)

throws NullPointerException;
public String(char[] value)

throws NullPointerException;
public String(char[] value, int offset, int count)

throws NullPointerException, IndexOutOfBoundsException;
public String(byte[] ascii, int hibyte)

throws NullPointerException;
public String(byte[] ascii, int hibyte,

int offset, int count)
throws NullPointerException, IndexOutOfBoundsException;

public String toString();
public boolean equals(Object anObject);
public int hashCode();
public int length();
public char charAt(int index);
public void getChars(int srcBegin, int srcEnd,

char dst[], int dstBegin)
throws NullPointerException, IndexOutOfBoundsException;

public void getBytes(int srcBegin, int srcEnd,
byte dst[], int dstBegin)

throws NullPointerException, IndexOutOfBoundsException;
public char[] toCharArray();
public boolean equalsIgnoreCase(String anotherString);
public int compareTo(String anotherString)

throws NullPointerException;
public boolean regionMatches(int toffset, String other,

int ooffset, int len)
throws NullPointerException;
531

20.12 java.lang.String THE PACKAGE JAVA.LANG

532
public boolean regionMatches(boolean ignoreCase, int toffset,
String other, int ooffset, int len)

throws NullPointerException;
public boolean startsWith(String prefix)

throws NullPointerException;
public boolean startsWith(String prefix, int toffset)

throws NullPointerException;
public boolean endsWith(String suffix)

throws NullPointerException;
public int indexOf(int ch);
public int indexOf(int ch, int fromIndex);
public int indexOf(String str)

throws NullPointerException;
public int indexOf(String str, int fromIndex)

throws NullPointerException;
public int lastIndexOf(int ch);
public int lastIndexOf(int ch, int fromIndex);
public int lastIndexOf(String str)

throws NullPointerException;
public int lastIndexOf(String str, int fromIndex)

throws NullPointerException;
public String substring(int beginIndex);
public String substring(int beginIndex, int endIndex);
public String concat(String str)

throws NullPointerException;
public String replace(char oldChar, char newChar);
public String toLowerCase();
public String toUpperCase();
public String trim();
public static String valueOf(Object obj);
public static String valueOf(char[] data)

throws NullPointerException;
public static String valueOf(char[] data,

int offset, int count)
throws NullPointerException, IndexOutOfBoundsException;

public static String valueOf(boolean b);
public static String valueOf(char c);
public static String valueOf(int i);
public static String valueOf(long l);
public static String valueOf(float f);
public static String valueOf(double d);
public String intern();

}

THE PACKAGE JAVA.LANG java.lang.String 20.12

n

e
reated

e

on of

e
t. The
harac-

e
 array
ray
f the
 affect
20.12.1 public String()

This constructor initializes a newly createdString object so that it represents a
empty character sequence.

20.12.2 public String(String value)

This constructor initializes a newly createdString object so that it represents th
same sequence of characters as the argument; in other words, the newly c
string is a copy of the argument string.

20.12.3 public String(StringBuffer buffer)

throws NullPointerException

This constructor initializes a newly createdString object so that it represents th
sequence of characters that is currently contained in theStringBuffer argument
(§20.13). The contents of the string buffer are copied; subsequent modificati
the string buffer does not affect the newly created string.

If buffer is null, then aNullPointerException is thrown.

20.12.4 public String(char[] data)

throws NullPointerException

This constructor initializes a newly createdString object so that it represents th
sequence of characters currently contained in the character array argumen
contents of the character array are copied; subsequent modification of the c
ter array does not affect the newly created string.

If data is null, then aNullPointerException is thrown.

20.12.5 public String(char[] data, int offset, int count)

throws NullPointerException,

IndexOutOfBoundsException

This constructor initializes a newly createdString object so that it represents th
sequence of characters currently contained in a subarray of the character
argument. Theoffset argument is the index of the first character of the subar
and thecount argument specifies the length of the subarray. The contents o
subarray are copied; subsequent modification of the character array does not
the newly created string.
533

20.12 java.lang.String THE PACKAGE JAVA.LANG

534

a
 Each

e
teger

 the
If data is null, then aNullPointerException is thrown.
If offset is negative, orcount is negative, oroffset+count is larger than

data.length, then anIndexOutOfBoundsException is thrown.

20.12.6 public String(byte[] ascii, int hibyte)

throws NullPointerException

This constructor initializes a newly createdString object so that it represents
sequence of characters constructed from an array of 8-bit integer values.
characterc in the result string is constructed from the corresponding elementb of
the byte array in such a way that:

c == ((hibyte & 0xff) << 8) | (b & 0xff)

If ascii is null, then aNullPointerException is thrown.

20.12.7 public String(byte[] ascii, int hibyte,

int offset, int count)

throws NullPointerException,

IndexOutOfBoundsException

This constructor initializes a newly createdString object so that it represents th
sequence of characters constructed from a subarray of an array of 8-bit in
values. Theoffset argument is the index of the first byte of the subarray and
count argument specifies the length of the subarray. Each characterc in the result
string is constructed from the corresponding elementb of the byte subarray in
such a way that:

c == ((hibyte & 0xff) << 8) | (b & 0xff)

If ascii is null, then aNullPointerException is thrown.
If offset is negative, orcount is negative, oroffset+count is larger than

ascii.length, then anIndexOutOfBoundsException is thrown.

20.12.8 public String toString()

A reference to this object (which is, after all, already aString) is returned.
Overrides thetoString method ofObject (§20.1.2).

THE PACKAGE JAVA.LANG java.lang.String 20.12

on
t

r

20.12.9 public boolean equals(Object anObject)

The result istrue if and only if the argument is notnull and is aString object
that represents the same sequence of characters as thisString object.

Overrides theequals method ofObject (§20.1.3).
See also the methodsequalsIgnoreCase (§20.12.16) andcompareTo

(§20.12.17).

20.12.10 public int hashCode()

The hashcode for aString object is computed in one of two ways, depending
its length. Letn be the length (§20.12.11) of the character sequence and le
mean the character with indexi.

• If , then the hashcode is computed as

 usingint arithmetic.

• If , then the hashcode is computed as

usingint arithmetic, where and , sampling only eight o
nine characters of the string.

Overrides thehashCode method ofObject (§20.1.4).

20.12.11 public int length()

The length of the sequence of characters represented by thisString object is
returned.

ci

n 15≤

ci 37
i⋅

i 0=

n 1–

∑

n 15>

ci k⋅ 39
i⋅

i 0=

m

∑

k n
8
---= m n

k
---=
535

20.12 java.lang.String THE PACKAGE JAVA.LANG

536

e
ring,

y

 is

cter.
ate in

-

20.12.12 public char charAt(int index)

throws IndexOutOfBoundsException

This method returns the character indicated by theindex argument within the
sequence of characters represented by thisString. The first character of the
sequence is at index0, the next at index1, and so on, as for array indexing. If th
index argument is negative or not less than the length (§20.12.11) of this st
then anIndexOutOfBoundsException is thrown.

20.12.13 public void getChars(int srcBegin, int srcEnd,

char dst[], int dstBegin)

throws NullPointerException,

IndexOutOfBoundsException

Characters are copied from thisString object into the destination character arra
dst. The first character to be copied is at indexsrcBegin; the last character to be
copied is at indexsrcEnd-1 (thus the total number of characters to be copied
srcEnd-srcBegin). The characters are copied into the subarray ofdst starting at
indexdstBegin and ending at indexdstbegin+(srcEnd-srcBegin)-1.

If dst is null, then aNullPointerException is thrown.
An IndexOutOfBoundsException is thrown if any of the following is true:

• srcBegin is negative

• srcBegin is greater thansrcEnd

• srcEnd is greater than the length of thisString

• dstBegin is negative

• dstBegin+(srcEnd-srcBegin) is larger thandst.length

20.12.14 public void getBytes(int srcBegin, int srcEnd,

byte dst[], int dstBegin)

throws NullPointerException,

IndexOutOfBoundsException

Characters are copied from thisString object into the destination byte arraydst.
Each byte receives only the eight low-order bits of the corresponding chara
The eight high-order bits of each character are not copied and do not particip
the transfer in any way. The first character to be copied is at indexsrcBegin; the
last character to be copied is at indexsrcEnd-1 (thus the total number of charac

THE PACKAGE JAVA.LANG java.lang.String 20.12

re

ual to
e

of the

r

r

ences
ase.
ters to be copied issrcEnd-srcBegin). The characters, converted to bytes, a
copied into the subarray ofdst starting at indexdstBegin and ending at index
dstbegin+(srcEnd-srcBegin)-1.

If dst is null, then aNullPointerException is thrown.
An IndexOutOfBoundsException is thrown if any of the following is true:

• srcBegin is negative

• srcBegin is greater thansrcEnd

• srcEnd is greater than the length of thisString

• dstBegin is negative

• dstBegin+(srcEnd-srcBegin) is larger thandst.length

20.12.15 public char[] toCharArray()

A new character array is created and returned. The length of the array is eq
the length (§20.12.11) of thisString object. The array is initialized to contain th
character sequence represented by thisString object.

20.12.16 public boolean equalsIgnoreCase(String anotherString)

The result istrue if and only if the argument is notnull and is aString object
that represents the same sequence of characters as thisString object, where case
is ignored.

Two characters are considered the same, ignoring case, if at least one
following is true:

• The two characters are the same (as compared by the== operator).

• Applying the methodCharacter.toUppercase (§20.5.21) to each characte
produces the same result.

• Applying the methodCharacter.toLowercase (§20.5.20) to each characte
produces the same result.

Two sequences of characters are the same, ignoring case, if the sequ
have the same length and corresponding characters are the same, ignoring c

See also the methodequals (§20.12.9).
537

20.12 java.lang.String THE PACKAGE JAVA.LANG

538

. The
e

nt,
x for
cters
g

e

ico-

nt
ter
x
t

20.12.17 public int compareTo(String anotherString)

throws NullPointerException

The character sequence represented by thisString object is compared lexico-
graphically to the character sequence represented by the argument string
result is a negative integer if thisString object lexicographically precedes th
argument string. The result is a positive integer if thisString object lexicograph-
ically follows the argument string. The result is zero if the strings are equal;com-
pareTo returns0 exactly when theequals method (§20.12.9) would returntrue.

If anotherString is null, then aNullPointerException is thrown.
This is the definition of lexicographic ordering. If two strings are differe

then either they have different characters at some index that is a valid inde
both strings, or their lengths are different, or both. If they have different chara
at one or more index positions, letk be the smallest such index; then the strin
whose character at positionk has the smaller value, as determined by using th<
operator, lexicographically precedes the other string. In this case,compareTo
returns the difference of the two character values at positionk in the two strings—
that is, the value:

this.charAt(k)-anotherString.charAt(k)

If there is no index position at which they differ, then the shorter string lex
graphically precedes the longer string. In this case,compareTo returns the differ-
ence of the lengths of the strings—that is, the value:

this.length()-anotherString.length()

20.12.18 public boolean regionMatches(int toffset,

String other, int ooffset, int len)

throws NullPointerException

A substring of thisString object is compared to a substring of the argume
other. The result istrue if these substrings represent identical charac
sequences. The substring of thisString object to be compared begins at inde
toffset and has lengthlen. The substring ofother to be compared begins a
indexooffset and has lengthlen. The result isfalse if and only if at least one
of the following is true:

• toffset is negative.

• ooffset is negative.

• toffset+len is greater than the length of thisString object.

THE PACKAGE JAVA.LANG java.lang.String 20.12

nt
 that
• ooffset+len is greater than the length of theother argument.

• There is some nonnegative integerk less thanlen such that:

this.charAt(toffset+k) != other.charAt(ooffset+k)

If other is null, then aNullPointerException is thrown.

20.12.19 public boolean regionMatches(boolean ignoreCase,

int toffset, String other, int ooffset, int len)

throws NullPointerException

A substring of thisString object is compared to a substring of the argume
other. The result istrue if these substrings represent character sequences
are the same, ignoring case if and only ifignoreCase is true. The substring of
this String object to be compared begins at indextoffset and has lengthlen.
The substring ofother to be compared begins at indexooffset and has length
len. The result isfalse if and only if at least one of the following is true:

• toffset is negative.

• ooffset is negative.

• toffset+len is greater than the length of thisString object.

• ooffset+len is greater than the length of theother argument.

• There is some nonnegative integerk less thanlen such that:

this.charAt(toffset+k) != other.charAt(ooffset+k)

• ignoreCase is true and there is some nonnegative integerk less thanlen
such that:

Character.toLowerCase(this.charAt(toffset+k)) !=
Character.toLowerCase(other.charAt(ooffset+k))

and:

Character.toUpperCase(this.charAt(toffset+k)) !=
Character.toUpperCase(other.charAt(ooffset+k))

If other is null, then aNullPointerException is thrown.
539

20.12 java.lang.String THE PACKAGE JAVA.LANG

540

rgu-

al

rgu-

is
n

rgu-

al

 this
, the
20.12.20 public boolean startsWith(String prefix)

throws NullPointerException

The result istrue if and only if the character sequence represented by the a
ment is a prefix of the character sequence represented by thisString object.

If prefix is null, aNullPointerException is thrown.
Note that the result will betrue if the argument is an empty string or is equ

to thisString object as determined by theequals method (§20.12.9).

20.12.21 public boolean startsWith(String prefix, int toffset)

throws NullPointerException

The result istrue if and only if the character sequence represented by the a
ment is a prefix of the substring of thisString object starting at indextoffset.

If prefix is null, then aNullPointerException is thrown.
The result isfalse if toffset is negative or greater than the length of th

String object; otherwise, the result is the same as the result of the expressio

this.subString(toffset).startsWith(prefix)

20.12.22 public boolean endsWith(String suffix)

throws NullPointerException

The result istrue if and only if the character sequence represented by the a
ment is a suffix of the character sequence represented by thisString object.

If suffix is null, then aNullPointerException is thrown.
Note that the result will betrue if the argument is an empty string or is equ

to thisString object as determined by theequals method (§20.12.9).

20.12.23 public int indexOf(int ch)

If a character with valuech occurs in the character sequence represented by
String object, then the index of the first such occurrence is returned—that is
smallest valuek such that:

this.charAt(k) == ch

is true. If no such character occurs in this string, then-1 is returned.

THE PACKAGE JAVA.LANG java.lang.String 20.12

 this

eater
ength

lue

ub-

tion

eater
ength
20.12.24 public int indexOf(int ch, int fromIndex)

If a character with valuech occurs in the character sequence represented by
String object at an index no smaller thanfromIndex, then the index of the first
such occurrence is returned—that is, the smallest valuek such that:

(this.charAt(k) == ch) && (k >= fromIndex)

is true. If no such character occurs in this string at or after positionfromIndex,
then-1 is returned.

There is no restriction on the value offromIndex. If it is negative, it has the
same effect as if it were zero: this entire string may be searched. If it is gr
than the length of this string, it has the same effect as if it were equal to the l
of this string:-1 is returned.

20.12.25 public int indexOf(String str)

throws NullPointerException

If the stringstr occurs as a substring of thisString object, then the index of the
first character of the first such substring is returned—that is, the smallest vak
such that:

this.startsWith(str, k)

is true. If str does not occur as a substring of this string, then-1 is returned.
If str is null, aNullPointerException is thrown.

20.12.26 public int indexOf(String str, int fromIndex)

throws NullPointerException

If the stringstr occurs as a substring of thisString object starting at an index no
smaller thanfromIndex, then the index of the first character of the first such s
string is returned—that is, the smallest valuek such that:

this.startsWith(str, k) && (k >= fromIndex)

is true. If str does not occur as a substring of this string at or after posi
fromIndex, then-1 is returned.

There is no restriction on the value offromIndex. If it is negative, it has the
same effect as if it were zero: this entire string may be searched. If it is gr
than the length of this string, it has the same effect as if it were equal to the l
of this string:-1 is returned.

If str is null, aNullPointerException is thrown.
541

20.12 java.lang.String THE PACKAGE JAVA.LANG

542

 this
, the

 this

s than
t has

lue

ub-
20.12.27 public int lastIndexOf(int ch)

If a character with valuech occurs in the character sequence represented by
String object, then the index of the last such occurrence is returned—that is
largest valuek such that:

this.charAt(k) == ch

is true. If no such character occurs in this string, then-1 is returned.

20.12.28 public int lastIndexOf(int ch, int fromIndex)

If a character with valuech occurs in the character sequence represented by
String object at an index no larger thanfromIndex, then the index of the last
such occurrence is returned—that is, the largest valuek such that:

(this.charAt(k) == ch) && (k <= fromIndex)

is true. If no such character occurs in this string at or before positionfromIndex,
then-1 is returned.

There is no restriction on the value offromIndex. If it is greater than or equal
to the length of this string, it has the same effect as if it were equal to one les
the length of this string: this entire string may be searched. If it is negative, i
the same effect as if it were-1: -1 is returned.

20.12.29 public int lastIndexOf(String str)

throws NullPointerException

If the stringstr occurs as a substring of thisString object, then the index of the
first character of the last such substring is returned—that is, the largest vak
such that:

this.startsWith(str, k)

is true. Ifstr does not occur as a substring of this string, then-1 is returned.
If str is null, aNullPointerException is thrown.

20.12.30 public int lastIndexOf(String str, int fromIndex)

throws NullPointerException

If the stringstr occurs as a substring of thisString object starting at an index no
larger thanfromIndex, then the index of the first character of the last such s
string is returned—that is, the largest valuek such that:

THE PACKAGE JAVA.LANG java.lang.String 20.12

ition

f this
ect as

the
s
er

the
s
n

this.startsWith(str, k) && (k <= fromIndex)

is true. If str does not occur as a substring of this string at or before pos
fromIndex, then-1 is returned.

There is no restriction on the value offromIndex. If it is greater than the
length of this string, it has the same effect as if it were equal to the length o
string: this entire string may be searched. If it is negative, it has the same eff
if it were-1: -1 is returned.

If str is null, aNullPointerException is thrown.

20.12.31 public String substring(int beginIndex)

throws IndexOutOfBoundsException

The result is a newly createdString object that represents a subsequence of
character sequence represented by thisString object; this subsequence begin
with the character at positionbeginIndex and extends to the end of the charact
sequence.

If beginIndex is negative or larger than the length of thisString object, then
anIndexOutOfBoundsException is thrown.

Examples:

"unhappy".substring(2) returns "happy"

"Harbison".substring(3) returns "bison"

"emptiness".substring(9) returns "" (an empty string)

20.12.32 public String substring(int beginIndex, int endIndex)

throws IndexOutOfBoundsException

The result is a newly createdString object that represents a subsequence of
character sequence represented by thisString object; this subsequence begin
with the character at positionbeginIndex and ends with the character at positio
endIndex-1. Thus, the length of the subsequence isendIndex-beginIndex.

If beginIndex is negative, orendIndex is larger than the length of this
String object, orbeginIndex is larger thanendIndex, then this method throws
anIndexOutOfBoundsException.

Examples:

"hamburger".substring(4, 8) returns "urge"

"smiles".substring(1, 5) returns "mile"
543

20.12 java.lang.String THE PACKAGE JAVA.LANG

544

ter
 by this
g.

d by
,
cal to
-

rent

racter
e

20.12.33 public String concat(String str)

throws NullPointerException

If the length of the argument string is zero, then a reference to thisString object
is returned. Otherwise, a newString object is created, representing a charac
sequence that is the concatenation of the character sequence represented
String object and the character sequence represented by the argument strin

Examples:

"cares".concat("s") returns "caress"
"to".concat("get").concat("her") returns "together"

If str is null, aNullPointerException is thrown.

20.12.34 public String replace(char oldChar, char newChar)

If the characteroldChar does not occur in the character sequence represente
this String object, then a reference to thisString object is returned. Otherwise
a newString object is created that represents a character sequence identi
the character sequence represented by thisString object, except that every occur
rence ofoldChar is replaced by an occurrence ofnewChar.

Examples:

"mesquite in your cellar".replace('e', 'o')
returns "mosquito in your collar"

"the war of baronets".replace('r', 'y')
returns "the way of bayonets"

"sparring with a purple porpoise".replace('p', 't')
returns "starring with a turtle tortoise"

"JonL".replace('q', 'x') returns "JonL" (no change)

20.12.35 public String toLowerCase()

If this String object does not contain any character that is mapped to a diffe
character by the methodCharacter.toLowerCase (§20.5.20), then a reference
to thisString object is returned. Otherwise, this method creates a newString
object that represents a character sequence identical in length to the cha
sequence represented by thisString object, with every character equal to th
result of applying the methodCharacter.toLowerCase to the corresponding
character of thisString object.

Examples:

"French Fries".toLowerCase() returns "french fries"
"ΙΧΘΥΣ".toLowerCase() returns "ιχθυς"

THE PACKAGE JAVA.LANG java.lang.String 20.12

rent

racter
e

d last

nd

e is
g

g

ning
20.12.36 public String toUpperCase()

If this String object does not contain any character that is mapped to a diffe
character by the methodCharacter.toUpperCase (§20.5.21), then a reference
to thisString object is returned. Otherwise, this method creates a newString
object representing a character sequence identical in length to the cha
sequence represented by thisString object and with every character equal to th
result of applying the methodCharacter.toUpperCase to the corresponding
character of thisString object.

Examples:

"Fahrvergnügen".toUpperCase() returns "FAHRVERGNÜGEN"

"Visit Ljubinje!".toUpperCase() returns "VISIT LJUBINJE!"

20.12.37 public String trim()

If this String object represents an empty character sequence, or the first an
characters of character sequence represented by thisString object both have
codes greater than\u0020 (the space character), then a reference to thisString
object is returned.

Otherwise, if there is no character with a code greater than\u0020 in the
string, then a newString object representing an empty string is created a
returned.

Otherwise, letk be the index of the first character in the string whose cod
greater than\u0020, and letm be the index of the last character in the strin
whose code is greater than\u0020. A newString object is created, representin
the substring of this string that begins with the character at indexk and ends with
the character at indexm—that is, the result ofthis.substring(k, m+1).

This method may be used to trim whitespace (§20.5.19) from the begin
and end of a string; in fact, it trims all ASCII control characters as well.

20.12.38 public static String valueOf(Object obj)

If the argument isnull, then a string equal to"null" is returned. Otherwise, the
value ofobj.toString() is returned. See thetoString method (§20.1.2).
545

20.12 java.lang.String THE PACKAGE JAVA.LANG

546

racters
racter
affect

racters

opied;
eated

 the
20.12.39 public static String valueOf(char[] data)

throws NullPointerException

A string is created and returned. The string represents the sequence of cha
currently contained in the character array argument. The contents of the cha
array are copied; subsequent modification of the character array does not
the newly created string.

20.12.40 public static String valueOf(char[] data,

int offset, int count)

throws NullPointerException,

IndexOutOfBoundsException

A string is created and returned. The string represents the sequence of cha
currently contained in a subarray of the character array argument. Theoffset
argument is the index of the first character of the subarray and thecount argu-
ment specifies the length of the subarray. The contents of the subarray are c
subsequent modification of the character array does not affect the newly cr
string.

If data is null, then aNullPointerException is thrown.
If offset is negative, orcount is negative, oroffset+count is larger than

data.length, then anIndexOutOfBoundsException is thrown.

20.12.41 public static String valueOf(boolean b)

A string representation ofb is returned.
If the argument istrue, the string"true" is returned.
If the argument isfalse, the string"false" is returned.

20.12.42 public static String valueOf(char c)

A string is created and returned. The string contains one character, equal toc.

20.12.43 public static String valueOf(int i)

A string is created and returned. The string is computed exactly as if by
methodInteger.toString of one argument (§20.7.12).

THE PACKAGE JAVA.LANG java.lang.String 20.12

 the

 the

 the

qual

ned
20.12.44 public static String valueOf(long l)

A string is created and returned. The string is computed exactly as if by
methodLong.toString of one argument (§20.8.12).

20.12.45 public static String valueOf(float f)

A string is created and returned. The string is computed exactly as if by
methodFloat.toString of one argument (§20.9.16).

20.12.46 public static String valueOf(double d)

A string is created and returned. The string is computed exactly as if by
methodDouble.toString of one argument (§20.10.15).

20.12.47 public String intern()

A pool of strings, initially empty, is maintained privately by the classString.
When the intern method is invoked, if the pool already contains a string e

to thisString object as determined by theequals method (§20.12.9), then the
string from the pool is returned. Otherwise, thisString object is added to the
pool and a reference to thisString object is returned.

It follows that for any two stringss andt, s.intern() == t.intern() is
true if and only ifs.equals(t) is true.

All literal strings and string-valued constant expressions are inter
(§3.10.5).
547

20.13 java.lang.StringBuffer THE PACKAGE JAVA.LANG

548

n
ontent
20.13 The Classjava.lang.StringBuffer

A string buffer is like aString (§20.12), but can be modified. At any point i
time it contains some particular sequence of characters, but the length and c
of the sequence can be changed through certain method calls.

public class StringBuffer {
public StringBuffer();
public StringBuffer(int length)

throws NegativeArraySizeException;
public StringBuffer(String str);
public String toString();
public int length();
public void setLength(int newLength)

throws IndexOutOfBoundsException;
public int capacity();
public void ensureCapacity(int minimumCapacity);
public char charAt(int index)

throws IndexOutOfBoundsException;
public void setCharAt(int index, char ch)

throws IndexOutOfBoundsException;
public void getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin)
throws NullPointerException, IndexOutOfBoundsException;

public StringBuffer append(Object obj);
public StringBuffer append(String str);
public StringBuffer append(char[] str)

throws NullPointerException;
public StringBuffer append(char[] str, int offset, int len)

throws NullPointerException, IndexOutOfBoundsException;
public StringBuffer append(boolean b);
public StringBuffer append(char c);
public StringBuffer append(int i);
public StringBuffer append(long l);
public StringBuffer append(float f);
public StringBuffer append(double d);
public StringBuffer insert(int offset, Object obj)

throws IndexOutOfBoundsException;
public StringBuffer insert(int offset, String str)

throws IndexOutOfBoundsException;
public StringBuffer insert(int offset, char[] str)

throws NullPointerException, IndexOutOfBoundsException;
public StringBuffer insert(int offset, boolean b)

throws IndexOutOfBoundsException;

THE PACKAGE JAVA.LANG java.lang.StringBuffer 20.13

ce
ary to

chro-
ehave
thod

con-

enta-
nts of
gs.

ctively
 to the
 at
nt.
 the
public StringBuffer insert(int offset, char c)
throws IndexOutOfBoundsException;

public StringBuffer insert(int offset, int i)
throws IndexOutOfBoundsException;

public StringBuffer insert(int offset, long l)
throws IndexOutOfBoundsException;

public StringBuffer insert(int offset, float f)
throws IndexOutOfBoundsException;

public StringBuffer insert(int offset, double d)
throws IndexOutOfBoundsException;

public StringBuffer reverse();
}

A string buffer has acapacity. As long as the length of the character sequen
contained in the string buffer does not exceed the capacity, it is not necess
create a new internal buffer array.

String buffers are safe for use by multiple threads. The methods are syn
nized where necessary so that all the operations on any particular instance b
as if they occur in some serial order that is consistent with the order of the me
calls made by each of the individual threads involved.

String buffers can be used by a compiler to implement the binary string
catenation operator+ (§15.17.1). For example, supposek has typeint anda has
typeObject. Then the expression:

k + "/" + a

can be compiled as if it were the expression:

new StringBuffer().append(k).append("/").
append(a).toString()

which creates a new string buffer (initially empty), appends the string repres
tion of each operand to the string buffer in turn, and then converts the conte
the string buffer to a string. Overall, this avoids creating many temporary strin

The principal operations on aStringBuffer are theappend and insert
methods, which are overloaded so as to accept data of any type. Each effe
converts a given datum to a string and then adds the characters of that string
contents of the string buffer. Theappend method always adds these characters
the end of the buffer; theinsert method adds the characters at a specified poi

For example, ifz refers to a string buffer object whose current contents are
characters “start”, then the method callz.append("le") would alter the string
buffer to contain the characters “startle”, but z.insert(4, "le") would alter
the string buffer to contain the characters “starlet”.

In general, if sb refers to an instance of aStringBuffer, then
sb.append(x) has the same effect assb.insert(sb.length(), x).
549

20.13 java.lang.StringBuffer THE PACKAGE JAVA.LANG

550

ed by

e initial
city

nce

turned

 new
ter
r. Any
 must
 for

ation

sented
20.13.1 public StringBuffer()

This constructor initializes a newly createdStringBuffer object so that it ini-
tially represents an empty character sequence and has capacity 16.

20.13.2 public StringBuffer(int length)

throws NegativeArraySizeException

This constructor initializes a newly createdStringBuffer object so that it ini-
tially represents an empty character sequence, but has the capacity specifi
the argument.

If the argument is negative, aNegativeArraySizeException is thrown.

20.13.3 public StringBuffer(String str)

This constructor initializes a newly createdStringBuffer object so that it repre-
sents the same sequence of characters as the argument; in other words, th
contents of the string buffer is a copy of the argument string. The initial capa
of the string buffer is 16 plus the length of the argument string.

20.13.4 public String toString()

A new String object is created and initialized to contain the character seque
currently represented by the string buffer; the newString is then returned. Any
subsequent changes to the string buffer do not affect the contents of the re
string.

Implementation advice: This method can be coded so as to create a
String object without allocating new memory to hold a copy of the charac
sequence. Instead, the string can share the memory used by the string buffe
subsequent operation that alters the content or capacity of the string buffer
then make a copy of the internal buffer at that time. This strategy is effective
reducing the amount of memory allocated by a string concatenation oper
(§15.17.1) when it is implemented using a string buffer.

Overrides thetoString method ofObject (§20.1.2).

20.13.5 public int length()

This method returns the length of the sequence of characters currently repre
by thisStringBuffer object.

THE PACKAGE JAVA.LANG java.lang.StringBuffer 20.13

n
e the

ion

ngth is

acter
er

buffer,
he

gth
20.13.6 public int capacity()

The current capacity of thisStringBuffer object is returned.

20.13.7 public void ensureCapacity(int minimumCapacity)

If the current capacity of thisStringBuffer object is less than the argument, the
a new internal buffer is created with greater capacity. The new capacity will b
larger of:

• theminimumCapacity argument

• twice the old capacity, plus2

If theminimumCapacity argument is nonpositive, this method takes no act
and simply returns.

20.13.8 public void setLength(int newLength)

throws IndexOutOfBoundsException

This string buffer is altered to represent a new character sequence whose le
specified by the argument. For every nonnegative indexk less thannewLength,
the character at indexk in the new character sequence is the same as the char
at indexk in the old sequence ifk is less than the length of the old charact
sequence; otherwise, it is the null character'\u0000'. This method also calls the
ensureCapacity method (§20.13.7) with argumentnewLength.

If the argument is negative, anIndexOutOfBoundsException is thrown.

20.13.9 public char charAt(int index)

throws IndexOutOfBoundsException

The specified character of the sequence currently represented by the string
as indicated by theindex argument, is returned. The first character of t
sequence is at index0, the next at index1, and so on, as for array indexing.

If the index argument is negative or not less than the current len
(§20.13.5) of the string buffer, anIndexOutOfBoundsException is thrown.
551

20.13 java.lang.StringBuffer THE PACKAGE JAVA.LANG

552

ntical

gth

 is

to this

 of
 the
20.13.10 public void setCharAt(int index, char ch)

throws IndexOutOfBoundsException

The string buffer is altered to represent a new character sequence that is ide
to the old character sequence, except that it contains the characterch at position
index.

If the index argument is negative or not less than the current len
(§20.13.5) of the string buffer, anIndexOutOfBoundsException is thrown.

20.13.11 public void getChars(int srcBegin, int srcEnd,

char[] dst, int dstBegin)

throws NullPointerException,

IndexOutOfBoundsException

Characters are copied from thisStringBuffer object into the destination array
dst. The first character to be copied is at indexsrcBegin; the last character to be
copied is at indexsrcEnd-1 (thus, the total number of characters to be copied
srcEnd-srcBegin). The characters are copied into the subarray ofdst starting at
indexdstBegin and ending at indexdstbegin+(srcEnd-srcBegin)-1.

If dst is null, then aNullPointerException is thrown.
Otherwise, if any of the following is true, anIndexOutOfBoundsException

is thrown and the destination is not modified:

• ThesrcBegin argument is negative.

• ThesrcBegin argument is greater than thesrcEnd argument.

• srcEnd is greater thanthis.length(), the current length of this string
buffer.

• dstBegin+srcEnd-srcBegin is greater thandst.length.

20.13.12 public StringBuffer append(Object obj)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.38) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

20.13.13 public StringBuffer append(String str)

The characters of theString argument are appended, in order, to the contents
this string buffer, increasing the length of this string buffer by the length of

THE PACKAGE JAVA.LANG java.lang.StringBuffer 20.13

n the
t

at

 of this
rgu-

g by
re

tring

g by
ers
argument. Ifstr is null, then the four characters “null” are appended to this
string buffer. The methodensureCapacity (§20.13.7) is first called with this new
string buffer length as its argument. A reference to thisStringBuffer object is
returned.

Let n be the length of the old character sequence, the one contained i
string buffer just prior to execution of theappend method. Then the character a
indexk in the new character sequence is equal to the character at indexk in the
old character sequence, ifk is less thann; otherwise, it is equal to the character
indexk-n in the argumentstr.

20.13.14 public StringBuffer append(char[] str)

throws NullPointerException

The characters of the array argument are appended, in order, to the contents
string buffer, increasing the length of this string buffer by the length of the a
ment. The methodensureCapacity (§20.13.7) is first called with this new string
buffer length as its argument. A reference to thisStringBuffer object is
returned.

The overall effect is exactly as if the argument were converted to a strin
the methodString.valueOf (§20.12.39) and the characters of that string we
then appended (§20.13.13) to thisStringBuffer object.

20.13.15 public StringBuffer append(char[] str,

int offset, int len)

throws NullPointerException,

IndexOutOfBoundsException

Characters of the character arraystr, starting at indexoffset, are appended, in
order, to the contents of this string buffer, increasing the length of this s
buffer bylen. The methodensureCapacity (§20.13.7) is first called with this
new string buffer length as its argument. A reference to thisStringBuffer object
is returned.

The overall effect is exactly as if the arguments were converted to a strin
the methodString.valueOf of three arguments (§20.12.40) and the charact
of that string were then appended (§20.13.13) to thisStringBuffer object.
553

20.13 java.lang.StringBuffer THE PACKAGE JAVA.LANG

554

to this

g the

this

g by
re

to this

to this

to this

to this
20.13.16 public StringBuffer append(boolean b)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.41) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

20.13.17 public StringBuffer append(char c)

The argument is appended to the contents of this string buffer, increasin
length of this string buffer by1. The methodensureCapacity (§20.13.7) is first
called with this new string buffer length as its argument. A reference to
StringBuffer object is returned.

The overall effect is exactly as if the argument were converted to a strin
the methodString.valueOf (§20.12.42) and the character in that string we
then appended (§20.13.13) to thisStringBuffer object.

20.13.18 public StringBuffer append(int i)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.43) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

20.13.19 public StringBuffer append(long l)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.44) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

20.13.20 public StringBuffer append(float f)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.45) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

20.13.21 public StringBuffer append(double d)

The argument is converted to a string as if by the methodString.valueOf
(§20.12.46) and the characters of that string are then appended (§20.13.13)
StringBuffer object. A reference to thisStringBuffer object is returned.

THE PACKAGE JAVA.LANG java.lang.StringBuffer 20.13

to this

fer
e
 the

string
 The
r

g by
re
20.13.22 public StringBuffer insert(int offset, Object obj)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.38) and the characters of that string are then inserted (§20.13.23) in
StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.23 public StringBuffer insert(int offset, String str)

throws IndexOutOfBoundsException

The characters of theString argument are inserted, in order, into the string buf
at the position indicated byoffset, moving up any characters originally abov
that position and increasing the length of the string buffer by the length of
argument. Ifstr is null, then the four characters “null” are inserted into this
string buffer. The methodensureCapacity (§20.13.7) is first called with this new
string buffer length as its argument. A reference to thisStringBuffer object is
returned.

The character at indexk in the new character sequence is equal to:

• the character at indexk in the old character sequence, ifk is less thanoffset

• the character at indexk-offset in the argumentstr, if k is not less than
offset but is less thanoffset+str.length()

• the character at indexk-str.length() in the old character sequence, ifk is
not less thanoffset+str.length()

20.13.24 public StringBuffer insert(int offset, char[] str)

throws NullPointerException,

IndexOutOfBoundsException

The characters of the array argument, taken in order, are inserted into this
buffer, increasing the length of the string buffer by the length of the argument.
methodensureCapacity (§20.13.7) is first called with this new string buffe
length as its argument. A reference to thisStringBuffer object is returned.

The overall effect is exactly as if the argument were converted to a strin
the methodString.valueOf (§20.12.39) and the characters of that string we
then inserted (§20.13.23) into thisStringBuffer object at the position indicated
by offset.
555

20.13 java.lang.StringBuffer THE PACKAGE JAVA.LANG

556

es not
and

to this

indi-

its

g by
re

to this

 this
Note that while theStringBuffer class provides anappend method that
takes an offset, a character array, and two other arguments (§20.13.15), it do
currently provide aninsert method that takes an offset, a character array,
two other arguments.

20.13.25 public StringBuffer insert(int offset, boolean b)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.41) and the characters of that string are then inserted (§20.13.23) in
StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.26 public StringBuffer insert(int offset, char c)

throws IndexOutOfBoundsException

The argument is inserted into the contents of this string buffer at the position
cated byoffset, increasing the length of this string buffer by1. The method
ensureCapacity (§20.13.7) is first called with this new string buffer length as
argument. A reference to thisStringBuffer object is returned.

The overall effect is exactly as if the argument were converted to a strin
the methodString.valueOf (§20.12.42) and the character in that string we
then inserted (§20.13.23) into thisStringBuffer object at the position indicated
by offset.

20.13.27 public StringBuffer insert(int offset, int i)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.43) and the characters of that string are then inserted (§20.13.23) in
StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.28 public StringBuffer insert(int offset, long l)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.44) and the characters of that string are inserted (§20.13.23) into

THE PACKAGE JAVA.LANG java.lang.StringBuffer 20.13

to this

to this

n the
t

StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.29 public StringBuffer insert(int offset, float f)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.45) and the characters of that string are then inserted (§20.13.23) in
StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.30 public StringBuffer insert(int offset, double d)

throws IndexOutOfBoundsException

The argument is converted to a string as if by the methodString.valueOf
(§20.12.46) and the characters of that string are then inserted (§20.13.23) in
StringBuffer object at the position indicated byoffset. A reference to this
StringBuffer object is returned.

20.13.31 public StringBuffer reverse()

The character sequence contained in thisStringBuffer object is replaced by the
reverse of that sequence. A reference to thisStringBuffer object is returned.

Let n be the length of the old character sequence, the one contained i
string buffer just prior to execution of thereverse method. Then the character a
indexk in the new character sequence is equal to the character at indexn-k-1 in
the old character sequence.
557

20.14 java.lang.ClassLoader THE PACKAGE JAVA.LANG

558

 name
nition
 then

not yet
ss

reated
class,

 then

icate
ach

 class
ass

y.
urity
20.14 The Classjava.lang.ClassLoader

A class loader is an object that is responsible for loading classes. Given the
of a class, it should attempt to locate or generate data that constitutes a defi
for the class. A typical strategy is to transform the name into a file name and
read a “class file” of that name from a file system.

Every Class object contains a reference to theClassLoader that defined it
(§20.3.7). Whenever executable Java code needs to use a class that has
been loaded, theloadClass method is invoked for the class loader of the cla
containing the code in question.

Class objects for array classes are not created by class loaders, but are c
automatically as required by the Java runtime. The class loader for an array
as returned by thegetClassLoader method of classClass (§20.3.7), is the same
as the class loader for its element type; if the element type is a primitive type,
the array class has no class loader.

Class loaders may typically be used by security managers (§20.17) to ind
security domains: two classes may considered to be “friendly” or “related” to e
other only if they were defined by the same class loader.

public abstract class ClassLoader {
protected ClassLoader() throws SecurityException;
protected abstract Class loadClass(String name,

boolean resolve)
throws ClassNotFoundException;

protected final Class defineClass(byte data[],
int offset, int length)

throws NullPointerException, IndexOutOfBoundsException,
ClassFormatError;

protected final void resolveClass(Class c)
throws NullPointerException;

protected final Class findSystemClass(String name)
throws ClassNotFoundException;

}

20.14.1 protected ClassLoader() throws SecurityException

This constructor is invoked for every newly created class loader. Because the
ClassLoader is abstract, it is not possible to create a new instance of the cl
ClassLoader itself; however, every constructor for a subclass ofClassLoader
necessarily invokes this constructor, explicitly or implicitly, directly or indirectl

All this constructor does is to enforce a security check: if there is a sec
manager, itscheckCreateClassLoader method (§20.17.10) is called.

THE PACKAGE JAVA.LANG java.lang.ClassLoader 20.14

e-

 a
s a
20.14.2 protected abstract Class loadClass(String name,

boolean link)

throws ClassNotFoundException

Every subclass ofClassLoader that is not itself abstract must provide an impl
mentation of the methodloadClass.

The general contract ofloadClass is that, given thename of a class, it either
returns theClass object for the class or throws aClassNotFoundException.

If a Class object is to be returned andlink is true, then theClass object
should be linked (§12.3, §20.14.4) before it is returned.

In most cases, it is wise for a subclass ofClassLoader (§20.14) to implement
theloadClass method as asynchronized method.

20.14.3 protected final Class defineClass(byte data[],

int offset, int length)

throws NullPointerException,

IndexOutOfBoundsException, ClassFormatError

This method may be used by a class loader to define a new class.
The bytes in the arraydata in positionsoffset throughoffset+length-1

should have the format of a valid class file as defined by theJava Virtual Machine
Specification.

If data is null, then aNullPointerException is thrown.
An IndexOutOfBoundsException is thrown if any of the following are true:

• offset is negative

• length is negative

• offset+length is greater thandata.length

If the indicated bytes ofdata do not constitute a valid class definition, then
ClassFormatError is thrown. Otherwise, this method creates and return
Class object as described by the data bytes
559

20.14 java.lang.ClassLoader THE PACKAGE JAVA.LANG

560

12.3,

ly

 class

stem.
20.14.4 protected final void resolveClass(Class c)

throws NullPointerException

This (misleadingly named) method may be used by a class loader to link (§
§20.14.4) a class.

If c is null, then aNullPointerException is thrown.
If the Class object c has already been linked, then this method simp

returns.
Otherwise, the class is linked as described in §12.3.

20.14.5 protected final Class findSystemClass(String name)

throws ClassNotFoundException

This method may be used by a class loader to locate a class that has no
loader. This includes built-in classes such asjava.lang.Object, as well as
classes that the host implementation may keep in, for example, a local file sy

Given thename of a class, this method, like theloadClass method, either
returns theClass object for the class or throws aClassNotFoundException.

THE PACKAGE JAVA.LANG java.lang.Process 20.15

-
heck-

ns the

e

d.

e

.

e

.

20.15 The Classjava.lang.Process

The methodexec (§20.16.3) of classRuntime returns a reference to aProcess
object. The classProcess provides methods for performing input from the pro
cess, performing output to the process, waiting for the process to complete, c
ing the exit status of the process, and destroying (killing) the process.

Dropping the last reference to aProcess instance, thus allowing theProcess
object to be reclaimed, doesnot automatically kill the associated process.

There is no requirement that a process represented by aProcess object exe-
cute asynchronously or concurrently with respect to the Java process that ow
Process object.

public abstract class Process {
public abstract OutputStream getOutputStream();
public abstract InputStream getInputStream();
public abstract InputStream getErrorStream();
public abstract int waitFor()

throws InterruptedException;
public abstract int exitValue()

throws IllegalThreadStateException;
public abstract void destroy();

}

20.15.1 public abstract OutputStream getOutputStream()

This method returns anOutputStream. Output to the stream is piped into th
standard input stream of the process represented by thisProcess object.

Implementation note: It is a good idea for the output stream to be buffere

20.15.2 public abstract InputStream getInputStream()

This method returns anInputStream. The stream obtains data piped from th
standard output stream of the process represented by thisProcess object.

Implementation note: It is a good idea for the input stream to be buffered

20.15.3 public abstract InputStream getErrorStream()

This method returns anInputStream. The stream obtains data piped from th
error output stream of the process represented by thisProcess object.

Implementation note: It is a good idea for the input stream to be buffered
561

20.15 java.lang.Process THE PACKAGE JAVA.LANG

562

s rep-
ess

it is

n
-

ss.
20.15.4 public abstract int waitFor()

throws InterruptedException

This method causes the current thread to wait, if necessary, until the proces
resented by thisProcess object has terminated. Then the exit value of the proc
is returned. By convention, the value0 indicates normal termination.

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then the wait is ended and anInterruptedException is thrown.

20.15.5 public abstract int exitValue()

throws IllegalThreadStateException

If the process represented by thisProcess object has not yet terminated, then a
IllegalThreadStateException is thrown. Otherwise, the exit value of the pro
cess is returned. By convention, the value0 indicates normal termination.

20.15.6 public abstract void destroy()

The process represented by thisProcess object is forcibly terminated.

It was my hint to speak—such was the proce
—William Shakespeare,Othello, Act I, scene iii

THE PACKAGE JAVA.LANG java.lang.Runtime 20.16

s
rrent

rgu-
dicates
20.16 The Classjava.lang.Runtime

public class Runtime {
public static Runtime getRuntime();
public void exit(int status) throws SecurityException;
public Process exec(String command) throws

IOException, SecurityException, IndexOutOfBoundsException;
public Process exec(String command, String envp[]) throws

IOException, SecurityException, IndexOutOfBoundsException;
public Process exec(String cmdarray[]) throws

IOException, SecurityException, IndexOutOfBoundsException;
public Process exec(String cmdarray[], String envp[]) throws

IOException, SecurityException, IndexOutOfBoundsException;
public long totalMemory();
public long freeMemory();
public void gc();
public void runFinalization();
public void traceInstructions(boolean on);
public void traceMethodCalls(boolean on);
public void load(String filename)

throws SecurityException, UnsatisfiedLinkError;
public void loadLibrary(String libname)

throws SecurityException, UnsatisfiedLinkError;
public InputStream getLocalizedInputStream(InputStream in);
public OutputStream

getLocalizedOutputStream(OutputStream out);
}

20.16.1 public static Runtime getRuntime()

This method returns the currentRuntime object. Most of the methods of clas
Runtime are instance methods and must be invoked with respect to the cu
runtime object.

20.16.2 public void exit(int status)

throws SecurityException

First, if there is a security manager, itscheckExit method (§20.17.13) is called
with thestatus value as its argument.

This method terminates the currently running Java Virtual Machine. The a
ment serves as a status code; by convention, a nonzero status code in
abnormal termination.
563

20.16 java.lang.Runtime THE PACKAGE JAVA.LANG

564

d in a

d in a

ay
tring
This method never returns normally.
See also the methodexit (§20.18.11) of classSystem, which is the conven-

tional and convenient means of invoking this method.

20.16.3 public Process exec(String command)

throws IOException, SecurityException,

IndexOutOfBoundsException

Thecommand argument is parsed into tokens and then executed as a comman
separate process. The token parsing is done by aStringTokenizer (§21.10) cre-
ated by the call:

new StringTokenizer(command)

with no further modification of the character categories.
This method behaves exactly as if it performs the call:

exec(command, null)

See §20.16.4.

20.16.4 public Process exec(String command, String envp[])

throws IOException, SecurityException,

IndexOutOfBoundsException

Thecommand argument is parsed into tokens and then executed as a comman
separate process with an environment specified byenvp. The token parsing is
done by aStringTokenizer (§21.10) created by the call:

new StringTokenizer(command)

with no further modification of the character categories.
This method breaks thecommand string into tokens and creates a new arr

cmdarray containing the tokens in the order that they were produced by the s
tokenizer; it then behaves exactly as if it performs the call:

exec(cmdarray, envp)

See §20.16.6.

THE PACKAGE JAVA.LANG java.lang.Runtime 20.16

a

d
s-
speci-
w

ated
 may

type

ure
an the
20.16.5 public Process exec(String cmdarray[])

throws IOException, SecurityException,

NullPointerException, IndexOutOfBoundsException

The command specified by the tokens incmdarray is executed as a command in
separate process.

This method behaves exactly as if it performs the call:

exec(cmdarray, null)

See §20.16.6.

20.16.6 public Process exec(String cmdarray[], String envp[])

throws IOException, SecurityException,

NullPointerException, IndexOutOfBoundsException

First, if there is a security manager, itscheckExec method (§20.17.14) is called
with the first component of the arraycmdarray as its argument.

If cmdarray isnull, aNullPointerException is thrown. Ifcmdarray is an
empty array (has length0), anIndexOutOfBoundsException is thrown.

Given an array of stringscmdarray, representing the tokens of a comman
line, and an array of stringsenvp, representing an “environment” that defines sy
tem properties, this method creates a new process in which to execute the
fied command and returns aProcess object (§20.15) representing the ne
process.

20.16.7 public long totalMemory()

The total amount of memory currently available for current and future cre
objects, measured in bytes, is returned. The value returned by this method
vary over time, depending on the host environment.

Note that the amount of memory required to hold an object of any given
may be implementation-dependent.

20.16.8 public long freeMemory()

An approximation to the total amount of memory currently available for fut
created objects, measured in bytes, is returned. This value is always less th
current value returned by thetotalMemory method. Calling thegc method may
increase the value returned byfreeMemory.
565

20.16 java.lang.Runtime THE PACKAGE JAVA.LANG

566

ward
cupy
Java
name

y as

ward
ded
om
te all

ally

e
this
s on

l

e
this
s on
20.16.9 public void gc()

Calling this method suggests that the Java Virtual Machine expend effort to
recycling discarded objects in order to make the memory they currently oc
available for quick reuse. When control returns from the method call, the
Virtual Machine has made a best effort to recycle all discarded objects. (The
gc stands for “garbage collector.”)

The Java runtime system will perform this recycling process automaticall
needed, in a separate thread, if thegc method is not invoked explicitly.

See also the methodgc (§20.18.12) of classSystem, which is the conven-
tional and convenient means of invoking this method.

20.16.10 public void runFinalization()

Calling this method suggests that the Java Virtual Machine expend effort to
running thefinalize methods of objects that have been found to be discar
but whosefinalize methods have not yet been run. When control returns fr
the method call, the Java Virtual Machine has made a best effort to comple
outstanding finalizations.

The Java runtime system will perform the finalization process automatic
as needed, in a separate thread, if therunFinalization method is not invoked
explicitly.

See also the methodrunFinalization (§20.18.13) of classSystem, which is
the conventional and convenient means of invoking this method.

20.16.11 public void traceInstructions(boolean on)

Calling this method with argumenttrue suggests that the Java Virtual Machin
emit debugging information for every instruction it executes. The format of
information, and the file or other output stream to which it is emitted, depend
the host environment.

Calling this method with argumentfalse suggests that the Java Virtua
Machine cease emitting per-instruction debugging information.

20.16.12 public void traceMethodCalls(boolean on)

Calling this method with argumenttrue suggests that the Java Virtual Machin
emit debugging information for every method call it executes. The format of
information, and the file or other output stream to which it is emitted, depend
the host environment.

THE PACKAGE JAVA.LANG java.lang.Runtime 20.16

l

al
le of

lace
 are

ut the

), the

 from
 the
Calling this method with argumentfalse suggests that the Java Virtua
Machine cease emitting per-call debugging information.

20.16.13 public void load(String filename)

First, if there is a security manager, itscheckLink method (§20.17.17) is called
with thefilename as its argument.

This is similar to the methodloadLibrary (§20.16.14), but accepts a gener
file name as an argument rather than just a library name, allowing any fi
native code to be loaded.

See also the methodload (§20.18.14) of classSystem, which is the conven-
tional and convenient means of invoking this method.

20.16.14 public void loadLibrary(String libname)

First, if there is a security manager, itscheckLink method (§20.17.17) is called
with thelibname as its argument.

A file containing native code is loaded from the local file system from a p
where library files are conventionally obtained. The details of this process
implementation-dependent.

See also the methodloadLibrary (§20.18.15) of classSystem, which is the
conventional and convenient means of invoking this method. Ifnative methods
are to be used in the implementation of a class, a standard strategy is to p
native code in a library file (call itLibFile) and then to put a static initializer:

static { System.loadLibrary("LibFile"); }

within the class declaration. When the class is loaded and initialized (§12.4
necessary native code implementation for thenative methods will then be loaded
as well.

20.16.15 public InputStream

getLocalizedInputStream(InputStream in)

This method takes anInputStream (§22.3) and returns anInputStream equiva-
lent to the argument in all respects except that it is localized: as data is read
the stream, it is automatically converted from the local format to Unicode. If
argument is already a localized stream, then it will be returned as the result.
567

20.16 java.lang.Runtime THE PACKAGE JAVA.LANG

568

 writ-
at. If
ult.
20.16.16 public OutputStream

getLocalizedOutputStream(OutputStream out)

This method takes anOutputStream (§22.15) and returns anOutputStream
equivalent to the argument in all respects except that it is localized: as data is
ten to the stream, it is automatically converted from Unicode to the local form
the argument is already a localized stream, then it will be returned as the res

THE PACKAGE JAVA.LANG java.lang.SecurityManager 20.17
20.17 The Classjava.lang.SecurityManager

public abstract class SecurityManager {
protected boolean inCheck;
protected SecurityManager()

throws SecurityException;
protected Class[] getClassContext();
protected int classDepth(String name);
protected boolean inClass(String name);
protected ClassLoader currentClassLoader();
protected int classLoaderDepth();
protected boolean inClassLoader();
public boolean getInCheck();
public void checkCreateClassLoader()

throws SecurityException;
public void checkAccess(Thread t)

throws SecurityException;
public void checkAccess(ThreadGroup g)

throws SecurityException;
public void checkExit(int status)

throws SecurityException;
public void checkExec(String cmd)

throws SecurityException;
public void checkPropertiesAccess()

throws SecurityException;
public void checkPropertyAccess(String key)

throws SecurityException;
public void checkLink(String libname)

throws SecurityException;
public void checkRead(int fd)

throws SecurityException;
public void checkRead(String file)

throws SecurityException;
public void checkWrite(int fd)

throws SecurityException;
public void checkWrite(String file)

throws SecurityException;
public void checkDelete(String file)

throws SecurityException;
public void checkConnect(String host, int port)

throws SecurityException;
public void checkListen(int port)

throws SecurityException;
569

20.17 java.lang.SecurityManager THE PACKAGE JAVA.LANG

570

ce of
 the

se
he
. The

tion
urity
ws a
ely

to call
public void checkAccept(String host, int port)
throws SecurityException;

public void checkSetFactory()
throws SecurityException;

public boolean checkTopLevelWindow()
throws SecurityException;

public void checkPackageAccess(String packageName)
throws SecurityException;

public void checkPackageDefinition(String packageName)
throws SecurityException;

}

A running Java program may have a security manager, which is an instan
classSecurityManager. The current security manager is the one returned by
method invocationSystem.getSecurityManager() (§20.18.4).

The SecurityManager class contains a large number of methods who
names begin with “check”. They are called by various methods throughout t
Java libraries before those methods perform certain sensitive operations
invocation of such a check method typically looks like this:

SecurityManager security = System.getSecurityManager();
if (security != null) {

security.checkXXX(arguments);
}

The security manager is thereby given an opportunity to prevent comple
of the operation by throwing an exception. The usual convention is that a sec
manager checking routine simply returns if the operation is permitted, or thro
SecurityException if the operation is not permitted. In one case, nam
checkTopLevelWindow (§20.17.27), the checking routine must return aboolean
value to indicate one of two levels of permission.

20.17.1 protected boolean inCheck = false;

By convention, this field should be assigned the valuetrue whenever a security
check is in progress. This matters when one of the checking routines needs
outside code to do its work. Outside code can then use the methodgetInCheck
(§20.17.9) to test the status of this flag.

THE PACKAGE JAVA.LANG java.lang.SecurityManager 20.17

 been
itted,

rrent
mpo-

f the

 cur-
ot yet
d
teger;

 cur-
ot yet
d

 cur-
ot yet
uch a
;

20.17.2 protected SecurityManager()

throws SecurityException

This constructor checks to see whether a security manager has already
installed (§20.18.5); if so, creation of another security manager is not perm
and so aSecurityException is thrown.

20.17.3 protected Class[] getClassContext()

This utility method for security managers scans the execution stack for the cu
thread and returns an array with one component for each stack frame. The co
nent at position0 corresponds to the top of the stack. If a component is aClass
object, then the corresponding stack frame is for an invocation of a method o
class represented by thatClass object.

20.17.4 protected int classDepth(String name)

This utility method for security managers searches the execution stack for the
rent thread to find the most recently invoked method whose execution has n
completed and whose class hasname as its fully qualified name. If such a metho
is found, its distance from the top of the stack is returned as a nonnegative in
otherwise,-1 is returned.

20.17.5 protected boolean inClass(String name)

This utility method for security managers searches the execution stack for the
rent thread to find the most recently invoked method whose execution has n
completed and whose class hasname as its fully qualified name. If such a metho
is found,true is returned; otherwise,false is returned.

20.17.6 protected ClassLoader currentClassLoader()

This utility method for security managers searches the execution stack for the
rent thread to find the most recently invoked method whose execution has n
completed and whose class was created by a class loader (§20.14). If s
method is found, a reference to theClassLoader object for its class is returned
otherwise,null is returned.
571

20.17 java.lang.SecurityManager THE PACKAGE JAVA.LANG

572

 cur-
ot yet
uch a
gative

 cur-
ot yet
uch a

 the

a
ager

thod
20.17.7 protected int classLoaderDepth()

This utility method for security managers searches the execution stack for the
rent thread to find the most recently invoked method whose execution has n
completed and whose class was created by a class loader (§20.14). If s
method is found, its distance from the top of the stack is returned as a nonne
integer; otherwise,-1 is returned.

20.17.8 protected boolean inClassLoader()

This utility method for security managers searches the execution stack for the
rent thread to find the most recently invoked method whose execution has n
completed and whose class was created by a class loader (§20.14). If s
method is found,true is returned; otherwisefalse is returned.

20.17.9 public boolean getInCheck()

The value of theinCheck field (§20.17.1) is returned.

20.17.10 public void checkCreateClassLoader()

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if creation of a class loader is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructor for classClassLoader (§20.14.1).

ThecheckCreateClassLoader method defined by classSecurityManager
always throws aSecurityException. A subclass must override this method if
class loader creation operation is to be permitted with a security man
installed.

20.17.11 public void checkAccess(Thread t)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if an operation that would modify the threadt is not permitted.

This method is invoked for the current security manager (§20.18.4) by me
checkAccess (§20.20.12) of classThread.

THE PACKAGE JAVA.LANG java.lang.SecurityManager 20.17

ifi-

thod

up

 not

thod

ion

thod
ThecheckAccess method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if a thread mod
cation operation is to be permitted with a security manager installed.

20.17.12 public void checkAccess(ThreadGroup g)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if an operation that would modify the thread groupg is not permitted.

This method is invoked for the current security manager (§20.18.4) by me
checkAccess (§20.21.4) of classThreadGroup.

ThecheckAccess method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if a thread gro
modification operation is to be permitted with a security manager installed.

20.17.13 public void checkExit(int status)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if an exit operation that would terminate the running Java Virtual Machine is
permitted.

This method is invoked for the current security manager (§20.18.4) by me
exit (§20.16.2) of classRuntime.

ThecheckExit method defined by classSecurityManager always throws a
SecurityException. A subclass must override this method if the exit operat
is to be permitted with a security manager installed.

20.17.14 public void checkExec(String cmd)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if a commandexec operation is not permitted. The argumentcmd is the name of
the command to be executed.

This method is invoked for the current security manager (§20.18.4) by me
exec (§20.16.6) of classRuntime.

ThecheckExec method defined by classSecurityManager always throws a
SecurityException. A subclass must override this method if a commandexec
operation is to be permitted with a security manager installed.
573

20.17 java.lang.SecurityManager THE PACKAGE JAVA.LANG

574

 the

a
led.

 the

if
man-

ent

eth-

de
20.17.15 public void checkPropertiesAccess()

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if getting or setting the system properties data structure is not permitted.

This method is invoked for the current security manager (§20.18.4) by
methodsgetProperties (§20.18.7) andsetProperties (§20.18.8) of class
System.

The checkPropertiesAccess method defined by classSecurityManager
always throws aSecurityException. A subclass must override this method if
properties access operation is to be permitted with a security manager instal

20.17.16 public void checkPropertyAccess(String key)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if getting the value of the system property named by thekey is not permitted.

This method is invoked for the current security manager (§20.18.4) by
methodsgetProperty of one argument (§20.18.9) andgetProperty of two
arguments (§20.18.10) of classSystem.

The checkPropertyAccess method defined by classSecurityManager
always throws aSecurityException. A subclass must override this method
accessing the value of a system property is to be permitted with a security
ager installed.

20.17.17 public void checkLink(String libname)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if dynamic linking of the specified library code file is not permitted. The argum
may be a simple library name or a complete file name.

This method is invoked for the current security manager (§20.18.4) by m
odsload (§20.16.13) andloadLibrary (§20.16.14) of classRuntime.

ThecheckLink method defined by classSecurityManager always throws a
SecurityException. A subclass must override this method if a dynamic co
linking operation is to be permitted with a security manager installed.

THE PACKAGE JAVA.LANG java.lang.SecurityManager 20.17

 one

put
ager

for-

two

s

s

to a

.
 one

ut-
an-
20.17.18 public void checkRead(int fd)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if creating an input stream using the specified file descriptor is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructor forjava.io.FileInputStream (§22.4.3).

ThecheckRead method defined by classSecurityManager always throws a
SecurityException. A subclass must override this method if creating an in
stream from an existing file descriptor is to be permitted with a security man
installed.

20.17.19 public void checkRead(String file)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if reading the specified file or directory, or examining associated file-system in
mation, or testing for its existence, is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructors forjava.io.FileInputStream (§22.4.1, §22.4.2); by two con-
structors forjava.io.RandomAccessFile (§22.23.1, §22.23.2); and by method
exists (§22.24.16),canRead (§22.24.17),isFile (§22.24.19),isDirectory
(§22.24.20),lastModified (§22.24.21),length (§22.24.22),list with no argu-
ments (§22.24.25), andlist with one argument (§22.24.26) of the clas
java.io.File.

