
The Java™

Virtual Machine
Specification

The Java™ Series

Lisa Friendly, Series Editor
Bill Joy, Technical Advisor

The Java™ Programming Language
Ken Arnold and James Gosling
ISBN 0-201-63455-4

The Java™ Language Specification
James Gosling, Bill Joy, and Guy Steele
ISBN 0-201-63451-1

The Java™ Virtual Machine Specification
Tim Lindholm and Frank Yellin
ISBN 0-201-63452-X

The Java™ Application Programming Interface,
Volume 1: Core Packages
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63453-8

The Java™ Application Programming Interface,
Volume 2: Window Toolkit and Applets
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63459-7

The Java™ Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

The Java™ Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

The Java™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

The Java™

Virtual Machine
Specification

Tim Lindholm
Frank Yellin

ADDISON-WESLEY

An imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California

Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

Copyright 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under SUN's
intellectual property rights that are essential to practice this specification. This license
allows and is limited to the creation and distribution of clean room implementations of this
specification that (i) include a complete implementation of the current version of this spec-
ification without subsetting or supersetting, (ii) implement all the interfaces and function-
ality of the standardjava.* packages as defined by SUN, without subsetting or
supersetting, (iii) do not add any additional packages, classes or methods to thejava.*
packages (iv) pass all test suites relating to the most recent published version of this spec-
ification that are available from SUN six (6) months prior to any beta release of the clean
room implementation or upgrade thereto, (v) do not derive from SUN source code or
binary materials, and (vi) do not include any SUN binary materials without an appropriate
and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun
Microsystems Computer Corporation logo, Java, JavaSoft, JavaScript and HotJava are
trademarks or registered trademarks of Sun Microsystems, Inc. UNIX® is a registered
trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Text printed on recycled and acid-free paper

ISBN 0-201-63452-X
1 2 3 4 5 6 7 8 9-MA-00999897
First printing, September1996

To Lucy, Beatrice, and Arnold −TL

To Mark −FY

 . xv

 . 1

 . . 5
. . . 5
 . . 6
 . . 6
. . . 6
. . 7
 . . 8
. . 8
 9
. . . 9
10
10
 . 10
. . 10
 12
 . 13
. . 13
. 14
 15
 15
. 16
. 16
. 17
 18

 . 19
. 19
 . . 20
 . 20
. . 20
 . 21
 . 21
 . 21
. 22
. 22
Table of Contents

Preface .

1 Introduction. .

2 Java Concepts .
2.1 Unicode.
2.2 Identifiers .
2.3 Literals .
2.4 Types and Values .

2.4.1 Primitive Types and Values .
2.4.2 Operators on Integral Values .
2.4.3 Operators on Floating-Point Values .
2.4.4 Operators onboolean Values .
2.4.5 Reference Types, Objects, and Reference Values
2.4.6 The ClassObject .
2.4.7 The ClassString .
2.4.8 Operators on Objects. .

2.5 Variables .
2.5.1 Initial Values of Variables .
2.5.2 Variables Have Types, Objects Have Classes

2.6 Conversions and Promotions .
2.6.1 Identity Conversions .
2.6.2 Widening Primitive Conversions. .
2.6.3 Narrowing Primitive Conversions .
2.6.4 Widening Reference Conversions .
2.6.5 Narrowing Reference Conversions .
2.6.6 Assignment Conversion.
2.6.7 Method Invocation Conversion .
2.6.8 Casting Conversions .
2.6.9 Numeric Promotion .

2.7 Names and Packages .
2.7.1 Names .
2.7.2 Packages .
2.7.3 Members .
2.7.4 Package Members .
2.7.5 The Members of a Class Type. .
2.7.6 The Members of an Interface Type .
2.7.7 The Members of an Array Type .
vii

THE JAVATM VIRTUAL MACHINE SPECIFICATIONviii

 22
 23

. . 24
 . 24

 24
. . 25
. 25
 . 26
 26
 27
 . 27
 . 28
. 28
 28

. 29
 . 29
 . 30
 31
. 31
. 31
. 31
 32
 32
 . 32

 33
 33
 34

. 34
 . 34
. 35
 36
 38

 . 40
 40

. 43
 43
 46
 47
. 49
. 51
. 52
 52
. . 53

 . 57
. 58
. 58
 59
0
0

2.7.8 Qualified Names and Access Control. .
2.7.9 Fully Qualified Names .

2.8 Classes .
2.8.1 Class Names .
2.8.2 Class Modifiers. .
2.8.3 Superclasses and Subclasses.
2.8.4 The Class Members .

2.9 Fields .
2.9.1 Field Modifiers .
2.9.2 Initialization of Fields. .

2.10 Methods .
2.10.1 Formal Parameters .
2.10.2 Signature.
2.10.3 Method Modifiers .

2.11 Static Initializers .
2.12 Constructors. .
2.13 Interfaces .

2.13.1 Interface Modifiers .
2.13.2 Superinterfaces .
2.13.3 Interface Members .
2.13.4 Interface (Constant) Fields .
2.13.5 Interface (Abstract) Methods .
2.13.6 Overriding, Inheritance, and Overloading in Interfaces

2.14 Arrays .
2.14.1 Array Types .
2.14.2 Array Variables. .
2.14.3 Array Creation .
2.14.4 Array Access .

2.15 Exceptions .
2.15.1 The Causes of Exceptions .
2.15.2 Handling an Exception .
2.15.3 The Exception Hierarchy .
2.15.4 The ClassesException andRuntimeException 38

2.16 Execution .
2.16.1 Virtual Machine Start-up .
2.16.2 Loading.
2.16.3 Linking: Verification, Preparation, and Resolution
2.16.4 Initialization .
2.16.5 Detailed Initialization Procedure .
2.16.6 Creation of New Class Instances .
2.16.7 Finalization of Class Instances .
2.16.8 Finalization and Unloading of Classes and Interfaces
2.16.9 Virtual Machine Exit .

2.17 Threads .

3 Structure of the Java Virtual Machine . 57
3.1 Data Types .
3.2 Primitive Types and Values .

3.2.1 Integral Types and Values.
3.2.2 Floating-Point Types and Values .
3.2.3 ThereturnAddress Type and Values. 6
3.2.4 There Is Noboolean Type. 6

CONTENTS ix

 . . 61
. . 61
. . 61
 61
 . 62
 . 63
. 63
 . 64
. 65
. . 66
. 66
 . 67
 67
 68
 68
 68
. . 69
. 69
. . 69
 70

. . 71
. 72
 . 74
 75
. 77
. 79
 . 79
. 80
. 80
 81
1

 . 81
 . 81

83
. 84
. 89
. . 89
. 90
. 90
. 91
. . 92
93

96

9
00
. 101
. 104
3.3 Reference Types and Values .
3.4 Words .
3.5 Runtime Data Areas .