ThecheckRead method defined by classSecurityManager always throws a
SecurityException. A subclass must override this method if read access
file is to be permitted with a security manager installed.

20.17.20 public void checkWrite(int fd)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if creating an output stream using the specified file descriptor is not permitted

This method is invoked for the current security manager (§20.18.4) by
constructor forjava.io.FileOutputStream (§22.16.3).

ThecheckWrite method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if creating an o
put stream from an existing file descriptor is to be permitted with a security m
ager installed.
575

20.17 java.lang.SecurityManager THE PACKAGE JAVA.LANG

576

c-

two
-
s

o a

thod

on

two

cifi-

rk
20.17.21 public void checkWrite(String file)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if writing, modifying, creating (for output), or renaming the specified file or dire
tory is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructors forjava.io.FileOutputStream (§22.16.1, §22.16.2); by two con
structors forjava.io.RandomAccessFile (§22.23.1, §22.23.2); and by method
canWrite (§22.24.18),mkdir (§22.24.23), andrenameTo (§22.24.27) of class
java.io.File.

ThecheckWrite method defined by classSecurityManager always throws
aSecurityException. A subclass must override this method if write access t
file is to be permitted with a security manager installed.

20.17.22 public void checkDelete(String file)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if deleting the specified file is not permitted.

This method is invoked for the current security manager (§20.18.4) by me
delete (§22.24.28) of classjava.io.File.

ThecheckDelete method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if a file deleti
operation is to be permitted with a security manager installed.

20.17.23 public void checkConnect(String host, int port)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if connecting to the indicatedport of the indicated networkhost is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructors for classjava.net.Socket, methodssend andreceive of class
java.net.DatagramSocket, and methodsgetByName and getAllByName of
classjava.net.InetAddress. (These classes are not documented in this spe
cation. SeeThe Java Application Programming Interface.)

The checkConnect method defined by classSecurityManager always
throws aSecurityException. A subclass must override this method if a netwo
connection is to be permitted with a security manager installed.

THE PACKAGE JAVA.LANG java.lang.SecurityManager 20.17

 the

-

 a

thod
s

et-

not
20.17.24 public void checkListen(int port)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if listening to the specified local networkport is not permitted.

This method is invoked for the current security manager (§20.18.4) by
constructor of one argument for classjava.net.DatagramSocket and by the
constructors for classjava.net.ServerSocket. (These classes are not docu
mented in this specification. SeeThe Java Application Programming Interface.)

ThecheckListen method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if listening to
local network port is to be permitted with a security manager installed.

20.17.25 public void checkAccept(String host, int port)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if accepting a connection from the indicatedport of the indicated networkhost
is not permitted.

This method is invoked for the current security manager (§20.18.4) by me
accept of classjava.net.ServerSocket. (This class is not documented in thi
specification. SeeThe Java Application Programming Interface.)

ThecheckAccept method defined by classSecurityManager always throws
a SecurityException. A subclass must override this method if accepting a n
work connection is to be permitted with a security manager installed.

20.17.26 public void checkSetFactory()

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if installing a “factory” for a socket, server socket, URL, or URL connection is
permitted.

This method is invoked for the current security manager (§20.18.4) by:

methodsetSocketFactory of classjava.net.ServerSocket
methodsetSocketImplFactory of classjava.net.Socket
methodsetURLStreamHandlerFactory of classjava.net.URL
methodsetContentHandlerFactory of classjava.net.URLConnection

(These classes are not documented in this specification. SeeThe Java Application
Programming Interface.)
577

20.17 java.lang.SecurityManager THE PACKAGE JAVA.LANG

578

ry

in-

value
tion.
 the
s

ion

 argu-

if
lled.

kage
 web

if
led.
The checkSetFactory method defined by classSecurityManager always
throws aSecurityException. A subclass must override this method if a facto
installation operation is to be permitted with a security manager installed.

20.17.27 public boolean checkTopLevelWindow()

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if creation of a top-level window is not permitted. If creation of a top-level w
dow is permitted, then this method should returnfalse if the window ought to
bear a clear warning that it is a window for an executable applet. A returned
of true means that the security manager places no restriction on window crea

This method is invoked for the current security manager (§20.18.4) by
constructors for classjava.awt.Window. (This class is not documented in thi
specification. SeeThe Java Application Programming Interface.)

The checkTopLevelWindow method defined by classSecurityManager
always returnsfalse. A subclass must override this method if a window creat
operation is to be unrestricted or forbidden with a security manager installed.

20.17.28 public void checkPackageAccess(String packageName)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if the current applet is not permitted to access the package named by the
ment. This method is intended for use by Java-capable web browsers.

The checkPackageAccess method defined by classSecurityManager
always throws aSecurityException. A subclass must override this method
package access by an applet is to be permitted with a security manager insta

20.17.29 public void checkPackageDefinition(String packageName)

throws SecurityException

The general contract of this method is that it should throw aSecurityException
if the current applet is not permitted to define a class (or interface) in the pac
named by the argument. This method is intended for use by Java-capable
browsers.

The checkPackageAccess method defined by classSecurityManager
always throws aSecurityException. A subclass must override this method
class definition by an applet is to be permitted with a security manager instal

THE PACKAGE JAVA.LANG java.lang.System 20.18

hods.

fined
for

 and
t or
 field
20.18 The Classjava.lang.System

TheSystem class contains a number of useful class variables and class met
It cannot be instantiated. Among the facilities provided by theSystem class are
standard input, output, and error output streams; access to externally de
“properties”; a means of loading files and libraries; and a utility method
quickly copying a portion of an array.

public final class System {
public static InputStream in;
public static PrintStream out;
public static PrintStream err;
public static SecurityManager getSecurityManager();
public static void setSecurityManager(SecurityManager s)

throws SecurityException;
public static long currentTimeMillis();
public static Properties getProperties()

throws SecurityException;
public static void setProperties(Properties props)

throws SecurityException;
public static String getProperty(String key)

throws SecurityException;
public static String getProperty(String key, String defaults)

throws SecurityException;
public static void exit(int status) throws SecurityException;
public static void gc();
public static void runFinalization();
public static void load(String filename)

throws SecurityException, UnsatisfiedLinkError;
public static void loadLibrary(String libname)

throws SecurityException, UnsatisfiedLinkError;
public static void arraycopy(Object src, int srcOffset,

Object dst, int dstOffset, int length)
throws NullPointerException,

ArrayStoreException, IndexOutOfBoundsException;
}

20.18.1 public static InputStream in;

The initial value of this variable is a “standard” input stream, already open
ready to supply input data. Typically, this corresponds to keyboard inpu
another input source specified by the host environment or user. Note that this
is notfinal, so its value may be updated if necessary.
579

20.18 java.lang.System THE PACKAGE JAVA.LANG

580

 and
t or
t this

:

pen
ut or
nven-
n that
tput
a-

 Java

 Java
ed
r
s nor-
20.18.2 public static PrintStream out;

The initial value of this variable is a “standard” output stream, already open
ready to accept output data. Typically, this corresponds to display outpu
another output destination specified by the host environment or user. Note tha
field is notfinal, so its value may be updated if necessary.

For simple Java applications, a typical way to write a line of output data is

System.out.println(data)

See theprintln method of classPrintStream (§22.22).

20.18.3 public static PrintStream err;

The initial value of this variable is a “standard” error output stream, already o
and ready to accept output data. Typically, this corresponds to display outp
another output destination specified by the host environment or user. By co
tion, this output stream is used to display error messages or other informatio
should come to the immediate attention of a user even if the principal ou
stream, the value of the variableout, has been redirected to a file or other destin
tion that is typically not continuously monitored. Note that this field is notfinal,
so its value may be updated if necessary.

20.18.4 public static SecurityManager getSecurityManager()

If a security manager has already been established for the currently running
system, a reference to that security manager is returned. Otherwise,null is
returned.

20.18.5 public static void setSecurityManager(SecurityManager s)

throws SecurityException

If a security manager has already been established for the currently running
system, aSecurityException is thrown. Otherwise, the argument is establish
as the current security manager. If the argument isnull and no security manage
has been established, then no action is taken and the method simply return
mally.

THE PACKAGE JAVA.LANG java.lang.System 20.18

 and
1970.
-
rsal

roper-
stem
20.18.6 public static long currentTimeMillis()

Returns the difference, measured in milliseconds, between the current time
the standard base time known as “the epoch,” 00:00:00 GMT on January 1,
See the description of the classDate (§21.3) for a discussion of slight discrepan
cies that may arise between “computer time” and UTC (Coordinated Unive
Time).

20.18.7 public static Properties getProperties()

throws SecurityException

First, if there is a security manager, itscheckPropertiesAccess method
(§20.17.15) is called with no arguments.

The current set of system properties for use by thegetProperty method is
returned as a Properties object (§21.6). If there is no current set of system p
ties, a set of system properties is first created and initialized. This set of sy
properties always includes values for the following keys:

Key Description of associated value

java.version Java version number
java.vendor Java-vendor–specific string
java.vendor.url Java vendor URL
java.home Java installation directory
java.class.version Java class format version number
java.class.path Java classpath
os.name Operating system name
os.arch Operating system architecture
os.version Operating system version
file.separator File separator (/ on UNIX)
path.separator Path separator (: on UNIX)
line.separator Line separator (\n on UNIX)
user.name User account name
user.home User home directory
user.dir User's current working directory

Note that even if the security manager does not permit thegetProperties
operation, it may choose to permit thegetProperty operation (§20.18.9).
581

20.18 java.lang.System THE PACKAGE JAVA.LANG

582

y the

s first

s first

ment
normal
20.18.8 public static void setProperties(Properties props)

throws SecurityException

First, if there is a security manager, itscheckPropertiesAccess method
(§20.17.15) is called with no arguments.

The argument becomes the current set of system properties for use b
getProperty method. See the classProperties (§21.6). If the argument is
null, then the current set of system properties is forgotten.

20.18.9 public static String getProperty(String key)

throws SecurityException

First, if there is a security manager, itscheckPropertyAccess method
(§20.17.16) is called with thekey as its argument.

If there is no current set of system properties, a set of system properties i
created and initialized in the same manner as for thegetProperties method
(§20.18.7).

The system property value associated with the specifiedkey string is returned.
If there is no property with that key, thennull is returned.

20.18.10 public static String getProperty(String key,

String defaults)

throws SecurityException

First, if there is a security manager, itscheckPropertyAccess method
(§20.17.16) is called with thekey as its argument.

If there is no current set of system properties, a set of system properties i
created and initialized in the same manner as for thegetProperties method
(§20.18.7).

The system property value associated with the specifiedkey string is returned.
If there is no property with that key, then the argumentdefaults is returned.

20.18.11 public static void exit(int status)

throws SecurityException

This method terminates the currently running Java Virtual Machine. The argu
serves as a status code; by convention, a nonzero status code indicates ab
termination.

This method never returns normally.

THE PACKAGE JAVA.LANG java.lang.System 20.18

ward
cupy
 Vir-

ward
rded

 from
te all

sys-
The callSystem.exit(n) is effectively equivalent to the call:

Runtime.getRuntime().exit(n)

For a more complete description, see theexit method of classRuntime
(§20.16.2).

20.18.12 public static void gc()

Calling this method suggests that the Java Virtual Machine expend effort to
recycling discarded objects in order to make the memory they currently oc
available for quick reuse. When control returns from the method call, the Java
tual Machine has made a best effort to recycle all discarded objects.

The callSystem.gc() is effectively equivalent to the call:

Runtime.getRuntime().gc()

For a more complete description, see thegc method of classRuntime (§20.16.9).

20.18.13 public static void runFinalization()

Calling this method suggests that the Java Virtual Machine expend effort to
running the finalization methods of objects that have been found to be disca
but whose finalization methods have not yet been run. When control returns
the method call, the Java Virtual Machine has made a best effort to comple
outstanding finalizations.

The callSystem.runFinalization() is effectively equivalent to the call:

Runtime.getRuntime().runFinalization()

For a more complete description, see therunFinalization method of class
Runtime (§20.16.10).

20.18.14 public static void load(String filename)

throws SecurityException, UnsatisfiedLinkError

This method loads a code file with the specified file name from the local file
tem.

The callSystem.load(name) is effectively equivalent to the call:

Runtime.getRuntime().load(name)

For a more complete description, see theload method of classRuntime
(§20.16.13).
583

20.18 java.lang.System THE PACKAGE JAVA.LANG

584

 the

ced by
d

ns
.
g is

th
tions

es
20.18.15 public static void loadLibrary(String libname)

throws SecurityException, UnsatisfiedLinkError

This method loads a library code file with the specified library name from
local file system.

The callSystem.loadLibrary(name) is effectively equivalent to the call

Runtime.getRuntime().loadLibrary(name)

For a more complete description, see theloadLibrary method of classRuntime
(§20.16.14).

20.18.16 public static void arraycopy(Object src, int srcOffset,

Object dst, int dstOffset, int length)

throws NullPointerException, ArrayStoreException,

IndexOutOfBoundsException

A subsequence of array components is copied from the source array referen
src to the destination array referenced bydst. The number of components copie
is equal to thelength argument. The components at the positionssrcOffset
throughsrcOffset+length-1 in the source array are copied into the positio
dstOffset throughdstOffset+length-1, respectively, of the destination array

If the src anddst arguments refer to the same array object, then copyin
performed as if the components of the source array at positionssrcOffset
throughsrcOffset+length-1 were first copied to a temporary array of leng
length and then the contents of the temporary array were copied into posi
dstOffset throughdstOffset+length-1 of the destination array.

If dst is null, then aNullPointerException is thrown.
If src is null, then aNullPointerException is thrown and the destination

array is not modified.
Otherwise, if any of the following is true, then anArrayStoreException is

thrown and the destination is not modified:

• Thesrc argument refers to an object that is not an array.

• Thedst argument refers to an object that is not an array.

• Thesrc argument anddst argument refer to arrays whose component typ
are different primitive types.

• Thesrc argument refers to an array of primitive component type and thedst
argument refers to an array of reference component type.

THE PACKAGE JAVA.LANG java.lang.System 20.18

osi-
-
 an

ource

f the
itua-
• Thesrc argument refers to an array of reference component type and thedst
argument refers to an array of primitive component type.

Otherwise, if any of the following is true, anIndexOutOfBoundsException
is thrown and the destination is not modified:

• ThesrcOffset argument is negative.

• ThedstOffset argument is negative.

• Thelength argument is negative.

• srcOffset+length is greater thansrc.length, the length of thesrc array.

• dstOffset+length is greater thandst.length, the length of thedst array.

Otherwise, if the actual value of any component of the source array from p
tion srcOffset throughsrcOffset+length-1 cannot be converted to the com
ponent type of the destination array by assignment conversion, then
ArrayStoreException is thrown. In this case, letk be the smallest nonnegative
integer less than length such thatsrc[srcOffset+k] cannot be converted to the
component type of the destination array. When the exception is thrown, the s
array components from positionssrcOffset throughsrcOffset+k-1 have been
copied to destination array positionsdstOffset throughdstOffset+k-1 and no
other positions of the destination array will have been modified. (Because o
restrictions already itemized, this paragraph effectively applies only to the s
tion where both arrays have component types that are reference types.)
585

20.19 java.lang.Runnable THE PACKAGE JAVA.LANG

586

s are
is that

r.
d
the
20.19 The Interfacejava.lang.Runnable

TheRunnable interface should be implemented by any class whose instance
intended to be executed by a new thread. All that is required of such a class
it implement a method of no arguments calledrun.

public interface Runnable {
public abstract void run();

}

20.19.1 public abstract void run()

The general contract of the methodrun is that it may take any action whatsoeve
If an object implementing interfaceRunnable is used to create a threa

(§20.20), then starting the thread will (normally) lead to the invocation of
object’srun method in that separately executing thread.

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

ded
 in an

ish

at is
20.20 The Classjava.lang.Thread

A thread is a single sequential flow of control. Thread objects allow multithrea
Java programming; a single Java Virtual Machine can execute many threads
interleaved or concurrent manner.

In the method descriptions that follow, it is very important to distingu
among “the current thread” (the thread executing the method), “thisThread” (the
object for which the method was invoked), and “this thread” (the thread th
represented by theThread object for which the method was invoked).

public class Thread implements Runnable {
public final static int MIN_PRIORITY = 1;
public final static int MAX_PRIORITY = 10;
public final static int NORM_PRIORITY = 5;
public Thread();
public Thread(String name);
public Thread(Runnable runObject);
public Thread(Runnable runObject, String name);
public Thread(ThreadGroup group, String name)

throws SecurityException, IllegalThreadStateException;
public Thread(ThreadGroup group, Runnable runObject)

throws SecurityException, IllegalThreadStateException;
public Thread(ThreadGroup group, Runnable runObject,

String name)
throws SecurityException, IllegalThreadStateException;

public String toString();
public void checkAccess() throws SecurityException;
public void run();
public void start()

throws IllegalThreadStateException;
public final void stop()

throws SecurityException;
public final void stop(Throwable thr)

throws SecurityException, NullPointerException;
public final void suspend()

throws SecurityException;
public final void resume()

throws SecurityException;
public final String getName();
public final void setName(String name)

throws SecurityException;
public final ThreadGroup getThreadGroup();
public final int getPriority();
587

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

588

tive.

n

-

-

public final void setPriority(int newPriority)
throws SecurityException, IllegalArgumentException;

public final boolean isDaemon();
public final void setDaemon(boolean on)

throws SecurityException, IllegalThreadStateException;
public final boolean isAlive();
public int countStackFrames();
public final void join()

throws InterruptedException;
public final void join(long millis)

throws InterruptedException;
public final void join(long millis, int nanos)

throws InterruptedException;
public void interrupt();
public boolean isInterrupted();
public static boolean interrupted();
public static Thread currentThread();
public static int activeCount(); // deprecated
public static int enumerate(Thread tarray[]); // deprecated
public static void dumpStack();
public static void yield();
public static void sleep(long millis)

throws InterruptedException;
public static void sleep(long millis, int nanos)

throws InterruptedException;
public void destroy();

}

When a newThread object is created, the thread it represents is not yet ac
It is activated when some other thread calls thestart method (§20.20.14) of the
Thread object. This causes the thread represented by theThread object to invoke
therun method (§20.20.13) of theThread object. The newly activated thread the
remains alive until it stops because one of five things occurs:

• The initial invocation of therun method by the newly activated thread com
pletes normally through a normal return from therun method.

• The initial invocation of therun method by the newly activated thread com
pletes abruptly because an exception was thrown.

• The thread invokes thestop method (§20.20.15) of theThread object (and
the security manager (§20.17.11) approves execution of thestop operation).

• Some other thread invokes thestop method of theThread object (and the
security manager (§20.17.11) approves execution of thestop operation).

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

 the

m its
 and it

es no
ctive

n-

cution

g
ce to
t the

used
 new

 the

f the

on
 of a
 the
• Some thread invokes theexit method (§20.16.2) of classRuntime (and the
security manager (§20.17.13) approves execution of theexit operation); this
stops every thread being run by the Java Virtual Machine that is running
thread that invokes theexit method.

As a thread dies, thenotifyAll method (§20.1.10) is invoked for theThread
object that represents it; this fact is important for the proper operation of thejoin
methods (§20.20.28, §20.20.29, §20.20.30). A thread is also removed fro
thread group as it dies. Once a thread has been stopped, it is no longer alive
cannot be restarted.

A thread that is alive can besuspended andresumed. A suspended thread is
considered to be alive, but it performs no work, makes no progress, execut
virtual machine instructions. Resumption restores a thread to the state of a
execution. A thread is suspended when it or another thread calls thesuspend
method (§20.20.17) of theThread object that represents it (and the security ma
ager (§20.17.11) approves execution of thesuspend operation). A thread is
resumed when another thread calls theresume method (§20.20.18) of theThread
object that represents it (and the security manager (§20.17.11) approves exe
of theresume operation).

Every thread has apriority. When there is competition for processin
resources, threads with higher priority are generally executed in preferen
threads with lower priority. Such preference is not, however, a guarantee tha
highest priority thread will always be running, and thread priorities cannot be
to implement mutual exclusion. When code running in some thread creates a
Thread object, the newly created thread has its priority initially set equal to
priority of the creating thread. But the priority of a threadT may be changed at
any time if some thread invokes thesetPriority method of theThread object
that representsT (and the security manager (§20.17.11) approves execution o
setPriority operation).

Each thread may or may not be marked as adaemon. When code running in
some thread creates a newThread object, the newly created thread is a daem
thread if and only if the creating thread is a daemon. But the daemonhood
threadT may be changed before it is activated if some other thread invokes
setDaemon method of theThread object that representsT (and the security man-
ager (§20.17.11) approves execution of thesetDaemon operation).
589

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

590

mon

o the
pped.
clare

and
rimes

nt the
When a Java Virtual Machine starts up, there is usually a single non-dae
thread, which typically begins by invoking the methodmain of some designated
class. The Java Virtual Machine continues to execute threads according t
thread execution model until all threads that are not daemon threads have sto

There are two ways to create a new thread of execution. One is to de
some class to be a subclass ofThread; this subclass should override therun
method of classThread. An instance of the subclass can then be created
started. For example, consider code for a thread whose job is to compute p
larger than a stated value:

class PrimeThread extends Thread {

long minPrime;

PrimeThread(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger thanminPrime
...

}

}

The following code would then create a thread and start it running:

PrimeThread p = new PrimeThread(143);
p.start();

The other way to create a thread is to is to declare some class to impleme
Runnable interface, which also requires that the class implement therun method.
An instance of the class can then be created, used to create aThread, and started.
The same example in this other style looks like this:

class PrimeRun implements Runnable {

long minPrime;

PrimeRun(long minPrime) {
this.minPrime = minPrime;

}

public void run() {
// compute primes larger thanminPrime
...

}

}

The following code would then create a thread and start it running:

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

 thread

0.21).
ate a

ecu-

a

-
d group

 call
PrimeRun p = new PrimeRun(143);
new Thread(p).start();

Every thread has a name, which is aString, for identification purposes. More
than one thread may have the same name. If a name is not specified when a
is created, a new name is generated for it.

Every thread that has not yet been stopped belongs to a thread group (§2
A thread can always create a new thread in its own thread group. To cre
thread in some other thread group requires the approval of thecheckAccess
method (§20.21.4) of that thread group, which forwards the decision to the s
rity manager (§20.17.11).

20.20.1 public final static int MIN_PRIORITY = 1;

The constant value of this field is1, the smallest allowed priority for a thread.

20.20.2 public final static int MAX_PRIORITY = 10;

The constant value of this field is10, the largest allowed priority value for a
thread.

20.20.3 public final static int NORM_PRIORITY = 5;

The constant value of this field is5, the normal priority for a thread that is not
daemon.

20.20.4 public Thread()

This constructor initializes a newly createdThread object so that it has no sepa
rate run object, has a newly generated name, and belongs to the same threa
as the thread that is creating the new thread.

This constructor has exactly the same effect as the explicit constructor
this(null, null, gname) (§20.20.10), wheregname is a newly generated
name. Automatically generated names are of the form"Thread-"+n , wheren is
an integer.
591

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

592

-
ad

 call

ngs to

 call

ad.
 call

ad

 call
20.20.5 public Thread(String name)

This constructor initializes a newly createdThread object so that it has no sepa
rate run object, has the specifiedname as its name, and belongs to the same thre
group as the thread that is creating the new thread.

This constructor has exactly the same effect as the explicit constructor
this(null, null, name) (§20.20.10).

20.20.6 public Thread(Runnable runObject)

This constructor initializes a newly createdThread object so that it has the given
runObject as its separate run object, has a newly generated name, and belo
the same thread group as the thread that is creating the new thread.

This constructor has exactly the same effect as the explicit constructor
this(null, runObject, gname) (§20.20.10) wheregname is a newly generated
name. Automatically generated names are of the form"Thread-"+n wheren is
an integer.

20.20.7 public Thread(Runnable runObject, String name)

This constructor initializes a newly createdThread object so that it has the given
runObject as its separate run object, has the specifiedname as its name, and
belongs to the same thread group as the thread that is creating the new thre

This constructor has exactly the same effect as the explicit constructor
this(null, runObject, name) (§20.20.10).

20.20.8 public Thread(ThreadGroup group, String name)

throws SecurityException, IllegalThreadStateException

First, if group is notnull, the checkAccess method (§20.21.4) of that thread
group is called with no arguments.

This constructor initializes a newly createdThread object so that it has no
separate run object, has the specifiedname as its name, and belongs to the thre
group referred to bygroup (but if group is null, then the new thread will belong
to the same thread group as the thread that is creating the new thread).

If group is a ThreadGroup that has been destroyed by methoddestroy
(§20.21.11), then anIllegalThreadStateException is thrown.

This constructor has exactly the same effect as the explicit constructor
Thread(group, null, name) (§20.20.10).

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

, and

g the

 call

eating

eat-

f and
20.20.9 public Thread(ThreadGroup group, Runnable runObject)

throws SecurityException, IllegalThreadStateException

First, if group is notnull, the checkAccess method (§20.21.4) of that thread
group is called with no arguments.

This constructor initializes a newly createdThread object so that it has the
given runObject as its separate run object, has a newly generated name
belongs to the thread group referred to bygroup (but if group is null, then the
new thread will belong to the same thread group as the thread that is creatin
new thread).

If group is a ThreadGroup that has been destroyed by methoddestroy
(§20.21.11), then anIllegalThreadStateException is thrown.

This constructor has exactly the same effect as the explicit constructor
this(group, runObject, gname) (§20.20.10) wheregname is a newly gener-
ated name. Automatically generated names are of the form"Thread-"+n wheren
is an integer.

20.20.10 public Thread(ThreadGroup group, Runnable runObject,

String name)

throws SecurityException, IllegalThreadStateException

First, if group is notnull, the checkAccess method (§20.21.4) of that thread
group is called with no arguments; this may result in aSecurityException
being thrown.

This constructor initializes a newly createdThread object so that it has the
given runObject as its separate run object, has the specifiedname as its name,
and belongs to the thread group referred to bygroup (but if group is null, then
the new thread will belong to the same thread group as the thread that is cr
the new thread).

If group is a ThreadGroup that has been destroyed by methoddestroy
(§20.21.11), then anIllegalThreadStateException is thrown.

The priority of the newly created thread is set equal to the priority of the cr
ing thread—that is, the currently running thread. The methodsetPriority
(§20.20.23) may be used to change the priority to a new value.

The newly created thread is initially marked as being a daemon thread i
only if the thread creating it is a daemon thread. The methodsetDaemon
(§20.20.25) may be used to change whether or not a thread is a daemon.
593

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

594

read

on of

ls the
n-
20.20.11 public String toString()

The returned value is a concatenation of the following seven strings:

• "Thread["

• The current name of the thread (§20.20.19)

• ","

• The current priority of the thread (§20.20.22), as a decimal numeral

• ","

• The name (§20.21.5) of the thread group (§20.20.21) that contains this th

• "]"

All literal characters mentioned above are from the ACSII subset of Unicode.
Overrides thetoString method ofObject (§20.1.3).

20.20.12 public void checkAccess() throws SecurityException

If there is a security manager, itscheckAccess method (§20.17.11) is called with
this Thread object as its argument. This may result in aSecurityException
being thrown in the current thread,.

This method is called by methodsstop of no arguments (§20.20.15),stop of
one argument (§20.20.16),suspend (§20.20.17),resume (§20.20.18),setName
(§20.20.20),setPriority (§20.20.23), andsetDaemon (§20.20.25).

20.20.13 public void run()

The general contract of this method is that it should perform the intended acti
the thread.

Therun method of classThread simply calls therun method of the separate
run object, if there is one; otherwise, it does nothing.

20.20.14 public void start()

throws IllegalThreadStateException

Invoking this method causes this thread to begin execution; this thread cal
run method of thisThread object. The result is that two threads are running co
currently: the current thread (which returns from the call to thestart method)
and the thread represented by thisThread object (which executes itsrun method).

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

d to
 is

ad is

ing a
-

ally
s will
xcep-

d to
 is
is is an
ts

ad is
20.20.15 public final void stop()

throws SecurityException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

This thread is forced to complete abnormally whatever it was doing an
throw a ThreadDeath object as an exception. For this purpose, this thread
resumed if it had been suspended, and is awakened if it had been asleep.

It is permitted to stop a thread that has not yet been started. If the thre
eventually started, it will immediately terminate.

User code should not normally try to catchThreadDeath unless some
extraordinary cleanup operation is necessary (note that the process of throw
ThreadDeath exceptionwill causefinally clauses oftry statements to be exe
cuted before the thread officially dies). If acatch clause does catch aThread-
Death object, it is important to rethrow the object so that the thread will actu
die. The top-level error handler that reacts to otherwise uncaught exception
not print a message or otherwise signal or notify the user if the uncaught e
tion is an instance ofThreadDeath.

20.20.16 public final void stop(Throwable thr)

throws SecurityException, NullPointerException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

If the argumentthr is null, then aNullPointerException is thrown (in the
current thread).

This thread is forced to complete abnormally whatever it was doing an
throw theThrowable objectthr as an exception. For this purpose, this thread
resumed if it had been suspended, and is awakened if it had been asleep. Th
unusual action to take; normally, thestop method that takes no argumen
(§20.20.15) should be used.

It is permitted to stop a thread that has not yet been started. If the thre
eventually started, it will immediately terminate.
595

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

596

rther
that is
tallied;

itted
 never
s in its
 than
20.20.17 public final void suspend()

throws SecurityException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

If this thread is alive (§20.20.26), it is suspended and makes no fu
progress unless and until it is resumed. It is permitted to suspend a thread
already in a suspended state; it remains suspended. Suspensions are not
even if a thread is suspended more than once, only one call toresume is required
to resume it.

20.20.18 public final void resume()

throws SecurityException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

If this thread is alive (§20.20.26) but suspended, it is resumed and is perm
to make progress in its execution. It is permitted to resume a thread that has
been suspended or has already been resumed; it continues to make progres
execution. Resumptions are not tallied; even if a thread is resumed more
once, only one call tosuspend is required to suspend it.

20.20.19 public final String getName()

The current name of thisThread object is returned as aString.

20.20.20 public final void setName(String name)

throws SecurityException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

The name of thisThread object is changed to be equal to the argumentname.

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

d has

i-
e

20.20.21 public final ThreadGroup getThreadGroup()

If this thread is alive, this method returns a reference to theThreadGroup object
that represents the thread group to which this thread belongs. If this threa
died (has been stopped), this method returnsnull.

20.20.22 public final int getPriority()

The current priority of thisThread object is returned.

20.20.23 public final void setPriority(int newPriority)

throws SecurityException, IllegalArgumentException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

If the newPriority argument is less thanMIN_PRIORITY (§20.20.1) or
greater thanMAX_PRIORITY (§20.20.2), then anIllegalArgumentException is
thrown.

Otherwise, the priority of thisThread object is set to the smaller of the spec
fied newPriority and the maximum permitted priority (§20.21.12) of th
thread’s thread group (§20.20.21).

20.20.24 public final boolean isDaemon()

The result istrue if and only if this thread is marked as a daemon thread.

20.20.25 public final void setDaemon(boolean on)

throws SecurityException, IllegalThreadStateException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

If this thread is alive, anIllegalThreadStateException is thrown. Other-
wise, this thread is marked as being a daemon thread if the argument istrue, and
as not being a daemon thread if the argument isfalse.
597

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

598

 not

ently

it is

eal

 this

it is

eal
20.20.26 public final boolean isAlive()

The result istrue if and only if this thread is alive (it has been started and has
yet died).

20.20.27 public int countStackFrames()

This method returns the number of Java Virtual Machine stack frames curr
active for this thread.

20.20.28 public final void join() throws InterruptedException

This method causes the current thread to wait (using thewait method (§20.1.6) of
classObject) until this thread is no longer alive.

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then the wait is ended and anInterruptedException is thrown.

20.20.29 public final void join(long millis)

throws InterruptedException

This method causes the current thread to wait (using thewait method (§20.1.7) of
classObject) until either this thread is no longer alive or a certain amount of r
time has elapsed, more or less.

The amount of real time, measured in milliseconds, is given bymillis. If
millis is zero, however, then real time is not taken into consideration and
method simply waits until this thread is no longer alive.

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then the wait is ended and anInterruptedException is thrown.

20.20.30 public final void join(long millis, int nanos)

throws InterruptedException

This method causes the current thread to wait (using thewait method (§20.1.8) of
classObject) until either this thread is no longer alive or a certain amount of r
time has elapsed, more or less.

The amount of real time, measured in nanoseconds, is given by:

1000000*millis+nanos

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

s

it is

sarily
ak-

his

ur-

h the
hread

omes
In all other respects, this method does the same thing as the methodjoin of one
argument (§20.20.29). In particular,join(0, 0) means the same thing a
join(0).

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then the wait is ended and anInterruptedException is thrown.

20.20.31 public void interrupt()

An interrupt request is posted for this thread. This thread does not neces
react immediately to the interrupt, however. If this thread is waiting, it is aw
ened and it then throws anInterruptedException.

[This method is scheduled for introduction in Java version 1.1.]

20.20.32 public boolean isInterrupted()

The result istrue if and only if an interrupt request has been posted for t
thread.

[This method is scheduled for introduction in Java version 1.1.]

20.20.33 public static boolean interrupted()

The result istrue if and only if an interrupt request has been posted for the c
rent thread.

[This method is scheduled for introduction in Java version 1.1.]

20.20.34 public static Thread currentThread()

TheThread object that represents the current thread is returned.

20.20.35 public static int activeCount()

This method returns the number of active threads in the thread group to whic
current thread belongs. This count includes threads in subgroups of that t
group. This is the same as the value of the expression:

Threads.currentThread().getThreadGroup().activeCount()

[This method is deprecated for use in new code after Java version 1.1 bec
available. Instead, an expression equivalent to:
599

20.20 java.lang.Thread THE PACKAGE JAVA.LANG

600

clud-
hread
e
s

d

omes

rrent

ler to

urther

it is
Threads.currentThread().getThreadGroup().allThreadsCount()

should be used. See the methodallThreadsCount of classThreadGroup.]

20.20.36 public static int enumerate(Thread tarray[])

The active threads in the thread group to which the current thread belongs, in
ing threads in subgroups of that thread group, are enumerated and their T
objects are put into the arraytarray. The number of threads actually put into th
array is returned. Call this valuen; then the threads have been put into element0
throughn-1 of tarray. If the number of threads exceeds the length oftarray,
then some of the threads,tarray.length of them, are chosen arbitrarily an
used to fill the arraytarray.

[This method is deprecated for use in new code after Java version 1.1 bec
available. Instead, an expression equivalent to:

Threads.currentThread().getThreadGroup().allThreads()

should be used. See the methodallThreads of classThreadGroup.]

20.20.37 public static void dumpStack()

This is a utility method that makes it easy to print a stack dump for the cu
thread. It is equivalent in effect to:

new Exception("Stack trace").printStackTrace()

See theprintStackTrace method (§20.22.6) of classThrowable.

20.20.38 public static void yield()

This method causes the current thread to yield, allowing the thread schedu
choose another runnable thread for execution.

20.20.39 public static void sleep(long millis)

throws InterruptedException

This method causes the current thread to yield and not to be scheduled for f
execution until a certain amount of real time has elapsed, more or less.

The amount of real time, measured in milliseconds, is given bymillis.
If the current thread is interrupted (§20.20.31) by another thread while

waiting, then the sleep is ended and anInterruptedException is thrown.

THE PACKAGE JAVA.LANG java.lang.Thread 20.20

urther

s

it is

 has
20.20.40 public static void sleep(long millis, int nanos)

throws InterruptedException

This method causes the current thread to yield and not to be scheduled for f
execution until a certain amount of real time has elapsed, more or less.

The amount of real time, measured in nanoseconds, is given by:

1000000*millis+nanos

In all other respects, this method does the same thing as the methodsleep of one
argument (§20.20.39). In particular,sleep(0, 0) means the same thing a
sleep(0).

If the current thread is interrupted (§20.20.31) by another thread while
waiting, then the sleep is ended and anInterruptedException is thrown.

20.20.41 public void destroy()

throws SecurityException

First, thecheckAccess method (§20.20.12) of thisThread object is called with
no arguments. This may result in throwing aSecurityException (in the current
thread).

Then destroys this thread, without any cleanup. Any monitors the thread
locked remain locked.

[This method is not implemented in early versions of Java, through 1.1.]
601

20.21 java.lang.ThreadGroup THE PACKAGE JAVA.LANG

602

gs to
stem
rm a

curity
 own

proval
.

20.21 The Classjava.lang.ThreadGroup

A thread group is a set of threads and thread groups. Every thread belon
exactly one thread group, and every thread group but one (called the “sy
thread group”) belongs to some other thread group. Thus thread groups fo
tree with the system thread group at the root.

Thread groups provide a way to manage threads and to impose se
boundaries; for example, a thread may always create a new thread within its
thread group, but creating a thread in another thread group requires the ap
of the security manager (§20.17), as does the creation of a new thread group

public class ThreadGroup {
public ThreadGroup(String name)

throws SecurityException;
public ThreadGroup(ThreadGroup parent, String name)

throws NullPointerExpression, SecurityException,
IllegalThreadStateException;

public String toString();
public final void checkAccess();
public final String getName();
public final ThreadGroup getParent();
public final boolean parentOf(ThreadGroup g);
public final void stop()

throws SecurityException;
public final void suspend()

throws SecurityException;
public final void resume()

throws SecurityException;
public final void destroy()

throws SecurityException, IllegalThreadStateException;
public final int getMaxPriority();
public final void setMaxPriority(int newMaxPriority)

throws SecurityException, IllegalArgumentException;
public final boolean isDaemon();
public final void setDaemon(boolean daemon)

throws SecurityException;
public int threadsCount();
public int allThreadsCount();
public int groupsCount();
public int allGroupsCount();
public Thread[] threads();
public Thread[] allThreads();
public ThreadGroup[] groups();
public ThreadGroup[] allGroups();

THE PACKAGE JAVA.LANG java.lang.ThreadGroup 20.21

as a
cur-

ecu-

o the

ur-

hread

 call
public int activeCount(); // deprecated
public int activeGroupCount(); // deprecated
public int enumerate(Thread list[]); // deprecated
public int enumerate(Thread list[], // deprecated

boolean recurse);
public int enumerate(ThreadGroup list[]); // deprecated
public int enumerate(ThreadGroup list[], // deprecated

boolean recurse);
public void list();
public void uncaughtException(Thread t, Throwable e);

}

Every thread group has amaximum priority. The priority of a thread cannot be
set (§20.20.23) higher than the maximum priority of its thread group.

Each thread group may or may not be marked as adaemon. When a new
ThreadGroup object is created, the newly created thread group is marked
daemon thread group if and only if the thread group to which it belongs is
rently a daemon thread group. But the daemonhood of a thread groupG may be
changed at any time by calling thesetDaemon method of theThreadGroup object
that representsG (provided that the security manager (§20.17.12) approves ex
tion of thesetDaemon operation).

Every thread group has a name, which is aString, for identification pur-
poses. More than one thread group may have the same name.

Creation of a thread group requires the approval of thecheckAccess method
(§20.21.4) of its proposed parent thread group, which forwards the decision t
security manager (§20.17.11).

20.21.1 public ThreadGroup(String name)

throws SecurityException

First, thecheckAccess method (§20.21.4) of the thread group to which the c
rent thread belongs is called with no arguments.

This constructor initializes a newly createdThreadGroup object so that it has
the specifiedname as its name and belongs to the same thread group as the t
that is creating the new thread group.

This constructor has exactly the same effect as the explicit constructor
this(Thread.currentThread().getThreadGroup(), name) (§20.21.2).
603

20.21 java.lang.ThreadGroup THE PACKAGE JAVA.LANG

604

d by

 the

read

emon

imal
20.21.2 public ThreadGroup(ThreadGroup parent, String name)

throws NullPointerExpression, SecurityException,

IllegalThreadStateException

First, thecheckAccess method (§20.21.4) of theparent thread group is called
with no arguments.

If parent is null, then aNullPointerExpression is thrown. Ifparent is a
ThreadGroup that has been destroyed by methoddestroy (§20.21.11), then an
IllegalThreadStateException is thrown.

This constructor initializes a newly createdThreadGroup object so that it has
the specifiedname as its name and belongs to the thread group represente
parent.

The maximum priority for the newly created thread group is set equal to
maximum priority ofparent. The methodsetMaxPriority (§20.21.13) may be
used to change the maximum priority to a lower value.

The newly created thread group is initially marked as being a daemon th
group if and onlyparent is a daemon thread group. The methodsetDaemon
(§20.21.15) may be used to change whether or not a thread group is a da
thread group.

20.21.3 public String toString()

The returned value is a concatenation of the following six strings:

• The name of the class of this thread group object

• "[name="

• The name (§20.21.5) of this thread group

• ",maxpri="

• The current maximum priority (§20.21.12) for this thread group, as a dec
numeral

• "]"

All literal characters mentioned above are from the ASCII subset of Unicode.
Overrides thetoString method ofObject (§20.1.3).

THE PACKAGE JAVA.LANG java.lang.ThreadGroup 20.21

ur-

to
roup,

er

truse,

ore
20.21.4 public final void checkAccess()

If there is a security manager, itscheckAccess method (§20.17.12) is called with
this ThreadGroup object as its argument. This may result in throwing, in the c
rent thread, aSecurityException.

This method is called by methodsstop (§20.21.8),suspend (§20.21.9),
resume (§20.21.10),destroy (§20.21.11),setMaxPriority (§20.21.13), and
setDaemon (§20.21.15).

20.21.5 public final String getName()

The current name of thisThreadGroup object is returned as aString.

20.21.6 public final ThreadGroup getParent()

This method returns theThreadGroup object that represents the thread group
which this thread group belongs. If this thread group is the system thread g
which is at the root of the thread group hierarchy, thennull is returned.

20.21.7 public final boolean parentOf(ThreadGroup g)

This method returnstrue if and only if either this thread group isg or this method
is true when applied to the parent ofg. In other words, this method says wheth
this thread group is an ancestor ofg or perhapsg itself.

(This method arguably is misnamed; a more accurate, if clumsy and abs
name would beparentOfReflexiveTransitiveClosure.)

20.21.8 public final void stop() throws SecurityException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

Every thread in this thread group or any of its subgroups is stopped. M
precisely, the methodstop is called for everyThreadGroup and everyThread
(§20.20.15) that belongs to thisThreadGroup.
605

20.21 java.lang.ThreadGroup THE PACKAGE JAVA.LANG

606

More

ore

 any

gs to
oup.
royed

hread
20.21.9 public final void suspend() throws SecurityException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

Every thread in this thread group or any of its subgroups is suspended.
precisely, the methodsuspend is called for everyThreadGroup and every
Thread (§20.20.17) that belongs to thisThreadGroup.

20.21.10 public final void resume() throws SecurityException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

Every thread in this thread group or any of its subgroups is resumed. M
precisely, the methodresume is called for everyThreadGroup and everyThread
(§20.20.18) that belongs to thisThreadGroup.

20.21.11 public final void destroy()

throws SecurityException, IllegalThreadStateException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

This thread group is destroyed. If it has already been destroyed, or if
threads belong to it directly, then anIllegalThreadStateException is thrown.
Otherwise, this method is called recursively for every thread group that belon
this thread group, and this thread group is removed from its parent thread gr

A thread group that is currently marked as a daemon thread group is dest
automatically if both of the following conditions are true:

• A thread or thread group has just been removed from it (because the t
has died or the thread group has been destroyed).

• The thread group now contains no more threads or thread groups.

20.21.12 public final int getMaxPriority()

The current maximum priority of thisThreadGroup object is returned.

THE PACKAGE JAVA.LANG java.lang.ThreadGroup 20.21

f
stem
t to

on

ment

read

 or to
20.21.13 public final void setMaxPriority(int newMaxPriority)

throws SecurityException, IllegalArgumentException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

If the newMaxPriority argument is less thanMIN_PRIORITY (§20.20.1) or
greater thanMAX_PRIORITY (§20.20.2), then anIllegalArgumentException is
thrown.

Otherwise, the priority of thisThreadGroup object is set to the smaller of the
specifiednewMaxPriority and the maximum permitted priority (§20.21.12) o
the parent of this thread group (§20.21.12). (If this thread group is the sy
thread group, which has no parent, then its maximum priority is simply se
newMaxPriority.) Then this method is called recursively, withnewMaxPriority
as its argument, for every thread group that belongs to this thread group.

20.21.14 public final boolean isDaemon()

The result istrue if and only if this thread group is currently marked as a daem
thread group.

20.21.15 public final void setDaemon(boolean daemon)

throws SecurityException

First, thecheckAccess method (§20.21.4) of thisThreadGroup object is called
with no arguments. This may result in aSecurityException being thrown (in
the current thread).

This thread group is marked as being a daemon thread group if the argu
is true, and as not being a daemon thread group if the argument isfalse.

20.21.16 public int threadsCount()

This method returns the number of threads that directly belong to this th
group.

20.21.17 public int allThreadsCount()

This method returns the number of threads that belong to this thread group
any of its subgroups.
607

20.21 java.lang.ThreadGroup THE PACKAGE JAVA.LANG

608

 this

group

s.

omes
20.21.18 public int groupsCount()

This method returns the number of thread groups that directly belong to
thread group.

20.21.19 public int allGroupsCount()

This method returns the number of thread groups that belong to this thread
or to any of its subgroups.

20.21.20 public Thread[] threads()

This method returns a newly created array containing theThread objects for all
threads that directly belong to this thread group.

20.21.21 public Thread[] allThreads()

This method returns a newly created array containing theThread objects for all
threads that belong to this thread group or to any of its subgroups.

20.21.22 public ThreadGroup[] groups()

This method returns a newly created array containing theThreadGroup objects
for all thread groups that directly belong to this thread group.

20.21.23 public ThreadGroup[] allGroups()

This method returns a newly created array containing theThreadGroup objects
for all thread groups that belong to this thread group or to any of its subgroup

20.21.24 public int activeCount()

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the equivalent methodallThreadsCount instead.]

THE PACKAGE JAVA.LANG java.lang.ThreadGroup 20.21

omes

omes

omes

omes

omes

ream

rs (for
1)

o
hen-

ongs
20.21.25 public int activeGroupCount()

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the equivalent methodallGroupsCount instead.]

20.21.26 public int enumerate(Thread list[])

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the methodallThreads instead.]

20.21.27 public int enumerate(Thread list[], boolean recurse)

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the methodthreads or allThreads instead.]

20.21.28 public int enumerate(ThreadGroup list[])

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the methodallGroups instead.]

20.21.29 public int enumerate(ThreadGroup list[], boolean recurse)

[This method is deprecated for use in new code after Java version 1.1 bec
available. Use the methodgroups or allGroups instead.]

20.21.30 public void list()

This method prints a detailed description of this thread group to the output st
System.out (§20.18.2). It is intended as a convenient utility for debugging.

The output is a series of lines; each line contains some space characte
indentation) followed by thetoString representation of one thread (§20.20.1
or one thread group (§20.21.3).

The first line gives thetoString representation for this thread group, with n
indentation spaces. Following lines are then generated by a recursive rule: w
ever a line is printed for a thread groupG with n leading spaces, it is immediately
followed by one line for each thread that directly belongs toG, with spaces
of indentation; then one line is printed for each thread group that directly bel
to G, with spaces of indentation, using the recursive case.

n 4+

n 4+
609

20.21 java.lang.ThreadGroup THE PACKAGE JAVA.LANG

610

d
wn in

o

 goes

od is
roup
20.21.31 public void uncaughtException(Thread t, Throwable e)

The general contract ofuncaughtException is that it is called whenever a threa
that belongs directly to this thread group dies because an exception was thro
that thread and not caught. The arguments are theThread object for the thread in
question and theThrowable object that was thrown. TheuncaughtException
method may then take any appropriate action.

The call touncaughtException is performed by the thread that failed t
catch the exception, sot is the current thread. The call touncaughtException is
the last action of the thread before it dies. If the call touncaughtException itself
results in an (uncaught) exception, this fact is ignored and the thread merely
on to die.

The methoduncaughtException defined by classThreadGroup takes one
of two actions. If this thread group has a parent thread group, then this meth
invoked for that parent thread group, with the same arguments. If this thread g
is the system thread group (which has no parent), then if the exceptione is not an
instance ofThreadDeath (§20.22), a stack trace (§20.22.6) fore is printed on the
error output stream that is the value of the fieldSystem.err (§20.18.3).

Subclasses ofThreadGroup may override theuncaughtException method.

THE PACKAGE JAVA.LANG java.lang.Throwable and its Subclasses 20.22

lass

ave
xcep-
).
ion
20.22 The Classjava.lang.Throwable and its Subclasses

The throw statement (§14.16) is permitted to throw only instances of the c
Throwable and its subclasses. Instances of two subclasses,Error andExcep-
tion, are conventionally used to indicate that exceptional situations h
occurred. Typically, these instances are freshly created in the context of the e
tional situation so as to include relevant information (such as stack trace data

The following list shows the hierarchical relationships of all the except
classes predefined in packagejava.lang by the Java language:

Throwable
Error

LinkageError
ClassCircularityError
ClassFormatError
ExceptionInInitializerError
IncompatibleClassChangeError

AbstractMethodError
IllegalAccessError
InstantiationError
NoSuchFieldError
NoSuchMethodError

NoClassDefFoundError
UnsatisfiedLinkError
VerifyError

VirtualMachineError
InternalError
OutOfMemoryError
StackOverflowError
UnknownError

ThreadDeath
Exception

ClassNotFoundException
CloneNotSupportedException
IllegalAccessException
InstantiationException
InterruptedException
RuntimeException

ArithmeticException
ArrayStoreException
ClassCastException
IllegalArgumentException

IllegalThreadStateException
NumberFormatException

IllegalMonitorStateException
IndexOutOfBoundsException
NegativeArraySizeException
NullPointerException
SecurityException
611

20.22 java.lang.Throwable and its Subclasses THE PACKAGE JAVA.LANG

612

rs,

e, with
-

.2),

.1),

.2),
By convention, classThrowable and all its subclasses have two constructo
one that takes no arguments and one that takes aString argument that can be
used to produce an error message. This is true of all the classes shown abov
one exception:ExceptionInInitializerError. These predefined classes oth
erwise have no new content; they merely inherit methods from classThrowable.

public class Throwable {
public Throwable();
public Throwable(String message);
public String toString();
public String getMessage();
public Throwable fillInStackTrace();
public void printStackTrace();
public void printStackTrace(java.io.PrintStream s);

}

20.22.1 public Throwable()

This constructor initializes a newly createdThrowable object withnull as its
error message string. Also, the methodfillInStackTrace (§20.22.5) is called
for this object.

20.22.2 public Throwable(String message)

This constructor initializes a newly createdThrowable object by saving a refer-
ence to the error message strings for later retrieval by thegetMessage method
(§20.22.3). Also, the methodfillInStackTrace (§20.22.5) is called for this
object.

20.22.3 public String getMessage()

If this Throwable object was created with an error message string (§20.22
then a reference to that string is returned.

If this Throwable object was created with no error message string (§20.22
thennull is returned.

20.22.4 public String toString()

If this Throwable object was created with an error message string (§20.22
then the result is the concatenation of three strings:

THE PACKAGE JAVA.LANG java.lang.Throwable and its Subclasses 20.22

.1),

t

g

t the
• The name of the actual class of this object

• ": " (a colon and a space)

• The result of thegetMessage method (§20.22.3) for this object

If this Throwable object was created with no error message string (§20.22
then the name of the actual class of this object is returned.

20.22.5 public Throwable fillInStackTrace()

This method records within thisThrowable object information about the curren
state of the stack frames for the current thread.

20.22.6 public void printStackTrace()

This method prints a stack trace for thisThrowable object on the error output
stream that is the value of the fieldSystem.err (§20.18.3). The first line of output
contains the result of thetoString method (§20.22.4) for this object. Remainin
lines represent data previously recorded by the methodfillInStackTrace
(§20.22.5). The format of this information depends on the implementation, bu
following example may be regarded as typical:

java.lang.NullPointerException
at MyClass.mash(MyClass.java:9)
at MyClass.crunch(MyClass.java:6)
at MyClass.main(MyClass.java:3)

This example was produced by running the program:

class MyClass {

public static void main(String[] argv) {
crunch(null);

}

static void crunch(int[] a) {
mash(a);

}

static void mash(int[] b) {
System.out.println(b[0]);

}

613

20.23 java.lang.ExceptionInInitializerError THE PACKAGE JAVA.LANG

614

n

20.23 The Class
java.lang.ExceptionInInitializerError

An ExceptionInInitializerError is thrown to indicate that an exceptio
occurred during evaluation of a static initializer or the initializer for astatic
variable (§12.4.2).

public class ExceptionInInitializerError
extends RuntimeException {

public ExceptionInInitializerError();
public ExceptionInInitializerError(String s);
public ExceptionInInitializerError(Throwable thrown);
public Throwable getException();

}

20.23.1 public ExceptionInInitializerError()

This constructor initializes a newly createdExceptionInInitializerError
with null as its error message string and with a no saved throwable object.

20.23.2 public ExceptionInInitializerError(String s)

This constructor initializes a newly createdExceptionInInitializerError by
saving a reference to the error message strings for later retrieval by thegetMes-
sage method (§20.22.3). There is no saved throwable object.

20.23.3 public ExceptionInInitializerError(Throwable thrown)

This constructor initializes a newly createdExceptionInInitializerError by
saving a reference to theThrowable object thrown for later retrieval by the
getException method (§20.22.3). The error message string is set tonull.

20.23.4 public Throwable getException(Throwable thrown)

The saved throwable object of thisExceptionInInitializerError is returned;
null is returned if thisExceptionInInitializerError has no saved throwable
object.

C H A P T E R 21
il
 on

sent

ime
y of
day of
e are

rs

tan-

s,
r

cha-

mly
ibu-
r.
he
od is

rs,
The Packagejava.util

The Package java.utTHE java.util package contains various utility classes and interfaces.
Notable among these utilities is theEnumeration interface. An object that

implements this interface will generate a series of items, delivering them
demand, one by one. Container classes such asDictionary andVector provide
one or more methods that return anEnumeration.

A BitSet contains an indexed collection of bits that may be used to repre
a set of nonnegative integers.

The classDate provides a convenient way to represent and manipulate t
and date information. Dates may be constructed from a year, month, da
month, hour, minute, and second, and those six components, as well as the
the week, may be extracted from a date. Time zones and daylight saving tim
properly accounted for.

The abstract classDictionary represents a collection of key–value pai
and allows a value to be fetched given the key. The classHashtable is one con-
crete implementation ofDictionary. The classProperties extendsHashtable
by allowing one table to provide default values for another and by providing s
dard means for reading entries from files and writing entries to files.

The classObservable provides a mechanism for notifying other object
called “observers,” whenever anObservable object is changed. An observe
object may be any object that implements theObserver interface. (This notifica-
tion mechanism is distinct from that provided by thewait andnotify methods of
classObject (§20.1) and is not connected with the thread scheduling me
nism.)

The classRandom provides an extensive set of methods for pseudorando
generating numeric values of various primitive types and with various distr
tions. Each instance of classRandom is an independent pseudorandom generato

A StringTokenizer provides an easy way to divide strings into tokens. T
set of characters that delimit tokens is programmable. The tokenizing meth
much simpler than the one used by the classjava.io.StreamTokenizer. For
example, aStringTokenizer does not distinguish among identifiers, numbe
and quoted strings; moreover, it does not recognize and skip comments.
615

21 java.util THE PACKAGE JAVA.UTIL

616

e

oving,
s

.)
The classesVector and Stack are simple container classes that provid
extensions to the capabilities of Java arrays. AVector, unlike a Java array, can
change its size, and many convenient methods are provided for adding, rem
and searching for items. AStack is aVector with additional operations such a
push andpop.

The hierarchy of classes defined in packagejava.util is as follows. (Classes
whose names are shown here inboldface are in packagejava.util; the others
are in packagejava.lang and are shown here to clarify subclass relationships

Object §20.1
interface Enumeration §21.1
BitSet §21.2
Date §21.3
Dictionary §21.4

Hashtable §21.5
Properties §21.6

Observable §21.7
interface Observer §21.8
Random §21.9
StringTokenizer §21.10
Vector §21.11

Stack §21.12
Throwable §20.22

Exception
RuntimeException

EmptyStackException §21.13
NoSuchElementException §21.14

THE PACKAGE JAVA.UTIL java.util.Enumeration 21.1

f

ele-

n ele-

nd
21.1 The Interfacejava.util.Enumeration

An object that implements theEnumeration interface will generate a series o
elements, one at a time. Successive calls to thenextElement method will return
successive elements of the series.

public interface Enumeration {
public boolean hasMoreElements();
public Object nextElement() throws NoSuchElementException;

}

21.1.1 public boolean hasMoreElements()

The result istrue if and only if this enumeration object has at least one more
ment to provide.

21.1.2 public Object nextElement()

throws NoSuchElementException

If this enumeration object has at least one more element to provide, such a
ment is returned; otherwise, aNoSuchElementException is thrown.

As an example, the following code prints every key in the hashtableht and its
length. The methodkeys returns an enumeration that will deliver all the keys, a
we suppose that the keys are, in this case, known to be strings:

Enumeration e = ht.keys();
while (e.hasMoreElements()) {

String key = (String)e.nextElement();
System.out.println(key + " " + key.length());

}

617

21.2 java.util.BitSet THE PACKAGE JAVA.UTIL

618

,

it
.

t, or

s.

ge
21.2 The Classjava.util.BitSet

’T is an old maxim in the schools
That flattery’s the food of fools;

Yet now and then your men of w
Will condescend to take a bit

—Jonathan Swift,Cadenus and Vanessa

A BitSet object is a set of bits that grows as needed. The bits of aBitSet are
indexed by nonnegative integers. Each bit can be individually examined, se
cleared. OneBitSet may be used to modify the contents of anotherBitSet
through logical AND, logical inclusive OR, and logical exclusive OR operation

public final class BitSet implements Cloneable {
public BitSet();
public BitSet(int nbits);
public String toString();
public boolean equals(Object obj)
public int hashCode();
public Object clone();
public boolean get(int bitIndex);
public void set(int bitIndex);
public void clear(int bitIndex);
public void and(BitSet set);
public void or(BitSet set);
public void xor(BitSet set);
public int size();

}

21.2.1 public BitSet()

This constructor initializes a newly createdBitSet so that all bits are clear.

21.2.2 public BitSet(int nbits)

This constructor initializes a newly createdBitSet so that all bits are clear.
Enough space is reserved to explicitly represent bits with indices in the ran0
throughnbits-1.

THE PACKAGE JAVA.UTIL java.util.BitSet 21.2

al
d in

r-
 inte-

t

21.2.3 public String toString()

For every index for which thisBitSet contains a bit in the set state, the decim
representation of that index is included in the result. Such indices are liste
order from lowest to highest, separated by “, ” (a comma and a space) and su
rounded by braces, resulting in the usual mathematical notation for a set of
gers.

Overrides thetoString method ofObject (§20.1.2).
Example:

BitSet drPepper = new BitSet();

Now drPepper.toString() returns"{}".

drPepper.set(2);

Now drPepper.toString() returns"{2}".

drPepper.set(4);
drPepper.set(10);

Now drPepper.toString() returns"{2, 4, 10}".

21.2.4 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aBitSet object
such that, for every nonnegativeint indexk:

((BitSet)obj).get(k) == this.get(k)

Overrides theequals method ofObject (§20.1.3).

21.2.5 public int hashCode()

The hash code depends only on which bits have been set within thisBitSet. The
algorithm used to compute it may be described as follows.

Suppose the bits in theBitSet were to be stored in an array oflong integers
called, say,bits, in such a manner that bitk is set in theBitSet (for nonnegative
values ofk) if and only if the expression:

((k>>6) < bits.length) &&
((bits[k>>6] & (1L << (bit & 0x3F))) != 0)

is true. Then the following definition of thehashCode method would be a correc
implementation of the actual algorithm:
619

21.2 java.util.BitSet THE PACKAGE JAVA.UTIL

620

the
n

public synchronized int hashCode() {
long h = 1234;
for (int i = bits.length; --i >= 0;) {

h ^= bits[i] * (i + 1);
}
return (int)((h >> 32) ^ h);

}

Note that the hash code value changes if the set of bits is altered.
Overrides thehashCode method ofObject (§20.1.4).

21.2.6 public Object clone()

Cloning thisBitSet produces a newBitSet that is equal to it.
Overrides theclone method ofObject (§20.1.5).

21.2.7 public boolean get(int bitIndex)

The result istrue if the bit with indexbitIndex is currently set in thisBitSet;
otherwise, the result isfalse.

If bitIndex is negative, anIndexOutOfBoundsException is thrown.

21.2.8 public void set(int bitIndex)

The bit with indexbitIndex in thisBitSet is changed to the “set” (true) state.
If bitIndex is negative, anIndexOutOfBoundsException is thrown.
If bitIndex is not smaller than the value that would be returned by

size method (§21.2.13), then the size of thisBitSet is increased to be larger tha
bitIndex.

21.2.9 public void clear(int bitIndex)

The bit with indexbitIndex in this BitSet is changed to the “clear” (false)
state.

If bitIndex is negative, anIndexOutOfBoundsException is thrown.
If bitIndex is not smaller than the value that would be returned by thesize

method (§21.2.13), then the size of thisBitSet is increased to be larger thanbit-
Index.

THE PACKAGE JAVA.UTIL java.util.BitSet 21.2

tive

tive

tive
21.2.10 public void and(BitSet set)

This BitSet may be modified by clearing some of its bits. For every nonnega
int indexk, bit k of thisBitSet is cleared if bitk of set is clear.

21.2.11 public void or(BitSet set)

This BitSet may be modified by setting some of its bits. For every nonnega
int indexk, bit k of thisBitSet is set if bitk of set is set.

21.2.12 public void xor(BitSet set)

ThisBitSet may be modified by inverting some of its bits. For every nonnega
int indexk, bit k of thisBitSet is inverted if bitk of set is set.

21.2.13 public int size()

This method returns the number of bits of space actually in use by thisBitSet to
represent bit values.