3.5.1 Thepc Register .
3.5.2 Java Stack .
3.5.3 Heap .
3.5.4 Method Area .
3.5.5 Constant Pool .
3.5.6 Native Method Stacks .

3.6 Frames .
3.6.1 Local Variables .
3.6.2 Operand Stacks .
3.6.3 Dynamic Linking. .
3.6.4 Normal Method Completion .
3.6.5 Abnormal Method Completion .
3.6.6 Additional Information .

3.7 Representation of Objects.
3.8 Special Initialization Methods .
3.9 Exceptions .
3.10 Theclass File Format .
3.11 Instruction Set Summary .

3.11.1 Types and the Java Virtual Machine .
3.11.2 Load and Store Instructions. .
3.11.3 Arithmetic Instructions .
3.11.4 Type Conversion Instructions .
3.11.5 Object Creation and Manipulation .
3.11.6 Operand Stack Management Instructions
3.11.7 Control Transfer Instructions .
3.11.8 Method Invocation and Return Instructions
3.11.9 Throwing and Handling Exceptions .
3.11.10 Implementingfinally . 8
3.11.11 Synchronization. .

3.12 Public Design, Private Implementation .

4 The class File Format .
4.1 ClassFile .
4.2 Internal Form of Fully Qualified Class Names.
4.3 Descriptors .

4.3.1 Grammar Notation.
4.3.2 Field Descriptors .
4.3.3 Method Descriptors .

4.4 Constant Pool .
4.4.1 CONSTANT_Class .
4.4.2 CONSTANT_Fieldref, CONSTANT_Methodref, and

CONSTANT_InterfaceMethodref . 94
4.4.3 CONSTANT_String .
4.4.4 CONSTANT_Integer andCONSTANT_Float 96
4.4.5 CONSTANT_Long andCONSTANT_Double 97
4.4.6 CONSTANT_NameAndType . 9
4.4.7 CONSTANT_Utf8 . 1

4.5 Fields .
4.6 Methods .

THE JAVATM VIRTUAL MACHINE SPECIFICATIONx

 106
07

08
9
10

13
5
6
 118
 118
 121
24
 125
128
 131
131
 133
3

39
 140

 141
 144
 146
 147
 148
 148
 149

151
. 152
 152
 152

 340
 341
 345
 346

 348
 351
 352
 354
 356
 359
. 361
2
66
 369
4.7 Attributes .
4.7.1 Defining and Naming New Attributes 1
4.7.2 SourceFile Attribute . 1
4.7.3 ConstantValue Attribute . 10
4.7.4 Code Attribute. 1
4.7.5 Exceptions Attribute . 1
4.7.6 LineNumberTable Attribute . 11
4.7.7 LocalVariableTable Attribute . 11

4.8 Constraints on Java Virtual Machine Code .
4.8.1 Static Constraints .
4.8.2 Structural Constraints .

4.9 Verification ofclass Files . 1
4.9.1 The Verification Process .
4.9.2 The Bytecode Verifier.
4.9.3 Long Integers and Doubles. .
4.9.4 Instance Initialization Methods and Newly Created Objects . .
4.9.5 Exception Handlers .
4.9.6 Exceptions andfinally . 13

4.10 Limitations of the Java Virtual Machine andclass File Format 136

5 Constant Pool Resolution . 1
5.1 Class and Interface Resolution .

5.1.1 Current Class or Interface Not Loaded by a Class Loader
5.1.2 Current Class or Interface Loaded by a Class Loader
5.1.3 Array Classes .

5.2 Field and Method Resolution. .
5.3 Interface Method Resolution .
5.4 String Resolution .
5.5 Resolution of Other Constant Pool Items .

6 Java Virtual Machine Instruction Set . 151
6.1 Assumptions: The Meaning of “Must” .
6.2 Reserved Opcodes .
6.3 Virtual Machine Errors .
6.4 The Java Virtual Machine Instruction Set .

7 Compiling for the Java Virtual Machine 339
7.1 Format of Examples. .
7.2 Use of Constants, Local Variables, and Control Constructs
7.3 Arithmetic .
7.4 Accessing the Constant Pool .
7.5 More Control Examples. .
7.6 Receiving Arguments .
7.7 Invoking Methods .
7.8 Working with Class Instances .
7.9 Arrays .
7.10 Compiling Switches. .
7.11 Operations on the Operand Stack .
7.12 Throwing and HandlingExceptions . 36
7.13 Compilingfinally . 3
7.14 Synchronization .

CONTENTS xi

371
 371
. 373
 374
 376
 376
 377
 378
 . 378
. 379
. 380
 384
. 386
 386
 387

89
389
390

29
8 Threads and Locks .
8.1 Terminology and Framework .
8.2 Execution Order and Consistency .
8.3 Rules About Variables .
8.4 Nonatomic Treatment of Double and Long Variables
8.5 Rules About Locks .
8.6 Rules About the Interaction of Locks and Variables
8.7 Rules for Volatile Variables .
8.8 Prescient Store Operations .
8.9 Discussion.
8.10 Example: Possible Swap.
8.11 Example: Out-of-Order Writes. .
8.12 Threads .
8.13 Locks and Synchronization .
8.14 Wait Sets and Notification .

9 An Optimization . 3
9.1 Dynamic Linking via Rewriting .
9.2 The_quick Pseudo-instructions.

10 Opcode Mnemonics by Opcode . 4

xiii

Series Foreword

About the Java Series

The Java Series books provide definitive reference documentation for Java program-
mers and end users. They are written by members of the Java team and published
under the auspices of JavaSoft, a Sun Microsystems business. The World Wide Web
allows Java documentation to be made available over the Internet, either by down-
loading or as hypertext. Nevertheless, the worldwide interest in Java technology led
us to write and publish these books to supplement all of the documentation at our
Web site.

To learn the latest about the Java Platform and Environment, or to download
the latest Java release, visit our World Wide Web site athttp://java.sun.com.
For updated information about the Java Series, including sample code, errata, and
previews of forthcoming books, visithttp://java.sun.com/Series.

We would like to thank the Corporate and Professional Publishing Group at
Addison-Wesley for their partnership in putting together the Series. Our editor
Mike Hendrickson and his team have done a superb job of navigating us through
the world of publishing. Within Sun, the support of James Gosling, Ruth Henni-
gar, Jon Kannegaard, and Bill Joy ensured that this series would have the
resources it needed to be successful. In addition to the tremendous effort by indi-
vidual authors, many members of the JavaSoft team have contributed behind the
scenes to bring the highest level of quality and engineering to the books in the
Series. A personal note of thanks to my children Christopher and James for put-
ting a positive spin on the many trips to my office during the development of the
Series.