At Mooneen he had leaped a place
So perilous that half the astonished meet
Had shut their eyes, and where was it
He rode a race without a bit?

—William Butler Yeats,
In Memory of Major Robert Gregory (1919)
621

21.3 java.util.Date THE PACKAGE JAVA.UTIL

622

, to a
ay of
week,
string.
21.3 The Classjava.util.Date

The classDate provides a system-independent abstraction of dates and times
millisecond precision. Dates may be constructed from a year, month, date (d
month), hour, minute, and second; those six components and the day of the
may be extracted; and dates may be compared and converted to a readable

public class Date {
public Date();
public Date(long time);
public Date(int year, int month, int date);
public Date(int year, int month, int date,

int hours, int minutes);
public Date(int year, int month, int date,

int hours, int minutes, int seconds);
public Date(String s) throws IllegalArgumentException;
public String toString();
public boolean equals(Object obj);
public int hashCode();
public int getYear();
public void setYear(int year);
public int getMonth();
public void setMonth(int month);
public int getDate();
public void setDate(int date);
public int getDay();
public int getHours();
public void setHours(int hours);
public int getMinutes();
public void setMinutes(int minutes);
public int getSeconds();
public void setSeconds(int seconds);
public long getTime();
public void setTime(long time);
public boolean before(Date when);
public boolean after(Date when);
public String toLocaleString();
public String toGMTString();
public int getTimezoneOffset();
public static long UTC(int year, int month, int date,

int hours, int minutes, int seconds);
public static long parse(String s)

throws IllegalArgumentException;
}

THE PACKAGE JAVA.UTIL java.util.Date 21.3

uary

al
Java

 =
 there
 as the
exam-
d leap

flect
ms of
e).
me
tomic
pur-
uni-
ays

 keep
ons
 scale
ed to
for-

th,

uary,
Examples:

• To print today's date:

System.out.println("today = " + new Date());

• To find out the day of the week for some particular date, for example, Jan
16, 1963:

new Date(63, 0, 16).getDay()

While the Date class is intended to reflect UTC (Coordinated Univers
Time), it may not do so exactly, depending on the host environment of the
system. Nearly all modern operating systems assume that 1 day =
86400 seconds in all cases. In UTC, however, about once every year or two
is an extra second, called a “leap second.” The leap second is always added
last second of the day, and nearly always on December 31 or June 30. For
ple, the last minute of the year 1995 was 61 seconds long, thanks to an adde
second.

Most computer clocks are currently not accurate enough to be able to re
the leap-second distinction. Some computer standards are defined in ter
GMT (Greenwich Mean Time), which is equivalent to UT (Universal Tim
GMT is the “civil” name for the standard; UT is the “scientific” name for the sa
standard. The distinction between UTC and UT is that UTC is based on an a
clock and UT is based on astronomical observations, which for all practical
poses is an invisibly fine hair to split. Because the earth’s rotation is not
form—it slows down and speeds up in complicated ways—UT does not alw
flow uniformly. Leap seconds are introduced as needed into UTC so as to
UTC within 0.9 seconds of UT1, which is a version of UT with certain correcti
applied. There are other time and date systems as well; for example, the time
used by GPS (the satellite-based Global Positioning System) is synchroniz
UTC but isnot adjusted for leap seconds. An interesting source of further in
mation is the U. S. Naval Observatory, particularly the Directorate of Time at:

http://tycho.usno.navy.mil

and their definitions of “Systems of Time” at:

http://tycho.usno.navy.mil/systime.html

In all methods of classDate that accept or return year, month, day of mon
hours, minutes, and seconds values, the following representations are used:

• A yeary is represented by the integer .

• A month is represented by an integer form 0 to 11; 0 is January, 1 is Febr
and so on; thus 11 is December.

24 60 60××

y 1900–
623

21.3 java.util.Date THE PACKAGE JAVA.UTIL

624

sual

mid-

1 will
 that

 leap
sec-
 and

within
nd will

e

e
 as
thod

-

or call
• A date (day of month) is represented by an integer from 1 to 31 in the u
manner.

• An hour is represented by an integer from 0 to 23. Thus the hour from
night to 1AM is hour 0, and the hour from noon to 1PM is hour 12.

• A minute is represented by an integer from 0 to 59 in the usual manner.

• A second is represented by an integer from 0 to 61. The values 60 and 6
occur only for leap seconds, and even then only in Java implementations
actually track leap seconds correctly. Because of the manner in which
seconds are currently introduced, it is extremely unlikely that two leap
onds will occur in the same minute, but this specification follows the date
time conventions for ISO C.

In all cases, arguments given to methods for these purposes need not fall
the indicated ranges; for example, a date may be specified as January 32 a
be interpreted as meaning February 1.

21.3.1 public Date()

This constructor initializes a newly createdDate object so that it represents th
instant of time that it was created, measured to the nearest millisecond.

21.3.2 public Date(long time)

This constructor initializes a newly createdDate object so that it represents th
instant of time that istime milliseconds after the standard base time known
“the epoch,” namely 00:00:00 GMT on January 1, 1970. See also the me
currentTimeMillis (§20.18.6) of classSystem.

21.3.3 public Date(int year, int month, int date)

This constructor initializes a newly createdDate object so that it represents mid
night at the beginning of the day specified by theyear, month, anddate argu-
ments, in the local time zone. Thus, it has the same effect as the construct
(§21.3.5):

Date(year, month, date, 0, 0, 0)

THE PACKAGE JAVA.UTIL java.util.Date 21.3

e

 con-

e

e

21.3.4 public Date(int year, int month, int date,

int hours, int minutes)

This constructor initializes a newly createdDate object so that it represents th
instant at the start of the minute specified by theyear, month, date, hours, and
minutes arguments, in the local time zone. Thus, it has the same effect as the
structor call (§21.3.5):

Date(year, month, date, hours, minutes, 0)

21.3.5 public Date(int year, int month, int date,

int hours, int minutes, int seconds)

This constructor initializes a newly createdDate object so that it represents th
instant at the start of the second specified by theyear, month, date, hours,
minutes, andseconds arguments, in the local time zone.

21.3.6 public Date(String s)

throws IllegalArgumentException

This constructor initializes a newly createdDate object so that it represents th
date and time indicated by the string s, which is interpreted as if by theparse
method (§21.3.31).

21.3.7 public String toString()

ThisDate object is converted to aString of the form:

"dow mon dd hh:mm:ss zzz yyyy"

where:

• dow is the day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat).

• mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec).

• dd is the day of the month (01 through31), as two decimal digits.

• hh is the hour of the day (00 through23), as two decimal digits.

• mm is the minute within the hour (00 through59), as two decimal digits.

• ss is the second within the minute (00 through61), as two decimal digits.
625

21.3 java.util.Date THE PACKAGE JAVA.UTIL

626

time

e of

ins or

eci-
re, as
, for
reated
• zzz is the time zone (and may reflect daylight saving time). Standard
zone abbreviations include those recognized by the methodparse (§21.3.31).
If time zone information is not available, thenzzz is empty—that is, it con-
sists of no characters at all.

• yyyy is the year, as four decimal digits.

See also methodstoLocaleString (§21.3.27) andtoGMTString (§21.3.28).
Overrides thetoString method ofObject (§20.1.2).

21.3.8 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aDate object that
represents the same point in time, to the millisecond, as thisDate object. Thus
two Date objects are equal if and only if thegetTime method (§21.3.23) returns
the samelong value from both.

Overrides theequals method ofObject (§20.1.3).

21.3.9 public int hashCode()

The result is the exclusive OR of the two halves of the primitivelong value
returned by thegetTime method (§21.3.23). That is, the hash code is the valu
the expression:

(int)(this.getTime()^(this.getTime()>>>32))

Overrides thehashCode method ofObject (§20.1.4).

21.3.10 public int getYear()

The returned value is the result of subtracting 1900 from the year that conta
begins with the instant in time represented by thisDate object, as interpreted in
the local time zone.

21.3.11 public void setYear(int year)

This Date object is modified so that it represents a point in time within the sp
fied year, with the month, date, hour, minute, and second the same as befo
interpreted in the local time zone. (Of course, if the date was February 29
example, and the year is set to a non–leap year, then the new date will be t
as if it were on March 1.)

THE PACKAGE JAVA.UTIL java.util.Date 21.3

-

eci-
re, as
d the
ly 1,

t

eci-
me as
ple,
ause

s or
21.3.12 public int getMonth()

The returned value is a number (0 through11) representing the month that con
tains or begins with the instant in time represented by thisDate object, as inter-
preted in the local time zone.

21.3.13 public void setMonth(int month)

This Date object is modified so that it represents a point in time within the sp
fied month, with the year, date, hour, minute, and second the same as befo
interpreted in the local time zone. If the date was October 31, for example, an
month is set to June, then the new date will be treated as if it were on Ju
because June has only 30 days.

21.3.14 public int getDate()

The returned value is a number (1 through31) representing day of the month tha
contains or begins with the instant in time represented by thisDate object, as
interpreted in the local time zone.

21.3.15 public void setDate(int date)

This Date object is modified so that it represents a point in time within the sp
fied day of the month, with the year, month, hour, minute, and second the sa
before, as interpreted in the local time zone.If the date was April 30, for exam
and the date is set to 31, then it will be treated as if it were on May 1, bec
April has only 30 days.

21.3.16 public int getDay()

The returned value (0 = Sunday,1 = Monday,2 = Tuesday,3 = Wednesday,4 =
Thursday,5 = Friday,6 = Saturday) represents the day of the week that contain
begins with the instant in time represented by thisDate object, as interpreted in
the local time zone.
627

21.3 java.util.Date THE PACKAGE JAVA.UTIL

628

eci-
me as

eci-
me as

e

eci-
same
21.3.17 public int getHours()

The returned value is a number (0 through23) representing the hour within the
day that contains or begins with the instant in time represented by thisDate
object, as interpreted in the local time zone.

21.3.18 public void setHours(int hours)

This Date object is modified so that it represents a point in time within the sp
fied hour of the day, with the year, month, date, minute, and second the sa
before, as interpreted in the local time zone.

21.3.19 public int getMinutes()

The returned value is a number (0 through59) representing the minute within the
hour that contains or begins with the instant in time represented by thisDate
object, as interpreted in the local time zone.

21.3.20 public void setMinutes(int minutes)

This Date object is modified so that it represents a point in time within the sp
fied minute of the hour, with the year, month, date, hour, and second the sa
before, as interpreted in the local time zone.

21.3.21 public int getSeconds()

The returned value is a number (0 through61) representing the second within th
minute that contains or begins with the instant in time represented by thisDate
object, as interpreted in the local time zone.

21.3.22 public void setSeconds(int seconds)

This Date object is modified so that it represents a point in time within the sp
fied second of the minute, with the year, month, date, hour, and minute the
as before, as interpreted in the local time zone.

THE PACKAGE JAVA.UTIL java.util.Date 21.3

e
MT

.
ppli-
at of
21.3.23 public long getTime()

This method returns the time represented by thisDate object, represented as th
distance, measured in milliseconds, of that time from the epoch (00:00:00 G
on January 1, 1970).

21.3.24 public void setTime(long time)

ThisDate object is modified so that it represents a point in time that istime milli-
seconds after the epoch (00:00:00 GMT on January 1, 1970).

21.3.25 public boolean before(Date when)

The result istrue if and only if the instant represented by thisDate object is
strictly earlier than the instant represented bywhen.

21.3.26 public boolean after(Date when)

The result istrue if and only if the instant represented by thisDate object is
strictly later than the instant represented bywhen.

21.3.27 public String toLocaleString()

This Date object is converted to aString of an implementation-dependent form
The general intent is that the form should be familiar to the user of the Java a
cation, wherever it may happen to be running. The intent is comparable to th
the%c format supported by thestrftime function of ISO C.

See also methodstoString (§21.3.7) andtoGMTString (§21.3.28).

21.3.28 public String toGMTString()

ThisDate object is converted to aString of length 23 or 24 of the form:

"d mon yyyy hh:mm:ss GMT"

where:

• d is the day of the month (1 through31), as one or two decimal digits.

• mon is the month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
Dec).
629

21.3 java.util.Date THE PACKAGE JAVA.UTIL

630

 rela-

n use,

 use,

e day,

 rela-
rned
epoch
• yyyy is the year, as four decimal digits.

• hh is the hour of the day (00 through23), as two decimal digits.

• mm is the minute within the hour (00 through59), as two decimal digits.

• ss is the second within the minute (00 through61), as two decimal digits.

• GMT is exactly the ASCII letters “GMT” to indicate Greenwich Mean Time.

The result does not depend on the local time zone.
See also methodstoString (§21.3.7) andtoLocaleString (§21.3.27).

21.3.29 public int getTimezoneOffset()

This method returns the offset, measured in minutes, for the local time zone
tive to UTC that is appropriate for the time represented by thisDate object.

For example, in Massachusetts, five time zones west of Greenwich:

new Date(96, 1, 14).getTimezoneOffset() returns 300

because on February 14, 1996, standard time (Eastern Standard Time) is i
which is offset five hours from UTC; but:

new Date(96, 5, 1).getTimezoneOffset() returns 240

because on May 1, 1996, daylight saving time (Eastern Daylight Time) is in
which is offset only four hours from UTC.

This method produces the same result as if it computed:

(this.getTime() - UTC(this.getYear(),
this.getMonth(),
this.getDate(),
this.getHours(),
this.getMinutes(),
this.getSeconds())) / (60 * 1000)

21.3.30 public static long UTC(int year, int month, int date,

int hours, int minutes, int seconds)

The arguments are interpreted as a year, month, day of the month, hour of th
minute within the hour, and second within the minute, exactly as for theDate con-
structor of six arguments (§21.3.5), except that the arguments are interpreted
tive to UTC rather than to the local time zone. The time indicated is retu
represented as the distance, measured in milliseconds, of that time from the
(00:00:00 GMT on January 1, 1970).

THE PACKAGE JAVA.UTIL java.util.Date 21.3

e.
e dis-
T on

mitted

:

en
ffset
essed

re

the

e fol-
900,

 hour

ased
y

ring,
 as a
 it is
21.3.31 public static long parse(String s)

throws IllegalArgumentException

An attempt is made to interpret the strings as a representation of a date and tim
If the attempt is successful, the time indicated is returned represented as th
tance, measured in milliseconds, of that time from the epoch (00:00:00 GM
January 1, 1970). If the attempt fails, anIllegalArgumentException is thrown.

The strings is processed from left to right, looking for data of interest.
Any material ins that is within the ASCII parenthesis characters(and) is

ignored. Parentheses may be nested. Otherwise, the only characters per
within s are these ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789,+-:/

and whitespace characters (§20.5.19).
A consecutive sequence of decimal digits is treated as a decimal number

• If a number is preceded by+ or- and a year has already been recognized, th
the number is a time-zone offset. If the number is less than 24, it is an o
measured in hours. Otherwise, it is regarded as an offset in minutes, expr
in 24-hour time format without punctuation. A preceding+ means an east-
ward offset and a preceding- means a westward offset. Time zone offsets a
always relative to UTC (Greenwich). Thus, for example,-5 occurring in the
string would mean “five hours west of Greenwich” and+0430 would mean
“four hours and thirty minutes east of Greenwich.” It is permitted for
string to specifyGMT, UT, or UTC redundantly—for example,GMT-5 or
utc+0430.

• If a number is greater than 70, it is regarded as a year number. It must b
lowed by a space, comma, slash, or end of string. If it is greater than 1
then 1900 is subtracted from it.

• If the number is followed by a colon, it is regarded as an hour, unless an
has already been recognized, in which case it is regarded as a minute.

• If the number is followed by a slash, it is regarded as a month (it is decre
by 1 to produce a number in the range0 to 11), unless a month has alread
been recognized, in which case it is regarded as a day of the month.

• If the number is followed by whitespace, a comma, a hyphen, or end of st
then if an hour has been recognized but not a minute, it is regarded
minute; otherwise, if a minute has been recognized but not a second,
regarded as a second; otherwise, it is regarded as a day of the month.
631

21.3 java.util.Date THE PACKAGE JAVA.UTIL

632

llows:

an

, is

to

s
ight

spec-
be

t in
n the
UTC
onth,
.

A consecutive sequence of letters is regarded as a word and treated as fo

• A word that matchesAM, ignoring case, is ignored (but the parse fails if
hour has not been recognized or is less than1 or greater than12).

• A word that matchesPM, ignoring case, adds12 to the hour (but the parse fails
if an hour has not been recognized or is less than1 or greater than12).

• Any word that matches any prefix ofSUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, orSATURDAY, ignoring case, is ignored. For example,sat,
Friday, TUE, andThurs are ignored.

• Otherwise, any word that matches any prefix ofJANUARY, FEBRUARY, MARCH,
APRIL, MAY, JUNE, JULY, AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, or
DECEMBER, ignoring case, and considering them in the order given here
recognized as specifying a month and is converted to a number (0 to 11). For
example,aug, Sept, april, andNOV are recognized as months. So isMa,
which is recognized asMARCH, notMAY.

• Any word that matchesGMT, UT, orUTC, ignoring case, is treated as referring
UTC.

• Any word that matchesEST, CST, MST, or PST, ignoring case, is recognized a
referring to the time zone in North America that is five, six, seven, or e
hours west of Greenwich, respectively. Any word that matchesEDT, CDT, MDT,
or PDT, ignoring case, is recognized as referring to the same time zone, re
tively, during daylight saving time. (In the future, this method may
upgraded to recognize other time zone designations.)

Once the entire strings has been scanned, it is converted to a time resul
one of two ways. If a time zone or time-zone offset has been recognized, the
year, month, day of month, hour, minute, and second are interpreted in
(§21.3.30) and then the time-zone offset is applied. Otherwise, the year, m
day of month, hour, minute, and second are interpreted in the local time zone

THE PACKAGE JAVA.UTIL java.util.Dictionary 21.4

t
 be

 of

es

n

21.4 The Classjava.util.Dictionary

A Dictionary is an object that associateselements with keys. Every key and
every element is an object. In any oneDictionary, every key is associated a
most one element. Given aDictionary and a key, the associated element can
looked up.

public abstract class Dictionary {
abstract public int size();
abstract public boolean isEmpty();
abstract public Object get(Object key)

throws NullPointerException;
abstract public Object put(Object key, Object element)

throws NullPointerException;
abstract public Object remove(Object key)

throws NullPointerException;
abstract public Enumeration keys();
abstract public Enumeration elements();

}

As a rule, theequals method (§20.1.3) should be used by implementations
the classDictionary to decide whether two keys are the same.

21.4.1 abstract public int size()

The general contract for thesize method is that it returns the number of entri
(distinct keys) in this dictionary.

21.4.2 abstract public boolean isEmpty()

The general contract for theisEmpty method is that the result istrue if and only
if this dictionary contains no entries.

21.4.3 abstract public Object get(Object key)

throws NullPointerException

The general contract for theisEmpty method is that if this dictionary contains a
entry for the specifiedkey, the associated element is returned; otherwise,null is
returned.

If the key is null, aNullPointerException is thrown.
633

21.4 java.util.Dictionary THE PACKAGE JAVA.UTIL

634

.

-

is

.

es.

ary.
21.4.4 abstract public Object put(Object key, Object element)

throws NullPointerException

The general contract for theput method is that it adds an entry to this dictionary
If this dictionary already contains an entry for the specifiedkey, the element

already in this dictionary for thatkey is returned, after modifying the entry to con
tain the newelement.

If this dictionary does not already have an entry for the specifiedkey, an entry
is created for the specifiedkey andelement, andnull is returned.

If the key or theelement is null, aNullPointerException is thrown.

21.4.5 abstract public Object remove(Object key)

throws NullPointerException

The general contract for theremove method is that it removes an entry from th
dictionary.

If this dictionary contains an entry for the specifiedkey, the element in this
dictionary for thatkey is returned, after removing the entry from this dictionary

If this dictionary does not already have an entry for the specifiedkey, null is
returned.

If the key is null, aNullPointerException is thrown.

21.4.6 abstract public Enumeration keys()

The general contract for thekeys method is that anEnumeration (§21.1) is
returned that will generate all the keys for which this dictionary contains entri

21.4.7 abstract public Enumeration elements()

The general contract for theelements method is that anEnumeration (§21.1) is
returned that will generate all the elements contained in entries in this diction

THE PACKAGE JAVA.UTIL java.util.Hashtable 21.5

 things
e—
eal.

urrent

up. If

per-
21.5 The Classjava.util.Hashtable

. . . never did they seem to have new experiences in common . . . and the
they had for dissection—college, contemporary personality, and the lik

they had hashed and rehashed for many a frugal conversational m
—F. Scott Fitzgerald,This Side of Paradise (1920)

The classHashtable implements the abstract classDictionary (§21.4), with
some additional functionality.

public class Hashtable extends Dictionary implements Cloneable {
public Hashtable(int initialCapacity, float loadFactor);
public Hashtable(int initialCapacity);
public Hashtable();
public String toString();
public Object clone();
public int size();
public boolean isEmpty();
public Object get(Object key)

throws NullPointerException;
public Object put(Object key, Object value)

throws NullPointerException;
public Object remove(Object key)

throws NullPointerException;
public Enumeration keys();
public Enumeration elements();
public boolean contains(Object value);
public boolean containsKey(Object key);
protected void rehash();
public void clear();

}

A Hashtable has two parameters that affect its efficiency: itscapacity and its
load factor. The load factor should be between0.0 and1.0. When the number of
entries in the hashtable exceeds the product of the load factor and the c
capacity, the capacity is increased, using therehash method. Larger load factors
use memory more efficiently at the expense of larger expected time per look
many entries are to be made in aHashtable, creating it with a sufficiently large
capacity may allow the entries to be inserted more efficiently than letting it
form automatic rehashing as needed to grow the table.
635

21.5 java.util.Hashtable THE PACKAGE JAVA.UTIL

636

d in

re

he
21.5.1 public Hashtable(int initialCapacity, float loadFactor)

This constructor initializes a newly createdHashtable object so that its capacity
is initialCapacity and its load factor isloadFactor. Initially, there are no
entries in the table.

21.5.2 public Hashtable(int initialCapacity)

This constructor initializes a newly createdHashtable object so that its capacity
is initialCapacity and its load factor is0.75. Initially, there are no entries in
the table.

21.5.3 public Hashtable()

This constructor initializes a newly createdHashtable object so that its load fac-
tor is0.75. Initially, there are no entries in the table.

21.5.4 public String toString()

This Hashtable is represented in string form as a set of entries, enclose
braces and separated by the ASCII characters “, ” (comma and space). Each
entry is rendered as the key, an equals sign=, and the associated element, whe
thetoString method is used to convert the key and element to strings.

Overrides thetoString method ofObject (§21.2.3).

21.5.5 public Object clone()

A copy of thisHashtable is constructed and returned. All the structure of t
hashtable itself is copied, but the keys and elements are not cloned.

Overrides theclone method ofObject (§21.2.6).

21.5.6 public int size()

Implements thesize method ofDictionary (§21.4.1).

21.5.7 public boolean isEmpty()

Implements theisEmpty method ofDictionary (§21.4.2).

THE PACKAGE JAVA.UTIL java.util.Hashtable 21.5

r

r to
21.5.8 public Object get(Object key)

Implements theget method ofDictionary (§21.4.3).

21.5.9 public Object put(Object key, Object value)

Implements theput method ofDictionary (§21.4.4).

21.5.10 public Object remove(Object key)

Implements theremove method ofDictionary (§21.4.5).

21.5.11 public Enumeration keys()

Implements thekeys method ofDictionary (§21.4.6).

21.5.12 public Enumeration elements()

Implements theelements method ofDictionary (§21.4.7).

21.5.13 public boolean contains(Object value)

The result istrue if and only if thisHashtable contains at least one entry fo
which the element is equal tovalue, as determined by theequals method
(§20.1.3).

21.5.14 public boolean containsKey(Object key)

The result istrue if and only if thisHashtable contains an entry for which the
key is equal tokey, as determined by theequals method (§20.1.3). In other
words, this method produces the same result as the expression:

get(key) != null

21.5.15 protected void rehash()

This Hashtable is increased in capacity and reorganized internally, in orde
accommodate and access its entries more efficiently.
637

21.5 java.util.Hashtable THE PACKAGE JAVA.UTIL

638
21.5.16 public void clear()

Theclear method removes all entries from thisHashtable.

Twelve sphered tables, by silk seats insphered,
High as the level of a man’s breast rear’d
On libbard’s paws, upheld the heavy gold
Of cups and goblets, and the store thrice told
Of Ceres’ horn, and, in huge vessels, wine
Came from the gloomy tun with merry shine.
Thus loaded with a feast the tables stood . . .

—John Keats,Lamia, Part II

THE PACKAGE JAVA.UTIL java.util.Properties 21.6

e are
ll the

is
fer to

ies
21.6 The Classjava.util.Properties

A Properties table is a kind ofHashtable with two functionality extensions
and with the restriction that keys and elements must be strings. First, ther
methods for reading entries into the table from an input stream and writing a
entries in the table to an output stream. Second, aProperties table may refer to
another Properties table that provides default values. ThegetProperty
method is much like theget method (§21.4.3), but if an entry is not found in th
table, then the defaults table is searched (and that defaults table may itself re
another defaults table, and so on, recursively).

public class Properties extends Hashtable {
protected Properties defaults;
public Properties();
public Properties(Properties defaults);
public String getProperty(String key);
public String getProperty(String key, String defaultValue);
public Enumeration propertyNames();
public void load(InputStream in) throws IOException;
public void save(OutputStream out, String header);
public void list(PrintStream out);

}

21.6.1 protected Properties defaults;

If the defaults field is notnull, it is anotherProperties table that provides
default values for thisProperties table.

21.6.2 public Properties()

This constructor initializes a newly createdProperties table so that it has no
defaults table. Initially, there are no entries in the newly created table.

21.6.3 public Properties(Properties defaults)

This constructor initializes a newly createdProperties table so its defaults table
is defaults. The argumentdefaults may benull, in which case the newly cre-
atedProperties table will not have a defaults table. Initially, there are no entr
in the newly created table.
639

21.6 java.util.Properties THE PACKAGE JAVA.UTIL

640

n

n

his

es are
d

ated
ed

ace

rty to
e is
ll the
o, but
ter
21.6.4 public String getProperty(String key)

If there is an entry in thisProperties table withkey as its key, the associated
element is returned. Otherwise, if thisProperties table has a defaults table, the
whatever itsgetProperty method returns is returned. Otherwise,null is
returned.

21.6.5 public String getProperty(String key,

String defaultValue)

If there is an entry in thisProperties table withkey as its key, the associated
element is returned. Otherwise, if thisProperties table has a defaults table, the
whatever itsgetProperty method returns is returned. Otherwise,defaultValue
is returned.

21.6.6 public Enumeration propertyNames()

An Enumeration (§21.1) is returned that will generate all the keys for which t
Properties table could supply an associated element. If thisProperties table
has a defaults table (§21.6.1), then keys for which the defaults table has entri
also supplied by theEnumeration, and so on, recursively; but no key is supplie
by theEnumeration more than once.

21.6.7 public void load(InputStream in) throws IOException

Properties (key and element pairs) are read from the input stream:

Runtime.getRuntime().getLocalizedInputStream(in)

and added to thisProperties table. See thegetLocalizedInputStream
method ofRuntime (§20.16.15).

Every property occupies one line of the input stream. Each line is termin
by a line terminator (\n or \r or \r\n). Lines from the input stream are process
until end of file is reached on the input stream.

A line that contains only whitespace (§20.5.19) or whose first non-whitesp
character is an ASCII# or ! is ignored (thus,# or ! indicate comment lines).

Every line other than a blank line or a comment line describes one prope
be added to the table (except that if a line ends with \, then the following lin
treated as a continuation line, as described below). The key consists of a
characters in the line starting with the first non-whitespace character and up t
not including, the first ASCII=, :, or whitespace character. Any whitespace af

THE PACKAGE JAVA.UTIL java.util.Properties 21.6

ining
e ele-

le

re also

h
he
r

ng.
the key is skipped; if the first non-whitespace character after the key is= or:, then
it is ignored and any whitespace characters after it are also skipped. All rema
characters on the line become part of the associated element string. Within th
ment string (but not the key), the ASCII escape sequences\t, \n, \r, \\, \", \’,
\ (a backslash and a space), and\uxxxx are recognized and converted to sing
characters. Moreover, if the last character on the line is\, then the next line is
treated as a continuation of the current line; the\ and line terminator are simply
discarded, and any leading whitespace characters on the continuation line a
discarded and are not part of the element string.

As an example, each of the following four lines specifies the key"Truth" and
the associated element value"Beauty":

Truth Beauty
Truth = Beauty

Truth:Beauty
Truth :Beauty

As another example, the following three lines specify a single property:

fruits apple, banana, pear, \
cantaloupe, watermelon, \
kiwi, mango

The key is"fruit" and the associated element is:

"apple, banana, pear, cantaloupe, watermelon, kiwi, mango"

Note that a space appears before each\ so that a space will appear after eac
comma in the final result; the\, line terminator, and leading whitespace on t
continuation line are merely discarded and arenot replaced by one or more othe
characters.

As a third example, the line:

cheeses

specifies that the key is"cheeses" and the associated element is the empty stri

21.6.8 public void save(OutputStream out, String header)

All the properties (key and element pairs) in thisProperties table are written to
the output stream:

Runtime.getRuntime().getLocalizedOutputStream(out)

in a format suitable for loading into aProperties table using theload method
(§21.6.7). See thegetLocalizedOutputStream method of Runtime
(§20.16.16).
641

21.6 java.util.Properties THE PACKAGE JAVA.UTIL

642

r

r
t
hould

n
ds
-
pace

 for
d
ers, to
not
f one
Properties from the defaults table of thisProperties table (if any) arenot
written out by this method.

If the header argument is not null, then an ASCII# character, the heade
string, and a newline are first written to the output stream. Thus, theheader can
serve as an identifying comment.

Next, a comment line is always written, consisting of an ASCII# character,
the current date and time (as if produced by thetoString method ofDate
(§21.3.7) for the current time), and a newline.

Then every entry in thisProperties table is written out, one per line. Fo
each entry the key string is written, then an ASCII=, then the associated elemen
string. Each character of the element string is examined to see whether it s
be rendered as an escape sequence. The ASCII characters\, tab, newline, and car-
riage return are written as\\, \t, \n, and\r, respectively. Characters less tha
\u0020 and characters greater than\u007E (if necessary, depending on the nee
of the localized output stream) are written as\uxxxx for the appropriate hexadec
imal valuexxxx. Leading space characters, but not embedded or trailing s
characters, are written with a preceding\.

21.6.9 public void list(PrintStream out)

Properties (key and element pairs) in thisProperties table are written to the out-
put streamout in a possibly abbreviated form that may be more convenient
use in debugging than the output of thesave method. No header is written, an
element values longer than 40 character are truncated to the first 37 charact
which the characters “...” are appended. Thus, if the names of the keys are
too long, there is a fighting chance that each property will fit into the space o
line of a physical output device.

THE PACKAGE JAVA.UTIL java.util.Observable 21.7

d
er

ads

.

d

.

21.7 The Classjava.util.Observable

Each instance of classObservable maintains a set of “observers” that are notifie
whenever theObservable object changes in some significant way. An observ
may be any object that implements interfaceObserver (§21.8).

Note that this notification mechanism is has nothing to do with thre
(§20.20) and is completely separate from thewait andnotify mechanism of
classObject (§20.1).

public class Observable {
public void addObserver(Observer o);
public void deleteObserver(Observer o);
public void deleteObservers();
public int countObservers();
public void notifyObservers();
public void notifyObservers(Object arg);
protected void setChanged();
protected void clearChanged();
public boolean hasChanged();

}

When an observable object is newly created, its set of observers is empty
Two observers are considered the same if and only if theequals method

(§20.1.3) returnstrue for them.

21.7.1 public void addObserver(Observer o)

The observero is added to thisObservable object’s set of observers, provide
that it is not the same as some observer already in the set.

21.7.2 public void deleteObserver(Observer o)

The observero is removed from thisObservable object’s set of observers.

21.7.3 public void deleteObservers()

All observers are removed from thisObservable object’s set of observers.

21.7.4 public int countObservers()

The number of observers in thisObservable object’s set of observers is returned
643

21.7 java.util.Observable THE PACKAGE JAVA.UTIL

644

s all
is

thod
er
is

s

21.7.5 public void notifyObservers()

If this Observable object has been marked as changed, this method cause
observers to be notified withnull as the second argument; in other words, th
method is equivalent to:

notifyObservers(null)

21.7.6 public void notifyObservers(Object arg)

If this Observable object has been marked as changed (§21.7.9), this me
causes all observers to be notified witharg as the second argument. An observ
is notified by calling itsupdate method (§21.8.1) on two arguments: th
Observable object andarg. The mark on this object is then cleared (§21.7.8).

21.7.7 protected void setChanged()

This Observable object is marked as having been changed; thehasChanged
method will now returntrue.

21.7.8 protected void clearChanged()

This Observable object is marked as not having been changed; thehasChanged
method will now returnfalse.

21.7.9 public boolean hasChanged()

The result is true if and only if thesetChanged method has been called for thi
Observable object more recently than either theclearChanged method or the
notifyObservers method.

THE PACKAGE JAVA.UTIL java.util.Observer 21.8

r

21.8 The Interfacejava.util.Observer

A class should implement theObserver interface if it is to be notified wheneve
anObservable object has been changed. See theObservable class (§21.7) for a
discussion of howObserver objects are notified.

public interface Observer {
public void update(Observable o, Object arg);

}

21.8.1 public void update(Observable o, Object arg)

When an Observable object has been changed and itsnotifyObservers
method (§21.7.6) is called, everyObserver object in its set ofobservers is noti-
fied by invoking itsupdate method, passing it two arguments: theObservable
object and another argument specified by the call to thenotifyObservers
method.
645

21.9 java.util.Random THE PACKAGE JAVA.UTIL

646

dom

uence
ences
artic-
e
-

s.
h

m

21.9 The Classjava.util.Random

Oh, many a shaft at random sent
Finds mark the archer little meant!
And many a word at random spoken
May soothe, or wound, a heart that’s broken!

—Sir Walter Scott,The Lady of the Lake, Canto V, stanza 18

Each instance of classRandom serves as a separate, independent pseudoran
generator of primitive values.

public class Random {
protected long seed;
protected double nextNextGaussian;
protected boolean haveNextNextGaussian = false;
public Random();
public Random(long seed);
public void setSeed(long seed);
protected int next(int bits);
public int nextInt();
public long nextLong();
public float nextFloat();
public double nextDouble();
public double nextGaussian();

}

If two Random objects are created with the same seed and the same seq
of method calls is made for each, they will generate and return identical sequ
of numbers in all Java implementations. In order to guarantee this property, p
ular algorithms are specified for the classRandom. Java implementations must us
all the algorithms shown here for the classRandom, for the sake of absolute porta
bility of Java code. However, subclasses of classRandom are permitted use other
algorithms, so long as they adhere to the general contracts for all the method

The algorithms implemented by classRandom use three state variables, whic
areprotected. They also use aprotected utility method that on each invocation
can supply up to up to 32 pseudorandomly generated bits.

21.9.1 protected long seed;

A variable used by methodnext (§21.9.7) to hold the state of the pseudorando
number generator.

THE PACKAGE JAVA.UTIL java.util.Random 21.9

d

it
ethod.

e

e

er
reated

f
its of
21.9.2 protected double nextNextGaussian;

A variable used by methodnextGaussian (§21.9.12) to hold a precompute
value to be delivered by that method the next time it is called.

21.9.3 protected boolean haveNextNextGaussian = false;

A variable used by methodnextGaussian (§21.9.12) to keep track of whether
has precomputed and stashed away the next value to be delivered by that m

21.9.4 public Random()

This constructor initializes a newly createdRandom number generator by using th
current time of day (§20.18.6) as a seed.

public Random() { this(System.currentTimeMillis()); }

21.9.5 public Random(long seed)

This constructor initializes a newly createdRandom number generator by using th
argumentseed as a seed.

public Random(long seed) { setSeed(seed); }

21.9.6 public void setSeed(long seed)

The general contract ofsetSeed is that it alters the state of this random numb
generator object so as to be in exactly the same state as if it had just been c
with the argumentseed as a seed.

The methodsetSeed is implemented by classRandom as follows:

synchronized public void setSeed(long seed) {
this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);
haveNextNextGaussian = false;

}

The implementation ofsetSeed by classRandom happens to use only 48 bits o
the given seed. In general, however, an overriding method may use all 64 b
the long argument as a seed value.

[In certain early versions of Java, thesetSeed method failed to reset the value
of haveNextNextGaussian to false; this flaw could lead to failure to produce
repeatable behavior.]
647

21.9 java.util.Random THE PACKAGE JAVA.UTIL

648

ed
h is

 D. H.

-
)

-
-

21.9.7 protected int next(int bits)

The general contract ofnext is that it returns anint value and if the argument
bits is between1 and32 (inclusive), then that many low-order bits of the return
value will be (approximately) independently chosen bit values, each of whic
(approximately) equally likely to be0 or 1.

The methodnext is implemented by classRandom as follows:

synchronized protected int next(int bits) {
seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
return (int)(seed >>> (48 - bits));

}

This is a linear congruential pseudorandom number generator, as defined by
Lehmer and described by Donald E. Knuth inThe Art of Computer Programming,
Volume 2:Seminumerical Algorithms, section 3.2.1.

21.9.8 public int nextInt()

The general contract ofnextInt is that oneint value is pseudorandomly gener
ated and returned. All possibleint values are produced with (approximately
equal probability.

The methodsetSeed is implemented by classRandom as follows:

public int nextInt() { return next(32); }

21.9.9 public long nextLong()

The general contract ofnextLong is that onelong value is pseudorandomly gen
erated and returned. All possiblelong values are produced with (approxi
mately) equal probability.

The methodsetSeed is implemented by classRandom as follows:

public long nextLong() {
return ((long)next(32) << 32) + next(32);

}

232

264

THE PACKAGE JAVA.UTIL java.util.Random 21.9

xi-

e the
osen
own

light
s: it

xi-

e the
osen
own
21.9.10 public float nextFloat()

The general contract ofnextFloat is that onefloat value, chosen (approxi-
mately) uniformly from the range0.0f (inclusive) to1.0f (exclusive), is pseudo-
randomly generated and returned. All possiblefloat values of the form

, wherem is a positive integer less than , are produced with (appro
mately) equal probability.

The methodsetSeed is implemented by classRandom as follows:

public float nextFloat() {
return next(24) / ((float)(1 << 24));

}

The hedge “approximately” is used in the foregoing description only becaus
next method is only approximately an unbiased source of independently ch
bits. If it were a perfect source or randomly chosen bits, then the algorithm sh
would choosefloat values from the stated range with perfect uniformity.

[In early versions of Java, the result was incorrectly calculated as:

return next(30) / ((float)(1 << 30));

This might seem to be equivalent, if not better, but in fact it introduced a s
nonuniformity because of the bias in the rounding of floating-point number
was slightly more likely that the low-order bit of the significand would be0 than
that it would be1.]

21.9.11 public double nextDouble()

The general contract ofnextDouble is that onedouble value, chosen (approxi-
mately) uniformly from the range0.0d (inclusive) to1.0d (exclusive), is pseudo-
randomly generated and returned. All possiblefloat values of the form

, wherem is a positive integer less than , are produced with (appro
mately) equal probability.

The methodsetSeed is implemented by classRandom as follows:

public double nextDouble() {
return (((long)next(26) << 27) + next(27))

/ (double)(1L << 53);
}

The hedge “approximately” is used in the foregoing description only becaus
next method is only approximately an unbiased source of independently ch
bits. If it were a perfect source or randomly chosen bits, then the algorithm sh
would choosedouble values from the stated range with perfect uniformity.

[In early versions of Java, the result was incorrectly calculated as:

2
24

m 2 24–⋅ 2
24

2
53

m 2
53–⋅ 2

53
649

21.9 java.util.Random THE PACKAGE JAVA.UTIL

650

arge
s: it

e,

s

t it

. .
 .
return (((long)next(27) << 27) + next(27))
/ (double)(1L << 54);

This might seem to be equivalent, if not better, but in fact it introduced a l
nonuniformity because of the bias in the rounding of floating-point number
was three times as likely that the low-order bit of the significand would be0 than
that it would be1! This nonuniformity probably doesn’t matter much in practic
but we strive for perfection.]

21.9.12 public double nextGaussian()

The general contract ofnextGaussian is that onedouble value, chosen from
(approximately) the usual normal distribution with mean0.0 and standard devia-
tion 1.0, is pseudorandomly generated and returned.

The methodsetSeed is implemented by classRandom as follows:

synchronized public double nextGaussian() {
if (haveNextNextGaussian) {

haveNextNextGaussian = false;
return nextNextGaussian;

} else {
double v1, v2, s;
do {

v1 = 2 * nextDouble() - 1; // between-1.0 and1.0
v2 = 2 * nextDouble() - 1; // between-1.0 and1.0
s = v1 * v1 + v2 * v2;

} while (s >= 1);
double norm = Math.sqrt(-2 * Math.log(s)/s);
nextNextGaussian = v2 * norm;
haveNextNextGaussian = true;
return v1 * norm;

}
}

This uses thepolar method of G. E. P. Box, M. E. Muller, and G. Marsaglia, a
described by Donald E. Knuth inThe Art of Computer Programming, Volume 2:
Seminumerical Algorithms, section 3.4.1, subsection C, algorithm P. Note tha
generates two independent values at the cost of only one call toMath.log and one
call toMath.sqrt.

 . . . who can tell what may be the event? .
The mind of the multitude is left at random . .

—Thomas Paine,Common Sense (1776), Appendix A

THE PACKAGE JAVA.UTIL java.util.StringTokenizer 21.10

y the

s not

nd
g on

te
acters

 to
ximal

e
t the

was
21.10 The Classjava.util.StringTokenizer

TheStringTokenizer class provides a way to break aString into tokens. The
tokenizing method used by this class is much simpler than the one used b
classjava.io.StreamTokenizer. For example, aStringTokenizer does not
distinguish among identifiers, numbers, and quoted strings; moreover, it doe
recognize and skip comments.

A StringTokenizer can serve as anEnumeration (§21.1).

public class StringTokenizer implements Enumeration {
public StringTokenizer(String str, String delim,

boolean returnTokens);
public StringTokenizer(String str, String delim);
public StringTokenizer(String str);
public boolean hasMoreTokens();
public String nextToken();
public String nextToken(String delim);
public boolean hasMoreElements();
public Object nextElement();
public int countTokens();

}

A StringTokenizer simply divides characters into classes: delimiters a
other characters. The tokenizer behaves in one of two ways, dependin
whether it was created withreturnTokens having the valuetrue or false.

If returnTokens is false, delimiter characters merely serve to separa
tokens of interest. A token is thus a maximal sequence of consecutive char
that are not delimiters.

If returnTokens is true, delimiter characters are themselves considered
be tokens of interest. A token is thus either one delimiter character or a ma
sequence of consecutive characters that are not delimiters.

A StringTokenizer internally maintains a current position within th
String to be tokenized. Some operations advance this current position pas
characters processed.

A token is returned by taking a substring (§20.12.32) of the string that
used to create theStringTokenizer.
651

21.10 java.util.StringTokenizer THE PACKAGE JAVA.UTIL

652

d as

)
ated

the

posi-

nced
21.10.1 public StringTokenizer(String str, String delim,

boolean returnTokens)

This constructor initializes a newly createdStringTokenizer so that it will rec-
ognize tokens within the given stringstr. All characters in the stringdelim will
be considered delimiters. The argumentreturnTokens specifies whether delim-
iter characters themselves are to be considered tokens.

21.10.2 public StringTokenizer(String str, String delim)

This constructor initializes a newly createdStringTokenizer so that it will rec-
ognize tokens within the given stringstr. All characters in the stringdelim will
be considered delimiters. Delimiter characters themselves will not be treate
tokens.

21.10.3 public StringTokenizer(String str)

This constructor initializes a newly createdStringTokenizer so that it will rec-
ognize tokens within the given stringstr. All whitespace characters (§20.5.19
will be considered delimiters. Delimiter characters themselves will not be tre
as tokens.

21.10.4 public boolean hasMoreTokens()

The result istrue if and only if there is at least one token in the string after
current position. If this method returnstrue, then a subsequent call tonextToken
with no argument will successfully return a token.

21.10.5 public String nextToken()

The next token in the string after the current position is returned. The current
tion is advanced beyond the recognized token.

21.10.6 public String nextToken(String delim)

First, the set of characters considered to be delimiters by thisStringTokenizer
is changed to be the characters in the stringdelim. Then the next token in the
string after the current position is returned. The current position is adva
beyond the recognized token.

THE PACKAGE JAVA.UTIL java.util.StringTokenizer 21.10

g the
21.10.7 public boolean hasMoreElements()

This method has exactly the same behavior ashasMoreTokens (§21.10.4). It is
provided so that aStringTokenizer can serve as anEnumeration (§21.1).

21.10.8 public Object nextElement()

This method has exactly the same behavior asnextToken (§21.10.5). It is pro-
vided so that aStringTokenizer can serve as anEnumeration (§21.1).

21.10.9 public int countTokens()

The result is the number of tokens in the string after the current position, usin
current set of delimiter characters. The current position is not advanced.
653

21.11 java.util.Vector THE PACKAGE JAVA.UTIL

654

teger
o-
21.11 The Classjava.util.Vector

A Vector, like an array, contains items that can be accessed using an in
index. However, the size of aVector can grow and shrink as needed to accomm
date adding and removing items after theVector has been created.

public class Vector implements Cloneable {
protected Object[] elementData;
protected int elementCount;
protected int capacityIncrement;
public Vector(int initialCapacity, int capacityIncrement);
public Vector(int initialCapacity);
public Vector();
public final String toString();
public Object clone();
public final Object elementAt(int index)

throws IndexOutOfBoundsException;
public final void setElementAt(Object obj, int index)

throws IndexOutOfBoundsException;
public final Object firstElement()

throws NoSuchElementException;
public final Object lastElement()

throws NoSuchElementException;
public final void addElement(Object obj);
public final void insertElementAt(Object obj, int index)

throws IndexOutOfBoundsException;
public final boolean removeElement(Object obj);
public final void removeElementAt(int index)

throws IndexOutOfBoundsException;
public final void removeAllElements();
public final boolean isEmpty();
public final int size();
public final void setSize(int newSize);
public final int capacity();
public final void ensureCapacity(int minCapacity);
public final void trimToSize();
public final void copyInto(Object anArray[])

throws IndexOutOfBoundsException;
public final Enumeration elements();
public final boolean contains(Object elem);
public final int indexOf(Object elem);
public final int indexOf(Object elem, int index)

throws IndexOutOfBoundsException;
public final int lastIndexOf(Object elem);

THE PACKAGE JAVA.UTIL java.util.Vector 21.11

h to

ta
by

 of

ly,
public final int lastIndexOf(Object elem, int index)
throws IndexOutOfBoundsException;

}

21.11.1 protected Object[] elementData;

Internally, aVector keeps its elements in an array that is at least large enoug
contain all the elements.

21.11.2 protected int elementCount;

This field holds the number of items currently in thisVector object. Components
elementData[0] throughelementData[elementCount-1] are the actual items.

21.11.3 protected int capacityIncrement;

When the methodensureCapacity (§21.11.22) must increase the size of the da
array in the fieldelementData (by creating a new array), it increases the size
at least the amount incapacityIncrement; but if capacityIncrement is zero,
then it at least doubles the size of the data array.

21.11.4 public Vector(int initialCapacity, int capacityIncrement)

This constructor initializes a newly createdVector so that its internal data array
has sizeinitialCapacity and its standard capacity increment is the value
capacityIncrement. Initially, theVector contains no items.

21.11.5 public Vector(int initialCapacity)

This constructor initializes a newly createdVector so that its internal data array
has sizeinitialCapacity and its standard capacity increment is zero. Initial
theVector contains no items.

21.11.6 public Vector()

This constructor initializes a newly createdVector so that its internal data array
has size10 and its standard capacity increment is zero. Initially theVector con-
tains no items.
655

21.11 java.util.Vector THE PACKAGE JAVA.UTIL

656

CII

e is

fer-
ernal
21.11.7 public final String toString()

This Vector is represented in string form as a list of its items, enclosed in AS
square brackets and separated by the ASCII characters “, ” (comma and space).
ThetoString method is used to convert the items to strings; a null referenc
rendered as the string “null”.

The example fragment:

Vector v = new Vector();
v.addElement("Canberra");
v.addElement("Cancun");
v.addElement("Canandaigua");
System.out.println(v.toString());

produces the output:

[Canberra, Cancun, Canandaigua]

Overrides thetoString method ofObject (§20.1.2).

21.11.8 public Object clone()

A copy of thisVector is constructed and returned. The copy will contains a re
ence to a clone of the internal data array, not a reference to the original int
data array of thisVector.

Overrides theclone method ofObject (§20.1.5).

21.11.9 public final Object elementAt(int index)

throws IndexOutOfBoundsException

The item of thisVector with the specifiedindex is returned.
If the index is negative or not less than the current size of thisVector, an

IndexOutOfBoundsException is thrown.

21.11.10 public final void setElementAt(Object obj, int index)

throws IndexOutOfBoundsException

The item of thisVector with the specifiedindex is replaced withobj, so thatobj
is now the item at the specifiedindex within thisVector.

If the index is negative or not less than the current size of thisVector, an
IndexOutOfBoundsException is thrown.

THE PACKAGE JAVA.UTIL java.util.Vector 21.11

e

h

21.11.11 public final Object firstElement()

throws NoSuchElementException

If this Vector is empty, aNoSuchElementException is thrown. Otherwise, the
first item (the item at index0) is returned.

21.11.12 public final Object lastElement()

throws NoSuchElementException

If this Vector is empty, aNoSuchElementException is thrown. Otherwise, the
last item (the item at indexsize()-1) is returned.

21.11.13 public final void addElement(Object obj)

The size of thisVector is increased by1 andobj becomes the new last item.

21.11.14 public final void insertElementAt(Object obj, int index)

throws IndexOutOfBoundsException

The size of thisVector is increased by1 andobj becomes the new item at th
specifiedindex. Any item in thisVector that was previously at indexk is first
moved to indexk+1 if and only ifk is not less thanindex.

21.11.15 public final boolean removeElement(Object obj)

If this Vector contains an occurrence ofobj, then the first (lowest-indexed) suc
occurrence is removed, as if by the methodremoveElementAt (§21.11.16), and
true is returned. If thisVector contains no occurrence ofobj, thisVector is not
modified andfalse is returned.

21.11.16 public final void removeElementAt(int index)

throws IndexOutOfBoundsException

The size of thisVector is decreased by1 and the item at the specifiedindex is
removed from thisVector. Any item in thisVector that was previously at index
k is first moved to indexk-1 if and only ifk is greater thanindex.
657

21.11 java.util.Vector THE PACKAGE JAVA.UTIL

658

e
ize is

n

 size

ut if

pt in
21.11.17 public final void removeAllElements()

All elements are removed from thisVector, making it empty.

21.11.18 public final boolean isEmpty()

The result istrue if and only if thisVector is empty, that is, its size is zero.

21.11.19 public final int size()

The size of thisVector (the number of items it currently contains) is returned.

21.11.20 public final void setSize(int newSize)

The size of thisVector is changed tonewSize. If the new size is smaller than th
old size, then items are removed from the end and discarded. If the new s
larger than the old size, then the new items are set tonull.

21.11.21 public final int capacity()

The current capacity of thisVector (the length of its internal data array, kept i
the fieldelementData) is returned.

21.11.22 public final void ensureCapacity(int minCapacity)

If the current capacity of thisVector is less thanminCapacity, then its capacity
is increased by replacing its internal data array, kept in the fieldelementData
(§21.11.1), with a larger one. The size of the new data array will be the old
pluscapacityIncrement (§21.11.3), unless the value ofcapacityIncrement is
nonpositive, in which case the new capacity will be twice the old capacity; b
this new size is still smaller thanminCapacity, then the new capacity will be
minCapacity.

21.11.23 public final void trimToSize()

If the capacity of thisVector is larger than its currentsize (§21.11.19), then the
capacity is changed to equal the size by replacing its internal data array, ke
the fieldelementData, with a smaller one.

THE PACKAGE JAVA.UTIL java.util.Vector 21.11

r-
21.11.24 public final void copyInto(Object anArray[])

throws IndexOutOfBoundsException

All the items in thisVector are copied into the arrayanArray. The item at index
k in thisVector is copied into componentk of anArray. If the length ofanArray
is smaller than the size of thisVector, an IndexOutOfBoundsException is
thrown.

21.11.25 public final Enumeration elements()

An Enumeration (§21.1) is returned that will generate all items in thisVector.
The first item generated is the item at index0, then the item at index1, and so on.

21.11.26 public final boolean contains(Object elem)

The result istrue if and only if some item in thisVector is the same aselem, as
determined by theequals method (§20.1.3).

21.11.27 public final int indexOf(Object elem)

If an item equal toelem is in thisVector, then the index of the first such occu
rence is returned, that is, the smallest valuek such that:

elem.equals(elementData[k])

is true. If no such item occurs in thisVector, then-1 is returned.

21.11.28 public final int indexOf(Object elem, int index)

throws IndexOutOfBoundsException

If an item equal toelem is in thisVector at positionk or higher, then the index of
the first such occurrence is returned, that is, the smallest valuek such that:

elem.equals(elementData[k]) && (k >= index)

is true. If no such item occurs in thisVector, then-1 is returned.
659

21.11 java.util.Vector THE PACKAGE JAVA.UTIL

660

r-
21.11.29 public final int lastIndexOf(Object elem)

If an item equal toelem is in thisVector, then the index of the last such occu
rence is returned, that is, the largest valuek such that:

elem.equals(elementData[k])

is true. If no such item occurs in thisVector, then-1 is returned.

21.11.30 public final int lastIndexOf(Object elem, int index)

throws IndexOutOfBoundsException

If an item equal toelem is in thisVector at positionk or lower, then the index of
the last such occurrence is returned, that is, the largest valuek such that:

elem.equals(elementData[k]) && (k <= index)

is true. If no such item occurs in thisVector, then-1 is returned.

THE PACKAGE JAVA.UTIL java.util.Stack 21.12

ke
. .

e
 a
tack
is

t as:
21.12 The Classjava.util.Stack

. . . and from the stack a thin blue wreath of smo
Curled through the air across the ripening oats .

—Oscar Wilde,Charmides (1881)

The classStack extendsVector with five operations that allow a vector to b
treated as a stack. The usualpush andpop operations are provided, as well as
method topeek at the top item on the stack, a method to test for whether the s
is empty, and a method tosearch the stack for an item and discover how far it
from the top.

public class Stack extends Vector {
public Object push(Object item);
public Object pop() throws EmptyStackException;
public Object peek() throws EmptyStackException;
public boolean empty();
public int search(Object o);

}

When a stack is first created, it contains no items.

21.12.1 public Object push(Object item)

Theitem is pushed onto the top of this stack. This has exactly the same effec

addElement(item)

See methodaddElement of Vector (§21.11.13).

21.12.2 public Object pop() throws EmptyStackException

If the stack is empty, anEmptyStackException is thrown. Otherwise, the top-
most item (last item of theVector) is removed and returned.

21.12.3 public Object peek() throws EmptyStackException

If the stack is empty, anEmptyStackException is thrown. Otherwise, the top-
most item (last item of theVector) is returned but not removed.
661

21.12 java.util.Stack THE PACKAGE JAVA.UTIL

662

e
 top-

s
. .
21.12.4 public boolean empty()

The result istrue if and only if the stack contains no items.

21.12.5 public int search(Object o)

If the objecto occurs as an item in thisStack, this method returns the distanc
from the top of the stack of the occurrence nearest the top of the stack; the
most item on the stack is considered to be at distance1. The equals method
(§20.1.3) is used to compareo to the items in thisStack.

. . . And overhead in circling listlessnes
The cawing rooks whirl round the frosted stacks .

—Oscar Wilde,Humanitad (1881)

THE PACKAGE JAVA.UTIL java.util.EmptyStackException 21.13
21.13 The Classjava.util.EmptyStackException

A EmptyStackException is thrown to indicate an attempt topop (§21.12.2) or
peek (§21.12.3) an emptyStack object.

public class EmptyStackException extends RuntimeException {
public EmptyStackException();

}

21.13.1 public EmptyStackException()

This constructor initializes a newly createdEmptyStackException with null as
its error message string.
663

21.14 java.util.NoSuchElementException THE PACKAGE JAVA.UTIL

664

as
ee
21.14 The Classjava.util.NoSuchElementException

A NoSuchElementException is thrown to indicate that another element w
requested from anEnumeration object that has no more elements to supply. S
methodnextElement of interfaceEnumeration (§21.1.2).

public class NoSuchElementException extends RuntimeException {
public NoSuchElementException();
public NoSuchElementException(String s);

}

21.14.1 public NoSuchElementException()

This constructor initializes a newly createdNoSuchElementException with
null as its error message string.

21.14.2 public NoSuchElementException(String s)

This constructor initializes a newly createdNoSuchElementException by saving
a reference to the error message strings for later retrieval by thegetMessage
method (§20.22.3).

C H A P T E R 22
oream
 time.
tract
lass

g and

e are
form
, a
na-

 or a
 also
me

tify
ch as

s.
 a
y by

-point

es
, and
The Packagejava.io

The Package java.iI NPUT and output in Java is organized around the concept of streams. A st
is a sequence of items, usually 8-bit bytes, read or written over the course of

In thejava.io package, all input is done through subclasses of the abs
classInputStream, and all output is done through subclasses of the abstract c
OutputStream. The one exception to this rule is the classRandomAccessFile,
which handles files that allow random access and perhaps intermixed readin
writing of the file.

For an input stream, the source of data might be a file, aString, an array of
bytes, or bytes written to an output stream (typically by another thread). Ther
also “filter input streams” that take data from another input stream and trans
or augment the data before delivering it as input. For example
LineNumberInputStream passes bytes through verbatim but counts line termi
tors as they are read.

For an output stream, the sink of data might be a file, an array of bytes,
buffer to be read as an input stream (typically by another thread). There are
“filter output streams” that transform or augment data before writing it to so
other output stream.

An instance of classFile represents a path name (a string) that might iden
a particular file within a file system. Certain operations on the file system, su
renaming and deleting files, are done by this class rather than through stream

An instance of classFileDescriptor represents an abstract indication of
particular file within a file system; such file descriptors are created internall
the Java I/O system.

There are two interfaces,DataInput andDataOutput, that support the trans-
fer of data other than bytes or characters, such as long integers, floating
numbers and strings. The classDataInputStream implementsDataInput; the
class DataOutputStream implementsDataOutput; and RandomAccessFile
implements bothDataInput andDataOutput.

The classStreamTokenizer provides some simple support for parsing byt
or characters from an input stream into tokens such as identifiers, numbers
665

22 java.io THE PACKAGE JAVA.IO

666

line
strings, optionally ignoring comments and optionally recognizing or ignoring
terminators.

The hierarchy of classes defined in packagejava.io is as follows. (Classes
whose names are shown here inboldface are in packagejava.io; the others are
in packagejava.lang and are shown here to clarify subclass relationships.)

Object §20.1
interface DataInput §22.1
interface DataOutput §22.2
InputStream §22.3

FileInputStream §22.4
PipedInputStream §22.5
ByteArrayInputStream §22.6
StringBufferInputStream §22.7
SequenceInputStream §22.8
FilterInputStream §22.9

BufferedInputStream §22.10
DataInputStream §22.11
LineNumberInputStream §22.12
PushBackInputStream §22.13

StreamTokenizer §22.14
OutputStream §22.15

FileOutputStream §22.16
PipedOutputStream §22.17
ByteArrayOutputStream §22.18
FilterOutputStream §22.19

BufferedOutputStream §22.20
DataOutputStream §22.21
PrintStream §22.22

RandomAccessFile §22.23
File §22.24
interface FileNameFilter §22.25
FileDescriptor §22.26
Throwable §20.22

Exception §20.22
IOException §22.27

EOFException §22.28
FileNotFoundException §22.29
InterruptedIOException §22.30
UTFDataFormatException §22.31

THE PACKAGE JAVA.IO java.io.DataInput 22.1

nd
lso a

ata

 file

y

n

22.1 The Interfacejava.io.DataInput

The DataInput interface provides for reading bytes from a binary stream a
reconstructing from them data in any of the Java primitive types. There is a
facility for reconstructing aString from data in Java modified UTF-8 format.

TheDataOutput interface (§22.2) supports the creation of binary output d
suitable for reading back in through theDataInput interface.

The DataInput interface is implemented by classesDataInputStream
(§22.11) andRandomAccessFile (§22.23).

public interface DataInput {
public void readFully(byte[] b)

throws IOException, NullPointerException;
public void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public int skipBytes(int n) throws IOException;
public boolean readBoolean() throws IOException;
public byte readByte() throws IOException;
public int readUnsignedByte() throws IOException;
public short readShort() throws IOException;
public int readUnsignedShort() throws IOException;
public char readChar() throws IOException;
public int readInt() throws IOException;
public long readLong() throws IOException;
public float readFloat() throws IOException;
public double readDouble() throws IOException;
public String readLine() throws IOException;
public String readUTF() throws IOException;

}

It is generally true of all the reading routines in this interface that if end of
is reached before the desired number of bytes has been read, anEOFException
(which is a kind ofIOException) is thrown. If any byte cannot be read for an
reason other than end of file, anIOException other thanEOFException is
thrown. In particular, anIOException may be thrown if the input stream has bee
closed (§22.3.6).
667

22.1 java.io.DataInput THE PACKAGE JAVA.IO

668

ut
l

n is

d is

t not

de.

f

tored
s

22.1.1 public void readFully(byte[] b)

throws IOException, NullPointerException;

The general contract ofreadFully(b) is that it reads some bytes from an inp
stream and stores them into the buffer arrayb. The number of bytes read is equa
to the length ofb.

This method blocks until one of the following conditions occurs:

• b.length bytes of input data are available, in which case a normal retur
made.

• End of file is detected, in which case anEOFException is thrown.

• An I/O error occurs, in which case anIOException other thanEOFExcep-
tion is thrown.