Lisa Friendly
Series Editor

tual
tual
 Vir-
ow

men-
print
ation
ces-

om-

va

tual
vides
tual
ase

 100%

 the

2. It
ple,

Prod-

 this
as

Web
Preface

THIS book has been written as a complete specification for the Java Vir
Machine. It is essential for compiler writers who wish to target a Java Vir
Machine and for programmers who want to implement a compatible Java
tual Machine. It is also a definitive source for anyone who wants to kn
exactly how the Java programming language works.

The Java Virtual Machine is an abstract design. This book serves as docu
tation for a concrete implementation of Java (including Sun’s) only as a blue
documents a house. Any implementation of Java must embody this specific
of the Java Virtual Machine, but is constrained by it only where absolutely ne
sary.

This book describes Version 1.0.2 of the Java Virtual Machine, which is c
patible with Version 1.0.2 of the Java programming language, as specified inThe
Java Language Specification (Addison-Wesley, 1996). Future versions of the Ja
Virtual Machine will be backward compatible with this specification.

We intend that this specification should sufficiently document the Java Vir
Machine to make possible compatible clean-room implementations. Sun pro
tests which verify the proper operation of implementations of the Java Vir
Machine. If you are considering constructing your own implementation, ple
contact us at the email address below to obtain assistance to ensure the
compatibility of your implementation.

Send comments on this specification or questions about implementing
Java Virtual Machine to our electronic mail address:jvm@java.sun.com.

The original Java Virtual Machine was designed by James Gosling in 199
evolved to its present form through the direct and indirect efforts of many peo
spanning Sun’s Green Project, FirstPerson, Inc., the LiveOak project, Java
ucts Group, and JavaSoft. The authors are grateful to the many contributors.

This book began as internal project documentation. Kathy Walrath edited
early work, helping to give the world its first look at the internals of Java. It w
then converted to HTML by Mary Campione and was made available on our
site before being expanded into book form.
xv

PREFACExvi

neral
ike

ived
d its
iew

Joy
plete-

gle-

er
ing
73.

r-
The present document owes much to the support of the group led by Ge
Manager Ruth Hennigar and to the efforts of series editor Lisa Friendly and M
Hendrickson of Addison-Wesley. The many criticisms and suggestions rece
from reviewers of early online drafts, as well as drafts of the book, improve
quality immensely. We owe special thanks to Richard Tuck for his careful rev
of the manuscript and to the authors ofThe Java Language Specification for
allowing us to quote extensively from that book. Particular thanks to Bill
whose comments, reviews, and guidance have contributed greatly to the com
ness and accuracy of this book.

Tim Lindholm
Frank Yellin
JavaSoft
June, 1996

References

IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.
Available from Global Engineering Documents, 15 Inverness Way East, En
wood, Colorado 80112-5704 USA, +1 800 854 7179.

Hoare, C.A.R.Hints on Programming Language Design. Stanford University
Computer Science Department Technical Report No CS-73-403, Decemb
1973. Reprinted in Sigact/Sigplan Symposium on Principles of Programm
Languages. Association for Computing Machinery, New York, October 19

The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volume 1,
ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845-6. Additional info
mation about Unicode 1.1 may be found atftp://unicode.org.

C H A P T E R 1
e. Its
 and
s the
ed to
mpo-
nsport
 run.
ava
ould
d mil-
e. At
 same
ere

eb’s
nly
ude

ing it
wn as
 the
plets

piled
 same
Introduction

A Bit of History

JAVA is a general-purpose concurrent object-oriented programming languag
syntax is similar to C and C++, but it omits many of the features that make C
C++ complex, confusing, and unsafe. Java was initially developed to addres
problems of building software for networked consumer devices. It was design
support multiple host architectures and to allow secure delivery of software co
nents. To meet these requirements, compiled Java code had to survive tra
across networks, operate on any client, and assure the client that it was safe to

The popularization of the World Wide Web made these attributes of J
much more interesting. The Internet demonstrated how media-rich content c
be made accessible in simple ways. Web browsers such as Mosaic enable
lions of people to roam the Net and made Web surfing part of popular cultur
last there was a medium where what you saw and heard was essentially the
whether you were using a Mac, PC, or UNIX machine, and whether you w
connected to a high-speed network or a slow modem.

Web enthusiasts soon discovered that the content supported by the W
HTML document format was too limited. HTML extensions, such as forms, o
highlighted those limitations, while making it clear that no browser could incl
all the features users wanted. Extensibility was the answer.

Sun’s HotJava browser showcases Java’s interesting properties by mak
possible to embed Java programs inside HTML pages. These programs, kno
applets, are transparently downloaded into the HotJava browser along with
HTML pages in which they appear. Before being accepted by the browser, ap
are carefully checked to make sure they are safe. Like HTML pages, com
Java programs are network- and platform-independent. Applets behave the
1

THE JAVATM VIRTUAL MACHINE SPECIFICATION2

eing

 to a
n on
ontent

ware.
 the

ge. It
deliv-
mali-

om-
is rea-
hine;
l.
Sun
held
un’s
s the

 the
ology
 be
con-
e, or

age,

r

way regardless of where they come from, or what kind of machine they are b
loaded into and run on.

With Java as the extension language, a Web browser is no longer limited
fixed set of capabilities. Programmers can write an applet once and it will ru
any machine, anywhere. Visitors to Java-powered Web pages can use c
found there with confidence that it will not damage their machine.

Java has demonstrated a new way to use the Internet to distribute soft
This new paradigm goes beyond browsers. We think it is an innovation with
potential to change the course of computing.

The Java Virtual Machine

The Java Virtual Machine is the cornerstone of Sun’s Java programming langua
is the component of the Java technology responsible for Java’s cross-platform
ery, the small size of its compiled code, and Java’s ability to protect users from
cious programs.

The Java Virtual Machine is an abstract computing machine. Like a real c
puting machine, it has an instruction set and uses various memory areas. It
sonably common to implement a programming language using a virtual mac
the best-known virtual machine may be the P-Code machine of UCSD Pasca

The first prototype implementation of the Java Virtual Machine, done at
Microsystems, Inc., emulated its instruction set in software on a hand
device that resembled a contemporary Personal Digital Assistant (PDA). S
current Java release, the Java Developer’s Kit (JDK) version 1.0.2, emulate
Java Virtual Machine on Win32, MacOS, and Solaris platforms. However,
Java Virtual machine does not assume any particular implementation techn
or host platform. It is not inherently interpreted, and it may just as well
implemented by compiling its instruction set to that of a real CPU, as for a
ventional programming language. It may also be implemented in microcod
directly in silicon.

The Java Virtual Machine knows nothing of the Java programming langu
only of a particular file format, theclass file format. Aclass file contains Java
Virtual Machine instructions (orbytecodes) and a symbol table, as well as othe
ancillary information.