If b is null, aNullPointerException is thrown.
If b.length is zero, then no bytes are read. Otherwise, the first byte rea

stored into elementb[0], the next one intob[1], and so on.
If an exception is thrown from this method, then it may be that some bu

all bytes ofb have been updated with data from the input stream.

22.1.2 public void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

The general contract ofreadFully(b, off, len) is that it readslen bytes from
an input stream.

This method blocks until one of the following conditions occurs:

• len bytes of input data are available, in which case a normal return is ma

• End of file is detected, in which case anEOFException is thrown.

• An I/O error occurs, in which case anIOException other thanEOFExcep-
tion is thrown.

If b is null, aNullPointerException is thrown.
If off is negative, orlen is negative, oroff+len is greater than the length o

the arrayb, then anIndexOutOfBoundsException is thrown.
If len is zero, then no bytes are read. Otherwise, the first byte read is s

into elementb[off], the next one intob[off+1], and so on. The number of byte
read is, at most, equal tolen.

THE PACKAGE JAVA.IO java.io.DataInput 22.1

t not
a

 skip
 of a
s

s

he

-
e

If an exception is thrown from this method, then it may be that some bu
all bytes ofb in positionsoff throughoff+len-1 have been updated with dat
from the input stream.

22.1.3 public int skipBytes(int n) throws IOException

The general contract ofskipBytes is that it makes an attempt to skip overn bytes
of data from the input stream, discarding the skipped bytes. However, it may
over some smaller number of bytes, possibly zero. This may result from any
number of conditions; reaching end of file beforen bytes have been skipped i
only one possibility. This method never throws anEOFException. The actual
number of bytes skipped is returned.

22.1.4 public boolean readBoolean() throws IOException;

The general contract ofreadBoolean is that it reads one input byte and return
true if that byte is nonzero,false if that byte is zero.

This method is suitable for reading the byte written by thewriteBoolean
method of interfaceDataOutput (§22.2.4).

22.1.5 public byte readByte() throws IOException

The general contract ofreadByte is that it reads and returns one input byte. T
byte is treated as a signed value in the range-128 through127, inclusive.

This method is suitable for reading the byte written by thewriteByte method
of interfaceDataOutput (§22.2.5).

22.1.6 public int readUnsignedByte() throws IOException

The general contract ofreadUnsignedByte is that it reads one input byte, zero
extends it to typeint, and returns the result, which is therefore in the rang0
through255.

This method is suitable for reading the byte written by thewriteByte method
of interfaceDataOutput (§22.2.5) if the argument towriteByte was intended to
be a value in the range0 through255.
669

22.1 java.io.DataInput THE PACKAGE JAVA.IO

670

 a
e

d

 a
e

an
22.1.7 public short readShort() throws IOException

The general contract ofreadShort is that it reads two input bytes and returns
short value. Leta be the first byte read andb be the second byte. The valu
returned is:

(short)((a << 8) | (b & 0xff))

This method is suitable for reading the bytes written by thewriteShort
method of interfaceDataOutput (§22.2.6).

22.1.8 public int readUnsignedShort() throws IOException

The general contract ofreadUnsignedShort is that it reads two input bytes an
returns anint value in the range0 through65535. Leta be the first byte read and
b be the second byte. The value returned is:

(((a & 0xff) << 8) | (b & 0xff))

This method is suitable for reading the bytes written by thewriteShort
method of interfaceDataOutput (§22.2.6) if the argument towriteShort was
intended to be a value in the range0 through65535.

22.1.9 public char readChar() throws IOException

The general contract ofreadChar is that it reads two input bytes and returns
char value. Leta be the first byte read andb be the second byte. The valu
returned is:

(char)((a << 8) | (b & 0xff))

This method is suitable for reading bytes written by thewriteChar method of
interfaceDataOutput (§22.2.7).

22.1.10 public int readInt() throws IOException

The general contract ofreadInt is that it reads four input bytes and returns
int value. Leta be the first byte read,b be the second byte,c be the third byte,
andd be the fourth byte. The value returned is:

(((a & 0xff) << 24) | ((b & 0xff) << 16) |
((c & 0xff) << 8) | (d & 0xff))

This method is suitable for reading bytes written by thewriteInt method of
interfaceDataOutput (§22.2.8).

THE PACKAGE JAVA.IO java.io.DataInput 22.1

 a

 a

 a
22.1.11 public long readLong() throws IOException

The general contract ofreadLong is that it reads eight input bytes and returns
long value. Leta be the first byte read,b be the second byte,c be the third byte,d
be the fourth byte,e be the fifth byte,f be the sixth byte,g be the seventh byte,
andh be the eighth byte. The value returned is:

(((long)(a & 0xff) << 56) |
((long)(b & 0xff) << 48) |
((long)(c & 0xff) << 40) |
((long)(d & 0xff) << 32) |
((long)(e & 0xff) << 24) |
((long)(f & 0xff) << 16) |
((long)(g & 0xff) << 8) |
((long)(h & 0xff)))

This method is suitable for reading bytes written by thewriteLong method of
interfaceDataOutput (§22.2.9).

22.1.12 public float readFloat() throws IOException

The general contract ofreadFloat is that it reads four input bytes and returns
float value. It does this by first constructing anint value in exactly the manner
of thereadInt method (§22.1.10), then converting thisint value to afloat in
exactly the manner of the methodFloat.intBitsToFloat (§20.9.23).

This method is suitable for reading bytes written by thewriteFloat method
of interfaceDataOutput (§22.2.10).

22.1.13 public double readDouble() throws IOException

The general contract ofreadDouble is that it reads eight input bytes and returns
double value. It does this by first constructing along value in exactly the manner
of thereadlong method (§22.1.11), then converting thislong value to adouble
in exactly the manner of the methodDouble.longBitsToDouble (§20.10.22).

This method is suitable for reading bytes written by thewriteDouble method
of interfaceDataOutput (§22.2.11).
671

22.1 java.io.DataInput THE PACKAGE JAVA.IO

672

ng
nd of

er set.

es.
te
s. If

racter

de
cters

er in
r
be
roups.

roup.

ro-
22.1.14 public String readLine() throws IOException

The general contract ofreadLine is that it reads successive bytes, converti
each byte separately into a character, until it encounters a line terminator or e
file; the characters read are then returned as aString. Note that because this
method processes bytes, it does not support input of the full Unicode charact

If end of file is encountered before even one byte can be read, thennull is
returned. Otherwise, each byte that is read is converted to typechar by zero-
extension. If the character'\n' is encountered, it is discarded and reading ceas
If the character'\r' is encountered, it is discarded and, if the following by
converts to the character'\n', then that is discarded also; reading then cease
end of file is encountered before either of the characters'\n' and'\r' is encoun-
tered, reading ceases. Once reading has ceased, aString is returned that contains
all the characters read and not discarded, taken in order. Note that every cha
in this string will have a value less than\u0100, that is,(char)256.

22.1.15 public String readUTF() throws IOException

The general contract ofreadUTF is that it reads a representation of a Unico
character string encoded in Java modified UTF-8 format; this string of chara
is then returned as aString.

First, two bytes are read and used to construct an unsigned 16-bit integ
exactly the manner of thereadUnsignedShort method (§22.1.8). This intege
value is called theUTF length and specifies the number of additional bytes to
read. These bytes are then converted to characters by considering them in g
The length of each group is computed from the value of the first byte of the g
The byte following a group, if any, is the first byte of the next group.

If the first byte of a group matches the bit pattern0xxxxxxx (wherex means
“may be 0 or 1”), then the group consists of just that byte. The byte is ze
extended to form a character.

If the first byte of a group matches the bit pattern110xxxxx, then the group
consists of that bytea and a second byteb. If there is no byteb (because bytea
was the last of the bytes to be read), or if byteb does not match the bit pattern
10xxxxxx, then aUTFDataFormatException is thrown. Otherwise, the group is
converted to the character:

(char)(((a & 0x1F) << 6) | (b & 0x3F))

If the first byte of a group matches the bit pattern1110xxxx, then the group
consists of that bytea and two more bytesb andc. If there is no bytec (because
bytea was one of the last two of the bytes to be read), or either byteb or bytec

THE PACKAGE JAVA.IO java.io.DataInput 22.1

n an

 char-
 were
does not match the bit pattern10xxxxxx, then aUTFDataFormatException is
thrown. Otherwise, the group is converted to the character:

(char)(((a & 0x0F) << 12) | ((b & 0x3F) << 6) | (c & 0x3F))

If the first byte of a group matches the pattern1111xxxx or the pattern
10xxxxxx, then aUTFDataFormatException is thrown.

If end of file is encountered at any time during this entire process, the
EOFException is thrown.

After every group has been converted to a character by this process, the
acters are gathered, in the same order in which their corresponding groups
read from the input stream, to form aString, which is returned.

The writeUTF method of interfaceDataOutput (§22.2.14) may be used to
write data that is suitable for reading by this method.
673

22.2 java.io.DataOutput THE PACKAGE JAVA.IO

674

im-
ere is
-

Java

at if

he
22.2 The Interfacejava.io.DataOutput

TheDataOutput interface provides for converting data from any of the Java pr
itive types to a series of bytes and writing these bytes to a binary stream. Th
also a facility for converting aString into Java modified UTF-8 format and writ
ing the resulting series of bytes.

TheDataInput interface (§22.1) can be used to read in and reconstruct
data from the binary output data produced by theDataOutput interface.

The DataOutput interface is implemented by classesDataOutputStream
(§22.21) andRandomAccessFile (§22.23).

public interface DataOutput {
public void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void writeBoolean(boolean v) throws IOException;
public void writeByte(int v) throws IOException;
public void writeShort(int v) throws IOException;
public void writeChar(int v) throws IOException;
public void writeInt(int v) throws IOException;
public void writeLong(long v) throws IOException;
public void writeFloat(float v) throws IOException;
public void writeDouble(double v) throws IOException;
public void writeBytes(String s)

throws IOException, NullPointerException;
public void writeChars(String s)

throws IOException, NullPointerException;
public void writeUTF(String s)

throws IOException, NullPointerException;
}

For all the methods in this interface that write bytes, it is generally true th
a byte cannot be written for any reason, anIOException is thrown.

22.2.1 public void write(int b) throws IOException

The general contract forwrite is that one byte is written to the output stream. T
byte to be written is the eight low-order bits of the argumentb. The 24 high-order
bits ofb are ignored.

THE PACKAGE JAVA.IO java.io.DataOutput 22.2

f

t

m
 low-
22.2.2 public void write(byte[] b)

throws IOException, NullPointerException

The general contract forwrite is that all the bytes in arrayb are written, in order,
to the output stream.

If b is null, aNullPointerException is thrown.
If b.length is zero, then no bytes are written. Otherwise, the byteb[0] is

written first, thenb[1], and so on; the last byte written isb[b.length-1].

22.2.3 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

The general contract forwrite is thatlen bytes from arrayb are written, in order,
to the output stream.

If b is null, aNullPointerException is thrown.
If off is negative, orlen is negative, oroff+len is greater than the length o

the arrayb, then anIndexOutOfBoundsException is thrown.
If len is zero, then no bytes are written. Otherwise, the byteb[off] is written

first, thenb[off+1], and so on; the last byte written isb[off+len-1].

22.2.4 public void writeBoolean(boolean v) throws IOException

The general contract forwriteBoolean is that one byte is written to the outpu
stream. If the argumentv is true, the value(byte)1 is written; ifv is false, the
value(byte)0 is written.

The byte written by this method may be read by thereadBoolean method of
interfaceDataInput (§22.1.4), which will then return aboolean equal tov.

22.2.5 public void writeByte(int v) throws IOException

The general contract forwriteByte is that one byte is written to the output strea
to represent the value of the argument. The byte to be written is the eight
order bits of the argumentb. The 24 high-order bits ofb are ignored. (This means
thatwriteByte does exactly the same thing aswrite for an integer argument.)

The byte written by this method may be read by thereadByte method of
interfaceDataInput (§22.1.5), which will then return abyte equal to(byte)v.
675

22.2 java.io.DataOutput THE PACKAGE JAVA.IO

676

t
 in the

t
 in the

t
 in the

t
 in the
22.2.6 public void writeShort(int v) throws IOException

The general contract forwriteShort is that two bytes are written to the outpu
stream to represent the value of the argument. The byte values to be written,
order shown, are:

(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadShort method of
interface DataInput (§22.1.7), which will then return ashort equal to
(short)v.

22.2.7 public void writeChar(int v) throws IOException

The general contract forwriteChar is that two bytes are written to the outpu
stream to represent the value of the argument. The byte values to be written,
order shown, are:

(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadChar method of
interfaceDataInput (§22.1.9), which will then return achar equal to(char)v.

22.2.8 public void writeInt(int v) throws IOException

The general contract forwriteInt is that four bytes are written to the outpu
stream to represent the value of the argument. The byte values to be written,
order shown, are:

(byte)(0xff & (v >> 24))
(byte)(0xff & (v >> 16))
(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadInt method of
interfaceDataInput (§22.1.10), which will then return anint equal tov.

22.2.9 public void writeLong(long v) throws IOException

The general contract forwriteLong is that four bytes are written to the outpu
stream to represent the value of the argument. The byte values to be written,
order shown, are:

THE PACKAGE JAVA.IO java.io.DataOutput 22.2

t
ts this

ut
ts this

nner
(byte)(0xff & (v >> 56))
(byte)(0xff & (v >> 48))
(byte)(0xff & (v >> 40))
(byte)(0xff & (v >> 32))
(byte)(0xff & (v >> 24))
(byte)(0xff & (v >> 16))
(byte)(0xff & (v >> 8))
(byte)(0xff & v)

The bytes written by this method may be read by thereadLong method of
interfaceDataInput (§22.1.11), which will then return along equal tov.

22.2.10 public void writeFloat(float v) throws IOException

The general contract forwriteFloat is that four bytes are written to the outpu
stream to represent the value of the argument. It does this as if it first conver
float value to anint in exactly the manner of theFloat.floatToIntBits
method (§20.9.22) and then writes theint value in exactly the manner of the
writeInt method (§22.2.8).

The bytes written by this method may be read by thereadFloat method of
interfaceDataInput (§22.1.12), which will then return afloat equal tov.

22.2.11 public void writeDouble(double v) throws IOException

The general contract forwriteDouble is that eight bytes are written to the outp
stream to represent the value of the argument. It does this as if it first conver
double value to along in exactly the manner of theDouble.doubleToLongBits
method (§20.10.21) and then writes thelong value in exactly the manner of the
writeLong method (§22.2.9).

The bytes written by this method may be read by thereadDouble method of
interfaceDataInput (§22.1.13), which will then return adouble equal tov.

22.2.12 public void writeBytes(String s)

throws IOException, NullPointerException

The general contract forwriteBytes is that for every character in the strings,
taken in order, one byte is written to the output stream.

If s is null, aNullPointerException is thrown.
If s.length is zero, then no bytes are written. Otherwise, the characters[0]

is written first, thens[1], and so on; the last character written iss[s.length-1].
For each character, one byte is written, the low-order byte, in exactly the ma
677

22.2 java.io.DataOutput THE PACKAGE JAVA.IO

678

r in

cter
is
der

e
n of

e

f

the
of thewriteByte method (§22.2.5). The high-order eight bits of each characte
the string are ignored.

22.2.13 public void writeChars(String s)

throws IOException, NullPointerException

The general contract forwriteChars is that every character in the strings is writ-
ten, in order, to the output stream, two bytes per character.

If s is null, aNullPointerException is thrown.
If s.length is zero, then no characters are written. Otherwise, the chara

s[0] is written first, thens[1], and so on; the last character written
s[s.length-1]. For each character, two bytes are actually written, high-or
byte first, in exactly the manner of thewriteChar method (§22.2.7).

22.2.14 public void writeUTF(String s)

throws IOException, NullPointerException

The general contract forwriteUTF is that two bytes of length information ar
written to the output stream, followed by the Java modified UTF representatio
every character in the strings.

If s is null, aNullPointerException is thrown.
Each character in the strings is converted to a group of one, two, or thre

bytes, depending on the value of the character.
If a characterc is in the range'\u0001' through'\u007f', it is represented

by one byte:

(byte)c

If a characterc is '\u0000' or is in the range'\u0080' through'\u07ff',
then it is represented by two bytes, to be written in the order shown:

(byte)(0xc0 | (0x1f & (c >> 6)))
(byte)(0x80 | (0x3f & c))

If a characterc is in the range'\u0800' through'\uffff', then it is repre-
sented by three bytes, to be written in the order shown:

(byte)(0xc0 | (0x0f & (c >> 12)))
(byte)(0x80 | (0x3f & (c >> 6)))
(byte)(0x80 | (0x3f & c))

First, the total number of bytes needed to represent all the characters os is
calculated. If this number is larger than65535, then aUTFDataFormatError is
thrown. Otherwise, this length is written to the output stream in exactly

THE PACKAGE JAVA.IO java.io.DataOutput 22.2

e-
manner of thewriteShort method (§22.2.6); after this, the one-, two-, or thre
byte representation of each character in the strings is written.

The bytes written by this method may be read by thereadUTF method of
interfaceDataInput (§22.1.15), which will then return aString equal tos.
679

22.3 java.io.InputStream THE PACKAGE JAVA.IO

680

he

r an

he

r an

se the
22.3 The Classjava.io.InputStream

An input stream makes input bytes available from some source.

public abstract class InputStream {
public abstract int read() throws IOException;
public int read(byte[] b)
throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public long skip(long n) throws IOException;
public int available() throws IOException;
public void close() throws IOException;
public void mark(int readlimit);
public void reset() throws IOException;
public boolean markSupported();

}

22.3.1 public abstract int read() throws IOException

The general contract ofread is that it reads one byte from the input stream. T
byte is returned as an integer in the range0 to 255 (0x00–0xff). If no byte is
available because the stream is at end of file, the value-1 is returned.

This method blocks until input data is available, end of file is detected, o
exception is thrown.

If the byte cannot be read for any reason other than end of file, anIOExcep-
tion is thrown. In particular, anIOException is thrown if the input stream has
been closed (§22.3.6).

22.3.2 public int read(byte[] b)

throws IOException, NullPointerException

The general contract ofread(b) is that it reads some number of bytes from t
input stream and stores them into the buffer arrayb. The number of bytes actually
read is returned as an integer.

This method blocks until input data is available, end of file is detected, o
exception is thrown.

If b is null, aNullPointerException is thrown.
If the length ofb is zero, then no bytes are read and0 is returned; otherwise,

there is an attempt to read at least one byte. If no byte is available becau

THE PACKAGE JAVA.IO java.io.InputStream 22.3

ad

n an

f

bly

r an

f

n
 is at
red

n an
stream is at end of file, the value-1 is returned; otherwise, at least one byte is re
and stored intob.

The first byte read is stored into elementb[0], the next one intob[1], and so
on. The number of bytes read is, at most, equal to the length ofb. Let k be the
number of bytes actually read; these bytes will be stored in elementsb[0] through
b[k-1], leaving elementsb[k] throughb[b.length-1] unaffected.

If the first byte cannot be read for any reason other than end of file, the
IOException is thrown. In particular, anIOException is thrown if the input
stream has been closed (§22.15.5).

Theread(b) method for classInputStream has the same effect as:

read(b, 0, b.length)

22.3.3 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

The general contract ofread(b, off, len) is that it reads some number o
bytes from the input stream and stores them into the buffer arrayb. An attempt is
made to read as many aslen bytes, but a smaller number may be read, possi
zero. The number of bytes actually read is returned as an integer.

This method blocks until input data is available, end of file is detected, o
exception is thrown.

If b is null, aNullPointerException is thrown.
If off is negative, orlen is negative, oroff+len is greater than the length o

the arrayb, then anIndexOutOfBoundsException is thrown.
If len is zero, then no bytes are read and0 is returned; otherwise, there is a

attempt to read at least one byte. If no byte is available because the stream
end of file, the value-1 is returned; otherwise, at least one byte is read and sto
into b.

The first byte read is stored into elementb[off], the next one intob[off+1],
and so on. The number of bytes read is, at most, equal tolen. Letk be the number
of bytes actually read; these bytes will be stored in elementsb[off] through
b[off+k-1], leaving elementsb[off+k] throughb[off+len-1] unaffected.

In every case, elementsb[0] through b[off] and elementsb[off+len]
throughb[b.length-1] are unaffected.

If the first byte cannot be read for any reason other than end of file, the
IOException is thrown. In particular, anIOException is thrown if the input
stream has been closed (§22.15.5).

The read(b, off, len) method for classInputStream simple calls the
methodread() repeatedly. If the first such call results in anIOException, that
681

22.3 java.io.InputStream THE PACKAGE JAVA.IO

682

 skip
 of a
s

read,

m

more
exception is returned from the call to theread(b, off, len) method. If any sub-
sequent call toread() results in aIOException, the exception is caught and
treated as if it were end of file; the bytes read up to that point are stored intob and
the number of bytes read before the exception occurred is returned.

22.3.4 public long skip(long n) throws IOException

The general contract ofskip is that it makes an attempt to skip overn bytes of
data from the input stream, discarding the skipped bytes. However, it may
over some smaller number of bytes, possibly zero. This may result from any
number of conditions; reaching end of file beforen bytes have been skipped i
only one possibility. The actual number of bytes skipped is returned.

22.3.5 public int available() throws IOException

The general contract ofavailable is that it returns an integerk; the next caller of
a method for this input stream, which might be the same thread or another th
can then expect to be able to read or skip up tok bytes without blocking (waiting
for input data to arrive).

Theavailable method for classInputStream always returns0.

22.3.6 public int close() throws IOException

The general contract ofclose is that it closes the input stream. A closed strea
cannot perform input operations and cannot be reopened.

Theclose method for classInputStream does nothing and simply returns.

22.3.7 public void mark(int readlimit)

The general contract ofmark is that, if the methodmarkSupported returnstrue,
the stream somehow remembers all the bytes read after the call tomark and stands
ready to supply those same bytes again if and whenever the methodreset is
called. However, the stream is not required to remember any data at all if
thanreadlimit bytes are read from the stream beforereset is called.

Themark method for classInputStream does nothing.

THE PACKAGE JAVA.IO java.io.InputStream 22.3

r the

ate

ent
ld

ate
 cre-

n
uth
22.3.8 public void reset() throws IOException

The general contract ofreset is:

• If the methodmarkSupported returnstrue, then:

◆ If the methodmark has not been called since the stream was created, o
number of bytes read from the stream sincemark was last called is larger
than the argument tomark at that last call, then anIOException might be
thrown.

◆ If such anIOException is not thrown, then the stream is reset to a st
such that all the bytes read since the most recent call tomark (or since the
start of the file, ifmark has not been called) will be resupplied to subsequ
callers of theread method, followed by any bytes that otherwise wou
have been the next input data as of the time of the call toreset.

• If the methodmarkSupported returnsfalse, then:

◆ The call toreset may throw anIOException.

◆ If an IOException is not thrown, then the stream is reset to a fixed st
that depends on the particular type of the input stream and how it was
ated. The bytes that will be supplied to subsequent callers of theread
method depend on the particular type of the input stream.

The methodreset for classInputStream always throws anIOException.

22.3.9 public boolean markSupported()

The general contract ofmarkSupported is that if it returnstrue, then the stream
supports themark (§22.3.7) andreset (§22.3.8) operations. For any give
instance ofInputStream, this method should consistently return the same tr
value whenever it is called.

ThemarkSupported method for classInputStream returnsfalse.
683

22.4 java.io.FileInputStream THE PACKAGE JAVA.IO

684

 are
22.4 The Classjava.io.FileInputStream

A file input stream obtains input bytes from a file in a file system. What files
available depends on the host environment.

public class FileInputStream extends InputStream {
public FileInputStream(String path)

throws SecurityException, FileNotFoundException;
public FileInputStream(File file)

throws SecurityException, FileNotFoundException;
public FileInputStream(FileDescriptor fdObj)

throws SecurityException;
public native int read() throws IOException;
public int read(byte[] b)

throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public native long skip(long n) throws IOException;
public native int available() throws IOException;
public native void close() throws IOException;
public final FileDescriptor getFD() throws IOException;
protected void finalize() throws IOException;

}

22.4.1 public FileInputStream(String path)

throws SecurityException, FileNotFoundException

This constructor initializes a newly createdFileInputStream by opening a con-
nection to an actual file, the file named by the path namepath in the file system.
A newFileDescriptor object is created to represent this file connection.

First, if there is a security manager, itscheckRead method (§20.17.19) is
called with thepath argument as its argument.

If the actual file cannot be opened, aFileNotFoundException is thrown.

22.4.2 public FileInputStream(File file)

throws SecurityException, FileNotFoundException

This constructor initializes a newly createdFileInputStream by opening a con-
nection to an actual file, the file named by theFile objectfile in the file system.
A newFileDescriptor object is created to represent this file connection.

THE PACKAGE JAVA.IO java.io.FileInputStream 22.4

 the

n-

put

put

put
First, if there is a security manager, itscheckRead method (§20.17.19) is
called with the path represented by thefile argument as its argument.

If the actual file cannot be opened, aFileNotFoundException is thrown.

22.4.3 public FileInputStream(FileDescriptor fdObj)

throws SecurityException

This constructor initializes a newly createdFileInputStream by using the file
descriptorfdObj, which represents an existing connection to an actual file in
file system.

First, if there is a security manager, itscheckRead method (§20.17.18) is
called with the file descriptorfdObj as its argument.

22.4.4 public final FileDescriptor getFD() throws IOException

This method returns theFileDescriptor object (§22.26) that represents the co
nection to the actual file in the file system being used by thisFileInputStream.

22.4.5 public int read() throws IOException;

The byte for this operation is read from the actual file with which this file in
stream is connected.

Implements theread method ofInputStream (§22.3.1).

22.4.6 public int read(byte[] b)

throws IOException, NullPointerException

Bytes for this operation are read from the actual file with which this file in
stream is connected.

Overrides theread method ofInputStream (§22.3.2).

22.4.7 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

Bytes for this operation are read from the actual file with which this file in
stream is connected.

Overrides theread method ofInputStream (§22.3.3).
685

22.4 java.io.FileInputStream THE PACKAGE JAVA.IO

686

put

ual
22.4.8 public long skip(long n) throws IOException

Bytes for this operation are read from the actual file with which this file in
stream is connected.

Overrides theskip method ofInputStream (§22.3.4).

22.4.9 public int available() throws IOException

Overrides theavailable method ofInputStream (§22.3.5).

22.4.10 public void close() throws IOException

This file input stream is closed and may no longer be used for reading bytes.
Overrides theclose method ofInputStream (§22.3.6).

22.4.11 protected void finalize() throws IOException

A FileInputStream uses finalization to clean up the connection to the act
file.

THE PACKAGE JAVA.IO java.io.PipedInputStream 22.5

piped
utput

com-
buffer,

iped
tput
22.5 The Classjava.io.PipedInputStream

A piped input stream should be connected to a piped output stream; the
input stream then provides whatever data bytes are written to the piped o
stream. Typically, data is read from aPipedInputStream object by one thread
and data is written to the correspondingPipedOutputStream (§22.17) by some
other thread. Attempting to use both objects from a single thread is not re
mended, as it may deadlock the thread. The piped input stream contains a
decoupling read operations from write operations, within limits.

public class PipedInputStream extends InputStream {
public PipedInputStream(PipedOutputStream src)

throws IOException;
public PipedInputStream();
public void connect(PipedOutputStream src)

throws IOException;
public int read() throws IOException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void close() throws IOException;
}

22.5.1 public PipedInputStream(PipedOutputStream src)

throws IOException

This constructor initializes a newly createdPipedInputStream so that it is con-
nected to the piped output streamsrc. Data bytes written tosrc will then be
available as input from this stream.

22.5.2 public PipedInputStream()

This constructor initializes a newly createdPipedInputStream so that it is not
yet connected. It must be connected to aPipedOutputStream before being used.

22.5.3 public void connect(PipedOutputStream src)

throws IOException

Theconnect method causes this piped input stream to be connected to the p
output streamsrc. If this object is already connected to some other piped ou
stream, anIOException is thrown.
687

22.5 java.io.PipedInputStream THE PACKAGE JAVA.IO

688

ut the

ut the

es.
If src is an unconnected piped output stream andsnk is an unconnected
piped input stream, they may be connected by either the call:

snk.connect(src)

or the call:

src.connect(snk)

The two calls have the same effect.

22.5.4 public int read() throws IOException

If a thread was providing data bytes to the connected piped output stream, b
thread is no longer alive, then anIOException is thrown.

Implements theread method ofInputStream (§22.3.1).

22.5.5 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

If a thread was providing data bytes to the connected piped output stream, b
thread is no longer alive, then anIOException is thrown.

Overrides theread method ofInputStream (§22.3.3).

22.5.6 public void close() throws IOException

This piped input stream is closed and may no longer be used for reading byt
Overrides theclose method ofInputStream (§22.3.6).

THE PACKAGE JAVA.IO java.io.ByteArrayInputStream 22.6

at
te to

am;
22.6 The Classjava.io.ByteArrayInputStream

A ByteArrayInputStream contains an internal buffer that contains bytes th
may be read from the stream. An internal counter keeps track of the next by
be supplied by theread method. See alsoStringBufferInputStream (§22.7).

public class ByteArrayInputStream extends InputStream {
protected byte[] buf;
protected int pos;
protected int count;
public ByteArrayInputStream(byte[] buf);
public ByteArrayInputStream(byte[] buf,

int offset, int length);
public int read()

throws NullPointerException, IndexOutOfBoundsException;
public int read(byte[] b, int off, int len)

throws NullPointerException, IndexOutOfBoundsException;
public long skip(long n);
public int available();
public void reset();

}

22.6.1 protected byte[] buf;

An array of bytes that was provided by the creator of the stream. Elementsbuf[0]
throughbuf[count-1] are the only bytes that can ever be read from the stre
elementbuf[pos] is the next byte to be read.

22.6.2 protected int pos;

This value should always be nonnegative and not larger than the value ofcount.
The next byte to be read from this stream will bebuf[pos].

22.6.3 protected int count;

This value should always be nonnegative and not larger than the length ofbuf. It
is one greater than the position of the last byte withinbuf that can ever be read
from this stream.
689

22.6 java.io.ByteArrayInputStream THE PACKAGE JAVA.IO

690

ents

e

e

22.6.4 public ByteArrayInputStream(byte[] buf)

This constructor initializes a newly createdByteArrayInputStream so that it
usesbuf as its buffer array. The initial value ofpos is 0 and the initial value of
count is the length ofbuf.

22.6.5 public ByteArrayInputStream(byte[] buf,

int offset, int length)

This constructor initializes a newly createdByteArrayInputStream so that it
usesbuf as its buffer array. The initial value ofpos is offset and the initial value
of count is offset+len.

Note that if bytes are simply read from the resulting input stream, elem
buf[pos] throughbuf[pos+len-1] will be read; however, if areset operation
(§22.6.10) is performed, then bytesbuf[0] through buf[pos-1] will then
become available for input.

22.6.6 public int read()

throws NullPointerException,

IndexOutOfBoundsException

If pos equalscount, then-1 is returned to indicate end of file. Otherwise, th
valuebuf[pos]&0xff is returned; just before the return,pos is incremented by1.

Implements theread method ofInputStream (§22.3.1).

22.6.7 public int read(byte[] b, int off, int len)

throws NullPointerException,

IndexOutOfBoundsException

If pos equalscount, then-1 is returned to indicate end of file. Otherwise, th
numberk of bytes read is equal to the smaller oflen andcount-pos. If k is posi-
tive, then bytesbuf[pos] through buf[pos+k-1] are copied intob[off]
through b[off+k-1] in the manner performed bySystem.arraycopy
(§20.18.16). The valuek is added intopos andk is returned.

Overrides theread method ofInputStream (§22.3.3).

THE PACKAGE JAVA.IO java.io.ByteArrayInputStream 22.6
22.6.8 public long skip(long n)

The actual numberk of bytes to be skipped is equal to the smaller ofn and
count-pos. The valuek is added intopos andk is returned.

Overrides theskip method ofInputStream (§22.3.4).

22.6.9 public int available()

The quantitycount-pos is returned.
Overrides theavailable method ofInputStream (§22.3.5).

22.6.10 public void reset()

The value ofpos is set to0.
Overrides thereset method ofInputStream (§22.3.8).
691

22.7 java.io.StringBufferInputStream THE PACKAGE JAVA.IO

692

at
te to

racter

his
22.7 The Classjava.io.StringBufferInputStream

A StringBufferInputStream contains an internal buffer that contains bytes th
may be read from the stream. An internal counter keeps track of the next by
be supplied by theread method. See alsoByteArrayInputStream (§22.6).

public class StringBufferInputStream extends InputStream {
protected String buffer;
protected int pos;
protected int count;
public StringBufferInputStream(String s)

throws NullPointerException;
public int read();
public int read(byte[] b, int off, int len)

throws NullPointerException, IndexOutOfBoundsException;
public long skip(long n);
public int available();
public void reset();

}

Note that bytes read from aStringBufferInputStream are the low-order
eight bits of each character in the string; the high-order eight bits of each cha
are ignored.

22.7.1 protected String buffer;

A String that was provided by the creator of the stream. Elementsbuffer[0]
throughbuffer[count-1] are the only bytes that can ever be read from t
stream; elementbuffer[pos] is the next byte to be read.

22.7.2 protected int pos;

This value should always be nonnegative and not larger than the value ofcount.
The next byte to be read from this stream will bebuffer[pos].

22.7.3 protected int count;

This value equals the length ofbuffer. It is the number of bytes of data in
buffer that can ever be read from this stream.

THE PACKAGE JAVA.IO java.io.StringBufferInputStream 22.7

e

e

22.7.4 public StringBufferInputStream(String s)

throws NullPointerException

This constructor initializes a newly createdStringBufferInputStream so that it
usess as its buffer array. The initial value ofpos is 0 and the initial value of
count is the length ofbuffer.

22.7.5 public int read()

If pos equalscount, then-1 is returned to indicate end of file. Otherwise, th
valuebuffer[pos]&0xff is returned; just before the return,1 is added topos.

Implements theread method ofInputStream (§22.3.1).

22.7.6 public int read(byte[] b, int off, int len)

throws NullPointerException,

IndexOutOfBoundsException

If pos equalscount, then-1 is returned to indicate end of file. Otherwise, th
numberk of bytes read is equal to the smaller oflen andcount-pos. If k is posi-
tive, then bytesbuffer[pos] throughbuffer[pos+k-1] are copied intob[off]
through b[off+k-1] in the manner performed bySystem.arraycopy
(§20.18.16). The valuek is added intopos andk is returned.

Overrides theread method ofInputStream (§22.3.3).

22.7.7 public long skip(long n)

The actual numberk of bytes to be skipped is equal to the smaller ofn and
count-pos. The valuek is added intopos andk is returned.

Overrides theskip method ofInputStream (§22.3.4).

22.7.8 public int available()

The quantitycount-pos is returned.
Overrides theavailable method ofInputStream (§22.3.5).

22.7.9 public void reset()

The value ofpos is set to0.
Overrides thereset method ofInputStream (§22.3.8).
693

22.8 java.io.SequenceInputStream THE PACKAGE JAVA.IO

694

ut
 from
 one,
s.

e
 read
n

22.8 The Classjava.io.SequenceInputStream

A SequenceInputStream represents the logical concatenation of other inp
streams. It starts out with an ordered collection of input streams and reads
the first one until end of file is reached, whereupon it reads from the second
and so on, until end of file is reached on the last of the contained input stream

public class SequenceInputStream extends InputStream {
public SequenceInputStream(Enumeration e);
public SequenceInputStream(InputStream s1, InputStream s2);
public int read() throws IOException;
public int read(byte[] buf, int pos, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void close() throws IOException;
}

22.8.1 public SequenceInputStream(Enumeration e)

This constructor initializes a newly createdSequenceInputStream by remem-
bering the argument, which must be anEnumeration (§21.1) that produces
objects whose run-time type isInputStream (§22.3). The input streams that ar
produced by the enumeration will be read, in order, to provide the bytes to be
from thisSequenceInputStream. After each input stream from the enumeratio
is exhausted, it is closed by calling itsclose method.

22.8.2 public SequenceInputStream(InputStream s1,

InputStream s2)

This constructor initializes a newly createdSequenceInputStream by remem-
bering the two arguments, which will be read in order, firsts1 and thens2, to pro-
vide the bytes to be read from thisSequenceInputStream.

22.8.3 public int read() throws IOException

Implements theread method ofInputStream (§22.3.1).

THE PACKAGE JAVA.IO java.io.SequenceInputStream 22.8

s are
22.8.4 public int read(byte[] buf, int pos, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

Overrides theread method ofInputStream (§22.3.3).

22.8.5 public void close() throws IOException

This SequenceInputStream is closed. A closedSequenceInputStream cannot
perform input operations and cannot be reopened.

If this stream was created from an enumeration, all remaining element
requested from the enumeration and closed before theclose method returns.

Overrides theclose method ofInputStream (§22.3.6).
695

22.9 java.io.FilterInputStream THE PACKAGE JAVA.IO

696

 its
iding

ed
22.9 The Classjava.io.FilterInputStream

A FilterInputStream contains some other input stream, which it uses as
basic source of data, possibly transforming the data along the way or prov
additional functionality. The classFilterInputStream itself simply overrides all
methods ofInputStream with versions that pass all requests to the contain
input stream. Subclasses ofFilterInputStream may further override some of
these methods and may also provide additional methods and fields.

public class FilterInputStream extends InputStream {
protected InputStream in;
protected FilterInputStream(InputStream in);
public int read() throws IOException;
public int read(byte[] b)

throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public long skip(long n) throws IOException;
public int available() throws IOException;
public void close() throws IOException;
public void mark(int readlimit);
public void reset() throws IOException;
public boolean markSupported();

}

22.9.1 protected InputStream in;

The input stream to be filtered.

22.9.2 protected FilterInputStream(InputStream in)

This constructor initializes a newly createdFilterInputStream by assigning the
argumentin to the fieldthis.in so as to remember it for later use.

22.9.3 public int read() throws IOException

This method simply performsin.read() and returns the result.
Implements theread method ofInputStream (§22.3.1).

THE PACKAGE JAVA.IO java.io.FilterInputStream 22.9

f

22.9.4 public int read(byte[] b)

throws IOException, NullPointerException

This method simply performs the callread(b, 0, b.length) and returns the
result. It is important that it doesnot doin.read(b) instead; certain subclasses o
FilterInputStream depend on the implementation strategy actually used.

Overrides theread method ofInputStream (§22.3.2).

22.9.5 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

This method simply performsin.read(b, off, len) and returns the result.
Overrides theread method ofInputStream (§22.3.3).

22.9.6 public long skip(long n) throws IOException

This method simply performsin.skip() and returns the result.
Overrides theskip method ofInputStream (§22.3.4).

22.9.7 public int available() throws IOException

This method simply performsin.available() and returns the result.
Overrides theavailable method ofInputStream (§22.3.5).

22.9.8 public void close() throws IOException

This method simply performsin.close().
Overrides theclose method ofInputStream (§22.3.6).

22.9.9 public void mark(int readlimit)

This method simply performsin.mark().
Overrides themark method ofInputStream (§22.3.7).
697

22.9 java.io.FilterInputStream THE PACKAGE JAVA.IO

698
22.9.10 public void reset() throws IOException

This method simply performsin.reset().
Overrides thereset method ofInputStream (§22.3.8).

22.9.11 public boolean markSupported()

This method simply performsin.markSupported() and returns whatever value
is returned from that invocation.

Overrides themarkSupported method ofInputStream (§22.3.9).

THE PACKAGE JAVA.IO java.io.BufferedInputStream 22.10

ly,

tes
ssary

re

ray of

ng
22.10 The Classjava.io.BufferedInputStream

A BufferedInputStream adds functionality to another input stream—name
the ability to buffer the input and to support themark andreset methods. When
theBufferedInputStream is created, an internal buffer array is created. As by
from the stream are read or skipped, the internal buffer is refilled as nece
from the contained input stream, many bytes at a time. Themark operation
remembers a point in the input stream and thereset operation causes all the
bytes read since the most recentmark operation to be reread before new bytes a
taken from the contained input stream.

public class BufferedInputStream extends FilterInputStream {
protected byte[] buf;
protected int count = 0;
protected int pos = 0;
protected int markpos = -1;
protected int marklimit = 0;
public BufferedInputStream(InputStream in);
public BufferedInputStream(InputStream in, int size);
public int read() throws IOException;
public int read(byte[] b)

throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public long skip(long n) throws IOException;
public int available() throws IOException;
public void mark(int readlimit);
public void reset() throws IOException;
public boolean markSupported();

}

22.10.1 protected byte[] buf;

The internal buffer array. When necessary, it may be replaced by another ar
a different size.

22.10.2 protected int count = 0;

This value is always in the range0 through buf.length; elementsbuf[0]
throughbuf[count-1] contain buffered input data obtained from the underlyi
input stream.
699

22.10 java.io.BufferedInputStream THE PACKAGE JAVA.IO

700

ed

,

 to

nce

nd

h

22.10.3 protected int pos = 0;

This value is always in the range0 throughcount. If it is less thancount, then
buf[pos] is the next byte to be supplied as input; if it is equal tocount, then the
nextread orskip operation will require more bytes to be read from the contain
input stream.

22.10.4 protected int markpos = -1;

This value is always in the range-1 throughpos. If there is no marked position in
the input stream, this field is-1. If there is a marked position in the input stream
thenbuf[markpos] is the first byte to be supplied as input after areset opera-
tion. If markpos is not-1, then all bytes from positionsbuf[markpos] through
buf[pos-1] must remain in the buffer array (though they may be moved
another place in the buffer array, with suitable adjustments to the values ofcount,
pos, andmarkpos); they may not be discarded unless and until the differe
betweenpos andmarkpos exceedsmarklimit.

22.10.5 protected int marklimit;

Whenever the difference betweenpos andmarkpos exceedsmarklimit, then the
mark may be dropped by settingmarkpos to -1.

22.10.6 public BufferedInputStream(InputStream in)

This constructor initializes a newly createdBufferedInputStream by saving its
argument, the input streamin, for later use. An internal buffer array is created a
stored inbuf.

22.10.7 public BufferedInputStream(InputStream in, int size)

This constructor initializes a newly createdBufferedInputStream by saving its
argument, the input streamin, for later use. An internal buffer array of lengt
size is created and stored inbuf.

22.10.8 public int read() throws IOException

See the general contract of theread method ofInputStream (§22.3.1).
Overrides theread method ofFilterInputStream (§22.9.3).

THE PACKAGE JAVA.IO java.io.BufferedInputStream 22.10

), an
22.10.9 public int read(byte[] b)

throws IOException, NullPointerException

See the general contract of theread method ofInputStream (§22.3.2).
Overrides theread method ofFilterInputStream (§22.9.4).

22.10.10 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of theread method ofInputStream (§22.3.3).
Overrides theread method ofFilterInputStream (§22.9.5).

22.10.11 public long skip(long n) throws IOException

See the general contract of theskip method ofInputStream (§22.3.4).
Overrides theskip method ofFilterInputStream (§22.9.6).

22.10.12 public int available() throws IOException

See the general contract of theavailable method ofInputStream (§22.3.5).
Overrides theavailable method ofFilterInputStream (§22.9.7).

22.10.13 public void mark(int readlimit)

The fieldmarklimit is set equal to the argument andmarkpos is set equal topos
Overrides themark method ofFilterInputStream (§22.9.9).

22.10.14 public void reset() throws IOException

See the general contract of thereset method ofInputStream (§22.3.8).
If markpos is -1 (no mark has been set or the mark has been invalidated

IOException is thrown. Otherwise,pos is set equal tomarkpos.
Overrides thereset method ofFilterInputStream (§22.9.10).
701

22.10 java.io.BufferedInputStream THE PACKAGE JAVA.IO

702
22.10.15 public boolean markSupported()

This method returnstrue (aBufferedInputStream always supportsmark).
Overrides themarkSupported method ofFilterInputStream (§22.9.11).

THE PACKAGE JAVA.IO java.io.DataInputStream 22.11

 and
es.
22.11 The Classjava.io.DataInputStream

A data input stream provides facilities for reading bytes from an input source
interpreting specific character sequences as representing data of diverse typ

public class DataInputStream extends FilterInputStream
implements DataInput {

public DataInputStream(InputStream in);
public final void readFully(byte[] b)

throws IOException, NullPointerException;
public final void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public final int skipBytes(int n) throws IOException;
public final boolean readBoolean() throws IOException;
public final byte readByte() throws IOException;
public final int readUnsignedByte() throws IOException;
public final short readShort() throws IOException;
public final int readUnsignedShort() throws IOException;
public final char readChar() throws IOException;
public final int readInt() throws IOException;
public final long readLong() throws IOException;
public final float readFloat() throws IOException;
public final double readDouble() throws IOException;
public final String readLine() throws IOException;
public final String readUTF() throws IOException;
public final static String readUTF(DataInput in)

throws IOException;
}

22.11.1 public DataInputStream(InputStream in)

This constructor initializes a newly createdDataInputStream by saving its argu-
ment, the input streamin, for later use.

22.11.2 public final void readFully(byte[] b)

throws IOException, NullPointerException

See the general contract of thereadFully method ofDataInput (§22.1.1).
Bytes for this operation are read from the contained input stream.
703

22.11 java.io.DataInputStream THE PACKAGE JAVA.IO

704
22.11.3 public final void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thereadFully method ofDataInput (§22.1.2).
Bytes for this operation are read from the contained input stream.

22.11.4 public final int skipBytes(int n) throws IOException

See the general contract of theskipBytes method ofDataInput (§22.1.3).
Bytes for this operation are read from the contained input stream.

22.11.5 public final boolean readBoolean() throws IOException

See the general contract of thereadBoolean method ofDataInput (§22.1.4).
The byte for this operation is read from the contained input stream.

22.11.6 public final byte readByte() throws IOException

See the general contract of thereadByte method ofDataInput (§22.1.5).
The byte for this operation is read from the contained input stream.

22.11.7 public final int readUnsignedByte() throws IOException

See the general contract of thereadUnsignedByte method of DataInput
(§22.1.6).

The byte for this operation is read from the contained input stream.

22.11.8 public final short readShort() throws IOException

See the general contract of thereadShort method ofDataInput (§22.1.7).
Bytes for this operation are read from the contained input stream.

22.11.9 public final int readUnsignedShort() throws IOException

See the general contract of thereadUnsignedShort method ofDataInput
(§22.1.8).

Bytes for this operation are read from the contained input stream.

THE PACKAGE JAVA.IO java.io.DataInputStream 22.11
22.11.10 public final char readChar() throws IOException

See the general contract of thereadChar method ofDataInput (§22.1.9).
Bytes for this operation are read from the contained input stream.

22.11.11 public final int readInt() throws IOException

See the general contract of thereadInt method ofDataInput (§22.1.10).
Bytes for this operation are read from the contained input stream.

22.11.12 public final long readLong() throws IOException

See the general contract of thereadLong method ofDataInput (§22.1.11).
Bytes for this operation are read from the contained input stream.

22.11.13 public final float readFloat() throws IOException

See the general contract of thereadFloat method ofDataInput (§22.1.12).
Bytes for this operation are read from the contained input stream.

22.11.14 public final double readDouble() throws IOException

See the general contract of thereadDouble method ofDataInput (§22.1.13).
Bytes for this operation are read from the contained input stream.

22.11.15 public final String readLine() throws IOException

See the general contract of thereadLine method ofDataInput (§22.1.14).
Bytes for this operation are read from the contained input stream.

22.11.16 public final String readUTF() throws IOException

See the general contract of thereadUTF method ofDataInput (§22.1.15).
Bytes for this operation are read from the contained input stream.
705

22.11 java.io.DataInputStream THE PACKAGE JAVA.IO

706

cters
re
22.11.17 public final static String readUTF(DataInput in)

throws IOException

The readUTF method reads from the streamin a representation of a Unicode
character string encoded in Java modified UTF-8 format; this string of chara
is then returned as aString. The details of the modified UTF-8 representation a
exactly the same as for thereadUTF method ofDataInput (§22.1.15).

THE PACKAGE JAVA.IO java.io.LineNumberInputStream 22.12

ly

d, the

hod
put

ecog-
input
22.12 The Classjava.io.LineNumberInputStream

A LineNumberInputStream adds functionality to another input stream, name
the ability to count lines. When theLineNumberInputStream is created, the line
number counter is set to zero. As bytes from the stream are read or skippe
counter is incremented whenever a line terminator (\n, \r, or \r\n) is encoun-
tered. Such line terminators are also converted to a single'\n' character. The
methodgetLineNumber returns the current value of the counter, and the met
setLineNumber sets the counter to a given integer value. If the contained in
stream supports themark operation, then so does theLineNumberInputStream;
themark operation remembers the line number counter and thereset operation
sets the counter to the value remembered by themark operation.

public class LineNumberInputStream extends FilterInputStream {
public LineNumberInputStream(InputStream in);
public int read() throws IOException;
public int read(byte[] b)

throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public long skip(long n) throws IOException;
public int available() throws IOException;
public void mark(int readlimit);
public void reset() throws IOException;
public int getLineNumber();
public void setLineNumber(int lineNumber);

}

22.12.1 public LineNumberInputStream(InputStream in)

This constructor initializes a newly createdLineNumberInputStream by saving
its argument, the input streamin, for later use.

22.12.2 public int read() throws IOException

See the general contract of theread method ofInputStream (§22.3.1).
As bytes are read from the contained input stream, line terminators are r

nized and counted. For each line terminator recognized in the contained
stream, a single character'\n' is returned.

Overrides theread method ofFilterInputStream (§22.9.3).
707

22.12 java.io.LineNumberInputStream THE PACKAGE JAVA.IO

708

ecog-
input

ecog-
input

ecog-
tream
22.12.3 public int read(byte[] b)

throws IOException, NullPointerException

See the general contract of theread method ofInputStream (§22.3.2).
As bytes are read from the contained input stream, line terminators are r

nized and counted. For each line terminator recognized in the contained
stream, a single character'\n' is returned.

Overrides theread method ofFilterInputStream (§22.9.4).

22.12.4 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of theread method ofInputStream (§22.3.3).
As bytes are read from the contained input stream, line terminators are r

nized and counted. For each line terminator recognized in the contained
stream, a single character'\n' is returned.

Overrides theread method ofFilterInputStream (§22.9.5).

22.12.5 public long skip(long n) throws IOException

See the general contract of theskip method ofInputStream (§22.3.4).
As bytes are read from the contained input stream, line terminators are r

nized and counted. Each line terminator recognized in the contained input s
is considered to be a single byte skipped, even if it is the sequence\r\n.

Overrides theskip method ofFilterInputStream (§22.9.6).

22.12.6 public int available() throws IOException

See the general contract of theavailable method ofInputStream (§22.3.5).
Note that if the contained input stream is able to supplyk input characters

without blocking, theLineNumberInputStream can guarantee only to provide
 characters without blocking, because thek characters from the contained

input stream might consist of \r\n pairs, which will be converted to just
'\n' characters.

Overrides theavailable method ofFilterInputStream (§22.9.7).

k 2⁄
k 2⁄ k 2⁄

THE PACKAGE JAVA.IO java.io.LineNumberInputStream 22.12

as it

er to

e fol-

r

t
n

22.12.7 public void mark(int readlimit)

See the general contract of themark method ofInputStream (§22.3.7).
Marking a point in the input stream remembers the current line number

would be returned bygetLineNumber (§22.12.9).
Overrides themark method ofFilterInputStream (§22.9.9).

22.12.8 public void reset() throws IOException

See the general contract of thereset method ofInputStream (§22.3.8).
Resetting the input stream to a previous point also resets the line numb

the value it had at the marked point.
Overrides thereset method ofFilterInputStream (§22.9.10).

22.12.9 public int getLineNumber()

The current line number is returned. This quantity depends onk, the number of
line terminators encountered since the most recent occurrence of one of th
lowing three kinds of events:

• If a call to thesetLineNumber method was most recent, letn be the argument
that was given tosetLineNumber; then the current line number is .

• If a call to thereset method was most recent, letm be the line number that
had been remembered bymark; then the current line number is .

• If creation of theLineNumberInputStream was most recent (that is, neithe
of the other kinds of event have occurred), then the current line number isk.

These rules imply that the current line number is0 as the characters of the firs
line are read, and becomes1 after the line terminator for the first line has bee
read.

22.12.10 public void setLineNumber(int lineNumber)

The current line number is set equal to the argument.

n k+

m k+
709

22.13 java.io.PushbackInputStream THE PACKAGE JAVA.IO

710

he
it is
s that
, the
tream
g the

ng an
ntil it

 field

te
22.13 The Classjava.io.PushbackInputStream

A PushbackInputStream adds functionality to another input stream, namely t
ability to “push back” or “unread” one byte. This is useful in situations where
convenient for a fragment of code to read an indefinite number of data byte
are delimited by a particular byte value; after reading the terminating byte
code fragment can “unread” it, so that the next read operation on the input s
will reread the byte that was pushed back. For example, bytes representin
characters constituting an identifier might be terminated by a byte representi
operator character; a method whose job is to read just an identifier can read u
sees the operator and then push the operator back to be re-read.

public class PushbackInputStream extends FilterInputStream {
protected int pushBack = -1;
public PushbackInputStream(InputStream in);
public int read() throws IOException;
public int read(byte[] bytes, int offset, int length)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void unread(int ch) throws IOException;
public int available() throws IOException;
public boolean markSupported();

}

22.13.1 protected int pushBack = -1;

If this field has a nonnegative value, it is a byte that was pushed back. If this
is -1, there is currently no pushed-back byte.

22.13.2 public PushbackInputStream(InputStream in)

This constructor initializes a newly createdPushbackInputStream by saving its
argument, the input streamin, for later use. Initially, there is no pushed-back by
(the fieldpushBack is initialized to-1).

22.13.3 public int read() throws IOException

See the general contract of theread method ofInputStream (§22.3.1).
If pushBack is not-1, the value ofpushBack is returned andpushBack is set

to -1. Otherwise, a byte is obtained from the contained input stream.
Overrides theread method ofFilterInputStream (§22.9.3).

THE PACKAGE JAVA.IO java.io.PushbackInputStream 22.13

k

.

22.13.4 public int read(byte[] bytes, int offset, int length)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of theread method ofInputStream (§22.3.3).
If pushBack is not-1, it is used as an input byte (andpushBack is set to-1)

before any bytes are read from the contained input stream.
Overrides theread method ofFilterInputStream (§22.9.5).

22.13.5 public void unread(int b) throws IOException

If pushBack is not-1, anIOException is thrown (it is not permitted to push bac
more than one byte). Otherwise, the byte valueb is pushed back by assigningb to
pushBack.

22.13.6 public int available() throws IOException

See the general contract of theavailable method ofInputStream (§22.3.1).
This method first calls theavailable method of the contained input stream

If pushBack is -1, the result is returned; otherwise, the result plus1 is returned.
Overrides theavailable method ofFilterInputStream (§22.9.7).

22.13.7 public boolean markSupported()

This method returnsfalse (aPushbackInputStream does not supportmark).
711

22.14 java.io.StreamTokenizer THE PACKAGE JAVA.IO

712

ing
 table
on of

range
ble
, and
tes, or
tors
t start
nal”
re
se.
22.14 The Classjava.io.StreamTokenizer

A StreamTokenizer takes an input stream and parses it into “tokens,” allow
the tokens to be read one at a time. The parsing process is controlled by a
and a number of flags that can be set to various states, allowing recogniti
identifiers, numbers, quoted strings, and comments in a standard style.

public class StreamTokenizer {
public static final int TT_EOF = -1;
public static final int TT_EOL = '\n';
public static final int TT_NUMBER = -2;
public static final int TT_WORD = -3;
public int ttype;
public String sval;
public double nval;
public StreamTokenizer(InputStream in);
public void resetSyntax();
public void wordChars(int low, int hi);
public void whitespaceChars(int low, int hi);
public void ordinaryChars(int low, int hi);
public void ordinaryChar(int ch);
public void commentChar(int ch);
public void quoteChar(int ch);
public void parseNumbers();
public void eolIsSignificant(boolean flag);
public void slashStarComments(boolean flag);
public void slashSlashComments(boolean flag);
public void lowerCaseMode(boolean flag);
public int nextToken() throws IOException;
public void pushBack();
public int lineno();
public String toString();

}

Each byte read from the input stream is regarded as a character in the
'\u0000' through'\u00FF'. The character value is used to look up five possi
attributes of the character: whitespace, alphabetic, numeric, string quote
comment character (a character may have more than one of these attribu
none at all). In addition, there are three flags controlling whether line termina
are to be recognized as tokens, whether Java-style end-of-line comments tha
with // should be recognized and skipped, and whether Java-style “traditio
comments delimited by/* and*/ should be recognized and skipped. One mo
flag controls whether all the characters of identifiers are converted to lowerca

THE PACKAGE JAVA.IO java.io.StreamTokenizer 22.14

identi-

Here is a simple example of the use of aStreamTokenizer. The following

code merely reads all the tokens in the standard input stream and prints an
fication of each one. Changes in the line number are also noted.

import java.io.StreamTokenizer;

import java.io.IOException;

class Tok {
public static void main(String[] args) {

StreamTokenizer st = new StreamTokenizer(System.in);
st.ordinaryChar('/');
int lineNum = -1;
try {

for (int tokenType = st.nextToken();
tokenType != StreamTokenizer.TT_EOF;
tokenType = st.nextToken()) {

int newLineNum = st.lineno();
if (newLineNum != lineNum) {

System.out.println("[line " + newLineNum
+ "]");

lineNum = newLineNum;
}
switch(tokenType) {
case StreamTokenizer.TT_NUMBER:

System.out.println("the number " + st.nval);
break;

case StreamTokenizer.TT_WORD:
System.out.println("identifier " + st.sval);
break;

default:
System.out.println(" operator "

+ (char)tokenType);
}

}
} catch (IOException e) {

System.out.println("I/O failure");
}

}
}

If the input stream contains this data:

10 LET A = 4.5
20 LET B = A*A
30 PRINT A, B

then the resulting output is:

[line 1]
the number 10.0
identifier LET
713

22.14 java.io.StreamTokenizer THE PACKAGE JAVA.IO

714

t
then
identifier A
 operator =
the number 4.5
[line 2]
the number 20.0
identifier LET
identifier B
 operator =
identifier A
 operator *
identifier A
[line 3]
the number 30.0
identifier PRINT
identifier A
 operator ,
identifier B

22.14.1 public static final int TT_EOF = -1;

A constant that indicates end of file was reached.

22.14.2 public static final int TT_EOL = '\n';

A constant that indicates that a line terminator was recognized.

22.14.3 public static final int TT_NUMBER = -2;

A constant that indicates that a number was recognized.

22.14.4 public static final int TT_WORD = -3;

A constant that indicates that a word (identifier) was recognized.

22.14.5 public int ttype;

The type of the token that was last recognized by thisStreamTokenizer. This
will be TT_EOF, TT_EOL, TT_NUMBER, TT_WORD, or a nonnegative byte value tha
was the first byte of the token (for example, if the token is a string token,
ttype has the quote character that started the string).

THE PACKAGE JAVA.IO java.io.StreamTokenizer 22.14

of
ing
zed,

is
betic,
fore
22.14.6 public String sval;

If the value ofttype is TT_WORD or a string quote character, then the value
sval is a String that contains the characters of the identifier or of the str
(without the delimiting string quotes). For all other types of tokens recogni
the value ofsval is null.

22.14.7 public double nval;

If the value ofttype is TT_NUMBER, then the value ofnval is the numerical value
of the number.

22.14.8 public StreamTokenizer(InputStream in)

This constructor initializes a newly createdStreamTokenizer by saving its argu-
ment, the input streamin, for later use. TheStreamTokenizer is also initialized
to the following default state:

• All byte values'A' through'Z', 'a' through'z', and0xA0 through0xFF
are considered to be alphabetic.

• All byte values0x00 through0x20 are considered to be whitespace.

• '/' is a comment character.

• Single quote'\'' and double quote'"' are string quote characters.

• Numbers are parsed.

• End of line is not significant.

• // comments and/* comments are not recognized.

22.14.9 public void resetSyntax()

The syntax table for thisStreamTokenizer is reset so that every byte value
“ordinary”; thus, no character is recognized as being a whitespace, alpha
numeric, string quote, or comment character. Calling this method is there
equivalent to:

ordinaryChars(0x00, 0xff)

The three flags controlling recognition of line terminators,// comments, and/*
comments are unaffected.
715

22.14 java.io.StreamTokenizer THE PACKAGE JAVA.IO

716

n

n

n

e

22.14.10 public void wordChars(int low, int hi)

The syntax table for thisStreamTokenizer is modified so that every character i
the rangelow throughhi has the “alphabetic” attribute.

22.14.11 public void whitespaceChars(int low, int hi)

The syntax table for thisStreamTokenizer is modified so that every character i
the rangelow throughhi has the “whitespace” attribute.

22.14.12 public void ordinaryChars(int low, int hi)

The syntax table for thisStreamTokenizer is modified so that every character i
the rangelow throughhi has no attributes.

22.14.13 public void ordinaryChar(int ch)

The syntax table for thisStreamTokenizer is modified so that the characterch
has no attributes.

22.14.14 public void commentChar(int ch)

The syntax table for thisStreamTokenizer is modified so that the characterch
has the “comment character” attribute.

22.14.15 public void quoteChar(int ch)

The syntax table for thisStreamTokenizer is modified so that the characterch
has the “string quote” attribute.

22.14.16 public void parseNumbers()

The syntax table for thisStreamTokenizer is modified so that each of the twelv
characters

0 1 2 3 4 5 6 7 8 9 . -

has the “numeric” attribute.

THE PACKAGE JAVA.IO java.io.StreamTokenizer 22.14

nd

al”

ine

 to

eam.
in the

or is
,

nize a
he
 in its
ce of

 or
22.14.17 public void eolIsSignificant(boolean flag)

This StreamTokenizer henceforth recognizes line terminators as tokens if a
only if theflag argument istrue.

22.14.18 public void slashStarComments(boolean flag)

This StreamTokenizer henceforth recognizes and skips Java-style “tradition
comments, which are delimited by/* and*/ and do not nest, if and only if the
flag argument istrue.