INTRODUCTION 3

t and

pen-
rtual
ider
other

ry for

-

nting

f the

 with

 Java
ch-
ique

exed
For the sake of security, the Java Virtual Machine imposes strong forma
structural constraints on the code in aclass file. However, any language with
functionality that can be expressed in terms of a validclass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-inde
dent platform, implementors of other languages are turning to the Java Vi
Machine as a delivery vehicle for their languages. In the future, we will cons
bounded extensions to the Java Virtual Machine to provide better support for
languages.

Summary of Chapters

The rest of this book is structured as follows:

• Chapter 2 gives an overview of Java concepts and terminology necessa
the rest of the book.

• Chapter 3 gives an overview of the Java Virtual Machine.

• Chapter 4 defines theclass file format, a platform- and implementation
independent file format for compiled Java code.

• Chapter 5 describes runtime management of the constant pool.

• Chapter 6 describes the instruction set of the Java Virtual Machine, prese
the instructions in alphabetical order of opcode mnemonics.

• Chapter 7 gives examples of compiling Java code into the instruction set o
Java Virtual Machine.

• Chapter 8 describes Java Virtual Machine threads and their interaction
memory.

• Chapter 9 describes an optimization used by Sun’s implementation of the
Virtual Machine. While not strictly part of the specification, it is a useful te
nique in itself, as well as an example of the sort of implementation techn
that may be employed within a Java Virtual Machine implementation.

• Chapter 10 gives a table of Java Virtual Machine opcode mnemonics ind
by opcode value.

THE JAVATM VIRTUAL MACHINE SPECIFICATION4

ual

 and
as. It
Use of Fonts

In this book, fonts are used as follows:

• A fixed width font is used for code examples written in Java, Java Virt
Machine data types, exceptions, and errors.

• Italic is used for Java Virtual Machine “assembly language,” its opcodes
operands, as well as items in the Java Virtual Machine’s runtime data are
is also used to introduce new terms, and simply for emphasis.

C H A P T E R 2

s

 lan-
cessary
w of
erial

or for
aders
va,
r

nt of

s

 the

ere

r and
rom
for
Java Concept

THE Java Virtual Machine was designed to support the Java programming
guage. Some concepts and vocabulary from the Java language are thus ne
to understand the virtual machine. This chapter gives enough of an overvie
Java to support the discussion of the Java Virtual Machine to follow. Its mat
has been condensed fromThe Java Language Specification, by James Gosling,
Bill Joy, and Guy Steele. For a complete discussion of the Java language,
details and examples of the material in this chapter, refer to that book. Re
familiar with that book may wish to skip this chapter. Readers familiar with Ja
but not withThe Java Language Specification, should at least skim this chapter fo
the terminology it introduces.

This chapter does not attempt to provide an introduction to or a full treatme
the Java language. For an introduction to Java, seeThe Java Programming Lan-
guage, by Ken Arnold and James Gosling.

2.1 Unicode

Java programs are written using the Unicode character encoding, version 1.1.5, a
specified inThe Unicode Standard: Worldwide Character Encoding, Version 1.0,
Volume 1, ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845-6, and
update information about Unicode 1.1.5 available atftp://unicode.org. There
are a few minor errors in this update information; refer toThe Java Language
Specification for corrections. Updates to the Unicode information published th
will be posted under the URLhttp://java.sun.com/Series.

Except for comments and identifiers (§2.2) and the contents of characte
string literals (§2.3), all input elements in a Java program are formed f
only ASCII characters. ASCII (ANSI X3.4) is the American Standard Code
5

THE JAVATM VIRTUAL MACHINE SPECIFICATION6

cter

ntire
orld
t are

 Java

er for
till be

literal

4.1),
er-
as to

ery
hat a
tions
Strong
Information Interchange. The first 128 characters of the Unicode chara
encoding are the ASCII characters.

2.2 Identifiers

An identifier is an unlimited-length sequence of Unicodeletters anddigits, the
first of which must be a letter. Letters and digits may be drawn from the e
Unicode character set, which supports most writing scripts in use in the w
today. This allows Java programmers to use identifiers in their programs tha
written in their native languages.

The Java methodCharacter.isJavaLetter returnstrue when passed a
Unicode character that is considered to be a letter in Java identifiers. The
methodCharacter.isJavaLetterOrDigit returnstrue when passed a Uni-
code character that is considered to be a letter or digit in Java identifiers.

Two identifiers are the same only if they have the same Unicode charact
each letter or digit; identifiers that have the same external appearance may s
different. An identifier must not be the same as a Java keyword or a boolean
(true or false).

2.3 Literals

A literal is the source code representation of a value of a primitive type (§2.
theString type (§2.4.7), or the null type (§2.4). String literals and, more gen
ally, strings that are the values of constant expressions, are “interned” so
share unique instances, using the methodString.intern.

The null type has one value, the null reference, denoted by the literalnull.
Theboolean type has two values, denoted by the literalstrue andfalse.

2.4 Types and Values

Java is astrongly typed language, which means that every variable and ev
expression has a type that is known at compile time. Types limit the values t
variable (§2.5) can hold or that an expression can produce, limit the opera
supported on those values, and determine the meaning of those operations.
typing helps detect errors at compile time.

JAVA CONCEPTS 7

ible
rence
etend

cate-
eturned

 by a
s.
that

and
acters

t-
nt

ard
sitive
r
result

value
The types of the Java language are divided into two categories:primitive types
(§2.4.1) andreference types (§2.4.5). There is also a specialnull type, the type of
the expressionnull, which has no name. The null reference is the only poss
value of an expression of null type, and can always be converted to any refe
type. In practice, the Java programmer can ignore the null type and just pr
thatnull is a special literal that can be of any reference type.

Corresponding to the primitive types and reference types, there are two
gories of data values that can be stored in variables, passed as arguments, r
by methods, and operated upon:primitive values (§2.4.1) andreference values
(§2.4.5).

2.4.1 Primitive Types and Values

A primitive type is a type that is predefined by the Java language and named
reserved keyword.Primitive values do not share state with other primitive value
A variable whose type is a primitive type always holds a primitive value of
type.1

The primitive types are theboolean type and thenumeric types. The numeric
types are theintegral types and thefloating-point types.

The integral types arebyte, short, int, andlong, whose values are 8-bit,
16-bit, 32-bit, and 64-bit signed two’s-complement integers, respectively,
char, whose values are 16-bit unsigned integers representing Unicode char
(§2.1).

The floating-point types arefloat, whose values are 32-bit IEEE 754 floa
ing-point numbers, anddouble, whose values are 64-bit IEEE 754 floating-poi
numbers as specified inIEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985 (IEEE, New York). The IEEE 754 stand
includes not only positive and negative sign–magnitude numbers, but also po
and negative zeroes, positive and negativeinfinities, and a special Not-a-Numbe
(hereafter abbreviated NaN) value. The NaN value is used to represent the
of certain operations such as dividing zero by zero.

Theboolean type has the truth valuestrue andfalse.

1. Note that a local variable is not initialized on its creation, and is only considered to hold a
once it is assigned to (§2.5.1).

THE JAVATM VIRTUAL MACHINE SPECIFICATION8

erical

6.8).
omo-

ny
 that
ators,

here

ding

ype,
 inte-
 pro-

 754.

 of

oint

result;
st sig-
ode

to
e trun-
the for-
sult.
2.4.2 Operators on Integral Values

Java provides a number of operators that act on integral values, including num
comparison (which results in a value of typeboolean), arithmetic operators, incre-
ment and decrement, bitwise logical and shift operators, and numeric cast (§2.

Operands of certain unary and binary operators are subject to numeric pr
tion (§2.6.9).

The built-in integer operators do not indicate overflow or underflow in a
way; they wrap around on overflow or underflow. The only integer operators
can throw an exception are the integer divide and integer remainder oper
which can throw anArithmeticException if the right-hand operand is zero.

Any value of any integral type may be cast to or from any numeric type. T
are no casts between integral types and the typeboolean.

2.4.3 Operators on Floating-Point Values

Java provides a number of operators that act on floating-point values, inclu
numerical comparison (which results in a value of typeboolean), arithmetic
operators, increment and decrement, and numeric cast (§2.6.8).

If at least one of the operands to a binary operator is of floating-point t
then the operation is a floating-point operation, even if the other operand is
gral. Operands of certain unary and binary operators are subject to numeric
motion (§2.6.9).

Operators on floating-point numbers behave exactly as specified by IEEE
In particular, Java requires support of IEEE 754denormalized floating-point num-
bers andgradual underflow, which make it easier to prove desirable properties
particular numerical algorithms.

Java requires that floating-point arithmetic behave as if every floating-p
operator rounded its floating-point result to the result precision.Inexact results
must be rounded to the representable value nearest to the infinitely precise
if the two nearest representable values are equally near, the one with its lea
nificant bit zero is chosen. This is the IEEE 754 standard’s default rounding m
known asround-to-nearest.

Java usesround-towards-zero mode when converting a floating-point value
an integer (§2.6.3). Round-towards-zero mode acts as though the number wer
cated, discarding the mantissa bits. Round-towards-zero chooses as its result
mat’s value closest to and no greater in magnitude than the infinitely precise re

JAVA CONCEPTS 9

 that
es a
duces
 an

ny
 type

Only
e first

ro

r-

s

nd
 never

 state,
s that

to the
rence
r vari-
Java floating-point operators produce no exceptions (§2.15). An operation
overflows produces a signed infinity; an operation that underflows produc
signed zero; and an operation that has no mathematically definite result pro
NaN. All numeric operations (except for numeric comparison) with NaN as
operand produce NaN as a result.

Any value of any floating-point type may be cast (§2.6.8) to or from a
numeric type. There are no casts between floating-point types and the
boolean.

2.4.4 Operators onboolean Values

The boolean operators include relational operators and logical operators.
boolean expressions can be used in Java’s control flow statements and as th
operand of the conditional operator?:. An integral valuex can be converted to a
value of typeboolean, following the C language convention that any nonze
value istrue, by the expressionx!=0. An object referenceobj can be converted
to a value of typeboolean, following the C language convention that any refe
ence other thannull is true, by the expressionobj!=null.

There are no casts between the typeboolean and any other type.

2.4.5 Reference Types, Objects, and Reference Values

There are three kinds of reference types: theclass types (§2.8), theinterface types
(§2.13), and thearray types (§2.14). Anobject is a dynamically created clas
instance or an array. The reference values (often justreferences) arepointersto
these objects and a special null reference, which refers to no object.

A class instance is explicitly created by aclass instance creation expression,
or by invoking thenewInstance method of classClass. An array is explicitly
created by anarray creation expression. An object is created in the Java heap, a
is garbage collected after there are no more references to it. Objects are
reclaimed or freed by explicit Java language directives.

There may be many references to the same object. Most objects have
stored in the fields of objects that are instances of classes or in the variable
are the components of an array object. If two variables contain references
same object, the state of the object can be modified using one variable’s refe
to the object, and then the altered state can be observed through the othe
able’s reference.

THE JAVATM VIRTUAL MACHINE SPECIFICATION10

nt

other
of
class

ri-
e of

). A
efer-

 con-

d its
pe
tible
hat
nce

) with

the
le and
 com-
Each object has an associatedlock (§2.17, §8.13) that is used bysynchronized
methods and by thesynchronized statement to provide control over concurre
access to state by multiple threads (§2.17, §8.12).

Reference types form a hierarchy. Each class type is a subclass of an
class type, except for the classObject (§2.4.6), which is the superclass (§2.8.3)
all other class types. All objects, including arrays, support the methods of
Object. String literals (§2.3) are references to instances of classString (§2.4.7).

2.4.6 The ClassObject

The standard classObject is the superclass (§2.8.3) of all other classes. A va
able of typeObject can hold a reference to any object, whether it is an instanc
a class or an array. All class and array types inherit the methods of classObject.

2.4.7 The ClassString

Instances of classString represent sequences of Unicode characters (§2.1
String object has a constant, unchanging value. String literals (§2.3) are r
ences to instances of classString.

2.4.8 Operators on Objects

The operators on objects include field access, method invocation, cast, string
catenation, comparison for equality,instanceof, and the conditional operator?:.

2.5 Variables

A variable is a storage location. It has an associated type, sometimes calle
compile-time type, that is either a primitive type (§2.4.1) or a reference ty
(§2.4.5). A variable always contains a value that is assignment compa
(§2.6.6) with its type. A variable of a primitive type always holds a value of t
exact primitive type. A variable of reference type can hold either a null refere
or a reference to any object whose class is assignment compatible (§2.6.6
the type of the variable.

Compatibility of the value of a variable with its type is guaranteed by
design of the Java language because default values (§2.5.1) are compatib
all assignments to a variable are checked, at compile time, for assignment
patibility.

JAVA CONCEPTS 11

erface
5.1).
ce is
) has

ng

e

ject
n of

 to
ated
 is no

ram-
d each
nd-
ffec-

plete.

For
 vari-
t con-
the
uctor
 exe-

 is
i-
The
f the
There are seven kinds of variables:

1. A class variableis a field of a class type declared using the keywordstatic

(§2.9.1) within a class declaration, or with or without the keywordstatic in
an interface declaration. Class variables are created when the class or int
is loaded (§2.16.2) and are initialized on creation to default values (§2.
The class variable effectively ceases to exist when its class or interfa
unloaded (§2.16.8) after any necessary finalization of the class (§2.16.8
been completed.

2. An instance variable is a field declared within a class declaration without usi
the keywordstatic (§2.9.1). If a classT has a fielda that is an instance vari-
able, then a new instance variablea is created and initialized to a default valu
(§2.5.1) as part of each newly created object of classT or of any class that is a
subclass ofT. The instance variable effectively ceases to exist when the ob
of which it is a field is no longer referenced, after any necessary finalizatio
the object (§2.16.7) has been completed.