22.14.19 public void slashSlashComments(boolean flag)

This StreamTokenizer henceforth recognizes and skips Java-style end-of-l
comments that start with// if and only if theflag argument istrue.

22.14.20 public void lowerCaseMode(boolean flag)

This StreamTokenizer henceforth converts all the characters in identifiers
lowercase if and only if theflag argument istrue.

22.14.21 public int nextToken() throws IOException

If the previous token was pushed back (§22.14.22), then the value ofttype is
returned, effectively causing that same token to be reread.

Otherwise, this method parses the next token in the contained input str
The type of the token is returned; this same value is also made available
ttype field, and related data may be made available in thesval andnval fields.

First, whitespace characters are skipped, except that if a line terminat
encountered and thisStreamTokenizer is currently recognizing line terminators
then the type of the token isTT_EOL.

If a numeric character is encountered, then an attempt is made to recog
number. If the first character is'-' and the next character is not numeric, then t
'-' is considered to be an ordinary character and is recognized as a token
own right. Otherwise, a number is parsed, stopping before the next occurren
'-', the second occurrence of'.', the first nonnumeric character encountered,
end of file, whichever comes first. The type of the token isTT_NUMBER and its
value is made available in the fieldnval.
717

22.14 java.io.StreamTokenizer THE PACKAGE JAVA.IO

718

, con-
, the
ich-

ase if

rs are
 file.

ment
tor in

nsist-
 (but
 line

ut not
e to

ken in

to and
 to

 that
t char-

t call
hod
If an alphabetic character is encountered, then an identifier is recognized
sisting of that character and all following characters up to, but not including
first character that is neither alphabetic nor numeric, or up to end of file, wh
ever comes first. The characters of the identifier may be converted to lowerc
thisStreamTokenizer is in lowercase mode.

If a comment character is encountered, then all subsequent characte
skipped and ignored, up to but not including the next line terminator or end of
Then another attempt is made to recognize a token. If thisStreamTokenizer is
currently recognizing line terminators, then a line terminator that ends a com
will be recognized as a token in the same manner as any other line termina
the contained input stream.

If a string quote character is encountered, then a string is recognized, co
ing of all characters after (but not including) the string quote character, up to
not including) the next occurrence of that same string quote character, or a
terminator, or end of file. The usual escape sequences (§3.10.6) such as\n and\t
are recognized and converted to single characters as the string is parsed.

If // is encountered and thisStreamTokenizer is currently recognizing//
comments, then all subsequent characters are skipped and ignored, up to b
including the next line terminator or end of file. Then another attempt is mad
recognize a token. (If thisStreamTokenizer is currently recognizing line termi-
nators, then a line terminator that ends a comment will be recognized as a to
the same manner as any other line terminator in the contained input stream.)

If /* is encountered and thisStreamTokenizer is currently recognizing/*
comments, then all subsequent characters are skipped and ignored, up
including the next occurrence of*/ or end of file. Then another attempt is made
recognize a token.

If none of the cases listed above applies, then the only other possibility is
the first non-whitespace character encountered is an ordinary character. Tha
acter is considered to be a token and is stored in thettype field and returned.

22.14.22 public void pushBack()

Calling this method “pushes back” the current token; that is, it causes the nex
to nextToken to return the same token that it just provided. Note that this met
doesnot restore the line number to its previous value, so if the methodlineno is
called after a call topushBack but before the next call tonextToken, an incorrect
line number may be returned.

THE PACKAGE JAVA.IO java.io.StreamTokenizer 22.14

 first
ne
ot on
sid-

f the

f

22.14.23 public int lineno()

The number of the line on which the current token appeared is returned. The
token in the input stream, if not a line terminator, is considered to appear on li1.
A line terminator token is considered to appear on the line that it precedes, n
the line it terminates; thus, the first line terminator in the input stream is con
ered to be on line2.

22.14.24 public String toString()

The current token and the current line number are converted to a string o
form:

"Token[x], line m"

wherem is the current line number in decimal form andx depends on the type o
the current token:

• If the token type isTT_EOF, thenx is “EOF”.

• If the token type isTT_EOL, thenx is “EOL”.

• If the token type isTT_WORD, thenx is the current value ofsval (§22.14.6).

• If the token type isTT_NUMBER, thenx is “n=” followed by the result of con-
verting the current value ofnval (§22.14.7) to a string (§20.10.15).

Overrides thetoString method ofObject (§20.1.2).
719

22.15 java.io.OutputStream THE PACKAGE JAVA.IO

720

he

ed

 as

ent
22.15 The Classjava.io.OutputStream

An output stream accepts output bytes and sends them to some sink.

public abstract class OutputStream {
public abstract void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void flush() throws IOException;
public void close() throws IOException;

}

22.15.1 public abstract void write(int b) throws IOException

The general contract forwrite is that one byte is written to the output stream. T
byte to be written is the eight low-order bits of the argumentb. The 24 high-order
bits ofb are ignored.

If the byte cannot be written for any reason, anIOException is thrown. In
particular, anIOException may be thrown if the output stream has been clos
(§22.15.5).

22.15.2 public void write(byte[] b)

throws IOException, NullPointerException

The general contract forwrite(b) is that it should have exactly the same effect
the callwrite(b, 0, b.length) (§22.15.3).

Thewrite(b) method for classOutputStream in fact makes such a call.

22.15.3 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

The general contract forwrite(b, off, len) is that some of the bytes in the
array b are written to the output stream as if one at a time, in order; elem
b[off] is the first byte written andb[off+len-1] is the last byte written by this
operation.

If b is null, aNullPointerException is thrown.

THE PACKAGE JAVA.IO java.io.OutputStream 22.15

f

ed

s
eam,

.

am

.

If off is negative, orlen is negative, oroff+len is greater than the length o
the arrayb, then anIndexOutOfBoundsException is thrown.

If the byte cannot be written for any reason, anIOException is thrown. In
particular, anIOException is thrown if the output stream has been clos
(§22.15.5).

Thewrite(b, off, len) method for classOutputStream simply calls the
methodwrite (§22.15.1) repeatedly, once for each byte inb to be written.

22.15.4 public void flush() throws IOException

The general contract offlush is that calling it is an indication that, if any byte
previously written have been buffered by the implementation of the output str
such bytes should immediately be written to their intended destination.

Theflush method for classOutputStream does nothing and simply returns

22.15.5 public void close() throws IOException

The general contract ofclose is that it closes the output stream. A closed stre
cannot perform output operations and cannot be reopened.

Theclose method for classOutputStream does nothing and simply returns
721

22.16 java.io.FileOutputStream THE PACKAGE JAVA.IO

722

 are

.

22.16 The Classjava.io.FileOutputStream

A file output stream writes output bytes to a file in a file system. What files
available or may be created depends on the host environment.

public class FileOutputStream extends OutputStream {
public FileOutputStream(String path)

throws SecurityException, FileNotFoundException;
public FileOutputStream(File file)

throws SecurityException, FileNotFoundException;
public FileOutputStream(FileDescriptor fdObj)

throws SecurityException;
public final FileDescriptor getFD() throws IOException;
public void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void close() throws IOException;
protected void finalize() throws IOException;

}

22.16.1 public FileOutputStream(String path)

throws SecurityException, FileNotFoundException

This constructor initializes a newly createdFileOutputStream by opening a
connection to an actual file, the file named by the path namepath in the file sys-
tem. A newFileDescriptor object is created to represent this file connection

First, if there is a security manager, itscheckWrite method (§20.17.21) is
called with thepath argument as its argument.

If the actual file cannot be opened, aFileNotFoundException is thrown.

22.16.2 public FileOutputStream(File file)

throws SecurityException, FileNotFoundException

This constructor initializes a newly createdFileOutputStream by opening a
connection to an actual file, the file named byfile in the file system. A new
FileDescriptor object is created to represent this file connection.

First, if there is a security manager, itscheckWrite method (§20.17.21) is
called with the path represented by thefile argument as its argument.

If the actual file cannot be opened, aFileNotFoundException is thrown.

THE PACKAGE JAVA.IO java.io.FileOutputStream 22.16

 the

n-

put

put

put

.

22.16.3 public FileOutputStream(FileDescriptor fdObj)

throws SecurityException

This constructor initializes a newly createdFileOutputStream by using the file
descriptorfdObj, which represents an existing connection to an actual file in
file system.

First, if there is a security manager, itscheckWrite method (§20.17.20) is
called with the file descriptorfdObj argument as its argument.

22.16.4 public final FileDescriptor getFD() throws IOException

This method returns theFileDescriptor object (§22.26) that represents the co
nection to the actual file in the file system being used by thisFileOutputStream.

22.16.5 public void write(int b) throws IOException

The byte for this operation is written to the actual file to which this file out
stream is connected.

Implements thewrite method ofOutputStream (§22.15.1).

22.16.6 public void write(byte[] b)

throws IOException, NullPointerException

Bytes for this operation are written to the actual file to which this file out
stream is connected.

Overrides thewrite method ofOutputStream (§22.15.2).

22.16.7 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

Bytes for this operation are written to the actual file to which this file out
stream is connected.

Overrides thewrite method ofOutputStream (§22.15.3).

22.16.8 public void close() throws IOException

This file output stream is closed and may no longer be used for writing bytes
Overrides theclose method ofOutputStream (§22.15.5).
723

22.16 java.io.FileOutputStream THE PACKAGE JAVA.IO

724

ual
22.16.9 protected void finalize() throws IOException

A FileOutputStream uses finalization to clean up the connection to the act
file.

THE PACKAGE JAVA.IO java.io.PipedOutputStream 22.17

piped
utput

com-

e

piped
put
22.17 The Classjava.io.PipedOutputStream

A piped output stream should be connected to a piped input stream; the
input stream then provides whatever data bytes are written to the piped o
stream. Typically, data is written to aPipeOutputStream object by one thread
and data is read from the correspondingPipedInputStream (§22.5) by some
other thread. Attempting to use both objects from a single thread is not re
mended, as it may deadlock the thread.

public class PipedOutputStream extends OutputStream {
public PipedOutputStream(PipedInputStream snk)

throws IOException;
public PipedOutputStream();
public void connect(PipedInputStream snk)

throws IOException;
public void write(int b) throws IOException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void close() throws IOException;
}

22.17.1 public PipedOutputStream(PipedInputStream snk)

throws IOException

This constructor initializes a newly createdPipedOutputStream so that it is con-
nected to the piped input streamsnk. Data bytes written to this stream will then b
available as input fromsnk.

22.17.2 public PipedOutputStream()

This constructor initializes a newly createdPipedOutputStream so that it is not
yet connected. It must be connected to aPipedInputStream before being used.

22.17.3 public void connect(PipedInputStream snk)

throws IOException

Theconnect method causes this piped output stream to be connected to the
input streamsnk. If this object is already connected to some other piped in
stream, anIOException is thrown.
725

22.17 java.io.PipedOutputStream THE PACKAGE JAVA.IO

726

ut the

ut the

es.
If snk is an unconnected piped input stream andsrc is an unconnected piped
output stream, they may be connected by either the call:

src.connect(snk)

or the call:

snk.connect(src)

The two calls have the same effect.

22.17.4 public void write(int b) throws IOException

If a thread was reading data bytes from the connected piped input stream, b
thread is no longer alive, then anIOException is thrown.

Implements thewrite method ofOutputStream (§22.15.1).

22.17.5 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

If a thread was reading data bytes from the connected piped input stream, b
thread is no longer alive, then anIOException is thrown.

Overrides thewrite method ofOutputStream (§22.15.3).

22.17.6 public void close() throws IOException

This piped output stream is closed and may no longer be used for writing byt
Overrides theclose method ofOutputStream (§22.15.5).

THE PACKAGE JAVA.IO java.io.ByteArrayOutputStream 22.18

he

in the
d
rs

 been
22.18 The Classjava.io.ByteArrayOutputStream

A ByteArrayOutputStream contains an internal buffer that accumulates all t
bytes written to the stream since its creation or the most recent call to thereset
method. At any point, the bytes written to the stream so far may be retrieved
form of an array of bytes or aString. The bytes written so far may also be copie
to some other output stream. Thesize method returns the number of characte
written so far.

public class ByteArrayOutputStream extends OutputStream {
protected byte[] buf;
protected int count;
public ByteArrayOutputStream();
public ByteArrayOutputStream(int size);
public void write(int b);
public void write(byte[] b, int off, int len)

throws NullPointerException, IndexOutOfBoundsException;
public int size();
public void reset();
public byte[] toByteArray();
public String toString();
public String toString(int hibyte);
public void writeTo(OutputStream out) throws IOException;

}

22.18.1 protected byte[] buf;

An internal array of bytes. Elementsbuf[0] throughbuf[count-1] are the bytes
that have been written to the stream since its creation or the lastreset (§22.18.8)
operation.

22.18.2 protected int count;

This value should always be nonnegative. It is the number of bytes that have
written to the stream since its creation or the lastreset (§22.18.8) operation.

22.18.3 public ByteArrayOutputStream()

This constructor initializes a newly createdByteArrayOutputStream so that its
internal buffer array has length 32.
727

22.18 java.io.ByteArrayOutputStream THE PACKAGE JAVA.IO

728

;
odate

 low-

f

es
quite

rrent
 so
22.18.4 public ByteArrayOutputStream(int size)

This constructor initializes a newly createdByteArrayOutputStream so that its
internal buffer array has lengthsize. This matters only for reasons of efficiency
the buffer array is replaced by a larger one whenever necessary to accomm
additional bytes written to the stream.

22.18.5 public void write(int b)

One byte is added on the internal buffer. The byte to be added is the eight
order bits of the argumentn. The 24 high-order bits ofn are ignored.

Implements thewrite method ofOutputStream (§22.15.1).

22.18.6 public void write(byte[] b, int off, int len)

throws NullPointerException,

IndexOutOfBoundsException

Elementsb[off] throughb[off+len-1] are appended to the internal buffer.
If b is null, aNullPointerException is thrown.
If off is negative, orlen is negative, oroff+len is greater than the length o

the arrayb, then anIndexOutOfBoundsException is thrown.
Overrides thewrite method ofOutputStream (§22.15.3).

22.18.7 public int size()

The current value ofcount is returned.

22.18.8 public void reset()

The internal variablecount is reset to zero, thereby logically discarding all byt
written to the stream so far. However, the internal buffer array, which may be
large, remains as it is.

22.18.9 public byte[] toByteArray()

A new array of bytes is created and returned. Its length is equal to the cu
value ofcount. Its initial contents are copies of the bytes written to the stream
far—that is, elements0 throughcount-1 of buf.

THE PACKAGE JAVA.IO java.io.ByteArrayOutputStream 22.18

e of
that
s.

rrent
 so

 a
 This
does
dless
22.18.10 public String toString()

A new String is created and returned. Its length is equal to the current valu
count. Its initial contents are copies of the bytes written to the stream so far—
is, elements0 throughcount-1 of buf, zero-extended to produce character
Thus,tostring() has the same effect astoString(0) (§22.18.11).

Overrides thetoString method ofObject (§20.1.2).

22.18.11 public String toString(int hibyte)

A new array of bytes is created and returned. Its length is equal to the cu
value ofcount. Its initial contents are copies of the bytes written to the stream
far—that is, elements0 throughcount-1 of buf—with hibyte supplying the
high-order eight bits of each character. Thus, characterk of the result is equal to:

((hibyte & 0xff) << 8) | (buf[k] & 0xff)

See theString constructor that accepts ahibyte argument (§20.12.6).

22.18.12 public void writeTo(OutputStream out) throws IOException

The current contents of the internal buffer are written to the output streamout by
the call:

out.write(buf, 0, count)

Note that ifout is the same asthis, the effect is simply to append to the buffer
copy of its current contents, thereby doubling the number of buffered bytes.
may not be a particularly useful effect; the point is merely that the operation
terminate, having had a sensible effect, rather than running off into an en
loop.
729

22.19 java.io.FilterOutputStream THE PACKAGE JAVA.IO

730

 its
ddi-

ed
22.19 The Classjava.io.FilterOutputStream

A FilterOutputStream contains some other output stream, which it uses as
basic sink of data, possibly transforming the data along the way or providing a
tional functionality. The classFilterOutputStream itself simply overrides all
methods ofOutputStream with versions that pass all requests to the contain
output stream. Subclasses ofFilterOutputStream may further override some of
these methods and may also provide additional methods and fields.

public class FilterOutputStream extends OutputStream {
protected OutputStream out;
public FilterOutputStream(OutputStream out);
public void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void flush() throws IOException;
public void close() throws IOException;

}

22.19.1 protected OutputStream out;

The output stream to be filtered.

22.19.2 public FilterOutputStream(OutputStream out)

This constructor initializes a newly createdFilterInputStream by assigning the
argumentout to the fieldthis.out so as to remember it for later use.

22.19.3 public void write(int b) throws IOException

This method simply performsout.write(b).
Implements the abstractwrite method ofOutputStream (§22.15.1).

22.19.4 public void write(byte[] b)

throws IOException, NullPointerException

This method simply performsout.write(b).
Overrides thewrite method ofOutputStream (§22.15.2).

THE PACKAGE JAVA.IO java.io.FilterOutputStream 22.19
22.19.5 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

This method simply performsout.write(b, off, len).
Overrides thewrite method ofOutputStream (§22.15.3).

22.19.6 public void flush() throws IOException

This method simply performsout.flush().
Overrides theflush method ofOutputStream (§22.15.4).

22.19.7 public void close() throws IOException

This method simply performsout.close().
Overrides theclose method ofOutputStream (§22.15.5).
731

22.20 java.io.BufferedOutputStream THE PACKAGE JAVA.IO

732

ly

tored
ut to

d

22.20 The Classjava.io.BufferedOutputStream

A BufferedOutputStream adds functionality to another output stream, name
the ability to buffer the output. When theBufferedOutputStream is created, an
internal buffer array is created. As bytes are written to the stream, they are s
in the internal buffer, which is flushed as necessary, thereby performing outp
the contained output stream in large blocks rather than a byte at a time.

public class BufferedOutputStream extends FilterOutputStream {
protected byte[] buf;
protected int count;
public BufferedOutputStream(OutputStream out);
public BufferedOutputStream(OutputStream out, int size);
public void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void flush() throws IOException;
}

22.20.1 protected byte[] buf;

The internal buffer array.

22.20.2 protected int count;

This value is always in the range0 through buf.length; elementsbuf[0]
throughbuf[count-1] contain valid byte data.

22.20.3 public BufferedOutputStream(OutputStream out)

This constructor initializes a newly createdBufferedOutputStream by saving its
argument, the input streamout, for later use. An internal buffer array is create
and stored inbuf.

THE PACKAGE JAVA.IO java.io.BufferedOutputStream 22.20

h

22.20.4 public BufferedOutputStream(OutputStream out, int size)

This constructor initializes a newly createdBufferedOutputStream by saving its
argument, the input streamout, for later use. An internal buffer array of lengt
size is created and stored inbuf.

22.20.5 public void write(int b) throws IOException

See the general contract of thewrite method ofOutputStream (§22.15.1).
Overrides thewrite method ofFilterOutputStream (§22.19.3).

22.20.6 public void write(byte[] b)

throws IOException, NullPointerException

See the general contract of thewrite method ofOutputStream (§22.15.2).
Overrides thewrite method ofFilterOutputStream (§22.19.4).

22.20.7 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thewrite method ofOutputStream (§22.15.3).
Overrides thewrite method ofFilterOutputStream (§22.19.5).

22.20.8 public void flush() throws IOException

See the general contract of theflush method ofOutputStream (§22.15.4).
Overrides theflush method ofFilterOutputStream (§22.19.6).
733

22.21 java.io.DataOutputStream THE PACKAGE JAVA.IO

734

 into
am.
22.21 The Classjava.io.DataOutputStream

A data output stream provides facilities for converting data of diverse types
character sequence of specific formats that are then sent to some output stre

public class DataOutputStream extends FilterOutputStream
implements DataOutput {

protected int written;
public DataOutputStream(OutputStream out);
public void write(int b) throws IOException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public void flush() throws IOException;
public final void writeBoolean(boolean v) throws IOException;
public final void writeByte(int v) throws IOException;
public final void writeShort(int v) throws IOException;
public final void writeChar(int v) throws IOException;
public final void writeInt(int v) throws IOException;
public final void writeLong(long v) throws IOException;
public final void writeFloat(float v) throws IOException;
public final void writeDouble(double v) throws IOException;
public final void writeBytes(String s)

throws IOException, NullPointerException;
public final void writeChars(String s)

throws IOException, NullPointerException;
public final void writeUTF(String str)

throws IOException, NullPointerException;
public final int size();

}

22.21.1 protected int written;

This field contains the number of bytes written to the stream so far.

22.21.2 public DataOutputStream(OutputStream out)

This constructor initializes a newly createdDataOutputStream by saving its
argument, the output streamout, for later use. The counterwritten is set to zero.

THE PACKAGE JAVA.IO java.io.DataOutputStream 22.21

ption

f no

f no

 no
22.21.3 public void write(int b) throws IOException

The byte for this operation (the low eight bits of the argumentb) is written to the
contained output stream. If no exception is thrown, the counterwritten is incre-
mented by1.

Implements thewrite method ofOutputStream (§22.15.1).

22.21.4 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

Bytes for this operation are written to the contained output stream. If no exce
is thrown, the counterwritten is incremented bylen.

Overrides thewrite method ofOutputStream (§22.15.3).

22.21.5 public void flush() throws IOException

The contained output stream is flushed.
Overrides theflush method ofOutputStream (§22.15.4).

22.21.6 public final void writeBoolean(boolean v)

throws IOException

See the general contract of thewriteBoolean method ofDataOutput (§22.2.4).
The byte for this operation is written to the contained output stream. I

exception is thrown, the counterwritten is incremented by1.

22.21.7 public final void writeByte(int v) throws IOException

See the general contract of thewriteByte method ofDataOutput (§22.2.5).
The byte for this operation is written to the contained output stream. I

exception is thrown, the counterwritten is incremented by1.

22.21.8 public final void writeShort(int v) throws IOException

See the general contract of thewriteShort method ofDataOutput (§22.2.6).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by2.
735

22.21 java.io.DataOutputStream THE PACKAGE JAVA.IO

736

 no

 no

 no

 no

 no

 no
22.21.9 public final void writeChar(int v) throws IOException

See the general contract of thewriteChar method ofDataOutput (§22.2.7).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by2.

22.21.10 public final void writeInt(int v) throws IOException

See the general contract of thewriteInt method ofDataOutput (§22.2.8).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by4.

22.21.11 public final void writeLong(long v) throws IOException

See the general contract of thewriteLong method ofDataOutput (§22.2.9).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by8.

22.21.12 public final void writeFloat(float v) throws IOException

See the general contract of thewriteFloat method ofDataOutput (§22.2.10).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by4.

22.21.13 public final void writeDouble(double v) throws

IOException

See the general contract of thewriteDouble method ofDataOutput (§22.2.11).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by8.

22.21.14 public final void writeBytes(String s)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thewriteBytes method ofDataOutput (§22.2.12).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by the length ofs.

THE PACKAGE JAVA.IO java.io.DataOutputStream 22.21

 no

 no
f

of
22.21.15 public final void writeChars(String s)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thewriteChars method ofDataOutput (§22.2.13).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by twice the length ofs.

22.21.16 public final void writeUTF(String str)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thewriteUTF method ofDataOutput (§22.2.14).
Bytes for this operation are written to the contained output stream. If

exception is thrown, the counterwritten is incremented by the total number o
bytes written to the output stream. This will be at least two plus the length s,
and at most two plus thrice the length ofs.

22.21.17 public final int size()

Thesize method returns the current value of the counterwritten, the number of
bytes written to the stream so far.
737

22.22 java.io.PrintStream THE PACKAGE JAVA.IO

738

lity
s are

 can

ter a
22.22 The Classjava.io.PrintStream

A PrintStream adds functionality to another output stream—namely, the abi
to print representations of various data values conveniently. Two other feature
provided as well. Unlike other output streams, aPrintStream never throws an
IOException; instead, exceptional situations merely set an internal flag that
be tested by thecheckError method. Optionally, aPrintStream can be created
so as to “autoflush”; this means that after an array of bytes is written, or af
single byte equal to'\n' is written, theflush method is automatically invoked.

public class PrintStream extends FilterOutputStream {
public PrintStream(OutputStream out);
public PrintStream(OutputStream out, boolean autoflush);
public void write(int b);
public void write(byte[] b, int off, int len)

throws NullPointerException, IndexOutOfBoundsException;
public void flush();
public void close();
public boolean checkError();
public void print(Object obj);
public void print(String s);
public void print(char[] s) throws NullPointerException;
public void print(boolean b);
public void print(char c);
public void print(int i);
public void print(long l);
public void print(float f);
public void print(double d);
public void println();
public void println(Object obj);
public void println(String s);
public void println(char[] s) throws NullPointerException;
public void println(boolean b);
public void println(char c);
public void println(int i);
public void println(long l);
public void println(float f);
public void println(double d);

}

THE PACKAGE JAVA.IO java.io.PrintStream 22.22

if

ind
ever
22.22.1 public PrintStream(OutputStream out)

This constructor initializes a newly createdPrintStream by saving its argument,
the output streamout, for later use. This stream will not autoflush.

22.22.2 public PrintStream(OutputStream out, boolean autoflush)

This constructor initializes a newly createdPrintStream by saving its argument,
the output streamout, for later use. This stream will autoflush if and only
autoflush is true.

22.22.3 public void write(int b)

See the general contract of thewrite method ofOutputStream (§22.15.1).
Overrides thewrite method ofFilterOutputStream (§22.19.3).

22.22.4 public void write(byte[] b, int off, int len)

throws NullPointerException,

IndexOutOfBoundsException

See the general contract of thewrite method ofOutputStream (§22.15.3).
Overrides thewrite method ofFilterOutputStream (§22.19.5).

22.22.5 public void flush()

See the general contract of theflush method ofOutputStream (§22.15.4).
Overrides theflush method ofFilterOutputStream (§22.19.6).

22.22.6 public void close()

See the general contract of theclose method ofOutputStream (§22.15.5).
Overrides theclose method ofFilterOutputStream (§22.19.7).

22.22.7 public boolean checkError()

The result istrue if and only if this output stream has ever encountered any k
of trouble—that is, if any operation on the contained output stream has
resulted in anIOException other than anInterruptedIOException. If an
739

22.22 java.io.PrintStream THE PACKAGE JAVA.IO

740

ng:

ut

ned

in
operation on the contained output stream throws anInterruptedIOException,
then thePrintStream class converts the exception back to an interrupt by doi

Thread.currentThread().interrupt();

or the equivalent.

22.22.8 public void print(Object obj)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(obj) (§20.12.38) are written, in order, to the contained outp
stream in exactly the manner of thewrite method (§22.22.3).

22.22.9 public void print(String s)

The low-order bytes of the characters in the strings are written, in order, to the
contained output stream in exactly the manner of thewrite method (§22.22.3).
If s isnull, then the low-order bytes of the four charactersn, u, l, l are written to
the contained output stream.

22.22.10 public void print(char[] s) throws NullPointerException

The low-order bytes of the characters in the character arrays are written, in order,
to the contained output stream in exactly the manner of thewrite method
(§22.22.3).

If s is null, aNullPointerException is thrown.

22.22.11 public void print(boolean b)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(b) (§20.12.41) as a string are written, in order, to the contai
output stream in exactly the manner of thewrite method (§22.22.3).

22.22.12 public void print(char c)

The low-order byte of the characterc is written to the contained output stream
exactly the manner of thewrite method (§22.22.3).

THE PACKAGE JAVA.IO java.io.PrintStream 22.22

ned

ned

ned

ned
22.22.13 public void print(int i)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(i) (§20.12.43) as a string are written, in order, to the contai
output stream in exactly the manner of thewrite method (§22.22.3).

22.22.14 public void print(long l)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(l) (§20.12.44) as a string are written, in order, to the contai
output stream in exactly the manner of thewrite method (§22.22.3).

22.22.15 public void print(float f)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(f) (§20.12.45) as a string are written, in order, to the contai
output stream in exactly the manner of thewrite method (§22.22.3).

22.22.16 public void print(double d)

The low-order bytes of the characters in theString that would be produced by
String.valueOf(d) (§20.12.46) as a string are written, in order, to the contai
output stream in exactly the manner of thewrite method (§22.22.3).

22.22.17 public void println()

The low-order byte of the newline character'\n' is written to the contained out-
put stream in exactly the manner of thewrite method (§22.22.3).

22.22.18 public void println(Object obj)

This is exactly the same asprint(obj) (§22.22.8) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.19 public void println(String s)

This is exactly the same asprint(s) (§22.22.9) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.
741

22.22 java.io.PrintStream THE PACKAGE JAVA.IO

742
22.22.20 public void println(char[] s) throws NullPointerException

This is exactly the same asprint(s) (§22.22.10) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

If s is null, aNullPointerException is thrown.

22.22.21 public void println(boolean b)

This is exactly the same asprint(b) (§22.22.11) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.22 public void println(char c)

This is exactly the same asprint(c) (§22.22.12) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.23 public void println(int i)

This is exactly the same asprint(i) (§22.22.13) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.24 public void println(long l)

This is exactly the same asprint(l) (§22.22.14) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.25 public void println(float f)

This is exactly the same asprint(f) (§22.22.15) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

22.22.26 public void println(double d)

This is exactly the same asprint(d) (§22.22.16) followed by writing the low-
order byte of the newline character'\n' to the contained output stream.

THE PACKAGE JAVA.IO java.io.RandomAccessFile 22.23

stem.

ointer
, then

at the
tions
nded.
22.23 The Classjava.io.RandomAccessFile

A random access file behaves like a large array of bytes stored in the file sy
There is a kind of cursor, or index into the implied array, called thefile pointer;
input operations read bytes starting at the file pointer and advance the file p
past the bytes read. If the random access file is created in read/write mode
output operations are also available; output operations write bytes starting
file pointer and advance the file pointer past the bytes written. Output opera
that write past the current end of the implied array cause the array to be exte
The file pointer can be read by thegetFilePointer method and set by theseek
method.

public class RandomAccessFile implements DataOutput, DataInput {
public RandomAccessFile(String path, String mode)

throws SecurityException, IOException,
IllegalArgumentException;

public RandomAccessFile(File file, String mode)
throws SecurityException, IOException,

IllegalArgumentException;
public final FileDescriptor getFD() throws IOException;
public native long getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native long length() throws IOException;
public native void close() throws IOException;
public native int read() throws IOException;
public int read(byte[] b)

throws IOException, NullPointerException;
public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

// The methods that implement interface DataInput:
public final void readFully(byte[] b)

throws IOException, NullPointerException;
public final void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public int skipBytes(int n) throws IOException;
public final boolean readBoolean() throws IOException;
public final byte readByte() throws IOException;
public final int readUnsignedByte() throws IOException;
public final short readShort() throws IOException;
public final int readUnsignedShort() throws IOException;
public final char readChar() throws IOException;
public final int readInt() throws IOException;
743

22.23 java.io.RandomAccessFile THE PACKAGE JAVA.IO

744

e is

y

n

.

public final long readLong() throws IOException;
public final float readFloat() throws IOException;
public final double readDouble() throws IOException;
public final String readLine() throws IOException;
public final String readUTF() throws IOException;
// The methods that implement interface DataOutput:
public native void write(int b) throws IOException;
public void write(byte[] b)

throws IOException, NullPointerException;
public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,
IndexOutOfBoundsException;

public final void writeBoolean(boolean v) throws IOException;
public final void writeByte(int v) throws IOException;
public final void writeShort(int v) throws IOException;
public final void writeChar(int v) throws IOException;
public final void writeInt(int v) throws IOException;
public final void writeLong(long v) throws IOException;
public final void writeFloat(float v) throws IOException;
public final void writeDouble(double v) throws IOException;
public final void writeBytes(String s) throws IOException;
public final void writeChars(String s) throws IOException;
public final void writeUTF(String str) throws IOException;

}

It is generally true of all the reading routines in this class that if end of fil
reached before the desired number of bytes has been read, anEOFException
(which is a kind ofIOException) is thrown. If any byte cannot be read for an
reason other than end of file, anIOException other thanEOFException is
thrown. In particular, anIOException may be thrown if the stream has bee
closed (§22.23.7).

22.23.1 public RandomAccessFile(String path, String mode)

throws SecurityException, IOException,

IllegalArgumentException

This constructor initializes a newly createdRandomAccessFile by opening a
connection to an actual file, the file named by the path namepath in the file sys-
tem. A newFileDescriptor object is created to represent this file connection

First, if there is a security manager, itscheckRead method (§20.17.19) is
called with thepath argument as its argument.

Next, if mode is "rw" and there is a security manager, itscheckWrite method
(§20.17.21) is called with thepath argument as its argument.

THE PACKAGE JAVA.IO java.io.RandomAccessFile 22.23

this

this

n-

 file
If mode is "rw", then the file may be both read and written. Ifmode is "r",
then the file may be read but may not be written (every write method for
object will simply throw anIOException). If mode is not"r" or "rw", then this
constructor throws anIllegalArgumentException.

22.23.2 public RandomAccessFile(File file, String mode)

throws SecurityException, IOException,

IllegalArgumentException

This constructor initializes a newly createdRandomAccessFile by opening a
connection to an actual file, the file named byfile in the file system. A new
FileDescriptor object is created to represent this file connection.

First, if there is a security manager, itscheckRead method (§20.17.19) is
called with the path represented by thefile argument as its argument.

Next, if mode is "rw" and there is a security manager, itscheckWrite method
(§20.17.21) is called with the path represented by thefile argument as its argu-
ment.

If mode is "rw", then the file may be both read and written. Ifmode is "r",
then the file may be read but may not be written (every write method for
object will simply throw anIOException). If mode is not"r" or "rw", then this
constructor throws anIllegalArgumentException.

22.23.3 public final FileDescriptor getFD() throws IOException

This method returns theFileDescriptor object (§22.26) that represents the co
nection to the actual file in the file system being used by thisRandomAccessFile.

22.23.4 public long getFilePointer() throws IOException

The current file pointer for this random access file is returned. AnIOException is
thrown if the file pointer cannot be read for any reason.

22.23.5 public void seek(long pos) throws IOException

The file pointer for this random access file is set topos, which is a position within
the file, measured in bytes. Position0 is the start of the file. AnIOException is
thrown if pos is less than zero or greater than the length of the file, or if the
pointer cannot be set for any other reason.
745

22.23 java.io.RandomAccessFile THE PACKAGE JAVA.IO

746

rform

ed as
e

22.23.6 public long length() throws IOException

The length of this random access file, measured in bytes, is returned.
An IOException is thrown if the length cannot be read for any reason.

22.23.7 public void close() throws IOException

This random access file is closed. A closed random access file cannot pe
input or output operations and cannot be reopened.

22.23.8 public int read() throws IOException

This method reads one byte from the random access file. The byte is return
an integer in the range 0 to 255 (0x00–0xff). If no byte is available because th
file pointer is at end of file, the value-1 is returned.

If the byte cannot be read for any reason other than end of file, anIOExcep-
tion is thrown. In particular, anIOException is thrown if the input stream has
been closed (§22.23.7).

AlthoughRandomAccessFile is not a subclass ofInputStream, this method
behaves in exactly the same way as theread method ofInputStream (§22.3.1).

22.23.9 public int read(byte[] b)

throws IOException, NullPointerException

Although RandomAccessFile is not a subclass ofInputStream, this method
behaves in exactly the same way as theread method ofInputStream (§22.3.2).

22.23.10 public int read(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

Although RandomAccessFile is not a subclass ofInputStream, this method
behaves in exactly the same way as theread method ofInputStream (§22.3.3).

22.23.11 public final void readFully(byte[] b)

throws IOException, NullPointerException

See the general contract of thereadFully method ofDataInput (§22.1.1).

THE PACKAGE JAVA.IO java.io.RandomAccessFile 22.23

t the

t the

t the

t the

t the

t the
Bytes for this operation are read from the random access file, starting a
current file pointer.

22.23.12 public final void readFully(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thereadFully method ofDataInput (§22.1.2).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.13 public int skipBytes(int n) throws IOException

See the general contract of theskipBytes method ofDataInput (§22.1.3).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.14 public final boolean readBoolean() throws IOException

See the general contract of thereadBoolean method ofDataInput (§22.1.4).
The byte for this operation is read from the random access file, starting a

current file pointer.

22.23.15 public final byte readByte() throws IOException

See the general contract of thereadByte method ofDataInput (§22.1.5).
The byte for this operation is read from the random access file, starting a

current file pointer.

22.23.16 public final int readUnsignedByte() throws IOException

See the general contract of thereadUnsignedByte method of DataInput
(§22.1.6).

The byte for this operation is read from the random access file, starting a
current file pointer.
747

22.23 java.io.RandomAccessFile THE PACKAGE JAVA.IO

748

t the

t the

t the

t the

t the

t the
22.23.17 public final short readShort() throws IOException

See the general contract of thereadShort method ofDataInput (§22.1.7).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.18 public final int readUnsignedShort() throws IOException

See the general contract of thereadUnsignedShort method ofDataInput
(§22.1.8).

Bytes for this operation are read from the random access file, starting a
current file pointer.

22.23.19 public final char readChar() throws IOException

See the general contract of thereadChar method ofDataInput (§22.1.9).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.20 public final int readInt() throws IOException

See the general contract of thereadInt method ofDataInput (§22.1.10).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.21 public final long readLong() throws IOException

See the general contract of thereadLong method ofDataInput (§22.1.11).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.22 public final float readFloat() throws IOException

See the general contract of thereadFloat method ofDataInput (§22.1.12).
Bytes for this operation are read from the random access file, starting a

current file pointer.

THE PACKAGE JAVA.IO java.io.RandomAccessFile 22.23

t the

t the

t the

t the

t the

t the
22.23.23 public final double readDouble() throws IOException

See the general contract of thereadDouble method ofDataInput (§22.1.13).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.24 public final String readLine() throws IOException

See the general contract of thereadLine method ofDataInput (§22.1.14).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.25 public final String readUTF() throws IOException

See the general contract of thereadUTF method ofDataInput (§22.1.15).
Bytes for this operation are read from the random access file, starting a

current file pointer.

22.23.26 public void write(int b) throws IOException;

See the general contract of thewrite method ofDataOutput (§22.2.1).
The byte for this operation is written to the random access file, starting a

current file pointer.

22.23.27 public void write(byte[] b)

throws IOException, NullPointerException

See the general contract of thewrite method ofDataOutput (§22.2.2).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.28 public void write(byte[] b, int off, int len)

throws IOException, NullPointerException,

IndexOutOfBoundsException

See the general contract of thewrite method ofDataOutput (§22.2.3).
Bytes for this operation are written to the random access file, starting a

current file pointer.
749

22.23 java.io.RandomAccessFile THE PACKAGE JAVA.IO

750

t the

t the

t the

t the

t the

t the
22.23.29 public final void writeBoolean(boolean v)

throws IOException

See the general contract of thewriteBoolean method ofDataOutput (§22.2.4).
The byte for this operation is written to the random access file, starting a

current file pointer.

22.23.30 public final void writeByte(int v) throws IOException

See the general contract of thewriteByte method ofDataOutput (§22.2.5).
The byte for this operation is written to the random access file, starting a

current file pointer.

22.23.31 public final void writeShort(int v) throws IOException

See the general contract of thewriteShort method ofDataOutput (§22.2.6).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.32 public final void writeChar(int v) throws IOException

See the general contract of thewriteChar method ofDataOutput (§22.2.7).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.33 public final void writeInt(int v) throws IOException

See the general contract of thewriteInt method ofDataOutput (§22.2.8).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.34 public final void writeLong(long v) throws IOException

See the general contract of thewriteLong method ofDataOutput (§22.2.9).
Bytes for this operation are written to the random access file, starting a

current file pointer.

THE PACKAGE JAVA.IO java.io.RandomAccessFile 22.23

t the

t the

t the

t the

t the
22.23.35 public final void writeFloat(float v) throws IOException

See the general contract of thewriteFloat method ofDataOutput (§22.2.10).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.36 public final void writeDouble(double v)

throws IOException

See the general contract of thewriteDouble method ofDataOutput (§22.2.11).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.37 public final void writeBytes(String s) throws IOException

See the general contract of thewriteBytes method ofDataOutput (§22.2.12).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.38 public final void writeChars(String s) throws IOException

See the general contract of thewriteChars method ofDataOutput (§22.2.13).
Bytes for this operation are written to the random access file, starting a

current file pointer.

22.23.39 public final void writeUTF(String str) throws IOException

See the general contract of thewriteUTF method ofDataOutput (§22.2.14).
Bytes for this operation are written to the random access file, starting a

current file pointer.
751

22.24 java.io.File THE PACKAGE JAVA.IO

752

en-

f a

identi-
xtent

 across
22.24 The Classjava.io.File

A File object contains apath, which is a character string that can be used to id
tify a file within a file system. A path is assumed to consist of two parts, thedirec-
tory and thefile name, separated by the last occurrence within the path o
particular character known as theseparator character. Some methods provide
access to parts of the path string; other methods operate on the file that is
fied by the path string. The details of such operations on files are to some e
dependent on the implementation of the host file system. TheFile class is
designed to provide a set of abstract operations that are reasonably portable
otherwise incompatible file systems.

public class File {
public static final String separator =

System.getProperty("file.separator");
public static final char separatorChar =

separator.charAt(0);
public static final String pathSeparator =

System.getProperty("path.separator");
public static final char pathSeparatorChar =

pathSeparator.charAt(0);
public File(String path) throws NullPointerException;
public File(String dirname, String name)

throws NullPointerException
public File(File dir, String name)

throws NullPointerException
public String toString();
public boolean equals(Object obj);
public int hashCode();
public String getName();
public String getPath();
public String getAbsolutePath();
public String getParent();
public native boolean isAbsolute();
public boolean exists() throws SecurityException;
public boolean canRead() throws SecurityException;
public boolean canWrite() throws SecurityException;
public boolean isFile() throws SecurityException;
public boolean isDirectory() throws SecurityException;
public long lastModified() throws SecurityException;
public long length() throws SecurityException;
public boolean mkdir() throws SecurityException;
public boolean mkdirs() throws SecurityException;
public String[] list() throws SecurityException;

THE PACKAGE JAVA.IO java.io.File 22.24

le in

te the
ems

le in

parate

i-
public String[] list(FilenameFilter filter)
throws SecurityException;

public boolean renameTo(File dest) throws SecurityException;
public boolean delete() throws SecurityException;

}

22.24.1 public static final String separator =

System.getProperty("file.separator");

This string should consist of a single character, whose value is also availab
the fieldseparatorChar; the string is provided merely for convenience.

22.24.2 public static final char separatorChar =

separator.charAt(0);

The last occurrence of this character in a path string is assumed to separa
directory part of the path from the file name part of the path. On UNIX syst
this character is typically'/'.

22.24.3 public static final String pathSeparator =

System.getProperty("path.separator");

This string should consist of a single character, whose value is also availab
the fieldpathSeparatorChar; the string is provided merely for convenience.

22.24.4 public static final char pathSeparatorChar =

pathSeparator.charAt(0);

The first occurrence of this character in a string is sometimes assumed to se
a host name from a path name. On UNIX systems this character is typically':'.

22.24.5 public File(String path) throws NullPointerException

This constructor initializes a newly createdFile so that it represents the path ind
cated by the argumentpath.

If the path is null, aNullPointerException is thrown.
753

22.24 java.io.File THE PACKAGE JAVA.IO

754

h

h
t

 of
22.24.6 public File(String dirname, String name)

throws NullPointerException

This constructor initializes a newly createdFile so that it represents the pat
whose directory part is specified by the argumentdirname and whose file name
part is specified by the argumentname. If thedirname argument isnull, thename
is used as the path; otherwise the concatenation ofdirname, theseparatorChar
(§22.24.2), and thename is used as the path.

If the name is null, aNullPointerException is thrown.

22.24.7 public File(File dir, String name)

throws NullPointerException

This constructor initializes a newly createdFile so that it represents the pat
whose directory part is specified by theFile objectdir and whose file name par
is specified by the argumentname.

If the name is null, aNullPointerException is thrown.

22.24.8 public String toString()

The result is aString equal to the path represented by thisFile object.
Overrides thetoString method ofObject (§20.1.2).

22.24.9 public boolean equals(Object obj)

The result istrue if and only if the argument is notnull and is aFile object that
represents the same path as thisFile object. In other words, twoFile objects are
equal if and only if the strings returned by thegetPath method (§22.24.12) are
equal.

Overrides theequals method ofObject (§20.1.3).

22.24.10 public int hashCode()

The hash code of thisFile object is equal to the exclusive OR of the hash code
its path string and the decimal value1234321:

this.getPath().hashcode() ^ 1234321

Overrides thehashCode method ofObject (§20.1.4).

THE PACKAGE JAVA.IO java.io.File 22.24

d
arator

th

t

so-
tory

 is
22.24.11 public String getName()

If the path string contains theseparatorChar character (§22.24.2), this metho
returns the substring of the path that follows the last occurrence of the sep
character; otherwise, the entire path string is returned.

22.24.12 public String getPath()

The result is aString equal to the path represented by thisFile object.

22.24.13 public String getAbsolutePath()

The result is aString equal to the result of converting to “absolute form” the pa
represented by thisFile object.

22.24.14 public String getParent()

If the path has a parent directory, aString representing the path of that paren
directory is returned; otherwise,null is returned.

22.24.15 public boolean isAbsolute()

The result istrue if and only if the path represented by the File object is in ab
lute form, indicating a complete name that starts from the root of the direc
hierarchy, rather than a name relative to some implied directory.

22.24.16 public boolean exists() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

The result istrue if and only if the file system actually contains a file that
specified by the path of theFile object.

22.24.17 public boolean canRead() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

The result istrue if and only if both of the following are true:
755

22.24 java.io.File THE PACKAGE JAVA.IO

756
• The file system actually contains a file specified by the path of theFile
object.

• The file so specified can be read.

22.24.18 public boolean canWrite() throws SecurityException

First, if there is a security manager, itscheckWrite method (§20.17.21) is called
with the path represented by thisFile object as its argument.

The result istrue if and only if both of the following are true:

• The file system actually contains a file specified by the path of theFile
object.

• The file so specified can be written.

22.24.19 public boolean isFile() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

The result istrue if and only if both of the following are true:

• The file system actually contains a file specified by the path of theFile
object.

• The file so specified is a data file rather than a directory.

22.24.20 public boolean isDirectory() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

The result istrue if and only if both of the following are true:

• The file system actually contains a file specified by the path of theFile
object.

• The file so specified is a directory rather than a data file.

THE PACKAGE JAVA.IO java.io.File 22.24

this
 the
imes
d by

ed by
s.

if this
en
te the
22.24.21 public long lastModified() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

An abstract modification time is returned. If two values returned by
method are compared, whether for the same file or for two different files,
smaller value represents an earlier modification time. Abstract modification t
do not necessarily bear any relationship, even monotonicity, to times returne
the methodSystem.currentTimeMillis (§20.18.6).

22.24.22 public long length() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

The length of the file, measured in bytes, is returned.

22.24.23 public boolean mkdir() throws SecurityException

First, if there is a security manager, itscheckWrite method (§20.17.21) is called
with the path represented by thisFile object as its argument.

An attempt is made to create the directory specified by the path represent
thisFile object; the result is true if and only if the creation operation succeed

22.24.24 public boolean mkdirs() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

If the directory name represented by thisFile object has a parent directory
name (§22.24.14), an attempt is first made to create the parent directory;
attempt fails, the result isfalse. Otherwise, once the parent directory has be
determined to exist, or if the path has no parent, an attempt is made to crea
directory specified by thisFile object. The result istrue if and only if the cre-
ation operation succeeds.

22.24.25 public String[] list() throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.
757

22.24 java.io.File THE PACKAGE JAVA.IO

758

ry
ed,

aran-
am-

ry
ed,

,
y par-
ar in

n

y this

y this
If the path represented by thisFile object does not correspond to a directo
in the file system, thennull is returned. Otherwise, an array of strings is return
one for each file in the directory (on UNIX systems, the names “.” and “..” are
not included). Each string is a file name, not a complete path. There is no gu
tee that the strings will appear in any particular order within the array; for ex
ple, they are not guaranteed to appear in alphabetical order.

22.24.26 public String[] list(FilenameFilter filter)

throws SecurityException

First, if there is a security manager, itscheckRead method (§20.17.19) is called
with the path represented by thisFile object as its argument.

If the path represented by thisFile object does not correspond to a directo
in the file system, thennull is returned. Otherwise, an array of strings is return
one for each file in the directory (on UNIX systems, the names “.” and “..” are
not included) whose name satisfies the givenfilter. Each string is a file name
not a complete path. There is no guarantee that the strings will appear in an
ticular order within the array; for example, they are not guaranteed to appe
alphabetical order. A file name satisfies the filter if and only if the valuetrue
results when theaccept method (§22.25.1) of the filter is called with thisFile
object and the name as arguments.

22.24.27 public boolean renameTo(File dest)

throws SecurityException

First, if there is a security manager, itscheckWrite method (§20.17.21) is called
twice, first with the path represented by thisFile object as its argument and agai
with the path ofdest as its argument.

An attempt is made to rename the file specified by the path represented b
File object to the name specified bydest; the result istrue if and only if the
renaming operation succeeds.

22.24.28 public boolean delete() throws SecurityException

First, if there is a security manager, itscheckDelete method (§20.17.22) is called
with the path represented by thisFile object as its argument.

An attempt is made to delete the file specified by the path represented b
File object; the result istrue if and only if the deletion operation succeeds.

THE PACKAGE JAVA.IO java.io.FilenameFilter 22.25

ct
n
e

22.25 The Interfacejava.io.FilenameFilter

The list method (§22.24.26) of classFile requires, as an argument, an obje
that implements theFilenameFilter interface. The only purpose of such a
object is to provide a methodaccept that decides which files should appear in th
generated directory listing.

public interface FilenameFilter {
public boolean accept(File dir, String name);

}

22.25.1 public boolean accept(File dir, String name)

This method should returntrue if and only if the given file namedname in the
directorydir is to appear in the final list of files generated by thelist method
(§22.24.26) of classFile.
759

22.26 java.io.FileDescriptor THE PACKAGE JAVA.IO

760

l file
. The

 not

 not

iptor

her
22.26 The Classjava.io.FileDescriptor

A FileDescriptor is an opaque representation of a connection to an actua
in a file system, or to a network socket, or to another source or sink of bytes
main practical use for a file descriptor is to create aFileInputStream (§22.4.3)
or FileOutputStream (§22.16.3) to contain it.

public final class FileDescriptor {
public static final FileDescriptor in = ...;
public static final FileDescriptor out = ...;
public static final FileDescriptor err = ...;
public boolean valid();

}

22.26.1 public static final FileDescriptor in = ...

A file descriptor for the standard input stream. Usually, this file descriptor is
used directly, but rather the input stream known asSystem.in (§20.18.1).

22.26.2 public static final FileDescriptor out = ...

A file descriptor for the standard output stream. Usually, this file descriptor is
used directly, but rather the output stream known asSystem.out (§20.18.2).

22.26.3 public static final FileDescriptor err = ...

A file descriptor for the standard error output stream. Usually, this file descr
is not used directly, but rather the output stream known asSystem.err
(§20.18.3).

22.26.4 public boolean valid()

If this FileDescriptor is valid (represents an active connection to a file or ot
active I/O connection), then the result istrue. Otherwise, the result isfalse.

THE PACKAGE JAVA.IO java.io.IOException 22.27

 or
22.27 The Classjava.io.IOException

The classIOException is the general class of exceptions produced by failed
interrupted input/output operations. Subclasses ofIOException include:

EOFException
FileNotFoundException
InterruptedIOException
UTFDataFormatException

public class IOException extends Exception {
public IOException();
public IOException(String s);

}

22.27.1 public IOException()

This constructor initializes a newly createdIOException with null as its error
message string.

22.27.2 public IOException(String s)

This constructor initializes a newly createdIOException by saving a reference to
the error message strings for later retrieval by thegetMessage method
(§20.22.3).
761

22.28 java.io.EOFException THE PACKAGE JAVA.IO

762

red
ing a
22.28 The Classjava.io.EOFException

An EOFException is thrown to indicate that an input operation has encounte
end of file. Note that some Java input operations react to end of file by return
distinguished value (such as-1) rather than by throwing an exception.

public class EOFException extends IOException {
public EOFException();
public EOFException(String s);

}

22.28.1 public EOFException()

This constructor initializes a newly createdEOFException with null as its error
message string.

22.28.2 public EOFException(String s)

This constructor initializes a newly createdEOFException by saving a reference
to the error message strings for later retrieval by thegetMessage method
(§20.22.3).

THE PACKAGE JAVA.IO java.io.FileNotFoundException 22.29

e

22.29 The Classjava.io.FileNotFoundException

A FileNotFoundException is thrown to indicate that no actual file could b
opened for a specified path name. See constructorsFileInputStream (§22.4.1,
§22.4.2) andFileOutputStream (§22.16.1, §22.16.2).

public class FileNotFoundException extends IOException {
public FileNotFoundException();
public FileNotFoundException(String s);

}

22.29.1 public FileNotFoundException()

This constructor initializes a newly createdFileNotFoundException with null
as its error message string.

22.29.2 public FileNotFoundException(String s)

This constructor initializes a newly createdFileNotFoundException by saving a
reference to the error message strings for later retrieval by thegetMessage
method (§20.22.3).
763

22.30 java.io.InterruptedIOException THE PACKAGE JAVA.IO

764

s-
. The
red

e the
22.30 The Classjava.io.InterruptedIOException

An InterruptedIOException is thrown to indicate that an input or output tran
fer has been terminated because the thread performing it was interrupted
field bytesTransferred indicates how many bytes were successfully transfer
before the interruption occurred.

public class InterruptedIOException extends IOException {
public int bytesTransferred = 0;
public InterruptedIOException();
public InterruptedIOException(String s);

}

22.30.1 public int bytesTransferred = 0;

The number of bytes that had been transferred by the I/O operation befor
operation was interrupted.

22.30.2 public InterruptedIOException()

This constructor initializes a newly createdInterruptedIOException with
null as its error message string.

22.30.3 public InterruptedIOException(String s)

This constructor initializes a newly createdInterruptedIOException by saving
a reference to the error message strings for later retrieval by thegetMessage
method (§20.22.3).

THE PACKAGE JAVA.IO java.io.UTFDataFormatException 22.31

in
22.31 The Classjava.io.UTFDataFormatException

A UTFDataFormatException is thrown to indicate that a problem occurred
converting data from Java modified UTF-8 format. See methodreadUTF of
DataInput (§22.1.15).

public class UTFDataFormatException extends IOException {
public UTFDataFormatException();
public UTFDataFormatException(String s);

}

22.31.1 public UTFDataFormatException()

This constructor initializes a newly createdUTFDataFormatException with
null as its error message string.