3. Array components are unnamed variables that are created and initialized
default values (§2.5.1) whenever a new object that is an array is cre
(§2.16.6). The array components effectively cease to exist when the array
longer referenced.

4. Method parameters name argument values passed to a method. For every pa
eter declared in a method declaration, a new parameter variable is create
time that method is invoked. The new variable is initialized with the correspo
ing argument value from the method invocation. The method parameter e
tively ceases to exist when the execution of the body of the method is com

5. Constructor parameters name argument values passed to a constructor.
every parameter declared in a constructor declaration, a new parameter
able is created each time a class instance creation expression or explici
structor invocation is evaluated. The new variable is initialized with
corresponding argument value from the creation expression or constr
invocation. The constructor parameter effectively ceases to exist when the
cution of the body of the constructor is complete.

6. An exception-handler parameter variable is created each time an exception
caught by acatch clause of atry statement (§2.15.2). The new variable is in
tialized with the actual object associated with the exception (§2.15.3).
exception-handler parameter effectively ceases to exist when execution o
block associated with thecatch clause (§2.15.2) is complete.

THE JAVATM VIRTUAL MACHINE SPECIFICATION12

en-
-
ment

that
n the

 with

ent

ment
oca-

ject

 ini-
7. Local variablesare declared by local variable declaration statements. Wh
ever the flow of control enters a block or afor statement, a new variable is cre
ated for each local variable declared in a local variable declaration state
immediately contained within that block orfor statement. The local variable
is not initialized, however, until the local variable declaration statement
declares it is executed. The local variable effectively ceases to exist whe
execution of the block orfor statement is complete.

2.5.1 Initial Values of Variables

Every variable in a Java program must have a value before it is used:

• Each class variable, instance variable, and array component is initialized
adefault value when it is created:

■ For typebyte, the default value is zero, that is, the value of(byte)0.

■ For typeshort, the default value is zero, that is, the value of(short)0.

■ For typeint, the default value is zero, that is,0.

■ For typelong, the default value is zero, that is,0L.

■ For typefloat, the default value is positive zero, that is,0.0f.

■ For typedouble, the default value is positive zero, that is,0.0d.

■ For typechar, the default value is the null character, that is,'\u0000'.

■ For typeboolean, the default value isfalse.

■ For all reference types (§2.4.5), the default value isnull (§2.3).

• Each method parameter (§2.5) is initialized to the corresponding argum
value provided by the invoker of the method.

• Each constructor parameter (§2.5) is initialized to the corresponding argu
value provided by an object creation expression or explicit constructor inv
tion.

• An exception-handler parameter (§2.15.2) is initialized to the thrown ob
representing the exception (§2.15.3).

• A local variable must be explicitly given a value before it is used, by either
tialization or assignment.

JAVA CONCEPTS 13

tioned
 class

n
 of an

t that
y the
s not
sion

an be
e can
rence
 that

 is an
pres-
imple-

es that

sion
ire a
r to
 new

eric
mon
2.5.2 Variables Have Types, Objects Have Classes

Every object belongs to some particular class. This is the class that was men
in the class instance creation expression that produced the object, or the
whose class object was used to invoke thenewInstance method to produce the
object. This class is calledthe class of the object. An object is said to be a
instance of its class and of all superclasses of its class. Sometimes the class
object is called its “runtime type,” but “class” is the more accurate term.

(Sometimes a variable or expression is said to have a “runtime type,” bu
is an abuse of terminology; it refers to the class of the object referred to b
value of the variable or expression at run time, assuming that the value i
null. Properly speaking, type is a compile-time notion. A variable or expres
has a type; an object or array has no type, but belongs to a class.)

The type of a variable is always declared, and the type of an expression c
deduced at compile time. The type limits the possible values that the variabl
hold or the expression can produce at run time. If a runtime value is a refe
that is notnull, it refers to an object or array that has a class (not a type), and
class will necessarily be compatible with the compile-time type.

Even though a variable or expression may have a compile-time type that
interface type, there are no instances of interfaces (§2.13). A variable or ex
sion whose type is an interface type can reference any object whose class
ments that interface.

Every array also has a class. The classes for arrays have strange nam
are not valid Java identifiers; for example, the class for an array ofint compo-
nents has the name“[I”.

2.6 Conversions and Promotions

Conversions implicitly change the type, and sometimes the value, of an expres
to a type acceptable for its surrounding context. In some cases this will requ
corresponding action at run time to check the validity of the conversion o
translate the runtime value of the expression into a form appropriate for the
type.

Numeric promotions are conversions that change an operand of a num
operation to a wider type, or both operands of a numeric operation to a com
type, so that an operation can be performed.

THE JAVATM VIRTUAL MACHINE SPECIFICATION14

r.
ut not

on to
ent

xcep-

 in a
same
rsion

 type
nt or
an a
eption

to a
In Java, there are six broad kinds of conversions:

• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• String conversions

There are fiveconversion contexts in which conversion expressions can occu
Each context allows conversions in some of the above-named categories b
others. The conversion contexts are:

• Assignment conversion (§2.6.6), which converts the type of an expressi
the type of a specified variable. The conversions permitted for assignm
are limited in such a way that assignment conversion never causes an e
tion.

• Method invocation conversion (§2.6.7), which is applied to each argument
method or constructor invocation, and, except in one case, performs the
conversions that assignment conversion does. Method invocation conve
never causes an exception.

• Casting conversion (§2.6.8), which converts the type of an expression to a
explicitly specified by a cast operator. It is more inclusive than assignme
method invocation conversion, allowing any specific conversion other th
string conversion, but certain casts to a reference type may cause an exc
at run time.

• String conversion, which allows any type to be converted to typeString (§2.4.7).

• Numeric promotion, which brings the operands of a numeric operator
common type so that an operation can be performed.

String conversion only applies to operands of the binary+ operator when one
of the arguments is aString; it will not be covered further.

2.6.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.

JAVA CONCEPTS 15

ag-
ther

y
oint
und-

o an
 the
pe

lue to

ions
2.6.2 Widening Primitive Conversions

The following conversions on primitive types are called thewidening primitive
conversions:

• byte to short, int, long, float, ordouble

• short to int, long, float, ordouble

• char to int, long, float, ordouble

• int to long, float, ordouble

• long to float or double

• float to double

Widening conversions do not lose information about the sign or order of m
nitude of a numeric value. Conversions widening from an integral type to ano
integral type and fromfloat to double do not lose any information at all; the
numeric value is preserved exactly. Conversion of anint or a long value to
float, or of along value todouble, may lose precision, that is, the result ma
lose some of the least significant bits of the value; the resulting floating-p
value is a correctly rounded version of the integer value, using IEEE 754 ro
to-nearest mode (§2.4.3).