22.31.2 public UTFDataFormatException(String s)

This constructor initializes a newly createdUTFDataFormatException by saving
a reference to the error message strings for later retrieval by thegetMessage
method (§20.22.3).
765

2

Index
A
abrupt completion

See completion, abrupt
abs method

of classMath, 526
abstract modifier

See also declarations; modifiers
AbstractMethodError class, 611
classes

binary compatibility considerations, 242
declaration of, 131
definition and characteristics, 131
direct superinterface relationship to, 136

interfaces, implicit for every, 184
methods

binary compatibility considerations, 254
classes, 158
declaration examples, 158, 159, 190
interfaces, 189
overloading, 190, 191
overriding, 189, 190
semicolon as body of, 164

reasons why constructors cannot be declared
as, 178

accept method
of interfaceFilenameFilter, 759

access
See also scope
accessibility

determining, 99
term definition, 99

accessible, term definition, 99
array, 195

expression evaluation order, 342
constructor, binary compatibility

considerations, 248
of fields, expression evaluation, 319

access (continued)
inheritance of class members, example

default, 140
private, 141
protected, 141
public, 141

interface member names, 186
to members of a package, 120
method, binary compatibility considerations,

248
non-public class instances, throughpublic

superclasses and superinterfaces, 14
overridden methods, usingsuper keyword,

165
qualified

See also field access expressions; method
invocation expressions

term definition, 99
threads,volatile fields use for, 147

access control
See also security
classes, example, 100, 101
constructors

default, example, 102
private, example, 105
protected, example, 104
public, example, 103

fields
default, example, 102
private, example, 105
protected, example, 104
public, example, 103

IllegalAccessError class, 611
IllegalAccessException class, 611
methods

default, example, 102
private, example, 105
protected, example, 104
public, example, 103
767

INDEX

768

,

0

access control(continued)
package names, limited significance of, 115
protected, details of, 100
qualified names and, 99
standard exceptions,

IllegalAccessException, 210
term definition, 99

acos method
of classMath, 519

actions
See also methods
main memory subsystem

lock, 401
read, 401
unlock, 401
write, 401

prescient store, with threads, 408
thread

assign, 401
load, 401
lock, 401
store, 401
unlock, 401
use, 401

threads, constraints on relationships among,
403

activeCount method
of classThread, 599
of classThreadGroup, 609

activeGroupCount method
of classThreadGroup, 609

addElement method
of classVector, 657

Addison, Joseph, 143
addObserver method

of classObservable, 643
after method

of classDate, 629
algebraic identities

See also expressions; mathematical
functions

limits on use of, 308
allGroups methods

allGroupsCount method, of class
ThreadGroup, 608

of classThreadGroup, 608
allThreads method

of classThreadGroup, 608
allThreadsCount method

of classThreadGroup, 608
alphabet

See also syntax
components,see characters

alphabet (continued)
data types,see primitive types
term definition, 7

ambiguity
See also names, ambiguous; scope
avoiding, in fields with multiple inheritance,

153
and method

of classBitSet, 621
append method

of classStringBuffer, 552
argument

See also parameters
IllegalArgumentException class, 611
lists, evaluation order, 309
values, method invocation conversion

context, 66
arithmetic

See also floating-point; integers;Math class;
numbers; operators; primitive types

ArithmeticException class, 611
integer division,ArithmeticException,

307
Math class, 517
Number class, 487
operators, numeric promotion, specification

72
Random class, 646
standard exceptions,

ArithmeticException, 209
arrays

See also classes; data structures
access, 195

expression evaluation order, 342
arraycopy method, of classSystem, 584
ArrayStoreException class, 611
assignment, expression evaluation order, 37
ByteArrayInputStream class, 689
ByteArrayOutputStream class, 727
(chapter), 193
character, distinguished from strings, 199
Class

objects, 199
obtaining, example, 49

Cloneable interface implemented by, 198
components

See also variables
assignment, run-time testing, 199, 303,

370, 375
default values, 46
initialization, 194
as a kind of variable, 44
type declaration, 194

INDEX
arrays (continued)
creation, 195, 38

expression evaluation, 315
order, 316
order, example, 318
out-of-memory detection, example,

319
example, 196
grammar specification difficulties, 438
indexing of, 195
IndexOutOfBoundsException class, 611
initialization, 195, 196
LALR(1) grammar productions, 446
members, 197, 88
names, fully qualified, 106
NegativeArraySizeException class, 611
Object as superclass of, 199
origin, 195
standard exceptions

ArrayStoreException, 199, 209
IndexOutOfBoundsException, 209
NegativeArraySizeException, 209

variables
declaration, 194
initialization, 194

ASCII characters
See also characters; Unicode character set
Unicode character set relationship to, 11

asin method
of classMath, 519

assignment
See also fields; initialization
array, expression evaluation order, 370, 375
assignable to, term definition, 61
compatible, term definition, 61
compound

evaluation order, 305
operators, evaluation, 375

conversion context, specification, 52, 61
definite, (chapter), 383
expressions

boolean, definite assignment, 390
definite assignment, 391
as statements, 272

operation, to change value of primitive
value, 31

simple operators, evaluation, 370
atan method

of classMath, 520
atan2 method

of classMath, 520

@author tag
specification, 421

available method
of classBufferedInputStream, 701
of classByteArrayInputStream, 691
of classFileInputStream, 686
of classFilterInputStream, 697
of classInputStream, 682
of classLineNumberInputStream, 708
of classPushbackInputStream, 711
of classStringBufferInputStream, 693

B
backslash\

escape sequence, 27
Unicode escape use, 13

backspace
escape sequence, 27

banana-fana, 111
Bartleby

Project (Columbia University), ix
scrivener, 398

bases
See also numbers
permitted in integer literals, 19

bear, 236
before method

of classDate, 629
Bell, Alexander Graham, 119
Bernard de Morlay, 111
Beta, 3, 6
biblical quotations

I Corinthians 14:40, 305
John 3:30, 348
Matthew 6:29, 193

bibliographic references
The Art of Computer Programming, Volume

2, 650
Polling Efficiently on Stock Hardware, 206
Release-to-Release Binary Compatibility in

SOM, 237
binary

compatibility
See also code generation; compile-time

errors; exceptions
changes that do not break, 237
(chapter), 237
compatible with term definition, 240
contrasted with source compatibility, 241
properties and non-properties, 240

file format, required properties, 239
numeric promotion, specification, 74
769

INDEX

770
binary (continued)
representation, verification of classes and

interfaces, 220
BitSet class, 618BitSet class
blocks

See also control flow; statements
(chapter), 263
definite assignment, 393
LALR(1) grammar productions, 446
specification and execution of, 265

Bobrow, Daniel G., 6
body

See also declarations
class

declarations in, 138
term definition, 138

constructor, 178
binary compatibility considerations, 257

interface, declarations, 185
method, 164

binary compatibility considerations, 257
boolean

See also numbers
Boolean class, 469
booleanValue method, of classBoolean,

470
literals, term definition and specification, 23
operators, 36
type and values, term definition and

specification, 36
Bovik, Harry , 126
Bowie, David, 509
Box, G. E. P., 650
brackets ([])

array type declaration, 194, 266, 37
syntactical ambiguities, handling of, 311

break statement
See also control flow
definite assignment, 397
as reason for abrupt completion, 264
specification, 283

brown paper packages, 126
buffers

buf field
of classBufferedInputStream, 699
of classBufferedOutputStream, 732
of classByteArrayInputStream, 689
of classByteArrayOutputStream, 727

buffer field, of class
StringBufferInputStream, 692

BufferedInputStream class, 699
BufferedOutputStream class, 732

Bunyan, John, 823
Burke, Edmund, 263
Burton, Robert

exception, 213
lard, ix

but not phrase
grammar notation use, 10

Butler, Samuel, 530
butter, 530
Byron, Lord , 823
byte type

See also integral types; numbers; primitive
types

ByteArrayInputStream class, 689
ByteArrayOutputStream class, 727
value range, 31

C
C, 1, 2, 6
C++, 1, 2, 6
Caesar, Julius, 352
caller

of a statement expression, term definition,
204

canRead method
of classFile, 755

canWrite method
of classFile, 756

capacity method
of classStringBuffer, 551
of classVector, 658

capacityIncrement field
of classVector, 655

carriage return (CR)
escape sequence, 27
handling in a

character literal, 24
string literal, 25

as a line terminator, not input character, 14
casting

See also conversion
boolean, 37
ClassCastException class, 611
conversion context, 53

specification, 67
floating-pointing types, 33
integral types, 33
reference types, 67
run-time testing, 303
standard exceptions,ClassCastException,

209
to void, not permitted, 272

INDEX

y,
catch clause, 290catch clause
See also control flow;try statement
exception handling role of, 204
exception idiom defined with, 211

ceil method
of classMath, 524

Cervantes, Miguel de, 67
characters

See alsoCharacter class; numbers;
primitive types; strings

array of, distinguished from strings, 199
char type, 30

See also integral types; numbers;
primitive types

value range, 31
Character class, 471
charValue method, of classCharacter,

474
line terminators, 25
literals

escape sequences for, 26
term definition and specification, 24

Unicode character set
composite, contrasted with the Unicode

decomposed characters, 18
handling in package names, 117
lexical grammar use as terminal symbols,

7
relationship to ASCII, 11

charAt method
of classString, 536
of classStringBuffer, 551

Chase, Lincoln, 111
Chaucer, Geoffrey

Canterbury Tales, 521
Troilus and Creseide, 528

checking
See also exceptions, checked; throw
checkAccept method, of class

SecurityManager, 577
checkAccess method

of classSecurityManager, 572
of classThread, 594
of classThreadGroup, 605

checkConnect method, of class
SecurityManager, 576

checkCreateClassLoader method, of
classSecurityManager, 572

checkDelete method, of class
SecurityManager, 576

checkError method, of class
PrintStream, 739

checking (continued)
checkExec method, of class

SecurityManager, 573
checkExit method, of class

SecurityManager, 573
checkLink method, of class

SecurityManager, 574
checkListen method, of class

SecurityManager, 577
checkPropertiesAccess method, of class

SecurityManager, 574
checkPropertyAccess method, of class

SecurityManager, 574
checkRead method, of class

SecurityManager, 575
checkSetFactory method, of class

SecurityManager, 577
checkTopLevelWindow method, of class

SecurityManager, 578
checkWrite method, of class

SecurityManager, 575
for exception handlers, at compile-time, 203

checkPackageAccess method
of classSecurityManager, 578

checkPackageDefinition method
of classSecurityManager, 578

Christie, Agatha
hand-writing experts, 325
no method, 465
Poirot’s abrupt departure, 264
testing a statement, 273

Cicero, Marcus Tullius, 528
circular declaration

See also forward reference
ClassCircularityError class, 611
of interfaces, compile-time error caused by,

185
of subclasses, compile-time error caused b

134
of types, in different compilation units,

legality of, 118
class(es)

See also fields; inheritance; interfaces;
methods; packages; subclasses;
superclasses; superinterfaces

abstract, 131
as array component types, 194
binary compatibility considerations, 242
declaration of, 131
overridingabstract methods in, 158
uses, 132

accessibility, 99
binary compatibility considerations, 242
771

INDEX

772

s

class(es) (continued)
binary representation

binary file format requirements, 240
verification of, 220

body
declarations, binary compatibility

considerations, 245
term definition and declarations in, 138

Class class, 466
class file format, binary file format use of,

238
Class objects, associated with arrays, 199,

49
.class suffix, as name for compiled files,

116
ClassCastException class, 611
ClassCircularityError class, 611
classDepth method, of class

SecurityManager, 571
ClassFormatError class, 611
ClassLoader class, 558
classLoaderDepth method, of class

SecurityManager, 572
ClassNotFoundException class, 611
constructors, binary compatibility

considerations, 253
declarations, 128

(chapter), 127
LALR(1) grammar productions, 443
specifying direct superclasses in, 133
specifying direct superinterfaces in, 135
term definition, 128

as declared entity, 78
exception

Error, 203, 211
Exception, 203, 208
RuntimeException, 203, 208
Throwable, 201, 202, 208, 463

fields,see fields, class
final

binary compatibility considerations, 242
declaration of, 133

finalization of, 235
inaccessible, accessing members of,

example, 142
IncompatibleClassChangeError class,

611
initialization, 223

detailed procedure, 225
example, 217
standard exceptions,

ExceptionInitializerError, 212
instances,see instance(s)

class(es) (continued)
instantiation, preventing, 180
linking

at virtual machine startup, 216
initialization, 212, 223, 225
preparation, 212, 221, 226
process description, 220
resolution, 216

loading, 218
at virtual machine startup, 216
process description, 29
standard errors

ClassCircularityError, 219
ClassFormatError, 219
NoClassDefFoundError, 219

members, 86
declarations, 138

binary compatibility considerations,
245

methods
class, 160
interface, 169
non-static, 160
static, 160

names
fully qualified, 105
scope of, 130

naming conventions, 108
NoClassDefFoundError class, 611
non-public, in example of qualified names

and access control, 101
objects have, while variables have types, 47
as package members, 85
preparation, 221

at virtual machine startup, 216
standard exceptions,

AbstractMethodError, 212
preventing instantiation of, 132
public

access control in, 99
binary compatibility considerations, 243
in example of qualified names and acces

control, 101
references to, binary file format

requirements, 239
resolution

at virtual machine startup, 216
process description, 221
standard exceptions

IllegalAccessError, 221
IncompatibleClassChangeError,

221
InstantiationError, 222

INDEX
class(es) (continued)
resolution (continued)

standard exceptions (continued)
NoSuchFieldError, 222
NoSucMethodError, 222

scope of, 81
standard,see standard classes
standard exceptions

ClassCastException, 209, 69
ClassNotFoundException, 210, 468,

559, 560
Error, 208
Exception, 208
RuntimeException, 208
Throwable, 208

static initializers, 175
binary compatibility considerations, 259

type declarations, as members of packages,
124

unloading of, 235
variables

default values, 46
specification, 145, 44

verification
at virtual machine startup, 216
standard exceptions,VerifyError, 212

classification
reclassification of contextually ambiguous

names, 91
syntactic, of a name according to context, 90

clear method
of classBitSet, 620
of classHashtable, 638

clearChanged method
of classObservable, 644

cloning
clone method

of classBitSet, 620
of classHashtable, 636
of classObject, 460
of classVector, 656

Cloneable interface, 465
CloneNotSupportedException class, 611

CLOS (Common Lisp Object System), 4
close method

of classFileInputStream, 686
of classFileOutputStream, 723
of classFilterInputStream, 697
of classFilterOutputStream, 731
of classInputStream, 682
of classOutputStream, 721
of classPipedInputStream, 688
of classPipedOutputStream, 726

close method (continued)
of classPrintStream, 739
of classRandomAccessFile, 746
of classSequenceInputStream, 695

code generation
See also binary, compatibility; compile-time

errors; exceptions; optimization
asynchronous exceptions, implications for,

205
initialization, implications for, 227
linking, implications for, 222
loading, implications for, 219
symbolic reference resolution implications

of, 222
comments

commentChar method, of class
StreamTokenizer, 716

documentation, (chapter), 419
term definition and specification, 15

Common Lisp, 4, 6
compareTo method

of classString, 538
compatibility

binary,see binary, compatibility
compilation

See also compile-time errors; exceptions;
virtual machine

CompilationUnit goal symbol, syntactic
grammar use, 8

conditional
binary compatibility considerations, 251
if statement reachability handling to

support, 298
exception handlers checked for during, 203
unit

components, package declarations, 118
importing types into, 120
term definition and characteristics, 117

compile-time errors, 1
See also binary, compatibility; errors;

exceptions
completion, 264completion

See also control flow; exceptions
abrupt

break statement, 283
continue statement, 285
during expression evaluation, 304
for statement, 282
labeled statements, 272
reasons for, 264, 304
return statement, 287
synchronized statement, 289
throw statement, 288
773

INDEX

774
completion (continued)
abrupt (continued)

try statement, 290
try-catch statement, 292
try-catch-finally statement, 293

normal
during expression evaluation, 304
during statement execution, 264

component(s)
See arrays, components
type, arrays, 194

concat method
of classString, 544

concurrency, 309
See also synchronization; threads

conflicts
name

See also hiding; scope
avoiding through use of syntactic context,

89
connect method

of classPipedInputStream, 687
of classPipedOutputStream, 725

Conner, Michael, 237
constants

See also fields, class,final; fields,
interface; literals

characteristics and binary compatibility
considerations, 251

compile-time narrowing of
by assignment conversion, implications,

61
not permitted by method invocation

conversion, 66
expressions, 381

in string literals, 26
field

binary compatibility considerations, 251
term specification, 251

named,see fields, class,final
primitive

binary compatibility considerations, 251
term definition, 251

constructors
See also class(es); execution; initialization;

interfaces; methods
access, 99

binary compatibility considerations, 248
control

default, example, 102
private, example, 105
protected, example, 104
public, example, 103

constructors (continued)
access (continued)

hidden fields,this keyword use for, 269
body, 178

binary compatibility considerations, 257
as components of a class body, 138
declarations, 176

binary compatibility considerations, 253
LALR(1) grammar productions, 445

default, 180
deleting, binary compatibility

considerations, 246
invocation, during instance creation, 228
as not members of a class, 86
modifiers, 177
names of, 176, 79
overloading, 180

binary compatibility considerations, 257
parameters, 177

See also arguments
assignment during instance creation, 228
binary compatibility considerations, 254
scope, 82
specification, 177, 45

private, preventing instantiation with, 132,
181

protected, accessibility of, 100
references to, binary file format

requirements, 239
signature, 177

binary file format requirements, 240
throws clause, binary compatibility

considerations, 256
contains method

of classHashtable, 637
of classVector, 659

containsKey method
of classHashtable, 637

context(s)
See also inheritance; scope
conversion, 52

assignment, specification, 61
casting, specification, 67
method invocation, specification, 66
string, specification, 67

reclassification of contextually ambiguous
names, 91

role in determining the meaning of a name,
79, 89

syntactic classification of a name according
to, 90

context-free grammars
See grammars, context-free

INDEX
continue statement
See also control flow
definite assignment, 397
as reason for abrupt completion, 264
specification, 285

contract
See also binary, compatibility
term definition, 241

control flow
See also completion; definite assignment;

exceptions; expressions; statements;
statements, unreachable; threads

boolean expressions use for, 37
break statement, specification, 283
continue statement, specification, 285
deadlock avoidance, multiple lock use for,

290
do statement, specification, 279
for statement, specification, 280
if statement, danglingelse handling, 270
if-then statement, specification, 273
if-then-else statement, specification, 274
local variable declaration andswitch

statement, 45
return statement, specification, 286
switch statement, specification, 274
synchronized statement, specification, 289
throw statement, specification, 287
try statement, specification, 290
try-catch statement, specification, 291
try-catch-finally statement,

specification, 293
while statement, specification, 277

conventions
naming, 106

impact on name hiding, 84
conversion

See also casting; numbers; promotion
casting, 67
categories and contexts, 52
(chapter), 51
contexts

assignment, specification, 61
casting, specification, 67
method invocation, specification, 66
string, specification, 67

forbidden, specification, 60
identity

in assignment conversion context, 61
in casting conversion context, 67
in method invocation conversion context,

66
specification, 54

conversion (continued)
kinds of, 54
in method invocations, 66
narrowing

primitive, 55
in assignment conversion context, 61
in casting conversion context, 67
not allowed in method invocation

conversion context, reasons for, 66
reference, in casting conversion context,

67
reference

narrowing, 59
specification, 59

widening, 58
specification, 58

string, 67
specification, 60

term definition, 51
term specification, 58
widening

primitive, 54
in assignment conversion context, 61
in binary numeric promotion context,

74
in casting conversion context, 67
in method invocation conversion

context, 66
in unary numeric promotion context,

73
reference, 58

in assignment conversion context, 61
in casting conversion context, 67
in method invocation conversion

context, 66
term specification, 58

copyInto method
of classVector, 659

cos method
of classMath, 519

count field
of classBufferedInputStream, 699
of classBufferedOutputStream, 732
of classByteArrayInputStream, 689
of classByteArrayOutputStream, 727
of classStringBufferInputStream, 692

countObservers method
of classObservable, 643

countStackFrames method
of classThread, 598

countTokens method
of classStringTokenizer, 653

C++, 1, 2, 6C++
775

INDEX

776
Creamer, Henry, 595Creamer, Henry
creation

See also declaration; initialization
array, 195, 38

expression evaluation
example, 318
order, 316
out-of-memory detection, example,

319
instance, 38

expression evaluation, 314
order, 315

expressions as statements, 272
invocation of initializers for instance

variables during, 229
method dispatching during, 230
specification and procedure, 228

object, 38
threads, 415

Creatore, Luigi, 28
currentClassLoader method

of classSecurityManager, 571
currentThread method

of classThread, 599
currentTimeMillis method

of classSystem, 581
cuspidor

See spittoon

D
Danforth, Scott, 237
dangling else

See also control flow
handling of, 270

data
See also constants; fields; variables
DataInput interface, 667
DataInputStream class, 703
DataOutput interface, 674
DataOutputStream class, 734
structures,see

arrays
classes
hash tables
interfaces
primitive types
vectors

types,see types
values,see values

database
storing packages in, 117

Date class, 622
Dave, 125

deadlock
avoidance, multiple lock use for, 290

decimal
See also numbers
base, permitted in integer literals, 19
numerals, specification, 20

declarations
See also body; execution; fields;

initialization; methods; parameters;
statements

class
body, 138
(chapter), 127
LALR(1) grammar productions, 443
member, 138
term definition and characteristics, 128

constructor, 176
example of, 177
LALR(1) grammar productions, 445

field(s), 143
constants in interfaces, 186
examples of, 151
grammar specification difficulties, 437
interface, examples, 188
LALR(1) grammar productions, 443

identifiers in, kept separate from those in
labeled statements, 80

import
example, 123
single-type, 121
term definition, 120
type-import-on-demand, 122

interface, 184
body, 185
(chapter), 183
LALR(1) grammar productions, 445
members, 185

local variable, definite assignment, 393
method(s), 155

examples of, 168
grammar specification difficulties, 437
interface,abstract, 189
LALR(1) grammar productions, 444

modifiers,see
abstract modifier
final modifier
native modifier
private modifier
protected modifier
public modifier
static modifier
synchronized modifier
transient modifier

INDEX
declarations (continued)
modifiers (continued)

volatile modifier
overriding, example, 168
package, in compilation units, 118
subclass, 133
superclass, 133
superinterface, 135, 185
term definition, 78
type

as members of packages, 124
need not appear before use of the type, 82
usage in, 43

variable
array, 194
has a type, while objects have classes, 47
local, 265

execution of, 269
defaults field

of classProperties, 639
defineClass method

of classClassLoader, 559
definite assignment

See also exceptions; execution; scope
(chapter), 383

delete method
of classFile, 758

deleteObserver method
of classObservable, 643

deleteObservers method
of classObservable, 643

DeMichiel, Linda G., 6
denormalized

IEEE 754 standard, support required for, 34
term definition, 33

destroy method
of classProcess, 562
of classThreadGroup, 606

Dictionary class, 633
digits

digit method, of classCharacter, 485
Java, term definition, 17

division
See also arithmetic; numbers
integer divide by zero, indicated by

ArithmeticException, 32, 352
do statement

See also control flow
definite assignment, 395
specification, 278

documentation
comments, (chapter), 419

Double class, 308, 510
double quote

escape sequence, 27
in string literals, 25

double type
See alsoDouble class;Math class
floating-point literal specification, 22

doubleToLongBits method
of classDouble, 515

doubleValue method
of classDouble, 513
of classFloat, 506
of classInteger, 490
of classLong, 497
of classNumber, 487

Duff, Tom, 275
Duff’s device, 275
dumpStack method

of classThread, 600
Dylan, 4, 6

E
E field

of classMath, 518
Eco, Umberto, 111
Eisenhower, Dwight D., 364
element

elementAt method, of classVector, 656
elementCount field, of classVector, 655
elementData field, of classVector, 655
elements method

of classDictionary, 634
of classHashtable, 637
of classVector, 659

NoSuchElementException class, 664
type, arrays, term definition, 194

Ellis, Margaret A. , 6
Elliston, Shirley, 111
empty method

of classStack, 662
EmptyStackException class, 663
endsWith method

of classString, 540
ensureCapacity method

of classStringBuffer, 551
of classVector, 658

entity
declared, list of, 78

enumerate method
of classThread, 600
of classThreadGroup, 609

Enumeration interface, 617Enumeration interface
777

INDEX

778
eolIsSignificant method
of classStreamTokenizer, 717

Epictetus, 186
equals method

of classBitSet, 619
of classBoolean, 470
of classCharacter, 473
of classDate, 626
of classDouble, 511
of classFile, 754
of classFloat, 505
of classInteger, 489
of classLong, 496
of classObject, 459
of classString, 535

equalsIgnoreCase method
of classString, 537

errors
See also binary, compatibility; compile-time

errors; exceptions
AbstractMethodError class, 611
ClassCircularityError class, 611
ClassFormatError class, 611
err field

of classFileNameDescriptor, 760
of classSystem, 580

Error class, 211, 611
unchecked exceptions as subclass of, 163

ExceptionInInitializerError class,
611, 614

IllegalAccessError class, 611
IncompatibleClassChangeError class,

611
InstantiationError class, 611
InternalError class, 611
linking, 211, 220

LinkageError class, 611
preparation, 221
resolution, 221
verification, 220

loading, 211, 219
NoClassDefFoundError class, 611
NoSuchFieldError class, 611
NoSuchMethodError class, 611
OutOfMemoryError class, 611
semantic, exceptions as mechanism for

signaling, 201
standard, reasons for, 203

hierarchical relationships list, 611
types, run-time, 303
unchecked, reasons for, 203
UnknownError class, 611

errors (continued)
UnsatisfiedLinkError class, 611
VerifyError class, 611
virtual machine, 212

escapes
sequences, for character and string literals,

26
Unicode, specification, 12

evaluation
See also execution; initialization; scope
evaluated, term definition, 301
expressions

additive operators, 355
additive operators for numeric types, 358
array access, 341
array assignment, 370
array creation, 315
assignment operators, 369
bitwise binary operators, 365
bitwise complement, 349
boolean equality operators, 364
boolean logical operators, 365
cast, 350
compound assignment operators, 375
conditional operator, 367
conditional-and operator, 366
conditional-or operator, 366
division, 352
equality operators, 362
field access, 319
instance creation, 314
integer bitwise operators, 365
logical binary operators, 365
logical complement, 349
method invocation, 323
method invocation, order of, 333
multiplication, 351
multiplicative operators, 351
numeric comparison, 361
numeric equality operators, 363
parenthesized, 313
postfix, 344
pre-decrement, 348
pre-increment, 347
primary, 311
reference equality operators, 364
relational operators, 360
remainder, 353
shift operators, 359
simple assignment operators, 369
string concatenation, 355
superclass access, 322
type comparison, 361

INDEX
evaluation (continued)
expressions (continued)

unary minus, 349
unary operators, 346
unary plus, 348

literals, 312
order

arguments left-to-right, 304
binary operators, 305
compound assignment, 305
left-hand operand first, 305
left-to-right, 309
operands before operators, 307
operands evaluated before operations, 307
parameters, 303
parentheses and precedence respected,

308
result of, term definition, 301

events
See also methods
execution order of, constraints on

relationships among, 403
evolution

See also binary, compatibility; reuse
of classes, binary compatibility

considerations, 242
of interfaces, binary compatibility

considerations, 259
of packages, binary compatibility

considerations, 242
examples

access control, 100
classes, 101
fields, methods, and constructors

default, 102
private, 105
protected, 104
public, 103

arrays, 196
classes,public and non-public, 101
declarations

fields, 151
import, 123
method, 168

default-access methods, constructors and
fields, 102

exceptions, 206
fields

interface, ambiguous inherited, 188
interface, multiply inherited, 188
multiply inherited, 153
reinheritance of, 154

examples (continued)
hiding, 168

of variables
class, 151
instance, 152

vs. overriding, 170
HTML generation from documentation

comments, 423
inheritance

accessing members of inaccessible
classes, 142

class members, 139
default access, 140
public, protected, andprivate
access, 141

multiple, with superinterfaces, 137
with default access, 140
with private, 141
with protected, 141
with public, 141

methods
abstract declarations, 190
invocation of hidden class, 171
private, 105
protected, 104
public, 103

overloading, 168
overriding, 168

incorrect, 169
because ofthrows, 174

large example, 172
vs. hiding, 170

exceptions
See also binary, compatibility; compile-time

errors; errors;Throwable class
ArithmeticException class, 611
ArrayStoreException class, 611
asynchronous, causes and handling of, 205
caller, determination of, 204
causes of, 202
(chapter), 201
checked

compile-time checking for handlers of,
203

constructors, declaring withthrows
clause in method declarations, 163

defining new exception classes as, 208
methods, declaring withthrows clause in

method declarations, 163
standard, 210

ClassCastException class, 611
classes

Error, 203, 211
779

INDEX

780
exceptions(continued)
classes (continued)

Exception, 208
hierarchical relationships list, 611
RuntimeException, 203, 208
RuntimeException, unchecked

exceptions found in, 164
Throwable, 201, 202

ClassNotFoundException class, 611
CloneNotSupportedException class, 611
EmptyStackException class, 663
example, 206
Exception class, 611
@exception tag, specification, 422
ExceptionInInitializerError class,

611, 614
handlers

compile-time checking, 203
how established, 201
in try statements, 291

handling of, 204
asynchronous, 205
run-time testing, 303

hierarchy, 208
IllegalAccessException class, 611
IllegalArgumentException class, 611
IllegalThreadStateException class,

611
IndexOutOfBoundsException class, 611
InstantiationException class, 611
integer divide by zero, 32
InterruptedException class, 611
NegativeArraySizeException class, 611
never thrown for

assignment conversions, 61
information loss due to narrowing

primitive conversions, 57
information loss due to widening

primitive conversions, 55
widening reference conversions, 59

NoSuchElementException class, 664
NoSuchMethodException class, 611
NullPointerException class, 611
NumberFormatException class, 611
parameters

See also variables
declaration, 290
description, 45
initial value, 46
scope, 291, 82

precise, 205

exceptions(continued)
standard, 208

NegativeArraySizeException, 304,
316

RuntimeException, 371
standard (checked)

ClassNotFoundException, meaning,
210

CloneNotSupportedException,
meaning, 210, 460

EOFException
declaration, 762
meaning, 210

Exception, 208
FileNotFoundException, 684, 722

declaration, 763
meaning, 210

IllegalAccessException, meaning,
210

InstantiationException, 131
meaning, 210

InterruptedException, 562, 598, 600,
601

meaning, 210
InterruptedIOException

declaration, 764
meaning, 210

IOException, 564, 565, 668, 669, 670,
671, 672, 675, 676, 677, 678, 680,
681, 682, 683, 685, 686, 687, 688,
694, 695, 696, 697, 698, 700, 701,
703, 704, 705, 706, 707, 708, 709,
710, 711, 717, 720, 721, 723, 724,
725, 726, 729, 730, 731, 733, 735,
736, 737, 744, 745, 746, 747, 748,
749, 750, 751

declaration, 761
meaning, 210

MalformedURLException, meaning, 211
ProtocolException, meaning, 211
SocketException, meaning, 211
UnknownHostException, meaning, 211
UnknownServiceException, meaning,

211
UnsatisfiedLinkException, 222
UTFDataFormatException

declaration, 765
meaning, 210

standard (errors)
AbstractMethodError, 254, 255

meaning, 212, 221
ClassCircularityError, 134, 243

meaning, 212, 219

INDEX

,

exceptions(continued)
standard (errors) (continued)

ClassFormatError, 559
meaning, 212, 219

Error, 211
ExceptionInInitializerError, 227,

288
meaning, 212

IllegalAccessError, 243, 259, 336
meaning, 212, 221

IncompatibleClassChangeError, 251,
253, 256, 334, 336

meaning, 212, 221
InstantiationError, meaning, 212,

222
InternalError, meaning, 212
LinkageError, 219, 220
loading and linkage, 211
NoClassDefFoundError, 226

meaning, 212, 219
NoSuchFieldError, 250

meaning, 212, 222
NoSuchMethodError, 247, 253, 260, 334

meaning, 212, 222
OutOfMemoryError, 163, 213, 219, 227,

228, 304, 314, 315, 316, 319, 336
meaning, 212

StackOverflowError, meaning, 212
ThreadDeath, 595, 611
UnknownError, meaning, 212
UnsatisfiedLinkError, 583, 584, 611

meaning, 222
VerifyError, 255, 260

meaning, 212, 220
VirtualMachineError, 212, 611

standard (unchecked runtime)
ArithmeticException, 304, 307, 354

meaning, 209
ArrayStoreException, 199, 304, 371,

374, 584
meaning, 209

ClassCastException, 304, 351, 371, 69
casting conversion requirements that

can result in, 69
ClassCastException, meaning, 209
EmptyStackException, 662

declaration, 663
meaning, 209

IllegalArgumentException, 597, 607,
625, 631, 744, 745

meaning, 209

exceptions(continued)
standard (unchecked runtime) (continued)

IllegalMonitorStateException, 461,
462, 463

meaning, 209
IllegalThreadStateException, 562,

592, 593, 594, 597, 606
meaning, 209

IndexOutOfBoundsException, 195,
304, 342, 371, 376, 533, 534, 536,
543, 546, 551, 552, 553, 555, 556,
557, 559, 564, 565, 584, 655, 656,
657, 659, 660, 668, 675, 681, 685,
688, 690, 693, 695, 697, 701, 708,
711, 720, 723, 726, 731, 733, 735,
736, 737, 739, 746, 747, 749

meaning, 209
NegativeArraySizeException, 550

meaning, 209
NoSuchElementException, 617, 657

declaration, 664
meaning, 209

NullPointerException, 197, 204, 304,
335, 342, 343, 344, 371, 376, 507,
514, 533, 534, 536, 538, 539, 540,
541, 542, 543, 544, 546, 552, 553,
555, 559, 560, 565, 584, 595, 604,
633, 634, 668, 675, 677, 678, 680,
681, 685, 688, 690, 693, 695, 697,
701, 703, 708, 711, 720, 723, 726,
730, 731, 733, 735, 736, 737, 739,
740, 742, 746, 747, 749, 753, 754

meaning, 209
NumberFormatException, 489, 492,

493, 499, 500, 504, 511
meaning, 209

RuntimeException, 208, 371
SecurityException, 558, 563, 564,

565, 571, 572, 573, 574, 575, 576,
577, 578, 580, 581, 582, 583, 584,
592, 593, 595, 596, 597, 603, 604,
606, 607, 684, 685, 722, 723, 744,
745, 755, 756, 757, 758

meaning, 209
standard, 209

synchronization integrated with mechanism
for handling, 202

Throwable class, 611
thrown for, narrowing reference conversions

59
uncaughtException method, when

invoked, 202
781

INDEX

782
execution
See also declarations; evaluation;

initialization; linking; loading
(chapter), 215
exec method, of classRuntime, 564
order, thread rules, 403
of statements for their effect, 263

exists method
of classFile, 755

exit
exit method

of classRuntime, 563
of classSystem, 582

exitValue method, of classProcess, 562
virtual machine, criteria for, 235

expressions
See also fields; methods; statements
abrupt completion of, as reason for abrupt

statement completion, 265
additive operators

evaluation, 355
for numeric types, evaluation, 358

array
access, evaluation, 341
assignment, evaluation, 370, 375
creation, evaluation of, 315

assignment
conversion, 61
definite assignment, 391
operators, evaluation, 369
as statements, 272

bitwise
binary operators, evaluation, 365
complement, evaluation, 349

boolean
assignment, definite assignment, 390
constant, definite assignment, 386
operators

!, definite assignment, 387
!=, definite assignment, 389
&, definite assignment, 387
&&, definite assignment, 386
==, definite assignment, 389
? :, definite assignment, 389
^, definite assignment, 388
|, definite assignment, 388
||, definite assignment, 387
equality, evaluation, 364
logical, evaluation, 365

boolean-valued, definite assignment, 386
cast, evaluation, 350
(chapter), 301

expressions (continued)
compound, assignment operators,

evaluation, 375
conditional

and operator&&, evaluation, 366
operator? :

definite assignment, 390
evaluation, 367

or operator||, evaluation, 367
definite assignment and, 386
division, evaluation, 352
equality operators, evaluation, 363
field access, evaluation of, 319
instance creation

evaluation of, 314
as statements, 272

integer bitwise operators, evaluation, 366
LALR(1) grammar productions, 450
logical

comparison operators, evaluation, 365
complement!, evaluation, 350

method invocation
evaluation, 323
evaluation order, 333
as statements, 272

multiplication*, evaluation, 351
multiplicative operators*, /, &, evaluation,

351
names

context in which a name is classified as,
91

qualified, meaning of, 96
simple, meaning of, 95

numeric
comparison, evaluation, 361
equality operators, evaluation, 363

operators
++, definite assignment, 392
--, definite assignment, 392
precedence, evaluation, 308

parenthesized
evaluation of, 313
evaluation of, precedence effect of, 308

post-decrement--
evaluation of, 345
as statements, 272

post-increment++
evaluation of, 345
as statements, 272

postfix, evaluation, 344
pre-decrement--

evaluation of, 348
as statements, 272

INDEX
expressions (continued)
pre-increment++

evaluation of, 348
as statements, 272

primary, evaluation of, 311
See also arrays, access expressions;

arrays, creation; fields, access
expressions; instance, creation;
literals; expressions, parenthesized;
methods, invocations;this keyword

reference equality operators==, !=,
evaluation, 364

relational operators<, >, <=, >=, evaluation,
361

remainder%, evaluation, 353
run-time checks of, 302
semantics and evaluation rules, (chapter),

301
shift operators<<, >>, >>>, evaluation, 359
simple assignment operator=, evaluation,

370
statements

definite assignment, 394
specification, 272

string concatenation+, evaluation, 355
superclass access, evaluation, 322
type

comparisoninstanceof, evaluation, 362
how determined, 47
usage in, 43
vs. class of object, 47

unary
minus-, evaluation, 349
operators, evaluation, 346
plus+, evaluation, 349

values, variables as, 302
extends clause

See also classes; implements; object-
oriented concepts

in class declaration, specifying direct
superclasses with, 133

in interface declaration, 185

F
FALSE field

of classBoolean, 469
Feeley, Mark, 206
Fibonacci numbers, 1, 2, 3, 5, 8, 13, 21, 34,

55, 89, 144, 233, 377, 610
fields

See also classes; constants; instances;
interfaces; methods; variables

fields (continued)
access control

default, example, 102
private, example, 105
protected, example, 104
public, example, 103

access expressions, evaluation, 319
of an array, 197
of a class

binary compatibility considerations, 249
declarations, 143

examples of, 151
final, 146

binary compatibility considerations,
250

volatile declaration not permitted
for, 148

multiply inherited, example of, 153
non-static

default values, 46
explicit constructors not permitted to

use, 179
hiding example, 152
initialization of, 149
initializers for, 150
invocation of initializers during

instance creation, 229
specification, 44

reinheritance of, example, 154
static

andfinal, binary compatibility
considerations, 251

binary compatibility considerations,
253, 259

hiding of, example, 151
initialization of, 149, 175
initialization of, during the preparation

phase of linking, 221
specification, 44
term definition and declaration, 145

transient, 147
binary compatibility considerations,

253
volatile, 147

binary compatibility considerations,
253

final declaration not permitted for,
148

declarations
as declared entity, 78
binary compatibility considerations, 260
grammar specification difficulties, 437
LALR(1) grammar productions, 443
783

INDEX

784
fields (continued)
hidden

accessing using cast, 323
accessing with

super keyword, 322
this keyword, 269

of an interface
ambiguous inherited example, 188
binary compatibility considerations, 251
declarations, 186, 187

examples, 188
initialization, 187

during the preparation phase of
linking, 221

multiply inherited example, 188
public by default, 187

length, as member of an array, 88
as members

of a class, 86
of an interface, 87

names, naming conventions, 109
NoSuchFieldError class, 611
public, by default in interface declaration,

187
references, active use, 224
scope of, 81

Fifth Dimension, 317
files

See also I/O; input; output; streams
binary, format, 238
File class, 752, 753
FileInputStream class, 684
FilenameFilter interface, 759
FileOutputStream class, 722
RandomAccessFile class, 743
standard

System.err, 580
System.in, 579
System.out, 580

standard exceptions
EOFException, 210, 762
FileNotFoundException, 210, 763
InterruptedIOException, 210, 764
IOException, 210, 261

systems, storing packages in, 115
fillInStackTrace method

of classThreadGroup, 613
filters

FilterInputStream class, 696
FilterOutputStream class, 730

Finagle’s Law, 201

final modifier
See also declarations; modifiers
classes

binary compatibility considerations, 242
declaration of, 133

fields
binary compatibility considerations, 250
declaration and use, 146, 186
final by default in, interface,

declaration, 187
volatile declaration not permitted for,

148
methods

binary compatibility considerations, 255
declaration and use, 160
not permitted in interface method

declarations, 189
reasons why constructors cannot be, 178

finalization
See also exceptions; linking
of classes, 235
finalizable, as object attribute, 232
finalize method

as member ofObject class, 41
of classFileInputStream, 686
of classFileOutputStream, 724
of classObject, 463

finalized, as object attribute, 232
finalizer

method calls, unordered nature of, 234
finalizer-reachable, as object attribute, 232
finally clause, exception handling use,

204
implementing, 232
of instances, 231

implementation procedures, 232
unloading implications, 235

findSystemClass method
of classClassLoader, 560

first cat, 126
firstElement method

of classVector, 657
fish

relationship to pianos and stringed
instruments, 137

Fitzgerald, F. Scott, 635
float type, 30

See also floating point
floating-point

See also arithmetic; numbers; types
algebraic identities, limits on use of, 308
Double class, 308, 510
Float class, 503

INDEX
floating-point (continued)
float type, floating-point literal

specification, 22, 30
floatToIntBits method, of classFloat,

508
floatValue method

of classDouble, 512
of classFloat, 505
of classInteger, 490
of classLong, 497
of classNumber, 487

literals
largest and smallest, 22
term definition and specification, 22

Long class, 495
operations, 34
required behavior, 34, 35
types and values, term definition and

specification, 33
floor method

of classMath, 524
flow analysis

See also security
conservative, required for definite

assignment of local variables, 383
flush method

of classBufferedOutputStream, 733
of classDataOutputStream, 735
of classFilterOutputStream, 731
of classOutputStream, 721
of classPrintStream, 739

Foote, Samuel, 290
for statement

definite assignment, 396
ForInit part

initialization by, 281
scope of local variable declared in, 82

header, local variable declaration in, 266
specification, 280

forDigit method
of classCharacter, 486

form feed
escape sequence, 27

formal parameter
See parameters

Forman, Ira , 237
format

See also binary, compatibility
binary, properties of, 238

forName method
of classClass, 468

forward reference
See also scope
compile-time error in

class variable initialization, 149
instance variable initialization, 150

to types allowed before declaration, 82
Franklin, Benjamin , 215
freeMemory method

of classRuntime, 565
Frost, Robert

Generations of Men, 299
Line-gang, 415
Mending Wall, 183
Mountain, 295

Fuller, Thomas, 823

G
Gabriel, Richard P., 6, 92
Gauss, Carl Friedrich, 42, 196, 650
gc method

See also memory
of classRuntime, 566
of classSystem, 583

Geisel, Theodore, 125
generation

code,see code generation
get

get method
of classBitSet, 620
of classDictionary, 633
of classHashtable, 637

getAbsolutePath method, of classFile,
755

getBoolean method, of classBoolean, 470
getBytes method, of classString, 536
getChars method

of classString, 536
of classStringBuffer, 552

getClass method, of classObject, 458
getClassContext method, of class

SecurityManager, 571
getClassLoader method, of classClass,

468
getDate method, of classDate, 627
getDay method, of classDate, 627
getErrorStream method, of class

Process, 561
getException method, of class

ExceptionInInitializerError,
614
785

INDEX

786
get (continued)
getFD method

of classFileInputStream, 685
of classFileOutputStream, 723
of classRandomAccessFile, 745

getFilePointer method, of class
RandomAccessFile, 745

getHours method, of classDate, 628
getInCheck method, of class

SecurityManager, 572
getInputStream method, of class

Process, 561
getInteger method, of classInteger, 493
getInterfaces method, of classClass,

467
getLineNumber method, of class

LineNumberInputStream, 709
getLocalizedInputStream method, of

classRuntime, 567
getLocalizedOutputStream method, of

classRuntime, 568
getLong method, of classLong, 501
getMaxPriority method, of class

ThreadGroup, 607
getMessage method, of class

ThreadGroup, 612
getMinutes method, of classDate, 628
getMonth method, of classDate, 627
getName method

of classClass, 466
of classFile, 755
of classThread, 596
of classThreadGroup, 605

getOutputStream method, of class
Process, 561

getParent method
of classFile, 755
of classThreadGroup, 605

getPath method, of classFile, 755
getPriority method, of classThread, 597
getProperties method, of classSystem,

581
getProperty method

of classFile, 753
of classProperties, 640
of classSystem, 582

getRuntime method, of classRuntime, 563
getSeconds method, of classDate, 628
getSecurityManager method, of class

System, 580
getSuperclass method, of classClass,

467

get (continued)
getThreadGroup method, of classThread,

597
getTime method, of classDate, 629
getTimezoneOffset method, of class

Date, 630
getYear method, of classDate, 626

Gilbert, W. S., 181
goal symbols

CompilationUnit, 117
syntactic grammar use, 8

Input, lexical grammar use, 7
good fences, 183
goto statement

See labeled statements
gradual underflow

See also exceptions; floating-point; IEEE
754 standard; numbers

support required for, 34
grammars

See also languages; lexical; semantics
(chapter), 7
context-free, term definition, 7
difficulties with, as given in body of Java

Language Specification, 433
if statement, danglingelse handling, 270
LALR(1), (chapter), 433
lexical

(chapter), 11
term definition, 7

modifier specification difficulties, 435
name specification difficulties, 433
notation, 8
one-token lookahead, primary expression

evaluation implications, 311
syntactic, 8

LALR(1) grammar, 440
term definition, 8

groups method
of classThreadGroup, 608

groupsCount method
of classThreadGroup, 608

H
Hammerstein, Oscar, II, 126
Harbison, Samuel, 6, 543
Harding, Warren G. , 291
Hardy, Godfrey Harold , 224
hasChanged method

of classObservable, 644

INDEX
hashtables
See also data, structures
clear method, of classHashtable, 638
clone method, of classHashtable, 636
contains method, of classHashtable, 637
containsKey method, of classHashtable,

637
elements method, of classHashtable, 637
get method, of classHashtable, 637
hashCode method, 41

of classBitSet, 619
of classBoolean, 470
of classCharacter, 474
of classDate, 626
of classDouble, 512
of classFile, 754
of classFloat, 505
of classInteger, 489
of classLong, 496
of classObject, 459
of classString, 535

Hashtable class, 635
isEmpty method, of classHashtable, 636
keys method, of classHashtable, 637
put method, of classHashtable, 637
rehash method, of classHashtable, 637
remove method, of classHashtable, 637
size method, of classHashtable, 636
toString method, classHashtableof, 636

hasMoreElements method
of classStringTokenizer, 653
of interfaceEnumeration, 617

hasMoreTokens method
of classStringTokenizer, 652

haveNextNextGaussian field
of classRandom, 647

hexadecimal
See also numbers
base, permitted in integer literals, 19
numerals, specification, 20

hiding
See also scope
absence of by statement labels, 272
by class methods, 165
of field declarations, in superclasses and

superinterfaces, 144
hidden class methods, invocation of,

example, 171
method

example, 168
impact on checked exceptions, 164
requirements, 166

hiding (continued)
names, 83

by local variables, 269
package, 120

vs. overriding, example, 170
term definition, 144
of variables

class, example of, 151
instance, example of, 152

hierarchy
exception, 208

Higginson, Thomas Wentworth, 186
Hoare, C. A. R., 1, 419, 6
horizontal tab

escape sequence, 27
hosts

environment inquiries,seeRuntime class
package support by, 115
standard exceptions,

UnknownHostException, 211
HTML (Hypertext Markup Language)

generation through documentation
comments

(chapter), 419
example, 423

Hyman, Rob, 610

I
I/O

See also files
java.io package, (chapter)
standard exceptions

EOFException, 210
InterruptedIOException, 210
IOException, 210

identifiers
See also fields; names; scope; variables
characteristics of those that are not names,

79
in labeled statements, distinguished from

those in declarations, 80
term definition and specification, 17
as token, 17

identity
conversion

in assignment conversion context, 61
in casting conversion context, 67
in method invocation conversion context,

66
specification, 54
787

INDEX

788
IEEE 754 standard, 6IEEE 754 standard
See also numbers
compliance, narrowing conversion from

double to float, 57
floating-point

conversion of numbers to, 22
types conformance to, 33

IEEEremainder method
of classMath, 524

if statements
See also statements
danglingelse, handling of, 270
definite assignment, 394
if-then statement, specification, 273
if-then-else statement, specification, 274
specification, 273

IllegalAccessError class, 611
IllegalAccessException class, 611
IllegalArgumentException class, 611
IllegalThreadStateException class, 611
implement

See also classes;extends clause; interfaces
implements clause, 185

class declaration, specifying direct
superinterfaces with, 135

term definition, 135, 87
import

See also packages; scope
automatic, 122
declarations

example, 123
single-type, 121
term definition, 120
type-import-on-demand, 122

imported types
as declared entity, 78
scope of, 81

in field
of classFileNameDescriptor, 760
of classFilterInputStream, 696
of classSystem, 579

inCheck field
of classSecurityManager, 570

inClass method
of classSecurityManager, 571

inClassLoader method
of classSecurityManager, 572

IncompatibleClassChangeError class, 611

index entries
bogus

Fibonacci numbers, 783
prime numbers, 801
warp factors, 820

obscure
Bell, Alexander Graham, 769
Bovik, Harry, 770
Fifth Dimension, 784
first cat, 784
Gauss, Carl Friedrich, 785
Hardy, Godfrey Harold, 786
make it so, 793
Marx, Chico, 794
Marx, Groucho, 794
panjandrum, 800
Ramanujan, Srinivasa, 803
razor, 803
Saturday Night Live, 805
Tokens, The, 817
virtue, 820
warp factors, 820

self-referential
index entries, 788
not,see Russell’s paradox
self-reference, 805
Star Trek, 808

silly
banana-fana, 769
bear, 769
brown paper packages, 770
butter, 770
cuspidor, 776
good fences, 786
mighty minds, 796
mystic evolution, 796
one too many, 798
spittoon, 807
sweat, 810

indexing
of arrays, 195
indexOf method

of classString, 540
of classVector, 659

IndexOutOfBoundsException class, 611
inexact results

See also numbers
rounding behavior, 35

infinity
See also number
isInfinite method

in classDouble, 23
in classFloat, 23

INDEX
infinity (continued)
Java representation of, 23
NEGATIVE_INFINITY field

in classDouble, 23
in classFloat, 23

POSTIVE_INFINITY field
in classDouble, 23
in classFloat, 23

signed, produced by floating-point overflow,
35

inheritance
See also object-oriented concepts; scope
in class

examples of, 139
of members, 138
of members, withpublic, protected,

andprivate access, examples, 141
private, example, 141
protected, example, 141
public, example, 141
with default access, example, 140

of fields
in class declarations

multiply inherited from interfaces,
example of, 153

reinheritance of, example of, 154
in interface declarations

ambiguous inherited, example, 188
multiply inherited, example, 188

of members, 85
in interface declarations, 186

of methods
in class declarations, 165

with the same signatures, 166
in interface declarations, 189

multiple
See also superinterfaces
example, 137

term definition, 85
initialization

See also control flow; linking
of arrays

in creation, to default value, 317, 46
using array initializers, 196

of classes, 223
detailed procedure, 225

detailed procedure, 225
of fields

in classes, 149
in interfaces, 187

of for statement, 281
of interfaces, 223

detailed procedure, 225

initialization (continued)
standard exceptions,

ExceptionInitializerError, 212
of types, when it occurs, 223
for variables, array, 194

initializers
See also creation; execution
arrays, 196
ExceptionInInitializerError class,

611, 614
executing, inTest class example

initialization, 217
for fields

in class, 149
in interface, 187

static, 149, 175
binary compatibility considerations, 259
LALR(1) grammar productions, 444

for variables
class, 149

during class or interface initialization,
149

instance, 150
during instance creation, 229

input
See also files; output; streams
BufferedInputStream class, 699
ByteArrayInputStream class, 689
elements, term definition, 14
FileInputStream class, 684
FilterInputStream class, 696
Input goal symbol, lexical grammar use, 7
InputStream class, 680
LineNumberInputStream class, 707
PipedInputStream class, 687
PushbackInputStream class, 710
SequenceInputStream class, 694
StringBufferInputStream class, 692
tokens, 14

insert method
of classStringBuffer, 555

insertElementAt method
of classVector, 657

instance(s)
See also classes; interfaces; object-oriented

concepts
creation, 228, 38

constructor
invocation by creation expressions,

177
parameter assignment during, 228
use in, 176
789

INDEX

790

;

instance(s) (continued)
creation (continued)

expression evaluation, 314
order, 315

expressions as statements, 272
invocation of initializers for instance

variables during, 229
method dispatching during, 230

finalization of, 231
implementation procedures, 232

instanceof operator
testing expression types with, 303
testing expressions with, 303

instantiation
InstantiationError class, 611
InstantiationException class, 611
preventing, withprivate constructors,

132, 180
methods,see methods, non-static
standard exceptions,

InstantiationException, 131,
210

variables,see fields, class, non-static
instanceof operator

testing expression types with, 303
integers

See also arithmetic; integral types; numbers
converting to boolean values, 37
intBitsToFloat method, of classFloat,

508
Integer class, 488
intValue method

of classDouble, 512
of classFloat, 505
of classInteger, 489
of classLong, 496
of classNumber, 487

literals
longest permitted, 21
term definition and specification, 19

operations, 31
integral types

See also arithmetic; 31numbers; 31types; 31
byte type, 30

value range, 31
char type, 30

value range, 31
int type, 30

value range, 31
long type, 30

value range, 31

integral types (continued)
short type, 30

value range, 31
values and operations, 31

interfaces
See also class(es); fields; methods;

packages; subclasses; superclasses
superinterfaces

abstract methods, 190, 191
accessibility, 99
as array element types, 194
binary compatibility considerations, 259
binary representation

binary file format requirements, 240
verification of, 220

body, declarations, 185
Cloneable, implemented by arrays, 198
declarations, 184

(chapter), 183
LALR(1) grammar productions, 445
as members of packages, 85

as declared entity, 78
fields

binary compatibility considerations, 251
declarations, 186

examples, 188
inheritance

ambiguous, 188
multiply, 188

initialization, 187
initialization, 223

detailed procedure, 225
linking, process description, 220
loading, 218

process description, 219
members, 87

binary compatibility considerations, 260
declarations, 185
inheritance from superinterfaces, 186
names, access to, 186

methods
declarations, examples, 190
overloading, 190

examples, 191
overriding, 189

examples, 190
names

fully qualified, 105
naming conventions, 108

as package members, 85
preparation of, 221
process description, 219

INDEX

65

55
interfaces (continued)
public

binary compatibility considerations, 259
declaration, 184

references to, binary file format
requirements, 239

scope of, 184, 81
standard,Cloneable, implemented by

arrays, 198
superinterfaces

binary compatibility considerations, 243
of a class, 135
declaration of, 135

unloading of, 235
intern method

of classString, 547
InternalError class, 611
internationalization

See Unicode character set
interrupt method

of classThread, 599
interrupted method

of classThread, 599
InterruptedException class, 611
invocation

of constructors
expression evaluation, 314
expression evaluation, order, 315
in creation of new class instances, 228
language constructs that result in, 177

of hidden class methods, example, 171
of methods

conversion, 66
expression evaluation, 323

order, 333
how chosen, 303

isAbsolute method
of classFile, 755

isAlive method
of classThread, 598

isDaemon method
of classThread, 597
of classThreadGroup, 607

isDefined method
of classCharacter, 474

isDigit method
of classCharacter, 478

isDirectory method
of classFile, 756

isEmpty method
of classDictionary, 633
of classHashtable, 636
of classVector, 658

isFile method
of classFile, 756

isInfinite method
of classDouble, 515
of classFloat, 508

isInterface method
of classClass, 467

isInterrupted method
of classThread, 599

isJavaLetter method
of classCharacter, 482

isJavaLetterOrDigit method
of classCharacter, 482

isLetter method
of classCharacter, 479

isLetterOrDigit method
of classCharacter, 480

isLowerCase method
of classCharacter, 476

isNaN method
of classDouble, 514
of classFloat, 507

isSpace method
of classCharacter, 482

isTitleCase method
of classCharacter, 478

isUpperCase method
of classCharacter, 477

iteration
See also control structures
continue statement, use with, 285
do statement, specification, 279
for statement, specification, 281
while statement, specification, 277

J
Java

See also grammars; languages; lexical;
semantics; syntax

digits, term definition, 17
java.io package

classes, methods, and fields (chapter), 6
exceptions, 210

java.lang package
classes, methods, and fields (chapter), 4
exceptions, 209
public type names automatically

imported from, 122
public types defined in, list of, 123

java.net package, exceptions, 211
.java suffix, as name for source files, 116
java.util package, classes, methods, and

fields (chapter), 615
791

INDEX

792
Java (continued)
JDK (Java Developer’s Kit), package

organization, 117
letters, term definition, 17
Virtual Machine,see virtual machine

Johnson, Samuel
harmless drudge, 11
round numbers, 525

join method
of classThread, 598

Jon L White, 544

K
Keats, John

Eve of St. Agnes, 200
Lamia, 638

Keene, Sonya E., 6
Kelvin, Lord (William Thompson) , 301
Kernighan, Brian W. , 6
keys method

of classDictionary, 634
of classHashtable, 637

keywords
list of, 18
as token, 7

Kiczales, Gregor, 6
Knuth, Donald E., 420, 648, 650

L
labeled statements

identifiers in, kept separate from those in
declarations, 80

specification, 271
LALR(1) (Look Ahead Left Right with 1

token lookahead) grammar
(chapter), 433

language
See also grammars; Java; lexical; semantics;

syntax
Beta, 3, 6
C, 1, 2, 6
C++, 1, 2, 6
CLOS, 4
Common Lisp, 4, 6
Dylan, 4, 6
Mesa, 5, 6
Modula-3, 3, 6
term definition, 7

Lao-Tsu, 77
lastElement method

of classVector, 657
lastIndexOf method

of classString, 542

lastIndexOf method (continued)
of classVector, 660

lastModified method
of classFile, 757

Lauper, Cyndi, 610
Layton, Turner , 595
left-hand side

term definition, 7
Lehmer, D. H., 648
length

of array, 197
not part of type, 194

length field, as member of an array, 88
length method

of classFile, 757
of classRandomAccessFile, 746
of classString, 535
of classStringBuffer, 550

letters
See also Unicode character set
Java, term definition, 17

lexical
See also semantics; syntax
grammar

LALR(1) grammar, 440
term definition, 7

structure, (chapter), 11
translations, steps involved in, 12

life cycle
See also objects
of objects, 233

line terminators, term definition, 13
linefeed (LF)

escape sequence, 27
handling in a

character literal, 24
string literal, 25

as a line terminator, not input character, 25
lineno method

of classStreamTokenizer, 719
LineNumberInputStream class, 707
linking , 220linking

See also exceptions; execution;
initialization; loading; run-time

classes, process description, 220
errors, 211
in Test class example, at virtual machine

startup, 216
interfaces, process description, 220
linkage editing, as optimization technique,

222
LinkageError class, 611
UnsatisfiedLinkError class, 611

INDEX
list method
of classFile, 757
of classProperties, 642
of classThreadGroup, 609

Litchfield, I. W. , 517
literals

See also constants; fields; variables
boolean, term definition and specification,

23
character

escape sequences for, 26
term definition and specification, 24

evaluation of, 312
floating-point

largest and smallest permitted, 22
term definition and specification, 22

integer
largest and smallest permitted, 21
term definition and specification, 19

null, term definition and specification, 27
string

escape sequences for, 26
term definition and specification, 25

term definition and specification, 19
as token, 7

loading
See alsoClassLoader class; execution;

linking
classes, 218
ClassLoader class, 558
errors, 211
in Test class example, at virtual machine

startup, 216
interfaces, 218
load method

of classProperties, 640
of classRuntime, 567
of classSystem, 583

loadClass method, of classClassLoader,
559

loadLibrary method
of classRuntime, 567
of classSystem, 584

process, 219
local variables

See also scope; variables
declarations

definite assignment, 393
statements, 265

declarators and types, 266
definite assignment, required for, 383

local variables(continued)
hiding of names by, 268
initial value, 46
naming conventions, 110
scope, 267, 82
specification, 45

locks
See also monitors; synchronization; threads
acquisition and release

by synchronized networks, 161
by synchronized statement, 289

(chapter), 399
interaction with variables, rules about, 407
rules about, 406
synchronization and, 415

log method
of classMath, 521

Long class, 495
long type, 30

See also integral types; numbers
integer literal specification, 20
value range, 31

longBitsToDouble method
of classDouble, 515

longValue method
of classDouble, 512
of classFloat, 505
of classInteger, 489
of classLong, 497
of classNumber, 487

Lowell, James Russell, 417
lowerCaseMode method

of classStreamTokenizer, 717
lvalue

See variables, as value of expression

M
Madsen, Ole Lehrmann, 6
magnitude

loss of information about, possibility of in
narrowing primitive conversion, 55

make it so, 369
mark method

of classBufferedInputStream, 701
of classFilterInputStream, 697
of classInputStream, 682
of classLineNumberInputStream, 709

marklimit field
of classBufferedInputStream, 700

markpos field
of classBufferedInputStream, 700
793

INDEX

794
markSupported method
of classBufferedInputStream, 702
of classFilterInputStream, 698
of classInputStream, 683
of classPushbackInputStream, 711

Marsaglia, G., 650
Marx, Chico

A Night at the Opera
commutative diagram, 397
nested operations, 388

Marx, Groucho
club membership, 138
never forgets a face, 214
A Night at the Opera

car, 386
cdr, 393
iteration, 388
recursion, 390

Math class, 517
mathematical functions

See also arithmetic; numbers
Math class, 517

max method
of classMath, 529

MAX_PRIORITY field
of classThread, 591

MAX_RADIX field
of classCharacter, 473

MAX_VALUE field
of classCharacter, 473
of classDouble, 214, 364, 510, 7, 748
of classFloat, 38, 503
of classInteger, 488
of classLong, 495

Maybury, William , 6
Melville, Herman, 398
members

See also class(es); fields; interfaces;
methods

accessibility of, 99
arrays, 197, 88
classes, 138, 86

binary compatibility considerations, 245
declarations, 138
inaccessible, accessing, example, 142
inheritance, examples, 139, 140
private, inheritance examples, 141

inheritance and, 85
interfaces, 186, 87

binary compatibility considerations, 260
declarations, 185
inheritance, 186
names, access to, 186

members(continued)
Object class, 41
packages, 114, 85

access to, 120
protected, accessibility of, 100
reference type

as declared entity, 78
scope of, 81

of superclasses, accessing withsuper, 322
term definition, 85

memory
gc method, 583
main, term definition, 401
master, of variables, term definition, 401
OutOfMemoryError class, 611
standard exceptions

OutOfMemoryError, 163, 212, 213, 227,
228

OutOfMemoryError, meaning, 219
term definition, 401
working, term definition, 401

Mesa, 5, 6
method(s), 155method(s)

See also class(es); constructors; control
flow; fields; initialization; interfaces

abstract
binary compatibility considerations, 254
in classes, 158
in interfaces, 189, 190

overloading, 191
access, binary compatibility considerations,

248
access control

default, example, 102
private, example, 105
protected, example, 104
public, example, 103

of array, 197
body, 164

binary compatibility considerations, 257
class,see methods,static
classes, 160

abstract, 158
binary compatibility considerations, 253
body

declarations, 164
with no executable code, 164

constructors compared with, 176
declarations, 155
declarations, examples of, 168
final, 160
hidden, invocation of, 171
hiding by, 165

INDEX

6

methods(continued)
classes (continued)

modifiers, 157
native

declaration, 161
semicolon as body of, 164

newInstance, constructor invocation by,
177

private, as implicitlyfinal, 160
signature, 157
synchronized, declaration, 161
void, expression return statement not

permitted in, 164
with same signature, inheriting, 166

declarations, 155, 189
binary compatibility considerations, 253
grammar specification difficulties, 437
LALR(1) grammar productions, 444

as declared entity, 78
deleting, binary compatibility

considerations, 247
dispatching during instance creation, 230
equals, 41

as member ofObject class, 41
final, 160

binary compatibility considerations, 255
finalize, as member ofObject class, 41
getClass, 41

as member ofObject class, 41
hashCode, 41

as member ofObject class, 41
hiding of, 165
inheritance

in arrays, 197
in classes, 165
in interfaces, 186

instance,see method(s), non-static; 209
of interfaces

declarations, 189, 190
overloading, 190, 191
overriding, 189, 190
semicolon as body of, 164

invalid arguments to, standard exceptions,
IllegalArgumentException, 209

invocation
See also access control
conversion, 66
expression evaluation, 323

order, 333
expressions as statements, 272
how chosen, 303

methods(continued)
as members

of a class, 86
of an interface, 87

method table creation during preparation
phase of linking, 221

names
context in which a name is classified as,

91
naming conventions, 108
qualified, meaning of, 98
simple, meaning of, 98

native, 161
binary compatibility considerations, 256

newInstance, creating an instance with,
228

non-static
instance method as name for, 160
overriding by, 165

NoSuchMethodError class, 611
NoSuchMethodException class, 611
notify, as member ofObject class, 41
notifyAll, as member ofObject class, 41
overloading, 167

binary compatibility considerations, 257
examples, 168

overriding, 165
binary compatibility considerations, 258
examples, 168, 169, 170, 172, 190

parameters
See also arguments; variables
binary compatibility considerations, 254
description, 45
initial value, 46
specification of, 156

private, in example of qualified names and
access control, 105

public, interfaces, declarations, 189
references to, binary file format

requirements, 239
result type, binary compatibility

considerations, 254
scope of, 81
signatures, 157

binary file format requirements, 239
static, binary compatibility

considerations, 256
stop, as asynchronous exception cause, 20
synchronized, 161

binary compatibility considerations, 256
throws clause, binary compatibility

considerations, 256
toString, as member ofObject class, 41
795

INDEX

796
methods(continued)
uncaughtException

exception handling use, 205
when invoked, 202

wait, as member ofObject class, 41
Michael de Montaigne, 155
mighty minds, 350
Mill, John Stuart

On Liberty
comments, 308
parentheses, 308

min method
of classMath, 528

MIN_PRIORITY field
of classThread, 591

MIN_RADIX field
of classCharacter, 473

MIN_VALUE field
of classCharacter, 473
of classDouble, 510
of classFloat, 503
of classInteger, 488
of classLong, 495

Mitchell, James G., 6
mkdir method

of classFile, 757
mkdirs method

of classFile, 757
modifiers

See also declarations
class, 130
constructor, 177
declaration,see

abstract modifier
final modifier
native modifier
private modifier
protected modifier
public modifier
static modifier
synchronized modifier
transient modifier
volatile modifier

field, 144
grammar specification difficulties, 435
interface, 184
method, 157

Modula-3, 3, 6
Molière, 7
Møller-Pedersen, Birger, 6
monitors

See also locks; synchronization
term definition, 399

Moon, David A., 6
Muller, M. E. , 650
music

variations on a theme, 137
mystic evolution, 261

N
name game, 111
names

See also identifiers; scope; Unicode
character set

ambiguous
handling of, 89, 91
reclassification of, 91

(chapter), 77
class

naming conventions, 108
scope of, 130

conflicts
See also hiding
avoiding

in fields with multiple inheritance, 153
through context use, 89
through naming conventions, 106

constants, naming conventions, 109
conventions, 106

impact on name hiding, 84
expression

context in which a name is classified as,
91

qualified, meaning of, 96
simple, meaning of, 95

fields, naming conventions, 109
grammar specification difficulties, 433
hiding, 83
interface

member, access to, 186
naming conventions, 108

LALR(1) grammar, 441
meaning of, determining, 89
method, 156

context in which a name is classified as,
91

naming conventions, 108
qualified, meaning of, 98
simple, meaning of, 98

package
context in which a name is classified as,

90
hiding, 120
in compilation units, 118
limited significance for access control,

115

INDEX
names(continued)
package (continued)

naming conventions, 107
qualified, meaning of, 93
scope of, 120
simple, meaning of, 93
unique, 125

importance of, 125
parameters, naming conventions, 110
qualified

access control and, 99
fully, 105
term definition, 79

resolving references to, during resolution
phase of linking, 221

restrictions, types and subpackages, 114
rules on being the same

class members, 86
fields, 86
interface fields, 87
methods, 87

simple
scope of, 81
term definition, 79

as subset of identifiers, 79
syntactic

categories, 89
classification of according to context, 90

term definition, 79
type

context in which a name is classified as,
90

interface, scope of, 184
qualified, meaning of, 94
simple, meaning of, 93

variables, local, naming conventions, 110
NaN (Not-a-Number)