According to this rule, a widening conversion of a signed integer value t
integral type simply sign-extends the two’s-complement representation of
integer value to fill the wider format. A widening conversion of a value of ty
char to an integral type zero-extends the representation of the character va
fill the wider format.

Despite the fact that loss of precision may occur, widening convers
among primitive types never result in a runtime exception (§2.15).

2.6.3 Narrowing Primitive Conversions

The following conversions on primitive types are callednarrowing primitive con-
versions:

• byte to char

• short to byte or char

• char to byte or short

• int to byte, short, orchar

THE JAVATM VIRTUAL MACHINE SPECIFICATION16

gni-

.
ards
he
value.
dis-
he
ough

 the

gral
 inte-
ative
ther-
teger

ode

nar-
.

nd
 Java
• long to byte, short, char, orint

• float to byte, short, char, int, orlong

• double to byte, short, char, int, long, orfloat

Narrowing conversions may lose information about the sign or order of ma
tude, or both, of a numeric value (for example, narrowing anint value32763 to
typebyte produces the value-5). Narrowing conversions may also lose precision

A narrowing conversion of a signed integer to an integral type simply disc
all but then lowest-order bits, wheren is the number of bits used to represent t
type. This may cause the resulting value to have a different sign than the input

A narrowing conversion of a character to an integral type likewise simply
cards all but then lowest bits, wheren is the number of bits used to represent t
type. This may cause the resulting value to be a negative number, even th
characters represent 16-bit unsigned integer values.

In a narrowing conversion of a floating-point number to an integral type, if
floating-point number is NaN, the result of the conversion is0 of the appropriate
type. If the floating-point number is too large to be represented by the inte
type, or is positive infinity, the result is the largest representable value of the
gral type. If the floating-point number is too small to be represented, or is neg
infinity, the result is the smallest representable value of the integral type. O
wise, the result is the floating-point number rounded towards zero to an in
value using IEEE 754 round-towards-zero mode (§2.4.3)

A narrowing conversion fromdouble to float behaves in accordance with
IEEE 754. The result is correctly rounded using IEEE 754 round-to-nearest m
(§2.4.3). A value too small to be represented as afloat is converted to a positive
or negative zero; a value too large to be represented as afloat is converted to a
positive or negative infinity. Adouble NaN is always converted to afloat NaN.

Despite the fact that overflow, underflow, or loss of precision may occur,
rowing conversions among primitive types never result in a runtime exception

2.6.4 Widening Reference Conversions

Widening reference conversions never require a special action at run time a
therefore never throw an exception at run time. Because they do not affect the
Virtual Machine, they will not be considered further.

2.6.5 Narrowing Reference Conversions

The following permitted conversions are called thenarrowing reference conversions:

JAVA CONCEPTS 17

 the

ing

rence
ine

to a
iable.
ning
. In
fol-
• From any class typeS to any class typeT, provided thatS is a superclass ofT.
(An important special case is that there is a narrowing conversion from
class typeObject to any other class type.)

• From any class typeS to any interface typeK, provided thatS is notfinal and
does not implementK. (An important special case is that there is a narrow
conversion from the class typeObject to any interface type.)

• From typeObject to any array type.

• From typeObject to any interface type.

• From any interface typeJ to any class typeT that is notfinal.

• From any interface typeJ to any class typeT that isfinal, provided thatT
implementsJ.

• From any interface typeJ to any interface typeK, provided thatJ is not a sub-
interface ofK and there is no method namem such thatJ andK both declare a
method namedm with the same signature but different return types.

• From any array typeSC[] to any array typeTC[], provided thatSC andTC

are reference types and there is a permitted narrowing conversion fromSC to
TC.

Such conversions require a test at run time to find out whether the actual refe
value is a legitimate value of the new type. If it is not, the Java Virtual Mach
throws aClassCastException.

2.6.6 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned
variable: the type of the expression must be converted to the type of the var
Assignment contexts allow the use of an identity conversion (§2.6.1), a wide
primitive conversion (§2.6.2), or a widening reference conversion (§2.6.4)
addition, a narrowing primitive conversion (§2.6.3) may be used if all of the
lowing conditions are satisfied:

• The expression is a constant expression of typeint.

• The type of the variable isbyte, short, orchar.

• The value of the expression is representable in the type of the variable.

THE JAVATM VIRTUAL MACHINE SPECIFICATION18

e by

itive
rence

 or
ted to
 the
If the type of the expression can be converted to the type of a variabl
assignment conversion, we say the expression (or its value) isassignable to the
variable or, equivalently, that the type of the expression isassignment compatible
with the type of the variable.

An assignment conversion never causes an exception. A value of prim
type must not be assigned to a variable of reference type. A value of refe
type must not be assigned to a variable of primitive type. A value of typeboolean

can be assigned only to a variable to typeboolean. A value of the null type may
be assigned to any reference type.

Assignment of a value of compile-time reference typeS (source) to a variable
of compile-time reference typeT (target) is permitted:

• If S is a class type:

■ If T is a class type, thenS must be the same class asT, or S must be a sub-
class ofT.

■ If T is an interface type, thenS must implement interfaceT.

• If S is an interface type:

■ If T is a class type, thenT must beObject.

■ If T is an interface type, thenT must be the same interface asS, orT a super-
interface ofS.

• If S is an array typeSC[], that is, an array of components of typeSC:

■ If T is a class type, thenT must beObject.

■ If T is an interface type, thenT must beCloneable.

■ If T is an array type, namely, the typeTC[], array of components of typeTC,
then either

• TC andSC must be the same primitive type, or

• TC andSC are both reference types and typeSC is assignable toTC.

2.6.7 Method Invocation Conversion

Method invocation conversion is applied to each argument value in a method
constructor invocation: the type of the argument expression must be conver
the type of the corresponding parameter. Method invocation contexts allow

JAVA CONCEPTS 19

.2),
 spe-
t of

on-
ression
ntexts
sion
ver-
nver-
a cast

e. A
ype

pile-
, or a

If the

ric
ning

tor to
meric

usual
 but

d of
use of an identity conversion (§2.6.1), a widening primitive conversion (§2.6
or a widening reference conversion (§2.6.4). Method invocation conversions
cifically do not include the implicit narrowing of integer constants that is par
assignment conversion (§2.6.6).

2.6.8 Casting Conversions

Casting conversionsare more powerful than assignment or method invocation c
versions applied to the operand of a cast operator: the type of the operand exp
must be converted to the type explicitly named by the cast operator. Casting co
allow the use of an identity conversion (§2.6.1), a widening primitive conver
(§2.6.2), a narrowing primitive conversion (§2.6.3), a widening reference con
sion (§2.6.4), or a narrowing reference conversion (§2.6.5). Thus, casting co
sions are more inclusive than assignment or method invocation conversions:
can do any permitted conversion other than a string conversion.