See also numbers
comparison results, 35
double, conversion to a float NaN, in

narrowing conversion, 57
NaN field

of classDouble, 511
of classFloat, 504

predefined constants representing, 23
preventing use of algebraic identities in

expression evaluation, 308
term definition and specification, 33

narrowing
See also conversion; numbers
primitive conversions

in assignment conversion context, 61
in casting conversion context, 67
not allowed in method invocation

conversion context, reasons for, 66
specification, 55

reference conversions, specification, 59
native modifier

See also declarations; modifiers
methods

binary compatibility considerations, 256
declaration, 161
semicolon as body of, 164

not permitted in interface method
declarations, 189

reasons why constructors cannot be, 178
NEGATIVE_INFINITY field

of classDouble, 511
of classFloat, 504

NegativeArraySizeException class, 611
network

standard exceptions
MalformedURLException, 211
ProtocolException, 211
SocketException, 211
UnknownHostException, 211
UnknownServiceException, 211

newInstance method
of classClass, 468

Newton, Sir Isaac, 1
next method

of classRandom, 648
nextDouble method

of classRandom, 649
nextElement method

of classStringTokenizer, 653
of interfaceEnumeration, 617

nextFloat method
of classRandom, 649

nextGaussian method
of classRandom, 650

nextInt method
of classRandom, 648

nextLong method
of classRandom, 648

nextNextGaussian field
of classRandom, 647

nextToken method
of classStreamTokenizer, 717
of classStringTokenizer, 652
797

INDEX

798

7

NoClassDefFoundError class, 611NoClassDefFoundError class
non-public

classes, in example of qualified names and
access control, 101

nonterminal symbols
See also grammars
definition of, notation for, 8
term definition, 7

NORM_PRIORITY field
of classThread, 591

NoSuchElementException class, 664
NoSuchFieldError class, 611
NoSuchMethodError class, 611
NoSuchMethodException class, 611
Not-a-Number

See NaN (Not-a-Number)
notation

See also names, naming conventions
grammar, 8

notification
notify method, of classObject, 463
notifyAll method, of classObject, 463
notifyObservers method, of class

Observable, 644
wait sets and, 416

null
literal, term definition and specification, 27
NullPointerException class, 611
type

literal as source code representation of the
value of, 19

term definition and specification, 30
numbers

See also arithmetic; precision; types
conversions of and to,see conversions
errors in handling,see exceptions
manipulating,see

arithmetic
operators

Number class, 487
NumberFormatException class, 611
numeric promotion

binary, 74
specification, 72
term definition, 52
unary, 73

primitive types,see
byte type
char type
double type
float type
floating-point
int type

numbers (continued)
primitive types,see(continued)

integers
integral type
long type
short type

Random class, 646
related types,see

boolean
characters
strings

nval field
of classStreamTokenizer, 715

Nygaard, Kristen, 6

O
object-oriented concepts

See class(es); encapsulation; fields;
inheritance; method(s); objects

objects
See also arrays; classes; instances;

interfaces; types
Class, array, 199
fields that reference,final modifier effect

on changes to, 146
finalization attributes, 232
have classes, while variables have types, 4
life cycle of, 233
Object class

no analogue for interfaces, 185
specification, 199, 40

with Class, 458
operations on references to, 39
reachable, finalization implications, 232
reference,see references
state

impact of changes, 39
transient fields not part of, 147

term definition and specification, 38
unreachable, finalization implications, 232

Observable class, 643
Observer interface, 645
Occam, William of, 351
Occam’s razor, 351

See also optimization
octal

See also numbers
base, permitted in integer literals, 19
numerals, specification, 20

one of phrase
grammar notation use, 10

one too many, 276one too many

INDEX

7

operators
See also constructors; expressions;

initialization; methods; numbers
arithmetic, numeric promotion,

specification, 72
assignment, as only way to change the value

of a primitive variable, 31
binary, evaluation order, 305
boolean, 36
compound assignment, evaluation order, 305
floating-point, 34

signed infinity produced by overflow, 35
signed zero produced by underflow, 35

integer
divide, divide by zero exception thrown

by, 32
overflow not indicated by, 32
underflow not indicated by, 32

integral, 31
list of, 28
operands evaluated before, 307
precedence, in expression evaluation, 308
on reference types, 39
remainder, divide by zero exception thrown

by, 32
string concatenation

constructor invocation by, 177
creating new instances with, 38

thread, term definitions, 401
opt subscript

grammar notation use, 8
optimization

during
class loading, techniques for, 219
preparation phase of linking, 221
resolution phase of linking, 221

final method inlining, 160
finalization, 232

reachable objects reduction, 232
linking

initialization phase of, 227
linkage editing, 222
resolution strategies, 220

optional symbol
term definition, 8

or method
of classBitSet, 621

order
evaluation

arguments lists left-to-right, 305
binary operators, 305
compound assignment, 305

order (continued)
evaluation (continued)

left-hand operand first, 305
operands evaluated before operations, 30
of other expressions, 310
parentheses and precedence respected,

308
execution, thread rules, 403
field initialization, at run-time, 187
finalizer invocations, implications of no

ordering imposition, 234
of floating-point values, 33
of occurrence, of initialization of types, 223
thread interaction, consequences of, 400

ordinaryChar method
of classStreamTokenizer, 716

ordinaryChars method
of classStreamTokenizer, 716

origin
of arrays, 195

out field
of classFileNameDescriptor, 760
of classFilterOutputStream, 730
of classSystem, 580

OutOfMemoryError class, 611
output

See also files; input; streams
BufferedOutputStream class, 732
ByteArrayOutputStream class, 727
FileOutputStream class, 722
FilterOutputStream class, 730
OutputStream class, 720
PipedOutputStream class, 725

overflow
See also arithmetic; exceptions; numbers
floating-point operators, signed infinity

produced by, 35
not indicated by integer operators, 32

overloading
See also object-oriented concepts;

inheritance; methods
of abstract interface methods

declarations, 190
examples, 191

of constructors, 180
binary compatibility considerations, 257

of methods, 167
binary compatibility considerations, 257
example, 168

term definition, 167, 87
799

INDEX

800
overriding
See also object-oriented concepts; scope
examples, 168, 169, 170, 172, 190

incorrect, 169
vs. hiding, example, 170
incorrect because ofthrows, example, 174
large example, 172
methods

abstract
in abstract classes, 158
of non-abstract instance methods,

159
binary compatibility considerations, 258
in interfaces, 189

example, 190
instance, 165

requirements in, 166
term definition, 87

Ozymandias, 353

P
packages

binary compatibility considerations, 242
(chapter), 113
declarations, in compilation units, 118
as declared entity, 78
host support for, 115
importing allpublic types from a, 122
LALR(1) grammar, 442
members, 114

access to, 120
members of, 85
named, in compilation units, 118
names

context in which a name is classified as,
90

fully qualified, 105
hiding, 120
naming conventions, 107
qualified, meaning of, 93
scope of, 120
simple, meaning, 93
unique, 125
unique, importance of, 125

scope of, 81
standard

java.io
package (chapter), 665
checked exceptions defined in, 210

java.lang
checked exceptions defined in, 210
package (chapter), 455
unchecked exceptions defined in, 209

packages(continued)
standard (continued)

java.net
checked exceptions defined in, 211

java.util
package (chapter), 615
unchecked exceptions defined in, 209

storing in a
database, 117
file system, 115

term definition, 114
unnamed, in compilation units, uses and

cautions, 119
Paine, Thomas

American Crisis
shift for yourselves, 650
times that try men’s souls, 290

Common Sense, mind of the multitude, 650
panjandrum , 290
parameter(s)

See also modifiers; variables
constructor, 177

assignment during instance creation, 228
binary compatibility considerations, 254
description, 45
initial value, 46
scope, 82

as declared entity, 79
exception

description, 45
initial value, 46
scope, 291, 82

method
binary compatibility considerations, 254
description, 45
initial value, 46
specification of, 156

names, naming conventions, 110
@param tag, specification, 422
scope of, 81, 82
types, method invocation conversion

context, 66
parentOf method

of classThreadGroup, 605
parse method

of classDate, 631
parseInt method

of classInteger, 492
parseLong method

of classLong, 499
parseNumbers method

of classStreamTokenizer, 716

INDEX

,

e

Partridge, Eric , 127Partridge, Eric
pathSeparator field

of classFile, 753
pathSeparatorChar field

of classFile, 753
pearls, 417
peek method

of classStack, 661
Peirce, Charles, 383
Peretti, Hugo E., 28
performance

See optimization
PI field

of classMath, 518
PipedInputStream class, 687
PipedOutputStream class, 725
platform-dependent

native methods are, 161
pointers

See references
NullPointerException class, 611

polling
for asynchronous exceptions, 206

pop method
of classStack, 661

pos field
of classBufferedInputStream, 700
of classByteArrayInputStream, 689
of classStringBufferInputStream, 692

POSITIVE_INFINITY field
of classDouble, 511
of classFloat, 504

pow method
of classMath, 522

precedence
See also expressions
of operators, in expression evaluation, 308

precise
term definition, 205

precision
See also numbers
possible loss of

in narrowing primitive conversion, 55
in widening primitive conversion, 54

preparation
of classes, 221
in Test class example, at virtual machine

startup, 216
of interfaces, 221
standard exceptions,

AbstractMethodError, 212
prescient store

actions, with threads, 408

preventing
instantiation, 180

with private constructors, 132
prime numbers, 2, 3, 5, 7, 11, 13, 17, 19, 23,

29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 79, 83, 89, 97, 101, 103, 107, 109
113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191,
193, 197, 199, 211, 223, 227, 229,
233, 239, 241, 251, 257, 263, 269,
271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353,
359, 367, 373, 379, 383, 389, 397,
401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479,
487, 491, 499, 503, 509, 521, 523,
541, 547, 557, 563, 569, 571, 577,
587, 593, 599, 601, 607, 613, 617,
619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709,
719, 727, 733, 739, 743, 751, 757,
761, 769, 773, 787, 797, 809, 811,
821, 823

primitive
See also numbers
conversion

narrowing, 55
in assignment conversion context, 61
in casting conversion context, 67
not allowed in method invocation

conversion context, reasons for, 66
widening, 54

in assignment conversion context, 61
in binary numeric promotion context,

74
in casting conversion context, 67
in method invocation conversion

context, 66
in unary numeric promotion context,

73
types

as array element types, 194
changing value of variables, 31
fully qualified name for, 105
literal as source code representation of th

value of, 19
narrowing conversions, specification, 55
term definition and specification, 30
variables of, specification, 44
widening conversions, specification, 54
801

INDEX

802

s

-

printing
print method, of classPrintStream, 740
println method, of classPrintStream,

741
printStackTrace method, of class

ThreadGroup, 613
PrintStream class, 738
See Also output

Prior, Matthew , 529
priority

thread, 415
private modifier

See also declarations; modifiers
access

determining, 99
inheritance of class members, example,

141
constructors

access control, example, 105
preventing instantiation with, 132

fields, access control, example, 105
inheritance with, example, 141
methods

abstract not permitted with, 158
access control, example, 105
as implicitlyfinal, 160
in example of qualified names and access

control, 105
overriding and hiding not possible with,

166
preventing instantiation by declaring

constructors as, 180
Process class, 561
productions

LALR(1) grammar
arrays, 446
blocks, 446
class declarations, 443
constructor declarations, 445
expressions, 450
field declarations, 443
interface declarations, 445
method declarations, 444
statements, 446
static initializers, 444
those used only in, 442

term definition, 7
programming practices

cautions, unnamed package use, 119
promotion

See also numbers
(chapter), 51

promotion (continued)
numeric, 72

binary, 74
specification, 74

specification, 72
term definition, 52
unary, 73

specification, 73
properties

Properties class, 639
propertyNames method, of class

Properties, 640
protected modifier

See also declarations; modifiers
access, 100, 99

inheritance of class members, example,
141

constructors, access control, example, 104
fields, access control, example, 104
inheritance with, example, 141
methods, access control, example, 104

protocols
standard exception,ProtocolException,

211
public modifier

See also declarations; modifiers
access, 99

inheritance of class members, example,
141

classes
access control in, 99
binary compatibility considerations, 243
in example of qualified names and acces

control, 101
constructors, access control, example, 103
fields

access control, example, 103
interface, implicit in declaration, 187

inheritance with, example, 141
interfaces

binary compatibility considerations, 259
declaration, 184

methods
access control, example, 103
in interfaces, implicit in declaration, 189

superclasses, accessing instances of non-
public subclasses through, 142

superinterfaces, accessing instances of non
public subclasses through, 142

types
defined injava.lang, list of, 123
importing from a package, with type-

import-on-demand, 122

INDEX
push method
of classStack, 661

pushBack field
of classPushbackInputStream, 710

pushBack method
of classStreamTokenizer, 718

PushbackInputStream class, 710
put method

of classDictionary, 634
of classHashtable, 637

Q
qualified

See also access; scope
access, term definition, 99
names

access control and, 99
expression, meaning of, 96
fully, 105
method, meaning of, 98
not permitted with parameters, 157
package, meaning of, 93
term definition, 79
type, meaning of, 93

Quayle, J. Danforth, 202
quoteChar method

of classStreamTokenizer, 716

R
Ramanujan, Srinivasa, 224
Random class, 646
random method

of classMath, 526
RandomAccessFile class, 743
Raper, Larry , 237
razor, 351
reachable

See also scope
objects

finalization implications, 232
unloading implications, 235

term definition, 232
read

See also input
read method

of classBufferedInputStream, 700
of classByteArrayInputStream, 690
of classFileInputStream, 685
of classFilterInputStream, 696
of classInputStream, 680
of classLineNumberInputStream, 707
of classPipedInputStream, 688

read (continued)
read method (continued)

of classPushbackInputStream, 710
of classRandomAccessFile, 746
of classSequenceInputStream, 694
of classStringBufferInputStream,

693
readBoolean method

of classDataInputStream, 704
of classRandomAccessFile, 747
of interfaceDataInput, 669

readByte method
of classDataInputStream, 704
of classRandomAccessFile, 747
of interfaceDataInput, 669

readChar method
of classDataInputStream, 705
of classRandomAccessFile, 748
of interfaceDataInput, 670

readDouble method
of classDataInputStream, 705
of classRandomAccessFile, 749
of interfaceDataInput, 671

readFloat method
of classDataInputStream, 705
of classRandomAccessFile, 748
of interfaceDataInput, 671

readFully method
of classDataInputStream, 703
of classRandomAccessFile, 746
of interfaceDataInput, 668

readInt method
of classDataInputStream, 705
of classRandomAccessFile, 748
of interfaceDataInput, 670

readLine method
of classDataInputStream, 705
of classRandomAccessFile, 749
of interfaceDataInput, 672

readLong method
of classDataInputStream, 705
of classRandomAccessFile, 748
of interfaceDataInput, 671

readShort method
of classDataInputStream, 704
of classRandomAccessFile, 748
of interfaceDataInput, 670

readUnsignedByte method
of classDataInputStream, 704
of classRandomAccessFile, 747
of interfaceDataInput, 669
803

INDEX

804

f,
read (continued)
readUnsignedShort method

of classDataInputStream, 704
of classRandomAccessFile, 748
of interfaceDataInput, 670

readUTF method
of classDataInputStream, 705
of classRandomAccessFile, 749
of interfaceDataInput, 672

recursive, term definition, 8
references

See also expressions; types
conversions

narrowing, 59
widening, 58

in assignment conversion context, 61
in casting conversion context, 67
in method invocation conversion

context, 66
to fields, active use, 224
forward

compile-time error
in class variable initialization, 149
in instance variable initialization, 150

permitted in
class type usage, 130
interface type usage, 184

object, value of array variables as, 194
operations, 39
symbolic

binary file format requirements, 239
resolution, 221

code generation implications of, 222
internal table description, 218

term definition, 38
types

array, 194
class,see class
criteria for determining when two are the

same, 42
identical, 42
interface,see interface
member, as declared entity, 78
member name, scope of, 81
specification, 37

in class declaration, 128
in interface declaration, 184

variables, specification, 44
regionMatches method

of classString, 538
rehash method

of classHashtable, 637

release-to-release compatibility
See binary, compatibility

remove method
of classDictionary, 634
of classHashtable, 637

removeAllElements method
of classVector, 658

removeElement method
of classVector, 657

removeElementAt method
of classVector, 657

renameTo method
of classFile, 758

replace method
of classString, 544

representation
binary, classes and interfaces, verification o

220
reset method

of classBufferedInputStream, 701
of classByteArrayInputStream, 691
of classByteArrayOutputStream, 728
of classFilterInputStream, 698
of classInputStream, 683
of classLineNumberInputStream, 709
of classStringBufferInputStream, 693

resetSyntax method
of classStreamTokenizer, 715

resolution
in Test class example, at virtual machine

startup, 216
late, in class and interface linking, 220
lazy, 217

in class and interface linking, 220
name conflicts

avoiding with multiply inherited fields,
153

context use in avoiding, 89
static, in class and interface linking, 220
symbolic references, 221

code generation implications of, 222
in internal table for class loader,

description, 218
resolveClass method

of classClassLoader, 560
result

of expression evaluation, term definition,
301

resume method
of classThread, 596
of classThreadGroup, 606

INDEX
return statement
definite assignment, 397
as reason for abrupt completion, 264
specification, 286

@return tag
specification, 422

reuse
software,see binary, compatibility

reverse method
of classStringBuffer, 557

right-hand side
term definition, 7

rint method
of classMath, 525

risk of failure , 202
Ritchie, Dennis M., 6
Rodgers, Richard., 126
rose, 111
rounding

IEEE 754 standard default mode, support
required for, 35

round method, of classMath, 525
round to nearest, term definition, 35
round toward zero, term definition, 35

run-time
checks of expressions, 302
errors,see exceptions
run method

of classThread, 594
of interfaceRunnable, 586

runFinalization method
of classRuntime, 566
of classSystem, 583

Runnable interface, 586
Runtime class, 563
RuntimeException class, 611

unchecked exceptions found in, 164
state, linking binary objects into, 220
type, as incorrect terminology, 47
validity checks, casting conversion

requirements, 68

S
Saturday Night Live, 468
save method

of classProperties, 641
scope

See also declarations; inheritance; names;
object-oriented concepts

exception parameters, 291
initializer execution relative to issues of, 175
of names

class, 130, 81

scope(continued)
of names (continued)

formal parameter, 157
hiding rules, 83
import, 87
interface, 184, 81
local variables, 267, 45, 82
member, 138, 81
package, 120, 81
parameters

of constructors, 82
of exception handlers, 82
formal, 157, 81

simple, 81
term definition, 81
type initialization order restrictions, 223

Scott, Sir Walter, 646
search method

of classStack, 662
Sebastian, John, 273
security

See also access control; exceptions; types;
virtual machine

ClassLoader class, 558
internal symbolic reference table, role in

maintaining, 218
SecurityException class, 611
SecurityManager class, 569
standard exceptions,SecurityException,

209
type system, verification importance to, 244

@see tag
specification, 421

seed field
of classRandom, 646

seek method
of classRandomAccessFile, 745

self-reference, 788, 805, 808
semantics

See also grammars; lexical; syntax
errors in, exceptions as mechanism for

signaling at run-time, 201
expression, (chapter), 301
names

context role, 90
determining, 89
expressions, 95
methods, 98
package, 93
types, 93

verifying during linking process, 220
semicolon (;)

as method body, 164
805

INDEX

806

1

separators
list of, 27
separator field, of classFile, 753
separatorChar field, of classFile, 753
as token, 7

sequences
escape, for character and string literals, 26
SequenceInputStream class, 694

set
set method, of classBitSet, 620
setChanged method, of classObservable,

644
setCharAt method, of classStringBuffer,

552
setDaemon method

of classThread, 597
of classThreadGroup, 607

setDate method, of classDate, 627
setElementAt method, of classVector,

656
setHours method, of classDate, 628
setLength method, of classStringBuffer,

551
setLineNumber method, of class

LineNumberInputStream, 709
setMaxPriority method, of class

ThreadGroup, 607
setMinutes method, of classDate, 628
setMonth method, of classDate, 627
setName method, of classThread, 596
setPriority method, of classThread, 597
setProperties method, of classSystem,

582
setSeconds method, of classDate, 628
setSecurityManager method, of class

System, 580
setSeed method, of classRandom, 647
setSize method, of classVector, 658
setTime method, of classDate, 629
setYear method, of classDate, 626

Seuss, Dr., 125
shadowing

See hiding
Shakespeare, William

As You Like It, 51
Hamlet, 470
Love’s Labour’s Lost, 28
Macbeth, 406
Measure for Measure, 28
A Midsummer Night’s Dream, 28
Othello, 562
Romeo and Juliet, 111
Troilus and Cressida, 28

Shakespeare, William(continued)
Two Gentlemen of Verona, 28
The Winter’s Tale, 236

Shelley, Percy Bysshe, 353
Sheridan, Richard Brinsley, 471
short type

See also integral types; numbers
value range, 31

side effects
See also expressions
from expression evaluation, reasons for, 30

signature
of constructors, 177
of methods, 157
methods with the same, inheriting, 166

simple names
See also identifiers; names
expression, meaning of, 95
method, meaning of, 98
package, meaning of, 93
term definition, 79
type, meaning of, 93

sin method
of classMath, 518

single quote (')
escape sequence, 27

size method
of classBitSet, 621
of classByteArrayOutputStream, 728
of classDataOutputStream, 737
of classDictionary, 633
of classHashtable, 636
of classVector, 658

skip
skip method

of classBufferedInputStream, 701
of classByteArrayInputStream, 691
of classFileInputStream, 686
of classFilterInputStream, 697
of classInputStream, 682
of classLineNumberInputStream, 708
of classStringBufferInputStream,

693
skipBytes method

of classDataInputStream, 704
of classRandomAccessFile, 747
of interfaceDataInput, 669

slashSlashComments method
of classStreamTokenizer, 717

slashStarComments method
of classStreamTokenizer, 717

sleep method
of classThread, 600

INDEX
sockets
standard exceptions,SocketException,

211
Solomon, 193
sorting

Unicode, reference for details on, 18
source code

compatibility, contrasted with binary
compatibility, 241

transformations that preserve binary
compatibility, 239

Southey, Robert, 350
spittoon

See cuspidor
sqrt method

of classMath, 521
square brackets ([])

in array
type declaration, 194
variable declaration, 194

stacks
EmptyStackException class, 663
Stack class, 661
StackOverflowError class, 611
standard exceptions

EmptyStackException, 209
StackOverflowError, 212, 213

standard
exceptions

checked, 210
runtime, 208
unchecked, 209

standard classes
AbstractMethodError, 611
ArithmeticException, 611
ArrayStoreException, 611
BitSet, 618
Boolean, 469
BufferedInputStream, 699
BufferedOutputStream, 732
ByteArrayInputStream, 689
ByteArrayOutputStream, 727
Character, 471
Class, 199, 466
ClassCastException, 611
ClassCircularityError, 611
ClassFormatError, 611
ClassLoader, 216, 218, 219, 558
ClassNotFoundException, 611
CloneNotSupportedException, 611
DataInputStream, 703
Date, 622
Dictionary, 633

standard classes(continued)
Double, 308, 510
EmptyStackException, 663
Error, 163, 211, 611
Exception, 611
ExceptionInInitializerError, 611, 614
File, 752, 753
FileInputStream, 684
FileOutputStream, 722
FilterInputStream, 696
FilterOutputStream, 730
Float, 503
Hashtable, 635
IllegalAccessError, 611
IllegalAccessException, 611
IllegalArgumentException, 611
IllegalThreadStateException, 611
IncompatibleClassChangeError, 611
IndexOutOfBoundsException, 611
InputStream, 680
InstantiationError, 611
Integer, 488
InternalError, 611
InterruptedException, 611
LineNumberInputStream, 707
LinkageError, 211, 611
Long, 495
Math, 517
NegativeArraySizeException, 611
NoClassDefFoundError, 611
NoSuchElementException, 664
NoSuchFieldError, 611
NoSuchMethodError, 611
NoSuchMethodException, 611
NullPointerException, 611
Number class, 487
NumberFormatException, 611
Object, 185, 199, 40, 41, 458
Observable, 643
OutOfMemoryError, 611
OutputStream, 720
PipedInputStream, 687
PipedOutputStream, 725
PrintStream, 738
Process, 561
Properties, 639
PushbackInputStream, 710
Random, 646
RandomAccessFile, 743
Runtime, 563
RuntimeException, 164, 611
SecurityException, 611
SecurityManager, 569
807

INDEX

808
standard classes(continued)
SequenceInputStream, 694
Stack, 661
StackOverflowError, 611
StreamTokenizer, 712
String, 19, 25, 41, 531
StringBuffer, 548
StringBufferInputStream, 692
StringTokenizer, 651
System, 579
Thread, 206
Thread class, 587
ThreadDeath, 611
ThreadGroup, 206, 602
Throwable, 611
UnknownError, 611
UnsatisfiedLinkError, 611
Vector, 654
VerifyError, 611
VirtualMachineError, 611

standard interfaces
Cloneable interface, 465
DataInput interface, 667
DataOutput interface, 674
Enumeration interface, 617
FileNameFilter interface, 759
Observer interface, 645
Runnable interface, 586

Star Trek, 793, 805, 820
start method

of classThread, 594
startsWith method

of classString, 540
startup

virtual machine, 215
state

IllegalThreadStateException class,
611

not shared by primitive values, 31
object

impact of changes, 39
transient fields not part of persistent,

147
statements

See also constructors; control flow;
expressions; initializers; methods

break
definite assignment, 397
specification, 283

(chapter), 263
completion of

abrupt, reasons for, 264
normal, reasons for, 264

statements(continued)
continue

definite assignment, 397
specification, 285

definite assignment, 393
do

definite assignment, 395
specification, 279

empty
definite assignment, 393
specification, 271

expression
definite assignment, 394
specification, 272

for
definite assignment, 396
specification, 280

general specification, 269
if

danglingelse handling, 270
definite assignment, 394

if-then, specification, 273
if-then-else, specification, 274
labeled

definite assignment, 394
specification, 271

LALR(1) grammar productions, 446
local variable declarations

execution of, 269
specification, 265

return
definite assignment, 397
specification, 286

switch
definite assignment, 395
specification, 274

synchronized
definite assignment, 397
specification, 289

throw
definite assignment, 397
specification, 287

try
definite assignment, 398

try-catch, specification, 291
try-catch-finally, specification, 293
unreachable, conservative flow analysis

detection of, 295
while

definite assignment, 395
specification, 277

INDEX

e

static initializers
See also initialization
LALR(1) grammar productions, 444

static modifier
See also declarations; modifiers
for fields, 145

binary compatibility considerations, 253
creating during the preparation phase of

linking, 221
declaring class variables using, 145
default initialization of during the

preparation phase of linking, 221
implicit in interface member declarations,

187
initialization of, 149, 175

binary compatibility considerations,
259

initializers
as components of a class body, 138
for, 175

for methods
declaring class methods with, 160
hiding by, 165
not permitted in interface method

declarations, 189
reason why constructors do not use, 178

Stein, Gertrude
Arthur a Grammar

arithmetic, 450
burnt ivy, 440
finishing early, 453
grammar in a title, 433
grammar is useless, 445
pretty names, 441
successions of words, 446
vocabulary, 440

Rooms, 349
Sacred Emily, 111

stop method
of classThread, 595
of classThreadGroup, 605

store
array, exception, 199

storing
packages

in a database, 117
in a file system, 115

streams
See also files; input; output
BufferedInputStream class, 699
BufferedOutputStream class, 732
ByteArrayInputStream class, 689
ByteArrayOutputStream class, 727

streams(continued)
FileInputStream class, 684
FileOutputStream class, 722
FilterInputStream class, 696
FilterOutputStream class, 730
LineNumberInputStream class, 707
OutputStream class, 720
PipedInputStream class, 687
PipedOutputStream class, 725
PrintStream class, 738
PushbackInputStream class, 710
SequenceInputStream class, 694
StreamTokenizer class, 712
StringBufferInputStream class, 692

string(s)
See also characters; numbers; primitive

types;String class;StringBuffer
class

character arrays not the same as, 199
concatenation operator (+)

constructor invocation by, 177
creating new instances with, 38

conversion, 67
context specification, 67
specification, 60
to numeric types,

NumberFormatException, 209
literals

escape sequences for, 26
interning of, 25
term definition and specification, 25

standard exceptions,
UTFDataFormatException, 210

String class, 531
creating instances, with string

concatenation operator, 41
literal as source code representation of th

value of, 19
specification, 41, 531
string literal as reference to an instance

of, 25
StringBuffer class, 548
StringBufferInputStream class, 692
StringTokenizer class, 651
substrings,substring method ofString

class, 543
Stroustrup, Bjarne, 6
subclasses

See also class(es); interfaces; superclasses;
superinterfaces

declaration, 133
direct, extending classes with, 133
relationship to direct subclass, 134
809

INDEX

810
subpackages
See also packages
as package members, 85

substring method
of classString, 543

super keyword
accessing

overridden methods with, 165
superclass members with, in expression

evaluation, 322
binary compatibility considerations, 247
not permitted in

class variable initialization, 150
explicit constructor invocation, 179
interface field declarations, 187

permitted in instance variable initialization,
150

superclass(es)
See also classes; fields; interfaces; methods;

packages; subclasses; superinterfaces
accessing fields withsuper, expression

evaluation, 322
of array isObject, 199
binary compatibility considerations, 243
direct

declaration, withextends clause, 133
term definition, 133

extending classes with, 133
public, accessing instances of non-public

subclasses through, 142
superinterface(s)

See also classes; fields; interfaces; methods;
packages; subclasses

binary compatibility considerations, 243,
260

direct
declaration, withimplements clause, 135
term definition, 135

of interface, declaration, 185
public, accessing instances of non-public

subclasses through, 142
term definition, 135

suspend method
of classThread, 596
of classThreadGroup, 606

sval field
of classStreamTokenizer, 715

swapping
threads example, 409

sweat, 51
Sweet, Richard, 6
Swift, Jonathan, 618

switch statement
See also statements
definite assignment, 395
local variable declaration specification,

impact on, 45
specification, 274

symbolic references
binary file format requirements, 239
resolution, 221

code generation implications of, 222
internal table description, 218

symbols
See also identifiers; name; variables
goal

CompilationUnit, 8
Input, 7
term definition, 7

nonterminal
notation for definition of, 8
term definition, 7

optional, term definition, 8
terminal, term definition, 7

synchronization
See also locks; threads
exception mechanism integration with, 202
initialization implications of, 225
locks, 415

use bysynchronized methods, 161
use bysynchronized statement, 289

standard exceptions
IllegalMonitorStateException, 209
IllegalThreadStateException, 209
InterruptedException, 210
InterruptedIOException, 210

synchronized modifier
See also modifiers
in method declarations, 161
methods, binary compatibility

considerations, 256
not permitted in interface field

declarations, 187
not permitted in interface method

declarations, 189
reason why constructors do not use, 178
specification, 416

synchronized statement
definite assignment, 397
operations, 416
specification, 289

term definition, 399
volatile fields used for, with threads, 147

INDEX
syntactic
See also lexical; semantics
classification, of a name according to

context, 90
grammar, 8

LALR(1) grammar, 440
term definition, 8

System class, 579
system operations

SeeClassLoader class;Process class;
Runtime class;SecurityManager
class;System class

T
tagged paragraphs

types of, 420
tan method

of classMath, 519
term definitions

abrupt completion, 264, 304
access, 77

accessible, 99
control, 99
qualified, 99

action, 401
by main memory

lock, 401, 402
read, 401, 402
unlock, 401, 402
write, 401, 402

by thread
assign, 401, 402
load, 401, 402
store, 401, 402
unlock, 401, 402
use, 401, 402
write, 401, 402

activation frame, 336
active use, 223
alphabet, 7
ambiguous member, 188
applicable, 325

method, 193
array, 193

components, 44, 193
element type, 193
type, 193

element, 193
empty, 193
initializer, 196
length of, 193
type, 193

assign, as thread action, 402

term definitions (continued)
assignable to, 61
assignment, 61, 369

compatible with, 61
associated label, 275
atomic, 401
binary

compatibility, 240
numeric promotion, 74

block, 265
body

of class, 138
of constructor, 178
of interface, 185
of method, 164

break binary compatibility with, 240
break target, 283
caller, 204
can complete normally, 295
cast operator, 67, 335, 350
catch clause, 201, 290
caught, 201, 288
checked exceptions, 203
class(es), 127, 128

abstract, 131
body, 138
declaration, 128
error, 203
exception, 203
final, 133
finalization, 235
initialization, 223
methods, 160
modifiers, 130
of object, 47
runtime exception, 203
same, 42
unloading, 235
variables, 145

clone, 460
comments, 15

documentation 15, (chapter), 419
end-of-line, 15
traditional, 15

compatibility
binary, 240

compilation unit, 118
compile-time

declaration, 332
type, 43

complete
abruptly, 264, 304
normally, 264, 295, 304
811

INDEX

812
term definitions (continued)
component, 193

of array, 44, 193
type of array, 193

constant
expression

compile-time, 381
field, 186, 223
primitive, 251

constructor(s), 176
default, 180
parameter, 45, 177

contain, 263
immediately, 263

context of conversion, 52
continue target, 285
contract, 241
control

access, 99
conversion(s), 51

assignment, 61
casting, 67
contexts, 52
identity, 54
method invocation, 66
primitive

narrowing, 55
widening, 54

reference
narrowing, 59
widening, 58

string, 355
declaration(s), 78

array variable, 194
class, 128

variable, 44
compile-time, 332
constant, 186
constructor, 176
field, 143, 186
import, 120
instance variable, 44
interface, 184
local variable, 45

statement, 265
method, 155, 189
package, 118
parameter

constructor, 45
exception, 45,
method, 45

single-type import, 121
type, 124

term definitions (continued)
declaration(s) (continued)

type-import-on-demand, 121
declarator, 266
default

constructor, 180
value, 46

definite assignment, 383
definitely assigned

after, 385
when false, 385
when true, 385

before, 385
denormalized, 33, 34
direct

extension, 183
subclass, 133
superclass, 133
superinterface, 135, 185

directly implement, 183
documentation comment (chapter), 419
dynamic method lookup, 335
dynamically enclosed, 204
element, 193

type, 193
empty

array, 193
statement, 271

enclosed, dynamically, 204
error classes, 203
escape

sequence, character and string, 26
Unicode, 12

evaluation
evaluated, 301
expression, result of, 301
order, 305

exception
caller of, 204
caught, 201
checked, 203
classes, 202

checked, 203, 210
runtime, 203, 208
standard, 208
unchecked, 203

handler, 290
parameter, 45

polling for, 206
precise, 205
thrown, 201
unchecked, 203

INDEX
term definitions (continued)
executed, 301
exit of virtual machine, 235
expression, 301

constant, 381
statement, 272

extension, direct, 183
field, 143, 186

constant, 223
declaration, 143
final, 146, 187
non-static, 145
static, 145, 186
transient, 147
volatile, 147

finalizable, 232
finalization

class, 235
object, 231

finalized, 232
finalizer, 231
finalizer-reachable, 232
formal parameter, 156, 177
frame activation, 336
goal symbol, 7
gradual underflow, 34
grammar

context-free, 7
lexical, 7
syntactic, 8

handler of exception, 290
handles, 204
hide, 144, 165
identifier, 17
immediately contain, 263
implement, 87, 135, 165

directly, 183
implemented, 152
import declaration

on demand, 122
single type, 121

inexact, 35
infinities, 33
inherited, 85, 152
inherits, 165
initialization of class or interface, 223
initializer

array, 196
static, 175
variable, 149

input elements, 14

term definitions (continued)
instance

of class, 38
methods, 160
variables, 145

interface
abstract, 184
body, 185
initialization, 223
same, 42

iteration statements, 285
Java, vii

digits, 17
letters, 17

keyword, 18
label, 271

associated, 275
language, 7
left of

to the, 15
left-hand side, 7
length of array, 193
line terminator, 13
linking, 220

linkage editing, 222
literal, 19

boolean, 23
character, 24
floating-point, 22
integer, 19
null, 27
string, 25

load action by thread, 402
loading, 218
local variable, 45

declaration statement, 265
locks, 401

lock action
by main memory subsystem, 402
by thread, 402

unlock action
by main memory subsystem, 402
by thread, 402

lookup,
dynamic method, 335

loss of precision, 54
main memory, 401
master copy, 401
maximally specific, 327
members, 85

ambiguous, 188
dynamic lookup, 335
813

INDEX

814
term definitions (continued)
memory

main, 401
working, 401

method(s), 155
abstract, 158, 189
accessible, 325
applicable, 325
body, 164
class, 160
final, 160
hidden, 165
instance, 160
interface, 189
lookup

dynamic, 335
maximally specific, 237
more specific, 327
most specific, 325, 327
native, 161
non-static, 160
overloaded, 167
overridden, 165
parameter, 45
signature, 157
static, 160
synchronized, 161
the most specific, 327

modifiers
class, 130
constructor, 177
field, 144
interface, 184
method, 157

monitors, 399
more specific, 327
most specific, 325, 327
name(s), 79

ambiguous, 89
contextually ambiguous, 89
expression, 91
method, 91
package, 90
qualified, 79
simple, 79
type, 90
unique package, 125

NaN (Not-a-Number), 33
narrowing

primitive conversion, 55
reference conversion, 59

term definitions (continued)
non-static

field, 145
method, 160

nonterminal, 7
normal completion, 264, 295, 304
notification, 399, 416
numeric promotion, 72
object(s), 38

class of, 47
target, 335

operators, 28
additive, 355
assignment, 369
bitwise, 365
cast, 350
equality, 362
logical, 365
multiplicative, 351
relational, 360
shift, 359
unary, 346

order of evaluation, 305
ordered, 33
overload, 165, 190

overloading 167
override, 189

overriding, 189
package(s), 114

unique name, 125
paragraph

tagged, 420
parameter, 156

constructor, 45, 177
exception handler, 45, 290
formal, 156, 177
method, 45, 156

passive use, 223
pointer, 38
polling for exceptions, 206
precise exception, 205
precision

loss of, 54
preparation, 221
prescient store, 408
priority, threads, 415
primitive constant, 251
primitive conversion

narrowing, 55
widening, 54

productions, 7

INDEX
term definitions (continued)
promotion

numeric, 72
binary, 74
unary, 73

sweat only but for, 51
qualified

access, 99
name, 79

reachable, 232, 263, 295
read action

by main memory, 402
by thread, 402

reason, 202, 264, 304
recursive, 8
reference, 38

conversion
narrowing, 59
widening, 58

target, 333
types, 37

resolution, 221
late, 220
lazy, 220

result, 301
right of

to the, 15
right-hand side, 7
round

to nearest, 35
toward zero, 35

runtime exception classes, 203
same

class, 42
interface, 42
type, 42

scope, 81
separator, 25
signature, 157
simple name, 79
specific

maximally, 327
more, 327
most, 325, 327
the most, 327

statements, 263
empty, 271
expression, 272
iteration, 285
labeled, 271
local variable declaration, 264
unreachable, 295

term definitions (continued)
static

field, 145
initializers, 175
method, 160
resolution, 220

store
action by thread, 402
prescient, 408

strongly typed, 29
subclass, 134

direct, 133
subinterface, 185
superclass, 134

direct, 133
superinterfaces, 135, 185

direct, 135, 185
symbol

goal, 7
nonterminal, 7
optional, 8
terminal, 7

synchronizing, 399
target

break, 283
continue, 285
object, 335
reference, 333

terminal symbol, 7
the most specific, 325, 327
thread, 399
thrown, 201, 202
throws clause, 163
token, 7, 14,
type(s), 30

boolean, 31
compile-time, 43
floating-point, 31, 33
import

on demand, 121
single, 121

integral, 31
null, 30
numeric, 31
primitive, 30
reference, 37
same, 42

typed
strongly, 29

unary numeric promotion, 73
unchecked exception, 203

classes, 203
815

INDEX

816

3

term definitions (continued)
underflow

gradual, 34
unfinalized, 232
Unicode escapes, 12
unique package name, 125
unloading of classes, 235
unlock, 399

action
by main memory, 402
by thread, 402

unordered, 33
unreachable, 232, 295
use

action by thread, 402
active, 223
passive, 223

value
default, 46
of expression, 302

variable(s), 401, 43
class, 44, 145
instance, 44, 145
local, 45

verification, 220
virtual machine exit, 235
wait set, 416
white space, 15
widening

primitive conversion, 54
reference conversion, 58

working
copy, 401
memory, 401

write action
by main memory, 402
by thread, 402

terminal symbol
term definition, 7

terminators
line

carriage return and linefeed characters as,
25

carriage return character as, 25
linefeed character as, 25
term definition, 13

Test program, how to run, 5
this keyword

accessing hidden fields with, 269
evaluation of, 313

during instance creation, 228
not permitted

in class variable initialization, 150

this keyword (continued)
not permitted (continued)

in explicit constructor calls, 179
in interface field declarations, 187

permitted in instance variable initialization,
150

Thomas à Kempis, 528
Thompson, William (Lord Kelvin) , 301
threads

See also synchronization
(chapter), 399
constraints on relationships among actions

of, 403
creation, 415
IllegalThreadStateException class,

611
initialization implications of multiple, 225
interaction order, consequences of, 400
locks acquisition and release, by

synchronized statement, 289
operations, term definitions, 401
out-of-order writes example, 409
standard exceptions

IllegalMonitorStateException, 209
IllegalThreadStateException, 209
InterruptedException, 210
InterruptedIOException, 210

swapping example, 409
synchronized modifier, methods,

declaration, 161
termination and virtual machine exit, 235
Thread class, 587
ThreadDeath class, 611
ThreadGroup class, 602
threads method, of classThreadGroup,

608
threadsCount method, of class

ThreadGroup, 607
volatile fields use with, 147

throw
See also control flow; exceptions
throw statement

as reason for abrupt completion, 264
definite assignment, 397
specification, 287

Throwable class, 611
Throwable method, of classThreadGroup,

612
throws clause

checked exception classes named in, 20
constructors, 178

binary compatibility considerations,
256

INDEX
throw (continued)
throws clause (continued)

incorrect overriding because of, example,
174

methods, 163
binary compatibility considerations,

256
toBinaryString method

of classInteger, 491
of classLong, 499

toByteArray method
of classByteArrayOutputStream, 728

toCharArray method
of classString, 537

toGMTString method
of classDate, 629

toHexString method
of classInteger, 491
of classLong, 498

tokens
See also grammars
term definition, 7, 14

Tokens, The, 28
toLocaleString method

of classDate, 629
toLowerCase method

of classCharacter, 482
of classString, 544

toOctalString method
of classInteger, 491
of classLong, 498

toString method
of classBitSet, 619
of classBoolean, 470
of classByteArrayOutputStream, 729
of classCharacter, 473
of classClass, 466
of classDate, 625
of classDouble, 511, 513
of classFile, 754
of classFloat, 504, 506
of classHashtable, 636
of classInteger, 489, 490
of classLong, 496, 497
of classObject, 458
of classStreamTokenizer, 719
of classString, 534
of classStringBuffer, 550
of classThread, 594
of classThreadGroup, 604, 612
of classVector, 656

totalMemory method
of classRuntime, 565

toTitleCase method
of classCharacter, 485

toUpperCase method
of classCharacter, 484
of classString, 545

traceInstructions method
of classRuntime, 566

traceMethodCalls method
of classRuntime, 566

transient modifier
See also declarations; modifiers
fields, 147

binary compatibility considerations, 253
not permitted in interface field declarations,

187
translations

lexical, steps involved in, 12
trim method

of classString, 545
trimToSize method

of classVector, 658
TRUE field

of classBoolean, 469
try statements

See also control flow; exceptions; statements
definite assignment, 398
exception handling role of, 204
specification, 290
try-catch statement, specification, 291
try-catch-finally statement,

specification, 293
TT_EOF field

of classStreamTokenizer, 714
TT_EOL field

of classStreamTokenizer, 714
TT_NUMBER field

of classStreamTokenizer, 714
TT_WORD field

of classStreamTokenizer, 714
ttype field

of classStreamTokenizer, 714
types

See also arrays; classes; interfaces;
primitive, types

argument values, method invocation
conversion context, 66

array
members of, 88
syntax and specification, 194

binary compatibility considerations, 241
boolean

Boolean literal specification, 23
term definition and specification, 36
817

INDEX

818

1

types(continued)
(chapter), 29
char

character literal specification, 24
term definition and specification, 30

class
members of, 86
names, scope of, 130
naming conventions, 108

data values relation to, 30
declaration of, as members of packages, 124
double, floating-point literal specification,

22
element of, arrays, 194
errors, run-time testing, 303
expression

assignment conversion, 61
how determined, 47

of expressions, 302
float, floating-point literal specification, 22
floating-point, term definition and

specification, 33
imported

as declared entity, 78
scope of, 81

importing, compilation units, 120
initialization of, 223
int, integer literal specification, 20
integral, 31
interface

implications for variables and
expressions, 48

members of, 87
naming conventions, 108
scope of name of, 184

LALR(1) grammar, 440
local variables, declaration of, 266
long, integer literal specification, 20
name(s)

context in which a name is classified as,
90

qualified, meaning of, 94
simple, meaning of, 93

null, term definition and specification, 30
as package members, 114
parameter, method invocation conversion

context, 66
primitive

as array element types, 194
do not share state, 31
fully qualified name, 105
term definition and specification, 30
variables, specification, 44

types(continued)
reference

as array element types, 194
criteria for determining when two are the

same, 42
member

as declared entity, 78
scope of, 81

specifying with
class declaration, 128
interactive declaration, 184

term definition and specification, 37
variables, specification, 44

run-time, as incorrect terminology, 47
safety of, importance of verifier to

maintaining, 244
String, seeString class
system, security of,ClassLoader internal

symbolic reference table role in
maintaining, 218

term definition and specification, 30
usage, 42

in declarations and expressions, 43
of variable

assignment conversion of expressions, 6
how determined, 47
while objects have classes, 47

where used, 42

U
unary

numeric promotion, specification, 73
uncaughtException method

of classThreadGroup, 610
unchecked

exceptions, standard, 209
underflow

floating-point operators, signed zero
produced by, 35

integer operators, not indicated by, 32
unfinalized

as object attribute, 232
term definition, 232

Unicode character set
See also characters
character sequences, represented by

instances of classString, 41
composite characters, contrasted with the

Unicode decomposed characters, 18
escapes, 13

specification for handling, 12
term definitions, 12
use when suitable font not available, 13

INDEX
Unicode character set(continued)
handling in package names, 117
lexical grammar use in terminal symbols, 7
sorting, reference for details on, 18
The Unicode Standard (book), 6
writing any character in, using ASCII

characters in escapes, 11
UnknownError class, 611
unloading

See also linking; loading
of classes, 235
of interfaces, 235

unreachable
See also exceptions
objects, finalization implications, 232
statements, conservative flow analysis

detection of, 295
term definition, 232

unread method
of classPushbackInputStream, 711

UnsatisfiedLinkError class, 611
update method

of interfaceObserver, 645
URLs

standard exceptions,
MalformedURLException, 211

UTC method
of classDate, 630

V
valid method

of classFileNameDescriptor, 760
values

See also assignment; initialization;
primitive, types; variables

boolean, term definition and specification,
36

(chapter), 29
data, relation to types, 30
expressions, variables as, 302
floating-point, term definition and

specification, 33
integral, term definition and specification, 31
primitive, term definition and specification,

30
reference,see references; 38
relation to types, 30
return, specifying method with no, 155
valueOf method

of classBoolean, 470
of classDouble, 514

values(continued)
valueOf method (continued)

of classFloat, 507
of classInteger, 493
of classLong, 500
of classString, 545

variables, initial and default, 46
variables

See also data structures; fields; identifiers;
scope

assignment conversion, 61
(chapter), 29
double, nonatomic treatment of memory

operations on, 405
interaction with locks, rules about, 407
kinds of

array,see arrays, components
class,see fields, class,static
constructor parameters,see parameters,

constructor
exception-handling parameters,see

exceptions, parameters
instance,see fields, class, non-static
local,see variables, local
method parameters,see parameters,

method
LALR(1) grammar, 440
local, 267

declaration statements, 265
as declared entity, 79
definite assignment, (chapter), 383
definite assignment, declarations, 393
description, 45
hiding of names by, 269
naming conventions, 110
scope of, 82

long, nonatomic treatment of, memory
operations on, 405

objects compared with, 47
primitive type

changing value of, 31
specification, 44

reference type, specification, 44
term definition, and specification, 43
thread use constraints, 404
type of, how determined, 47
values

of expressions, 302
held by different types, summary of, 29
initial and default, 46

volatile, rules about, 407
819

INDEX

820
Vector class, 654Vector class
See also data structures
standard exceptions,

NoSuchElementException, 209
verification

See also security
of binary representation, of classes and

interfaces, 220
internal table of loaded classes and

interfaces, purpose of, 218
standard exceptions,VerifyError, 212
type safety dependence on existence and use

of, 244
VerifyError class, 611

@version tag
specification, 422

virtual machine
See also exceptions; optimization
class file format specified in, 238
errors, 212

InternalError, as asynchronous
exception cause, 206

exception handling by, 201
exit, criteria for, 235
object life cycle in, 233
startup, 215
VirtualMachineError class, 611

virtue , 18
void keyword

See also methods
casting to, not permitted, 272
methods

expression return statement not permitted
in, 164

no return value specified by, 155
volatile modifier

See also declarations; modifiers
fields, 147

binary compatibility considerations, 253
final declaration not permitted for, 148
used for synchronization by threads, 147

not permitted in interface field declarations,
187

variables, rules about, 407

W
wait

See also synchronization
wait method, of classObject, 461
wait sets, notification and, 416
waitFor method, of classProcess, 562

warp factors, 1, 8, 24, 64, 125, 216, 343, 512,
729

Webb, Jim(my)
Paper Cup, 335
Up, Up and Away, 606

Weiss, George David, 28
while statement

See also control flow
definite assignment, 395
specification, 277

white space
term definition, 15

whitespaceChars method
of classStreamTokenizer, 716

Whitman, Walt
Carol of Occupations, 29
Passage to India, 292
Song of the Broad-Axe, 176
Song of the Universal, 261
Walt Whitman, 75

widening
See also conversions
primitive conversion

in assignment conversion context, 61
in binary numeric promotion context, 74
in casting conversion context, 67
in method invocation conversion context,

66
specification, 54
in unary numeric promotion context, 73

reference conversion
in assignment conversion context, 61
in casting conversion context, 67
in method invocation conversion context,

66
specification, 58

Wilde, Oscar
Charmides, 661
Humanitad, 662

wordChars method
of classStreamTokenizer, 716

Wordsworth, William
Apology for the Foregoing Poems, 304
Maternal Grief, 191
Monks and Schoolmen, 399
To the Same Flower, 49
Yarrow Unvisited, 516

wrapper classes
SeeBoolean class;Character class;

Double class;Float class;Integer
class;Long class

INDEX
write
write method

of classBufferedOutputStream, 733
of classByteArrayOutputStream, 728
of classDataOutputStream, 735
of classFileOutputStream, 723
of classFilterOutputStream, 730
of classOutputStream, 720
of classPipedOutputStream, 726
of classPrintStream, 739
of classRandomAccessFile, 749
of interfaceDataOutput, 674

writeBoolean method
of classDataOutputStream, 735
of classRandomAccessFile, 750
of interfaceDataOutput, 675

writeByte method
of classDataOutputStream, 735
of classRandomAccessFile, 750
of interfaceDataOutput, 675

writeBytes method
of classDataOutputStream, 736
of classRandomAccessFile, 751
of interfaceDataOutput, 677

writeChar method
of classDataOutputStream, 736
of classRandomAccessFile, 750
of interfaceDataOutput, 676

writeChars method
of classDataOutputStream, 737
of classRandomAccessFile, 751
of interfaceDataOutput, 678

writeDouble method
of classDataOutputStream, 736
of classRandomAccessFile, 751
of interfaceDataOutput, 677

writeFloat method
of classDataOutputStream, 736
of classRandomAccessFile, 751
of interfaceDataOutput, 677

writeInt method
of classDataOutputStream, 736
of classRandomAccessFile, 750
of interfaceDataOutput, 676

writeLong method
of classDataOutputStream, 736
of classRandomAccessFile, 750
of interfaceDataOutput, 676

writeShort method
of classDataOutputStream, 735
of classRandomAccessFile, 750
of interfaceDataOutput, 676

write (continued)
writeTo method, of class

ByteArrayOutputStream, 729
writeUTF method

of classDataOutputStream, 737
of classRandomAccessFile, 751
of interfaceDataOutput, 678

written field
of classDataOutputStream, 734

X
xor method

of classBitSet, 621

Y
Yeats, William Butler, 621
yield method

of classThread, 600

Z
zero

See also exceptions; numbers
divide by, exceptions thrown by integer

divide and remainder operators, 32
821

uo-

sic
ved.

go

C.,

II.
wed.
d.

y-
ts
hts

mi,

er
t

n.

y

Credits

THE following organizations and copyright holders granted permission for q
tations used in this book.

Time after Time. Words and Music by Cyndi Lauper and Rob Hyman 1983 Rellla Music
Co. and Dub Notes. All Rights Administered by Sony/ATV Music Publishing, 8 Mu
Square West, Nashville, TN 37203. International Copyright Secured. All Rights Reser

The Lion Sleeps Tonight. New lyric and revised music by George David Weiss, Hu
Peretti and Luigi Creatore. 1961 Folkways Music Publishers, Inc. Renewed 1989 by
George David Weiss, Luigi Creatore and June Peretti. Assigned to Abilene Music, Inc.
All Rights Reserved. Used by Permission. WARNER BROS. PUBLICATIONS U.S. IN
Miami, FL 33014.

Lyric excerpt of “My Favorite Things” by Richard Rodgers and Oscar Hammerstein
Copyright 1959 by Richard Rodgers and Oscar Hammerstein II. Copyright Rene
WILLIAMSON MUSIC owner of publication and allied rights throughout the worl
International Copyright Secured. All Rights Reserved.

Up, Up and Away. Words and Music by Jimmy Webb. Copyright 1967 (Renewed 1995)
CHARLES KOPPELMAN MUSIC, MARTIN BANDIER MUSIC and JONATHAN
THREE MUSIC CO. International Copyright Secured. All Rights Reserved.

Did You Ever Have to Make Up Your Mind? Words and Music by John Sebastian. Cop
right 1965, 1966 (Copyrights Renewed) by Alley Music and Trio Music, Inc. All righ
administered by Hudson Bay Music, Inc. International Copyright Secured. All Rig
Reserved. Used by Permission. WARNER BROS. PUBLICATIONS U.S. INC., Mia
FL 33014.

Way Down Yonder in New Orleans. Words and Music by Henry Creamer and J. Turn
Layton. Copyright 1922 Shapiro, Bernstein & Co., Inc., New York. Copyrigh
Renewed. International Copyright Secured. All Rights Reserved. Used by Permissio

Lyric excerpt of “Space Oddity” by David Bowie. Used by Permission. 1969 David
Bowie.

“From Arthur a Grammar”, HOW TO WRITE, Gertrude Stein, 1931. Republished b
Dover Publications, 1975. Reprinted with permission.

A NIGHT AT THE OPERA, Groucho Marx 1935. 1935 Turner Entertainment Co. All
rights reserved.
823

CREDITS

824

ed.

TO-
s,
Here Inside my Paper Cup, Everything is Looking Up. PAPER CUP. Words and Music by
Jim Webb. 1970 CHARLES KOPPELMAN MUSIC, MARTIN BANDIER MUSIC and
JONATHAN THREE MUSIC CO. All Rights Reserved. International Copyright Secur
Used by Permission.

From Ira Forman, Michael Connor, Scott Danforth, and Larry Raper, RELEASE-
RELEASE BINARY COMPATIBILITY IN SOM, OOPSLA ‘95 Conference Proceeding
Austin, October 1995. Reprinted with permission.

ors

ions,
. The

reek

nning
itles,
se it

n the

eir

 lost.

t;
.

Colophon

CAMERA-READY electronic copy for this book was prepared by the auth
using FrameMaker (release 5) on Sun workstations.

The body type is Times, set 11 on 13. Chapter titles, section titles, quotat
and running heads are also in Times, in various sizes, weights, and styles
index is set 9 on 10.

Some of the bullets used in bulleted lists are taken from Zapf Dingbats. G
and mathematical symbols are taken from the Symbol typeface.

The monospace typeface used for program code in both displays and ru
text is Lucida Sans Typewriter; for code fragments in chapter titles, section t
and first-level index entries, Lucida Sans Typewriter Bold is used. In every ca
is set at 85% of the nominal size of the surrounding Times text; for example, i
body it is 85% of 11 point.

This book was printed by Maple-Vail Book Manufacturing Group at th
York, Pennsylvania, facility on 45# Restorecote.

Learning hath gained most by those books by which the printers have
—Thomas Fuller (1608–1661),Of Books

Some said, “John, print it”; others said, “Not so.”
Some said, “It might do good”; others said, “No.”

—John Bunyan (1628–1688),Pilgrim’s Progress—Apology for his Book

’T is pleasant, sure, to see one’s name in prin
A book’s a book, although there’s nothing in ’t

—Lord Byron (1788–1824)
825

	Series Foreword
	Preface
	Introduction
	1.1 Example Programs
	1.2 References

	Grammars
	2.1 Context-Free Grammars
	2.2 The Lexical Grammar
	2.3 The Syntactic Grammar
	2.4 Grammar Notation

	Lexical Structure
	3.1 Unicode
	3.2 Lexical Translations
	3.3 Unicode Escapes
	3.4 Line Terminators
	3.5 Input Elements and Tokens
	3.6 White Space
	3.7 Comments
	3.8 Identifiers
	3.9 Keywords
	3.10 Literals
	3.10.1 Integer Literals
	3.10.2 Floating-Point Literals
	3.10.3 Boolean Literals
	3.10.4 Character Literals
	3.10.5 String Literals
	3.10.6 Escape Sequences for Character and String L...
	3.10.7 The Null Literal

	3.11 Separators
	3.12 Operators

	Types, Values, and Variables
	4.1 The Kinds of Types and Values
	4.2 Primitive Types and Values
	4.2.1 Integral Types and Values
	4.2.2 Integer Operations
	4.2.3 Floating-Point Types and Values
	4.2.4 Floating-Point Operations
	4.2.5 The boolean Type and boolean Values

	4.3 Reference Types and Values
	4.3.1 Objects
	4.3.2 The Class �Object
	4.3.3 The Class String
	4.3.4 When Reference Types Are the Same

	4.4 Where Types Are Used
	4.5 Variables
	4.5.1 Variables of Primitive Type
	4.5.2 Variables of Reference Type
	4.5.3 Kinds of Variables
	4.5.4 Initial Values of Variables
	4.5.5 Variables Have Types, Objects Have Classes

	Conversions and Promotions
	5.1 Kinds of Conversion
	5.1.1 Identity Conversions
	5.1.2 Widening Primitive Conversions
	5.1.3 Narrowing Primitive Conversions
	5.1.4 Widening Reference Conversions
	5.1.5 Narrowing Reference Conversions
	5.1.6 String Conversions
	5.1.7 Forbidden Conversions

	5.2 Assignment Conversion
	5.3 Method Invocation Conversion
	5.4 String Conversion
	5.5 Casting Conversion
	5.6 Numeric Promotions
	5.6.1 Unary Numeric Promotion
	5.6.2 Binary Numeric Promotion

	Names
	6.1 Declarations
	6.2 Names and Identifiers
	6.3 Scope of a Simple Name
	6.3.1 Hiding Names

	6.4 Members and Inheritance
	6.4.1 The Members of a Package
	6.4.2 The Members of a Class Type
	6.4.3 The Members of an Interface Type
	6.4.4 The Members of an Array Type

	6.5 Determining the Meaning of a Name
	6.5.1 Syntactic Classification of a Name According...
	6.5.2 Reclassification of Contextually Ambiguous N...
	6.5.3 Meaning of Package Names
	6.5.3.1 Simple Package Names
	6.5.3.2 Qualified Package Names

	6.5.4 Meaning of Type Names
	6.5.4.1 Simple Type Names
	6.5.4.2 Qualified Type Names

	6.5.5 Meaning of Expression Names
	6.5.5.1 Simple Expression Names
	6.5.5.2 Qualified Expression Names

	6.5.6 Meaning of Method Names
	6.5.6.1 Simple Method Names
	6.5.6.2 Qualified Method Names

	6.6 Qualified Names and Access Control
	6.6.1 Determining Accessibility
	6.6.2 Details on protected Access
	6.6.3 An Example of Access Control
	6.6.4 Example: Access to public and Non-public Cla...
	6.6.5 Example: Default-Access Fields, Methods, and...
	6.6.6 Example: public Fields, Methods, and Constru...
	6.6.7 Example: protected Fields, Methods, and Cons...
	6.6.8 Example: private Fields, Methods, and Constr...

	6.7 Fully Qualified Names
	6.8 Naming Conventions
	6.8.1 Package Names
	6.8.2 Class and Interface Type Names
	6.8.3 Method Names
	6.8.4 Field Names
	6.8.5 Constant Names
	6.8.6 Local Variable and Parameter Names

	Packages
	7.1 Package Members
	7.2 Host Support for Packages
	7.2.1 Storing Packages in a File System
	7.2.2 Storing Packages in a Database

	7.3 Compilation Units
	7.4 Package Declarations
	7.4.1 Named Packages
	7.4.2 Unnamed Packages
	7.4.3 Scope and Hiding of a Package Name
	7.4.4 Access to Members of a Package

	7.5 Import Declarations
	7.5.1 Single-Type-Import Declaration
	7.5.2 Type-Import-on-Demand Declaration
	7.5.3 Automatic Imports
	7.5.4 A Strange Example

	7.6 Type Declarations
	7.7 Unique Package Names

	Classes
	8.1 Class Declaration
	8.1.1 Scope of a Class Type Name
	8.1.2 Class Modifiers
	8.1.2.1 abstract Classes
	8.1.2.2 final Classes

	8.1.3 Superclasses and Subclasses
	8.1.4 Superinterfaces
	8.1.5 Class Body and Member Declarations

	8.2 Class Members
	8.2.1 Examples of Inheritance
	8.2.1.1 Example: Inheritance with Default Access
	8.2.1.2 Inheritance with �public �and �protected
	8.2.1.3 Inheritance with �private
	8.2.1.4 Accessing Members of Inaccessible Classes

	8.3 Field Declarations
	8.3.1 Field Modifiers
	8.3.1.1 static Fields
	8.3.1.2 final Fields
	8.3.1.3 transient Fields
	8.3.1.4 volatile Fields

	8.3.2 Initialization of Fields
	8.3.2.1 Initializers for Class Variables
	8.3.2.2 Initializers for Instance Variables

	8.3.3 Examples of Field Declarations
	8.3.3.1 Example: Hiding of Class Variables
	8.3.3.2 Example: Hiding of Instance Variables
	8.3.3.3 Example: Multiply Inherited Fields
	8.3.3.4 Example: Re-inheritance of Fields

	8.4 Method Declarations
	8.4.1 Formal Parameters
	8.4.2 Method Signature
	8.4.3 Method Modifiers
	8.4.3.1 abstract Methods
	8.4.3.2 static Methods
	8.4.3.3 final Methods
	8.4.3.4 native Methods
	8.4.3.5 synchronized Methods

	8.4.4 Method Throws
	8.4.5 Method Body
	8.4.6 Inheritance, Overriding, and Hiding
	8.4.6.1 Overriding (By Instance Methods)
	8.4.6.2 Hiding (By Class Methods)
	8.4.6.3 Requirements in Overriding and Hiding
	8.4.6.4 Inheriting Methods with the Same Signature...

	8.4.7 Overloading
	8.4.8 Examples of Method Declarations
	8.4.8.1 Example: Overriding
	8.4.8.2 Example: Overloading, Overriding, and Hidi...
	8.4.8.3 Example: Incorrect Overriding
	8.4.8.4 Example: Overriding versus Hiding
	8.4.8.5 Example: Invocation of Hidden Class Method...
	8.4.8.6 Large Example of Overriding
	8.4.8.7 Example: Incorrect Overriding because of T...

	8.5 Static Initializers
	8.6 Constructor Declarations
	8.6.1 Formal Parameters
	8.6.2 Constructor Signature
	8.6.3 Constructor Modifiers
	8.6.4 Constructor Throws
	8.6.5 Constructor Body
	8.6.6 Constructor Overloading
	8.6.7 Default Constructor
	8.6.8 Preventing Instantiation of a Class

	Interfaces
	9.1 Interface Declarations
	9.1.1 Scope of an Interface Type Name
	9.1.2 Interface Modifiers
	9.1.2.1 abstract Interfaces

	9.1.3 Superinterfaces
	9.1.4 Interface Body and Member Declarations
	9.1.5 Access to Interface Member Names

	9.2 Interface Members
	9.3 Field (Constant) Declarations
	9.3.1 Initialization of Fields in Interfaces
	9.3.2 Examples of Field Declarations
	9.3.2.1 Ambiguous Inherited Fields
	9.3.2.2 Multiply Inherited Fields

	9.4 Abstract Method Declarations
	9.4.1 Inheritance and Overriding
	9.4.2 Overloading
	9.4.3 Examples of Abstract Method Declarations
	9.4.3.1 Example: Overriding
	9.4.3.2 Example: Overloading

	Arrays
	10.1 Array Types
	10.2 Array Variables
	10.3 Array Creation
	10.4 Array Access
	10.5 Arrays: A Simple Example
	10.6 Arrays Initializers
	10.7 Array Members
	10.8 Class Objects for Arrays
	10.9 An Array of Characters is Not a String
	10.10 Array Store Exception

	Exceptions
	11.1 The Causes of Exceptions
	11.2 Compile-Time Checking of Exceptions
	11.2.1 Why Errors are Not Checked
	11.2.2 Why Runtime Exceptions are Not Checked

	11.3 Handling of an Exception
	11.3.1 Exceptions are Precise
	11.3.2 Handling Asynchronous Exceptions

	11.4 An Example of Exceptions
	11.5 The Exception Hierarchy
	11.5.1 The Classes Exception and RuntimeException
	11.5.1.1 Standard Runtime Exceptions
	11.5.1.2 Standard Checked Exceptions

	11.5.2 The Class Error
	11.5.2.1 Loading and Linkage Errors
	11.5.2.2 Virtual Machine Errors

	Execution
	12.1 Virtual Machine Start-Up
	12.1.1 Load the Class Test
	12.1.2 Link Test: Verify, Prepare, (Optionally) Re...
	12.1.3 Initialize Test: Execute Initializers
	12.1.4 Invoke Test.main

	12.2 Loading of Classes and Interfaces
	12.2.1 The Loading Process
	12.2.2 Loading: Implications for Code Generation

	12.3 Linking of Classes and Interfaces
	12.3.1 Verification of the Binary Representation
	12.3.2 Preparation of a Class or Interface Type
	12.3.3 Resolution of Symbolic References
	12.3.4 Linking: Implications for Code Generation

	12.4 Initialization of Classes and Interfaces
	12.4.1 When Initialization Occurs
	12.4.2 Detailed Initialization Procedure
	12.4.3 Initialization: Implications for Code Gener...

	12.5 Creation of New Class Instances
	12.6 Finalization of Class Instances
	12.6.1 Implementing Finalization
	12.6.2 Finalizer Invocations are Not Ordered

	12.7 Finalization of Classes
	12.8 Unloading of Classes and Interfaces
	12.9 Virtual Machine Exit

	Binary Compatibility
	13.1 The Form of a Java Binary
	13.2 What Binary Compatibility Is and Is Not
	13.3 Evolution of Packages
	13.4 Evolution of Classes
	13.4.1 abstract Classes
	13.4.2 final ��Classes
	13.4.3 public ��Classes
	13.4.4 Superclasses and Superinterfaces
	13.4.5 Class Body and Member Declarations
	13.4.6 Access to Members and Constructors
	13.4.7 Field Declarations
	13.4.8 final �Fields and Constants
	13.4.9 static ��Fields
	13.4.10 transient �Fields
	13.4.11 ��volatile �Fields
	13.4.12 Method and Constructor Declarations
	13.4.13 Method and Constructor Parameters
	13.4.14 Method Result Type
	13.4.15 abstract ��Methods
	13.4.16 final ���Methods
	13.4.17 native ���Methods
	13.4.18 static� ��Methods
	13.4.19 synchronized ���Methods
	13.4.20 Method and Constructor Throws
	13.4.21 Method and Constructor Body
	13.4.22 Method and Constructor Overloading
	13.4.23 Method Overriding
	13.4.24 Static Initializers

	13.5 Evolution of Interfaces
	13.5.1 public �Interfaces
	13.5.2 Superinterfaces
	13.5.3 The Interface Members
	13.5.4 Field Declarations
	13.5.5 Abstract Method Declarations

	Blocks and Statements
	14.1 Normal and Abrupt Completion of Statements
	14.2 Blocks
	14.3 Local Variable Declaration Statements
	14.3.1 Local Variable Declarators and Types
	14.3.2 Scope of Local Variable Declarations
	14.3.3 Hiding of Names by Local Variables
	14.3.4 Execution of Local Variable Declarations

	14.4 Statements
	14.5 The Empty Statement
	14.6 Labeled Statements
	14.7 Expression Statements
	14.8 The if Statement
	14.8.1 The if–then Statement
	14.8.2 The if–then–else Statement

	14.9 The switch Statement
	14.10 The while Statement
	14.10.1 Abrupt Completion

	14.11 The do Statement
	14.11.1 Abrupt Completion
	14.11.2 Example of do statement

	14.12 The for Statement
	14.12.1 Initialization of for statement
	14.12.2 Iteration of for statement
	14.12.3 Abrupt Completion of for statement

	14.13 The break Statement
	14.14 The continue Statement
	14.15 The return Statement
	14.16 The throw Statement
	14.17 The synchronized Statement
	14.18 The try statement
	14.18.1 Execution of try–catch
	14.18.2 Execution of try–catch–finally

	14.19 Unreachable Statements

	Expressions
	15.1 Evaluation, Denotation, and Result
	15.2 Variables as Values
	15.3 Type of an Expression
	15.4 Expressions and Run-Time Checks
	15.5 Normal and Abrupt Completion of Evaluation
	15.6 Evaluation Order
	15.6.1 Evaluate Left-Hand Operand First
	15.6.2 Evaluate Operands before Operation
	15.6.3 Evaluation Respects Parentheses and Precede...
	15.6.4 Argument Lists are Evaluated Left-to-Right
	15.6.5 Evaluation Order for Other Expressions

	15.7 Primary Expressions
	15.7.1 Literals
	15.7.2 this
	15.7.3 Parenthesized Expressions

	15.8 Class Instance Creation Expressions
	15.8.1 Run-time Evaluation of Class Instance Creat...
	15.8.2 Example: Evaluation Order and Out-of-Memory...

	15.9 Array Creation Expressions
	15.9.1 Run-time Evaluation of Array Creation Expre...
	15.9.2 Example: Array Creation Evaluation Order
	15.9.3 Example: Array Creation and Out-of-Memory D...

	15.10 Field Access Expressions
	15.10.1 Field Access Using a Primary
	15.10.2 Accessing Superclass Members using super

	15.11 Method Invocation Expressions
	15.11.1 Compile-Time Step 1: Determine Class or In...
	15.11.2 Compile-Time Step 2: Determine Method Sign...
	15.11.2.1 Find Methods that are Applicable and Acc...
	15.11.2.2 Choose the Most Specific Method
	15.11.2.3 Example: Overloading Ambiguity
	15.11.2.4 Example: Return Type Not Considered
	15.11.2.5 Example: Compile-Time Resolution

	15.11.3 Compile-Time Step 3: Is the Chosen Method ...
	15.11.4 Runtime Evaluation of Method Invocation
	15.11.4.1 Compute Target Reference (If Necessary)
	15.11.4.2 Evaluate Arguments
	15.11.4.3 Check Accessibility of Type and Method
	15.11.4.4 Locate Method to Invoke
	15.11.4.5 Create Frame, Synchronize, Transfer Cont...
	15.11.4.6 Implementation Note: Combining Frames
	15.11.4.7 Example: Target Reference and Static Met...
	15.11.4.8 Example: Evaluation Order
	15.11.4.9 Example: Overriding
	15.11.4.10 Example: Method Invocation using super

	15.12 Array Access Expressions
	15.12.1 Runtime Evaluation of Array Access
	15.12.2 Examples: Array Access Evaluation Order

	15.13 Postfix Expressions
	15.13.1 Names
	15.13.2 Postfix Increment Operator ++
	15.13.3 Postfix Decrement Operator --

	15.14 Unary Operators
	15.14.1 Prefix Increment Operator ++
	15.14.2 Prefix Decrement Operator --
	15.14.3 Unary Plus Operator +
	15.14.4 Unary Minus Operator -
	15.14.5 Bitwise Complement Operator ~
	15.14.6 Logical Complement Operator !

	15.15 Cast Expressions
	15.16 Multiplicative Operators
	15.16.1 Multiplication Operator *
	15.16.2 Division Operator /
	15.16.3 Remainder Operator %

	15.17 Additive Operators
	15.17.1 String Concatenation Operator +
	15.17.1.1 String Conversion
	15.17.1.2 Optimization of String Concatenation
	15.17.1.3 Examples of String Concatenation

	15.17.2 Additive Operators (+ and -) for Numeric T...

	15.18 Shift Operators
	15.19 Relational Operators
	15.19.1 Numerical Comparison Operators <, <=, >, a...
	15.19.2 Type Comparison Operator instanceof

	15.20 Equality Operators
	15.20.1 Numerical Equality Operators ==�and !=
	15.20.2 Boolean Equality Operators ==�and !=
	15.20.3 Reference Equality Operators ==�and !=

	15.21 Bitwise and Logical Operators
	15.21.1 Integer Bitwise Operators &, ^, and |
	15.21.2 Boolean Logical Operators &, ^, and |

	15.22 Conditional-And Operator &&
	15.23 Conditional-Or Operator ||
	15.24 Conditional Operator ?�:
	15.25 Assignment Operators
	15.25.1 Simple Assignment Operator =
	15.25.2 Compound Assignment Operators

	15.26 Expression
	15.27 Constant Expression

	Definite Assignment
	16.1 Definite Assignment and Expressions
	16.1.1 Boolean Constant Expressions
	16.1.2 Boolean-valued Expressions
	16.1.3 The Boolean Operator &&
	16.1.4 The Boolean Operator ||
	16.1.5 The Boolean Operator !
	16.1.6 The Boolean Operator &
	16.1.7 The Boolean Operator |
	16.1.8 The Boolean Operator ^
	16.1.9 The Boolean Operator ==
	16.1.10 The Boolean Operator !=
	16.1.11 The Boolean Operator ?�:
	16.1.12 The Conditional Operator ?�:
	16.1.13 Boolean Assignment Expressions
	16.1.14 Other Assignment Expressions
	16.1.15 Operators ++ and --
	16.1.16 Other Expressions

	16.2 Definite Assignment and Statements
	16.2.1 Empty Statements
	16.2.2 Blocks
	16.2.3 Local Variable Declaration Statements
	16.2.4 Labeled Statements
	16.2.5 Expression Statements
	16.2.6 if� Statements
	16.2.7 switch� Statements
	16.2.8 while� Statements
	16.2.9 do� Statements
	16.2.10 for� Statements
	16.2.10.1 Initialization Part
	16.2.10.2 Incrementation Part

	16.2.11 break, continue, return, and throw� Statem...
	16.2.12 synchronized� Statements
	16.2.13 try� Statements

	Threads and Locks
	17.1 Terminology and Framework
	17.2 Execution Order
	17.3 Rules about Variables
	17.4 Nonatomic Treatment of double and long
	17.5 Rules about Locks
	17.6 Rules about the Interaction of Locks and Vari...
	17.7 Rules for Volatile Variables
	17.8 Prescient Store Actions
	17.9 Discussion
	17.10 Example: Possible Swap
	17.11 Example: Out-of-Order Writes
	17.12 Threads
	17.13 Locks and Synchronization
	17.14 Wait Sets and Notification

	Documentation Comments
	18.1 The Text of a Documentation Comment
	18.2 HTML in a Documentation Comment
	18.3 Summary Sentence and General Description
	18.4 Tagged Paragraphs
	18.4.1 The @see Tag
	18.4.2 The @author Tag
	18.4.3 The @version Tag
	18.4.4 The @param Tag
	18.4.5 The @return Tag
	18.4.6 The @exception Tag

	18.5 Example

	LALR(1) Grammar
	19.1 Grammatical Difficulties
	19.1.1 Problem #1: Names Too Specific
	19.1.2 Problem #2: Modifiers Too Specific
	19.1.3 Problem #3: Field Declaration versus Method...
	19.1.4 Problem #4: Array Type versus Array Access
	19.1.5 Problem #5: Cast versus Parenthesized Expre...

	19.2 Productions from §2.3: The Syntactic Grammar
	19.3 Productions from §3: Lexical Structure
	19.4 Productions from §4: Types, Values, and Varia...
	19.5 Productions from §6: Names
	19.6 Productions from §7: Packages
	19.7 Productions Used Only in the LALR(1) Grammar
	19.8 Productions from §8: Classes
	19.8.1 Productions from §8.1: Class Declaration
	19.8.2 Productions from §8.3: Field Declarations
	19.8.3 Productions from §8.4: Method Declarations
	19.8.4 Productions from §8.5: Static Initializers
	19.8.5 Productions from §8.6: Constructor Declarat...

	19.9 Productions from §9: Interfaces
	19.9.1 Productions from §9.1: Interface Declaratio...

	19.10 Productions from §10: Arrays
	19.11 Productions from §14: Blocks and Statements
	19.12 Productions from §15: Expressions

	The Package java.lang
	20.1��The Class �java.lang.Object
	20.1.1 public final Class getClass()
	20.1.2 public String toString()
	20.1.3 public boolean equals(Object obj)
	20.1.4 public int hashCode()
	20.1.5 protected Object clone() throws CloneNotSup...
	20.1.6 public final void wait() throws IllegalMoni...
	20.1.7 public final void wait(long millis) throws ...
	20.1.8 public final void wait(long millis, int nan...
	20.1.9 public final void notify() throws IllegalMo...
	20.1.10 public final void notifyAll() throws Illeg...
	20.1.11 protected void finalize() throws Throwable...

	20.2��The Interface �java.lang.Cloneable
	20.3��The Class �java.lang.Class
	20.3.1 public String toString()
	20.3.2 public String getName()
	20.3.3 public boolean isInterface()
	20.3.4 public Class getSuperclass()
	20.3.5 public Class[] getInterfaces()
	20.3.6 public Object newInstance() throws Instanti...
	20.3.7 public ClassLoader getClassLoader()
	20.3.8 public static Class forName(String classNam...

	20.4��The Class �java.lang.Boolean
	20.4.1 public static final Boolean TRUE = new Bool...
	20.4.2 public static final Boolean FALSE = new Boo...
	20.4.3 public Boolean(boolean value)
	20.4.4 public Boolean(String s)
	20.4.5 public String toString()
	20.4.6 public boolean equals(Object obj)
	20.4.7 public int hashCode()
	20.4.8 public boolean booleanValue()
	20.4.9 public static boolean valueOf(String s)
	20.4.10 public static boolean getBoolean(String na...

	20.5��The Class �java.lang.Character
	20.5.1 public static final char MIN_VALUE = '\u000...
	20.5.2 public static final char MAX_VALUE = '\ufff...
	20.5.3 public static final int MIN_RADIX = 2;
	20.5.4 public static final int MAX_RADIX = 36;
	20.5.5 public Character(char value)
	20.5.6 public String toString()
	20.5.7 public boolean equals(Object obj)
	20.5.8 public int hashCode()
	20.5.9 public char charValue()
	20.5.10 public static boolean isDefined(char ch)
	20.5.11 public static boolean isLowerCase(char ch)...
	20.5.12 public static boolean isUpperCase(char ch)...
	20.5.13 public static boolean isTitleCase(char ch)...
	20.5.14 public static boolean isDigit(char ch)
	20.5.15 public static boolean isLetter(char ch)
	20.5.16 public static boolean isLetterOrDigit(char...
	20.5.17 public static boolean isJavaLetter(char ch...
	20.5.18 public static boolean isJavaLetterOrDigit(...
	20.5.19 public static boolean isSpace(char ch)
	20.5.20 public static char toLowerCase(char ch)
	20.5.21 public static char toUpperCase(char ch)
	20.5.22 public static char toTitleCase(char ch)
	20.5.23 public static int digit(char ch, int radix...
	20.5.24 public static char forDigit(int digit, int...

	20.6��The Class �java.lang.Number
	20.6.1 public abstract int intValue()
	20.6.2 public abstract long longValue()
	20.6.3 public abstract float floatValue()
	20.6.4 public abstract double doubleValue()

	20.7��The Class �java.lang.Integer
	20.7.1 public static final int MIN_VALUE = 0x80000...
	20.7.2 public static final int MAX_VALUE = 0x7ffff...
	20.7.3 public Integer(int value)
	20.7.4 public Integer(String s) throws NumberForma...
	20.7.5 public String toString()
	20.7.6 public boolean equals(Object obj)
	20.7.7 public int hashCode()
	20.7.8 public int intValue()
	20.7.9 public long longValue()
	20.7.10 public float floatValue()
	20.7.11 public double doubleValue()
	20.7.12 public static String toString(int i)
	20.7.13 public static String toString(int i, int r...
	20.7.14 public static String toHexString(int i)
	20.7.15 public static String toOctalString(int i)
	20.7.16 public static String toBinaryString(int i)...
	20.7.17 public static int parseInt(String s) throw...
	20.7.18 public static int parseInt(String s, int r...
	20.7.19 public static Integer valueOf(String s) th...
	20.7.20 public static Integer valueOf(String s, in...
	20.7.21 public static Integer getInteger(String nm...
	20.7.22 public static Integer getInteger(String nm...
	20.7.23 public static Integer getInteger(String nm...

	20.8��The Class �java.lang.Long
	20.8.1 public static final long MIN_VALUE = 0x8000...
	20.8.2 public static final long MAX_VALUE = 0x7fff...
	20.8.3 public Long(long value)
	20.8.4 public Long(String s) throws NumberFormatEx...
	20.8.5 public String toString()
	20.8.6 public boolean equals(Object obj)
	20.8.7 public int hashCode()
	20.8.8 public int intValue()
	20.8.9 public long longValue()
	20.8.10 public float floatValue()
	20.8.11 public double doubleValue()
	20.8.12 public static String toString(long i)
	20.8.13 public static String toString(long i, int ...
	20.8.14 public static String toHexString(long i)
	20.8.15 public static String toOctalString(long i)...
	20.8.16 public static String toBinaryString(long i...
	20.8.17 public static long parseLong(String s) thr...
	20.8.18 public static long parseLong(String s, int...
	20.8.19 public static Long valueOf(String s) throw...
	20.8.20 public static Long valueOf(String s, int r...
	20.8.21 public static Long getLong(String nm)
	20.8.22 public static Long getLong(String nm, long...
	20.8.23 public static Long getLong(String nm, Long...

	20.9��The Class �java.lang.Float
	20.9.1 public static final float MIN_VALUE = 1.4e-...
	20.9.2 public static final float MAX_VALUE = 3.402...
	20.9.3 public static final float NEGATIVE_INFINITY...
	20.9.4 public static final float POSITIVE_INFINITY...
	20.9.5 public static final float NaN = 0.0f/0.0f;
	20.9.6 public Float(float value)
	20.9.7 public Float(double value)
	20.9.8 public Float(String s) throws NumberFormatE...
	20.9.9 public String toString()
	20.9.10 public boolean equals(Object obj)
	20.9.11 public int hashCode()
	20.9.12 public int intValue()
	20.9.13 public long longValue()
	20.9.14 public float floatValue()
	20.9.15 public double doubleValue()
	20.9.16 public static String toString(float f)
	20.9.17 public static Float valueOf(String s) thro...
	20.9.18 public boolean isNaN()
	20.9.19 public static boolean isNaN(float v)
	20.9.20 public boolean isInfinite()
	20.9.21 public static boolean isInfinite(float v)
	20.9.22 public static int floatToIntBits(float val...
	20.9.23 public static float intBitsToFloat(int bit...

	20.10��The Class �java.lang.Double
	20.10.1 public static final double MIN_VALUE = 5e-...
	20.10.2 public static final double MAX_VALUE = ���...
	20.10.3 public static final double NEGATIVE_INFINI...
	20.10.4 public static final double POSITIVE_INFINI...
	20.10.5 public static final double NaN = 0.0/0.0;
	20.10.6 public Double(double value)
	20.10.7 public Double(String s) throws NumberForma...
	20.10.8 public String toString()
	20.10.9 public boolean equals(Object obj)
	20.10.10 public int hashCode()
	20.10.11 public int intValue()
	20.10.12 public long longValue()
	20.10.13 public float floatValue()
	20.10.14 public double doubleValue()
	20.10.15 public static String toString(double d)
	20.10.16 public static Double valueOf(String s) th...
	20.10.17 public boolean isNaN()
	20.10.18 public static boolean isNaN(double v)
	20.10.19 public boolean isInfinite()
	20.10.20 public static boolean isInfinite(double v...
	20.10.21 public static long doubleToLongBits(doubl...
	20.10.22 public static double longBitsToDouble(lon...

	20.11��The Class �java.lang.Math
	20.11.1 public static final double E = 2.718281828...
	20.11.2 public static final double PI = 3.14159265...
	20.11.3 public static double sin(double a)
	20.11.4 public static double cos(double a)
	20.11.5 public static double tan(double a)
	20.11.6 public static double asin(double a)
	20.11.7 public static double acos(double a)
	20.11.8 public static double atan(double a)
	20.11.9 public static double atan2(double y, doubl...
	20.11.10 public static double exp(double a)
	20.11.11 public static double log(double a)
	20.11.12 public static double sqrt(double a)
	20.11.13 public static double pow(double a, double...
	20.11.14 public static double IEEEremainder(double...
	20.11.15 public static double ceil(double a)
	20.11.16 public static double floor(double a)
	20.11.17 public static double rint(double a)
	20.11.18 public static int round(float a)
	20.11.19 public static long round(double a)
	20.11.20 public static double random()
	20.11.21 public static int abs(int a)
	20.11.22 public static long abs(long a)
	20.11.23 public static float abs(float a)
	20.11.24 public static double abs(double a)
	20.11.25 public static int min(int a, int b)
	20.11.26 public static long min(long a, long b)
	20.11.27 public static float min(float a, float b)...
	20.11.28 public static double min(double a, double...
	20.11.29 public static int max(int a, int b)
	20.11.30 public static long max(long a, long b)
	20.11.31 public static float max(float a, float b)...
	20.11.32 public static double max(double a, double...

	20.12��The Class �java.lang.String
	20.12.1 public String()
	20.12.2 public String(String value)
	20.12.3 public String(StringBuffer buffer) throws ...
	20.12.4 public String(char[] data) throws NullPoin...
	20.12.5 public String(char[] data, int offset, int...
	20.12.6 public String(byte[] ascii, int hibyte) th...
	20.12.7 public String(byte[] ascii, int hibyte, ��...
	20.12.8 public String toString()
	20.12.9 public boolean equals(Object anObject)
	20.12.10 public int hashCode()
	20.12.11 public int length()
	20.12.12 public char charAt(int index) throws Inde...
	20.12.13 public void getChars(int srcBegin, int sr...
	20.12.14 public void getBytes(int srcBegin, int sr...
	20.12.15 public char[] toCharArray()
	20.12.16 public boolean equalsIgnoreCase(String an...
	20.12.17 public int compareTo(String anotherString...
	20.12.18 public boolean regionMatches(int toffset,...
	20.12.19 public boolean regionMatches(boolean igno...
	20.12.20 public boolean startsWith(String prefix) ...
	20.12.21 public boolean startsWith(String prefix, ...
	20.12.22 public boolean endsWith(String suffix) th...
	20.12.23 public int indexOf(int ch)
	20.12.24 public int indexOf(int ch, int fromIndex)...
	20.12.25 public int indexOf(String str) throws Nul...
	20.12.26 public int indexOf(String str, int fromIn...
	20.12.27 public int lastIndexOf(int ch)
	20.12.28 public int lastIndexOf(int ch, int fromIn...
	20.12.29 public int lastIndexOf(String str) throws...
	20.12.30 public int lastIndexOf(String str, int fr...
	20.12.31 public String substring(int beginIndex) t...
	20.12.32 public String substring(int beginIndex, i...
	20.12.33 public String concat(String str) throws N...
	20.12.34 public String replace(char oldChar, char ...
	20.12.35 public String toLowerCase()
	20.12.36 public String toUpperCase()
	20.12.37 public String trim()
	20.12.38 public static String valueOf(Object obj)
	20.12.39 public static String valueOf(char[] data)...
	20.12.40 public static String valueOf(char[] data,...
	20.12.41 public static String valueOf(boolean b)
	20.12.42 public static String valueOf(char c)
	20.12.43 public static String valueOf(int i)
	20.12.44 public static String valueOf(long l)
	20.12.45 public static String valueOf(float f)
	20.12.46 public static String valueOf(double d)
	20.12.47 public String intern()

	20.13��The Class �java.lang.StringBuffer
	20.13.1 public StringBuffer()
	20.13.2 public StringBuffer(int length) throws Neg...
	20.13.3 public StringBuffer(String str)
	20.13.4 public String toString()
	20.13.5 public int length()
	20.13.6 public int capacity()
	20.13.7 public void ensureCapacity(int minimumCapa...
	20.13.8 public void setLength(int newLength) throw...
	20.13.9 public char charAt(int index) throws Index...
	20.13.10 public void setCharAt(int index, char ch)...
	20.13.11 public void getChars(int srcBegin, int sr...
	20.13.12 public StringBuffer append(Object obj)
	20.13.13 public StringBuffer append(String str)
	20.13.14 public StringBuffer append(char[] str) th...
	20.13.15 public StringBuffer append(char[] str, ��...
	20.13.16 public StringBuffer append(boolean b)
	20.13.17 public StringBuffer append(char c)
	20.13.18 public StringBuffer append(int i)
	20.13.19 public StringBuffer append(long l)
	20.13.20 public StringBuffer append(float f)
	20.13.21 public StringBuffer append(double d)
	20.13.22 public StringBuffer insert(int offset, Ob...
	20.13.23 public StringBuffer insert(int offset, St...
	20.13.24 public StringBuffer insert(int offset, ch...
	20.13.25 public StringBuffer insert(int offset, bo...
	20.13.26 public StringBuffer insert(int offset, ch...
	20.13.27 public StringBuffer insert(int offset, in...
	20.13.28 public StringBuffer insert(int offset, lo...
	20.13.29 public StringBuffer insert(int offset, fl...
	20.13.30 public StringBuffer insert(int offset, do...
	20.13.31 public StringBuffer reverse()

	20.14��The Class �java.lang.ClassLoader
	20.14.1 protected ClassLoader() throws SecurityExc...
	20.14.2 protected abstract Class loadClass(String ...
	20.14.3 protected final Class defineClass(byte dat...
	20.14.4 protected final void resolveClass(Class c)...
	20.14.5 protected final Class findSystemClass(Stri...

	20.15��The Class �java.lang.Process
	20.15.1 public abstract OutputStream getOutputStre...
	20.15.2 public abstract InputStream getInputStream...
	20.15.3 public abstract InputStream getErrorStream...
	20.15.4 public abstract int waitFor() throws Inter...
	20.15.5 public abstract int exitValue() throws Ill...
	20.15.6 public abstract void destroy()

	20.16��The Class �java.lang.Runtime
	20.16.1 public static Runtime getRuntime()
	20.16.2 public void exit(int status) throws Securi...
	20.16.3 public Process exec(String command) throws...
	20.16.4 public Process exec(String command, String...
	20.16.5 public Process exec(String cmdarray[]) thr...
	20.16.6 public Process exec(String cmdarray[], Str...
	20.16.7 public long totalMemory()
	20.16.8 public long freeMemory()
	20.16.9 public void gc()
	20.16.10 public void runFinalization()
	20.16.11 public void traceInstructions(boolean on)...
	20.16.12 public void traceMethodCalls(boolean on)
	20.16.13 public void load(String filename)
	20.16.14 public void loadLibrary(String libname)
	20.16.15 public InputStream getLocalizedInputStrea...
	20.16.16 public OutputStream getLocalizedOutputStr...

	20.17��The Class java.lang.SecurityManager
	20.17.1 protected boolean inCheck = false;
	20.17.2 protected SecurityManager() throws Securit...
	20.17.3 protected Class[] getClassContext()
	20.17.4 protected int classDepth(String name)
	20.17.5 protected boolean inClass(String name)
	20.17.6 protected ClassLoader currentClassLoader()...
	20.17.7 protected int classLoaderDepth()
	20.17.8 protected boolean inClassLoader()
	20.17.9 public boolean getInCheck()
	20.17.10 public void checkCreateClassLoader() thro...
	20.17.11 public void checkAccess(Thread t) throws ...
	20.17.12 public void checkAccess(ThreadGroup g) th...
	20.17.13 public void checkExit(int status) throws ...
	20.17.14 public void checkExec(String cmd) throws ...
	20.17.15 public void checkPropertiesAccess() throw...
	20.17.16 public void checkPropertyAccess(String ke...
	20.17.17 public void checkLink(String libname) thr...
	20.17.18 public void checkRead(int fd) throws Secu...
	20.17.19 public void checkRead(String file) throws...
	20.17.20 public void checkWrite(int fd) throws Sec...
	20.17.21 public void checkWrite(String file) throw...
	20.17.22 public void checkDelete(String file) thro...
	20.17.23 public void checkConnect(String host, int...
	20.17.24 public void checkListen(int port) throws ...
	20.17.25 public void checkAccept(String host, int ...
	20.17.26 public void checkSetFactory() throws Secu...
	20.17.27 public boolean checkTopLevelWindow() thro...
	20.17.28 public void checkPackageAccess(String pac...
	20.17.29 public void checkPackageDefinition(String...

	20.18��The Class java.lang.System
	20.18.1 public static InputStream in;
	20.18.2 public static PrintStream out;
	20.18.3 public static PrintStream err;
	20.18.4 public static SecurityManager getSecurityM...
	20.18.5 public static void setSecurityManager(Secu...
	20.18.6 public static long currentTimeMillis()
	20.18.7 public static Properties getProperties() t...
	20.18.8 public static void setProperties(Propertie...
	20.18.9 public static String getProperty(String ke...
	20.18.10 public static String getProperty(String k...
	20.18.11 public static void exit(int status) throw...
	20.18.12 public static void gc()
	20.18.13 public static void runFinalization()
	20.18.14 public static void load(String filename) ...
	20.18.15 public static void loadLibrary(String lib...
	20.18.16 public static void arraycopy(Object src, ...

	20.19��The Interface java.lang.Runnable
	20.19.1 public abstract void run()

	20.20��The Class java.lang.Thread
	20.20.1 public final static int MIN_PRIORITY = 1;
	20.20.2 public final static int MAX_PRIORITY = 10;...
	20.20.3 public final static int NORM_PRIORITY = 5;...
	20.20.4 public Thread()
	20.20.5 public Thread(String name)
	20.20.6 public Thread(Runnable runObject)
	20.20.7 public Thread(Runnable runObject, String n...
	20.20.8 public Thread(ThreadGroup group, String na...
	20.20.9 public Thread(ThreadGroup group, Runnable ...
	20.20.10 public Thread(ThreadGroup group, Runnable...
	20.20.11 public String toString()
	20.20.12 public void checkAccess() throws Security...
	20.20.13 public void run()
	20.20.14 public void start() throws IllegalThreadS...
	20.20.15 public final void stop() throws SecurityE...
	20.20.16 public final void stop(Throwable thr) thr...
	20.20.17 public final void suspend() throws Securi...
	20.20.18 public final void resume() throws Securit...
	20.20.19 public final String getName()
	20.20.20 public final void setName(String name) th...
	20.20.21 public final ThreadGroup getThreadGroup()...
	20.20.22 public final int getPriority()
	20.20.23 public final void setPriority(int newPrio...
	20.20.24 public final boolean isDaemon()
	20.20.25 public final void setDaemon(boolean on) t...
	20.20.26 public final boolean isAlive()
	20.20.27 public int countStackFrames()
	20.20.28 public final void join() throws Interrupt...
	20.20.29 public final void join(long millis) throw...
	20.20.30 public final void join(long millis, int n...
	20.20.31 public void interrupt()
	20.20.32 public boolean isInterrupted()
	20.20.33 public static boolean interrupted()
	20.20.34 public static Thread currentThread()
	20.20.35 public static int activeCount()
	20.20.36 public static int enumerate(Thread tarray...
	20.20.37 public static void dumpStack()
	20.20.38 public static void yield()
	20.20.39 public static void sleep(long millis) thr...
	20.20.40 public static void sleep(long millis, int...
	20.20.41 public void destroy() throws SecurityExce...

	20.21��The Class java.lang.ThreadGroup
	20.21.1 public ThreadGroup(String name) throws Sec...
	20.21.2 public ThreadGroup(ThreadGroup parent, Str...
	20.21.3 public String toString()
	20.21.4 public final void checkAccess()
	20.21.5 public final String getName()
	20.21.6 public final ThreadGroup getParent()
	20.21.7 public final boolean parentOf(ThreadGroup ...
	20.21.8 public final void stop() throws SecurityEx...
	20.21.9 public final void suspend() throws Securit...
	20.21.10 public final void resume() throws Securit...
	20.21.11 public final void destroy() throws Securi...
	20.21.12 public final int getMaxPriority()
	20.21.13 public final void setMaxPriority(int newM...
	20.21.14 public final boolean isDaemon()
	20.21.15 public final void setDaemon(boolean daemo...
	20.21.16 public int threadsCount()
	20.21.17 public int allThreadsCount()
	20.21.18 public int groupsCount()
	20.21.19 public int allGroupsCount()
	20.21.20 public Thread[] threads()
	20.21.21 public Thread[] allThreads()
	20.21.22 public ThreadGroup[] groups()
	20.21.23 public ThreadGroup[] allGroups()
	20.21.24 public int activeCount()
	20.21.25 public int activeGroupCount()
	20.21.26 public int enumerate(Thread list[])
	20.21.27 public int enumerate(Thread list[], boole...
	20.21.28 public int enumerate(ThreadGroup list[])
	20.21.29 public int enumerate(ThreadGroup list[], ...
	20.21.30 public void list()
	20.21.31 public void uncaughtException(Thread t, T...

	20.22��The Class java.lang.Throwable and its Subcl...
	20.22.1 public Throwable()
	20.22.2 public Throwable(String message)
	20.22.3 public String getMessage()
	20.22.4 public String toString()
	20.22.5 public Throwable fillInStackTrace()
	20.22.6 public void printStackTrace()

	20.23��The Class java.lang.ExceptionInInitializerE...
	20.23.1 public ExceptionInInitializerError()
	20.23.2 public ExceptionInInitializerError(String ...
	20.23.3 public ExceptionInInitializerError(Throwab...
	20.23.4 public Throwable getException(Throwable th...

	The Package java.util
	21.1��The Interface java.util.Enumeration
	21.1.1 public boolean hasMoreElements()
	21.1.2 public Object nextElement() throws NoSuchEl...

	21.2��The Class java.util.BitSet
	21.2.1 public BitSet()
	21.2.2 public BitSet(int nbits)
	21.2.3 public String toString()
	21.2.4 public boolean equals(Object obj)
	21.2.5 public int hashCode()
	21.2.6 public Object clone()
	21.2.7 public boolean get(int bitIndex)
	21.2.8 public void set(int bitIndex)
	21.2.9 public void clear(int bitIndex)
	21.2.10 public void and(BitSet set)
	21.2.11 public void or(BitSet set)
	21.2.12 public void xor(BitSet set)
	21.2.13 public int size()

	21.3��The Class java.util.Date
	21.3.1 public Date()
	21.3.2 public Date(long time)
	21.3.3 public Date(int year, int month, int date)
	21.3.4 public Date(int year, int month, int date, ...
	21.3.5 public Date(int year, int month, int date, ...
	21.3.6 public Date(String s) throws IllegalArgumen...
	21.3.7 public String toString()
	21.3.8 public boolean equals(Object obj)
	21.3.9 public int hashCode()
	21.3.10 public int getYear()
	21.3.11 public void setYear(int year)
	21.3.12 public int getMonth()
	21.3.13 public void setMonth(int month)
	21.3.14 public int getDate()
	21.3.15 public void setDate(int date)
	21.3.16 public int getDay()
	21.3.17 public int getHours()
	21.3.18 public void setHours(int hours)
	21.3.19 public int getMinutes()
	21.3.20 public void setMinutes(int minutes)
	21.3.21 public int getSeconds()
	21.3.22 public void setSeconds(int seconds)
	21.3.23 public long getTime()
	21.3.24 public void setTime(long time)
	21.3.25 public boolean before(Date when)
	21.3.26 public boolean after(Date when)
	21.3.27 public String toLocaleString()
	21.3.28 public String toGMTString()
	21.3.29 public int getTimezoneOffset()
	21.3.30 public static long UTC(int year, int month...
	21.3.31 public static long parse(String s) throws ...

	21.4��The Class java.util.Dictionary
	21.4.1 abstract public int size()
	21.4.2 abstract public boolean isEmpty()
	21.4.3 abstract public Object get(Object key) thro...
	21.4.4 abstract public Object put(Object key, Obje...
	21.4.5 abstract public Object remove(Object key) t...
	21.4.6 abstract public Enumeration keys()
	21.4.7 abstract public Enumeration elements()

	21.5��The Class java.util.Hashtable
	21.5.1 public Hashtable(int initialCapacity, float...
	21.5.2 public Hashtable(int initialCapacity)
	21.5.3 public Hashtable()
	21.5.4 public String toString()
	21.5.5 public Object clone()
	21.5.6 public int size()
	21.5.7 public boolean isEmpty()
	21.5.8 public Object get(Object key)
	21.5.9 public Object put(Object key, Object value)...
	21.5.10 public Object remove(Object key)
	21.5.11 public Enumeration keys()
	21.5.12 public Enumeration elements()
	21.5.13 public boolean contains(Object value)
	21.5.14 public boolean containsKey(Object key)
	21.5.15 protected void rehash()
	21.5.16 public void clear()

	21.6��The Class java.util.Properties
	21.6.1 protected Properties defaults;
	21.6.2 public Properties()
	21.6.3 public Properties(Properties defaults)
	21.6.4 public String getProperty(String key)
	21.6.5 public String getProperty(String key, ���St...
	21.6.6 public Enumeration propertyNames()
	21.6.7 public void load(InputStream in) throws IOE...
	21.6.8 public void save(OutputStream out, String h...
	21.6.9 public void list(PrintStream out)

	21.7��The Class java.util.Observable
	21.7.1 public void addObserver(Observer o)
	21.7.2 public void deleteObserver(Observer o)
	21.7.3 public void deleteObservers()
	21.7.4 public int countObservers()
	21.7.5 public void notifyObservers()
	21.7.6 public void notifyObservers(Object arg)
	21.7.7 protected void setChanged()
	21.7.8 protected void clearChanged()
	21.7.9 public boolean hasChanged()

	21.8��The Interface java.util.Observer
	21.8.1 public void update(Observable o, Object arg...

	21.9��The Class java.util.Random
	21.9.1 protected long seed;
	21.9.2 protected double nextNextGaussian;
	21.9.3 protected boolean haveNextNextGaussian = fa...
	21.9.4 public Random()
	21.9.5 public Random(long seed)
	21.9.6 public void setSeed(long seed)
	21.9.7 protected int next(int bits)
	21.9.8 public int nextInt()
	21.9.9 public long nextLong()
	21.9.10 public float nextFloat()
	21.9.11 public double nextDouble()
	21.9.12 public double nextGaussian()

	21.10��The Class java.util.StringTokenizer
	21.10.1 public StringTokenizer(String str, String ...
	21.10.2 public StringTokenizer(String str, String ...
	21.10.3 public StringTokenizer(String str)
	21.10.4 public boolean hasMoreTokens()
	21.10.5 public String nextToken()
	21.10.6 public String nextToken(String delim)
	21.10.7 public boolean hasMoreElements()
	21.10.8 public Object nextElement()
	21.10.9 public int countTokens()

	21.11��The Class java.util.Vector
	21.11.1 protected Object[] elementData;
	21.11.2 protected int elementCount;
	21.11.3 protected int capacityIncrement;
	21.11.4 public Vector(int initialCapacity, int cap...
	21.11.5 public Vector(int initialCapacity)
	21.11.6 public Vector()
	21.11.7 public final String toString()
	21.11.8 public Object clone()
	21.11.9 public final Object elementAt(int index) t...
	21.11.10 public final void setElementAt(Object obj...
	21.11.11 public final Object firstElement() throws...
	21.11.12 public final Object lastElement() throws ...
	21.11.13 public final void addElement(Object obj)
	21.11.14 public final void insertElementAt(Object ...
	21.11.15 public final boolean removeElement(Object...
	21.11.16 public final void removeElementAt(int ind...
	21.11.17 public final void removeAllElements()
	21.11.18 public final boolean isEmpty()
	21.11.19 public final int size()
	21.11.20 public final void setSize(int newSize)
	21.11.21 public final int capacity()
	21.11.22 public final void ensureCapacity(int minC...
	21.11.23 public final void trimToSize()
	21.11.24 public final void copyInto(Object anArray...
	21.11.25 public final Enumeration elements()
	21.11.26 public final boolean contains(Object elem...
	21.11.27 public final int indexOf(Object elem)
	21.11.28 public final int indexOf(Object elem, int...
	21.11.29 public final int lastIndexOf(Object elem)...
	21.11.30 public final int lastIndexOf(Object elem,...

	21.12��The Class java.util.Stack
	21.12.1 public Object push(Object item)
	21.12.2 public Object pop() throws EmptyStackExcep...
	21.12.3 public Object peek() throws EmptyStackExce...
	21.12.4 public boolean empty()
	21.12.5 public int search(Object o)

	21.13��The Class java.util.EmptyStackException
	21.13.1 public EmptyStackException()

	21.14��The Class java.util.NoSuchElementException
	21.14.1 public NoSuchElementException()
	21.14.2 public NoSuchElementException(String s)

	The Package java.io
	22.1��The Interface java.io.DataInput
	22.1.1 public void readFully(byte[] b) throws IOEx...
	22.1.2 public void readFully(byte[] b, int off, in...
	22.1.3 public int skipBytes(int n) throws IOExcept...
	22.1.4 public boolean readBoolean() throws IOExcep...
	22.1.5 public byte readByte() throws IOException
	22.1.6 public int readUnsignedByte() throws IOExce...
	22.1.7 public short readShort() throws IOException...
	22.1.8 public int readUnsignedShort() throws IOExc...
	22.1.9 public char readChar() throws IOException
	22.1.10 public int readInt() throws IOException
	22.1.11 public long readLong() throws IOException
	22.1.12 public float readFloat() throws IOExceptio...
	22.1.13 public double readDouble() throws IOExcept...
	22.1.14 public String readLine() throws IOExceptio...
	22.1.15 public String readUTF() throws IOException...

	22.2��The Interface java.io.DataOutput
	22.2.1 public void write(int b) throws IOException...
	22.2.2 public void write(byte[] b) throws IOExcept...
	22.2.3 public void write(byte[] b, int off, int le...
	22.2.4 public void writeBoolean(boolean v) throws ...
	22.2.5 public void writeByte(int v) throws IOExcep...
	22.2.6 public void writeShort(int v) throws IOExce...
	22.2.7 public void writeChar(int v) throws IOExcep...
	22.2.8 public void writeInt(int v) throws IOExcept...
	22.2.9 public void writeLong(long v) throws IOExce...
	22.2.10 public void writeFloat(float v) throws IOE...
	22.2.11 public void writeDouble(double v) throws I...
	22.2.12 public void writeBytes(String s) throws IO...
	22.2.13 public void writeChars(String s) throws IO...
	22.2.14 public void writeUTF(String s) throws IOEx...

	22.3��The Class java.io.InputStream
	22.3.1 public abstract int read() throws IOExcepti...
	22.3.2 public int read(byte[] b) throws IOExceptio...
	22.3.3 public int read(byte[] b, int off, int len)...
	22.3.4 public long skip(long n) throws IOException...
	22.3.5 public int available() throws IOException
	22.3.6 public int close() throws IOException
	22.3.7 public void mark(int readlimit)
	22.3.8 public void reset() throws IOException
	22.3.9 public boolean markSupported()

	22.4��The Class java.io.FileInputStream
	22.4.1 public FileInputStream(String path) throws ...
	22.4.2 public FileInputStream(File file) throws Se...
	22.4.3 public FileInputStream(FileDescriptor fdObj...
	22.4.4 public final FileDescriptor getFD() throws ...
	22.4.5 public int read() throws IOException;
	22.4.6 public int read(byte[] b) throws IOExceptio...
	22.4.7 public int read(byte[] b, int off, int len)...
	22.4.8 public long skip(long n) throws IOException...
	22.4.9 public int available() throws IOException
	22.4.10 public void close() throws IOException
	22.4.11 protected void finalize() throws IOExcepti...

	22.5��The Class java.io.PipedInputStream
	22.5.1 public PipedInputStream(PipedOutputStream s...
	22.5.2 public PipedInputStream()
	22.5.3 public void connect(PipedOutputStream src) ...
	22.5.4 public int read() throws IOException
	22.5.5 public int read(byte[] b, int off, int len)...
	22.5.6 public void close() throws IOException

	22.6��The Class java.io.ByteArrayInputStream
	22.6.1 protected byte[] buf;
	22.6.2 protected int pos;
	22.6.3 protected int count;
	22.6.4 public ByteArrayInputStream(byte[] buf)
	22.6.5 public ByteArrayInputStream(byte[] buf, int...
	22.6.6 public int read() throws NullPointerExcepti...
	22.6.7 public int read(byte[] b, int off, int len)...
	22.6.8 public long skip(long n)
	22.6.9 public int available()
	22.6.10 public void reset()

	22.7��The Class java.io.StringBufferInputStream
	22.7.1 protected String buffer;
	22.7.2 protected int pos;
	22.7.3 protected int count;
	22.7.4 public StringBufferInputStream(String s) th...
	22.7.5 public int read()
	22.7.6 public int read(byte[] b, int off, int len)...
	22.7.7 public long skip(long n)
	22.7.8 public int available()
	22.7.9 public void reset()

	22.8��The Class java.io.SequenceInputStream
	22.8.1 public SequenceInputStream(Enumeration e)
	22.8.2 public SequenceInputStream(InputStream s1, ...
	22.8.3 public int read() throws IOException
	22.8.4 public int read(byte[] buf, int pos, int le...
	22.8.5 public void close() throws IOException

	22.9��The Class java.io.FilterInputStream
	22.9.1 protected InputStream in;
	22.9.2 protected FilterInputStream(InputStream in)...
	22.9.3 public int read() throws IOException
	22.9.4 public int read(byte[] b) throws IOExceptio...
	22.9.5 public int read(byte[] b, int off, int len)...
	22.9.6 public long skip(long n) throws IOException...
	22.9.7 public int available() throws IOException
	22.9.8 public void close() throws IOException
	22.9.9 public void mark(int readlimit)
	22.9.10 public void reset() throws IOException
	22.9.11 public boolean markSupported()

	22.10��The Class java.io.BufferedInputStream
	22.10.1 protected byte[] buf;
	22.10.2 protected int count = 0;
	22.10.3 protected int pos = 0;
	22.10.4 protected int markpos = -1;
	22.10.5 protected int marklimit;
	22.10.6 public BufferedInputStream(InputStream in)...
	22.10.7 public BufferedInputStream(InputStream in,...
	22.10.8 public int read() throws IOException
	22.10.9 public int read(byte[] b) throws IOExcepti...
	22.10.10 public int read(byte[] b, int off, int le...
	22.10.11 public long skip(long n) throws IOExcepti...
	22.10.12 public int available() throws IOException...
	22.10.13 public void mark(int readlimit)
	22.10.14 public void reset() throws IOException
	22.10.15 public boolean markSupported()

	22.11��The Class java.io.DataInputStream
	22.11.1 public DataInputStream(InputStream in)
	22.11.2 public final void readFully(byte[] b) thro...
	22.11.3 public final void readFully(byte[] b, int ...
	22.11.4 public final int skipBytes(int n) throws I...
	22.11.5 public final boolean readBoolean() throws ...
	22.11.6 public final byte readByte() throws IOExce...
	22.11.7 public final int readUnsignedByte() throws...
	22.11.8 public final short readShort() throws IOEx...
	22.11.9 public final int readUnsignedShort() throw...
	22.11.10 public final char readChar() throws IOExc...
	22.11.11 public final int readInt() throws IOExcep...
	22.11.12 public final long readLong() throws IOExc...
	22.11.13 public final float readFloat() throws IOE...
	22.11.14 public final double readDouble() throws I...
	22.11.15 public final String readLine() throws IOE...
	22.11.16 public final String readUTF() throws IOEx...
	22.11.17 public final static String readUTF(DataIn...

	22.12��The Class java.io.LineNumberInputStream
	22.12.1 public LineNumberInputStream(InputStream i...
	22.12.2 public int read() throws IOException
	22.12.3 public int read(byte[] b) throws IOExcepti...
	22.12.4 public int read(byte[] b, int off, int len...
	22.12.5 public long skip(long n) throws IOExceptio...
	22.12.6 public int available() throws IOException
	22.12.7 public void mark(int readlimit)
	22.12.8 public void reset() throws IOException
	22.12.9 public int getLineNumber()
	22.12.10 public void setLineNumber(int lineNumber)...

	22.13��The Class java.io.PushbackInputStream
	22.13.1 protected int pushBack = -1;
	22.13.2 public PushbackInputStream(InputStream in)...
	22.13.3 public int read() throws IOException
	22.13.4 public int read(byte[] bytes, int offset, ...
	22.13.5 public void unread(int b) throws IOExcepti...
	22.13.6 public int available() throws IOException
	22.13.7 public boolean markSupported()

	22.14��The Class java.io.StreamTokenizer
	22.14.1 public static final int TT_EOF = -1;
	22.14.2 public static final int TT_EOL = '\n';
	22.14.3 public static final int TT_NUMBER = -2;
	22.14.4 public static final int TT_WORD = -3;
	22.14.5 public int ttype;
	22.14.6 public String sval;
	22.14.7 public double nval;
	22.14.8 public StreamTokenizer(InputStream in)
	22.14.9 public void resetSyntax()
	22.14.10 public void wordChars(int low, int hi)
	22.14.11 public void whitespaceChars(int low, int ...
	22.14.12 public void ordinaryChars(int low, int hi...
	22.14.13 public void ordinaryChar(int ch)
	22.14.14 public void commentChar(int ch)
	22.14.15 public void quoteChar(int ch)
	22.14.16 public void parseNumbers()
	22.14.17 public void eolIsSignificant(boolean flag...
	22.14.18 public void slashStarComments(boolean fla...
	22.14.19 public void slashSlashComments(boolean fl...
	22.14.20 public void lowerCaseMode(boolean flag)
	22.14.21 public int nextToken() throws IOException...
	22.14.22 public void pushBack()
	22.14.23 public int lineno()
	22.14.24 public String toString()

	22.15��The Class java.io.OutputStream
	22.15.1 public abstract void write(int b) throws I...
	22.15.2 public void write(byte[] b) throws IOExcep...
	22.15.3 public void write(byte[] b, int off, int l...
	22.15.4 public void flush() throws IOException
	22.15.5 public void close() throws IOException

	22.16��The Class java.io.FileOutputStream
	22.16.1 public FileOutputStream(String path) throw...
	22.16.2 public FileOutputStream(File file) throws ...
	22.16.3 public FileOutputStream(FileDescriptor fdO...
	22.16.4 public final FileDescriptor getFD() throws...
	22.16.5 public void write(int b) throws IOExceptio...
	22.16.6 public void write(byte[] b) throws IOExcep...
	22.16.7 public void write(byte[] b, int off, int l...
	22.16.8 public void close() throws IOException
	22.16.9 protected void finalize() throws IOExcepti...

	22.17��The Class java.io.PipedOutputStream
	22.17.1 public PipedOutputStream(PipedInputStream ...
	22.17.2 public PipedOutputStream()
	22.17.3 public void connect(PipedInputStream snk) ...
	22.17.4 public void write(int b) throws IOExceptio...
	22.17.5 public void write(byte[] b, int off, int l...
	22.17.6 public void close() throws IOException

	22.18��The Class java.io.ByteArrayOutputStream
	22.18.1 protected byte[] buf;
	22.18.2 protected int count;
	22.18.3 public ByteArrayOutputStream()
	22.18.4 public ByteArrayOutputStream(int size)
	22.18.5 public void write(int b)
	22.18.6 public void write(byte[] b, int off, int l...
	22.18.7 public int size()
	22.18.8 public void reset()
	22.18.9 public byte[] toByteArray()
	22.18.10 public String toString()
	22.18.11 public String toString(int hibyte)
	22.18.12 public void writeTo(OutputStream out) thr...

	22.19��The Class java.io.FilterOutputStream
	22.19.1 protected OutputStream out;
	22.19.2 public FilterOutputStream(OutputStream out...
	22.19.3 public void write(int b) throws IOExceptio...
	22.19.4 public void write(byte[] b) throws IOExcep...
	22.19.5 public void write(byte[] b, int off, int l...
	22.19.6 public void flush() throws IOException
	22.19.7 public void close() throws IOException

	22.20��The Class java.io.BufferedOutputStream
	22.20.1 protected byte[] buf;
	22.20.2 protected int count;
	22.20.3 public BufferedOutputStream(OutputStream o...
	22.20.4 public BufferedOutputStream(OutputStream o...
	22.20.5 public void write(int b) throws IOExceptio...
	22.20.6 public void write(byte[] b) throws IOExcep...
	22.20.7 public void write(byte[] b, int off, int l...
	22.20.8 public void flush() throws IOException

	22.21��The Class java.io.DataOutputStream
	22.21.1 protected int written;
	22.21.2 public DataOutputStream(OutputStream out)
	22.21.3 public void write(int b) throws IOExceptio...
	22.21.4 public void write(byte[] b, int off, int l...
	22.21.5 public void flush() throws IOException
	22.21.6 public final void writeBoolean(boolean v) ...
	22.21.7 public final void writeByte(int v) throws ...
	22.21.8 public final void writeShort(int v) throws...
	22.21.9 public final void writeChar(int v) throws ...
	22.21.10 public final void writeInt(int v) throws ...
	22.21.11 public final void writeLong(long v) throw...
	22.21.12 public final void writeFloat(float v) thr...
	22.21.13 public final void writeDouble(double v) t...
	22.21.14 public final void writeBytes(String s) th...
	22.21.15 public final void writeChars(String s) th...
	22.21.16 public final void writeUTF(String str) th...
	22.21.17 public final int size()

	22.22��The Class java.io.PrintStream
	22.22.1 public PrintStream(OutputStream out)
	22.22.2 public PrintStream(OutputStream out, boole...
	22.22.3 public void write(int b)
	22.22.4 public void write(byte[] b, int off, int l...
	22.22.5 public void flush()
	22.22.6 public void close()
	22.22.7 public boolean checkError()
	22.22.8 public void print(Object obj)
	22.22.9 public void print(String s)
	22.22.10 public void print(char[] s) throws NullPo...
	22.22.11 public void print(boolean b)
	22.22.12 public void print(char c)
	22.22.13 public void print(int i)
	22.22.14 public void print(long l)
	22.22.15 public void print(float f)
	22.22.16 public void print(double d)
	22.22.17 public void println()
	22.22.18 public void println(Object obj)
	22.22.19 public void println(String s)
	22.22.20 public void println(char[] s) throws Null...
	22.22.21 public void println(boolean b)
	22.22.22 public void println(char c)
	22.22.23 public void println(int i)
	22.22.24 public void println(long l)
	22.22.25 public void println(float f)
	22.22.26 public void println(double d)

	22.23��The Class java.io.RandomAccessFile
	22.23.1 public RandomAccessFile(String path, Strin...
	22.23.2 public RandomAccessFile(File file, String ...
	22.23.3 public final FileDescriptor getFD() throws...
	22.23.4 public long getFilePointer() throws IOExce...
	22.23.5 public void seek(long pos) throws IOExcept...
	22.23.6 public long length() throws IOException
	22.23.7 public void close() throws IOException
	22.23.8 public int read() throws IOException
	22.23.9 public int read(byte[] b) throws IOExcepti...
	22.23.10 public int read(byte[] b, int off, int le...
	22.23.11 public final void readFully(byte[] b) thr...
	22.23.12 public final void readFully(byte[] b, int...
	22.23.13 public int skipBytes(int n) throws IOExce...
	22.23.14 public final boolean readBoolean() throws...
	22.23.15 public final byte readByte() throws IOExc...
	22.23.16 public final int readUnsignedByte() throw...
	22.23.17 public final short readShort() throws IOE...
	22.23.18 public final int readUnsignedShort() thro...
	22.23.19 public final char readChar() throws IOExc...
	22.23.20 public final int readInt() throws IOExcep...
	22.23.21 public final long readLong() throws IOExc...
	22.23.22 public final float readFloat() throws IOE...
	22.23.23 public final double readDouble() throws I...
	22.23.24 public final String readLine() throws IOE...
	22.23.25 public final String readUTF() throws IOEx...
	22.23.26 public void write(int b) throws IOExcepti...
	22.23.27 public void write(byte[] b) throws IOExce...
	22.23.28 public void write(byte[] b, int off, int ...
	22.23.29 public final void writeBoolean(boolean v)...
	22.23.30 public final void writeByte(int v) throws...
	22.23.31 public final void writeShort(int v) throw...
	22.23.32 public final void writeChar(int v) throws...
	22.23.33 public final void writeInt(int v) throws ...
	22.23.34 public final void writeLong(long v) throw...
	22.23.35 public final void writeFloat(float v) thr...
	22.23.36 public final void writeDouble(double v) t...
	22.23.37 public final void writeBytes(String s) th...
	22.23.38 public final void writeChars(String s) th...
	22.23.39 public final void writeUTF(String str) th...

	22.24��The Class java.io.File
	22.24.1 public static final String separator = Sys...
	22.24.2 public static final char separatorChar = s...
	22.24.3 public static final String pathSeparator =...
	22.24.4 public static final char pathSeparatorChar...
	22.24.5 public File(String path) throws NullPointe...
	22.24.6 public File(String dirname, String name) t...
	22.24.7 public File(File dir, String name) throws ...
	22.24.8 public String toString()
	22.24.9 public boolean equals(Object obj)
	22.24.10 public int hashCode()
	22.24.11 public String getName()
	22.24.12 public String getPath()
	22.24.13 public String getAbsolutePath()
	22.24.14 public String getParent()
	22.24.15 public boolean isAbsolute()
	22.24.16 public boolean exists() throws SecurityEx...
	22.24.17 public boolean canRead() throws SecurityE...
	22.24.18 public boolean canWrite() throws Security...
	22.24.19 public boolean isFile() throws SecurityEx...
	22.24.20 public boolean isDirectory() throws Secur...
	22.24.21 public long lastModified() throws Securit...
	22.24.22 public long length() throws SecurityExcep...
	22.24.23 public boolean mkdir() throws SecurityExc...
	22.24.24 public boolean mkdirs() throws SecurityEx...
	22.24.25 public String[] list() throws SecurityExc...
	22.24.26 public String[] list(FilenameFilter filte...
	22.24.27 public boolean renameTo(File dest) throws...
	22.24.28 public boolean delete() throws SecurityEx...

	22.25��The Interface java.io.FilenameFilter
	22.25.1 public boolean accept(File dir, String nam...

	22.26��The Class java.io.FileDescriptor
	22.26.1 public static final FileDescriptor in =
	22.26.2 public static final FileDescriptor out =
	22.26.3 public static final FileDescriptor err =
	22.26.4 public boolean valid()

	22.27��The Class java.io.IOException
	22.27.1 public IOException()
	22.27.2 public IOException(String s)

	22.28��The Class java.io.EOFException
	22.28.1 public EOFException()
	22.28.2 public EOFException(String s)

	22.29��The Class java.io.FileNotFoundException
	22.29.1 public FileNotFoundException()
	22.29.2 public FileNotFoundException(String s)

	22.30��The Class java.io.InterruptedIOException
	22.30.1 public int bytesTransferred = 0;
	22.30.2 public InterruptedIOException()
	22.30.3 public InterruptedIOException(String s)

	22.31��The Class java.io.UTFDataFormatException
	22.31.1 public UTFDataFormatException()
	22.31.2 public UTFDataFormatException(String s)

	Index
	Credits
	Colophon