Casting can convert a value of any numeric type to any other numeric typ
value of typeboolean cannot be cast to another type. A value of reference t
cannot be cast to a value of primitive type.

Some casts can be proven incorrect at compile time and result in a com
time error. Otherwise, either the cast can be proven correct at compile time
runtime validity check is required. (SeeThe Java Language Specification for
details.) If the value at run time is a null reference, then the cast is allowed.
check at run time fails, aClassCastException is thrown.

2.6.9 Numeric Promotion

Numeric promotionis applied to the operands of an arithmetic operator. Nume
promotion contexts allow the use of an identity conversion (§2.6.1) or a wide
primitive conversion (§2.6.2).

Numeric promotions are used to convert the operands of a numeric opera
a common type where an operation can be performed. The two kinds of nu
promotion areunary numeric promotion andbinary numeric promotion. The anal-
ogous conversions in C are called “the usual unary conversions” and “the
binary conversions.” Numeric promotion is not a general feature of Java,
rather a property of the specific definitions of built-in operators.

An operator that applies unary numeric promotion to a single operan
numeric type converts an operand of typebyte, short, orchar to int, and oth-

THE JAVATM VIRTUAL MACHINE SPECIFICATION20

e pro-

eric
.6.2)

tity is
able.

ts of a

also
entity
, and

nt

f
dently
revent

kages
rticular
d in a
erwise leaves the operand alone. The operands of the shift operators ar
moted independently using unary numeric promotions.

When an operator applies binary numeric promotion to a pair of num
operands, the following rules apply, in order, using widening conversion (§2
to convert operands as necessary:

• If either operand is of typedouble, the other is converted todouble.

• Otherwise, if either operand is of typefloat, the other is converted tofloat.

• Otherwise, if either operand is of typelong, the other is converted tolong.

• Otherwise, both operands are converted to typeint.

2.7 Names and Packages

2.7.1 Names

Names are used to refer to entities declared in a Java program. A declared en
a package, type, member (field or method) of a type, parameter, or local vari

A simplename is a single identifier (§2.2).Qualified names provide access to
members of packages and reference types. A qualified name (§2.7.8) consis
name, a “.” token, and an identifier.

Not all identifiers in Java programs are part of a name. Identifiers are
used in declarations, where the identifier determines the name by which an
will be known, in field access expressions and method invocation expressions
in statement labels andbreak andcontinue statements which refer to stateme
labels.

2.7.2 Packages

Java programs are organized sets ofpackages. A package consists of a number o
compilation units and has an hierarchical name. Packages are indepen
developed, and each package has its own set of names, which helps to p
name conflicts.

Each Java host determines how packages, compilation units, and subpac
are created and stored; which top-level package names are in scope in a pa
compilation; and which packages are accessible. Packages may be store
local file system, in a distributed file system, or in some form of database.

JAVA CONCEPTS 21

t can-
 for
rs in

pport
lation
named
small

own
. An
unit.

2)
d in all
 fields

-

ystem.

imple
imple

These
em-
bers
A package name component or class name might contain a character tha
not legally appear in a host file system’s ordinary directory or file name:
instance, a Unicode character on a system that allows only ASCII characte
file names.

A Java system must support at least one unnamed package; it may su
more than one unnamed package but is not required to do so. Which compi
units are in each unnamed package is determined by the host system. Un
packages are provided by Java principally for convenience when developing
or temporary applications or when just beginning development.

An import declaration allows a type declared in another package to be kn
by a simple name rather than by the fully qualified name (§2.7.9) of the type
import declaration affects only the type declarations of a single compilation
A compilation unit automatically imports each of thepublic type names declared
in the predefined packagejava.lang.

2.7.3 Members

Packages and reference types havemembers. The members of a package (§2.7.
are subpackages and all the class (§2.8) and interface (§2.13) types declare
the compilation units of the package. The members of a reference type are
(§2.9) and methods (§2.10).

2.7.4 Package Members

The members of a package are itssubpackages and types declared in the compila
tion units of the package.

In general, the subpackages of a package are determined by the host s
However, the standard packagejava always has the subpackageslang, util, io,
andnet. No two distinct members of the same package may have the same s
name (§2.7.1), but members of different packages may have the same s
name.

2.7.5 The Members of a Class Type

The members of a class type (§2.8) are fields (§2.9) and methods (§2.10).
include members inherited from its direct superclass (§2.8.3), if it has one, m
bers inherited from any direct superinterfaces (§2.13.2), and any mem

THE JAVATM VIRTUAL MACHINE SPECIFICATION22

nd a

e if
 least

d the
lass or
 is not

ers of
.13.2)

uper-

d refer-
method
en
ving a
type.

 of a
tion of
declared in the body of the class. There is no restriction against a field a
method of a class type having the same simple name.

A class type may have two or more methods with the same simple nam
they have different numbers of parameters or different parameter types in at
one parameter position. Such a method member name is said to beoverloaded. A
class type may contain a declaration for a method with the same name an
same signature as a method that would otherwise be inherited from a superc
superinterface. In this case, the method of the superclass or superinterface
inherited. If the method not inherited isabstract, the new declaration is said to
implement it; if it is not abstract, the new declaration is said tooverride it.

2.7.6 The Members of an Interface Type

The members of an interface type (§2.13) are fields and methods. The memb
an interface are the members inherited from any direct superinterfaces (§2
and members declared in the body of the interface.

2.7.7 The Members of an Array Type

The members of an array type (§2.14) are the members inherited from its s
class, the classObject (§2.4.6), and the fieldlength, which is a constant (final)
field of every array.

2.7.8 Qualified Names and Access Control

Qualified names (§2.7.1) are a means of access to members of packages an
ence types; related means of access include field access expressions and
invocation expressions. All three are syntactically similar in that a “.” tok
appears, preceded by some indication of a package, type, or expression ha
type and followed by an identifier that names a member of the package or
These are collectively known as constructs forqualified access.

Java provides mechanisms for limiting qualified access, to prevent users
package or class from depending on unnecessary details of the implementa
that package or class. Access control also applies to constructors.

Whether a package is accessible is determined by the host system.

JAVA CONCEPTS 23

kage in

d.

t one

m

sible

ion, it
e that

lified
e.

ve

 of a

other
kage
.

med
A class or interface may be declaredpublic, in which case it may be
accessed, using a qualified name, by any Java code that can access the pac
which it is declared. A class or interface that is not declaredpublic may be
accessed from, and only from, anywhere in the package in which it is declare

Every field or method of an interface must bepublic. Every member of a
public interface is implicitly public, whether or not the keywordpublic
appears in its declaration. If an interface is notpublic, then every one of its fields
and methods must be explicitly declaredpublic. It follows that a member of an
interface is accessible if and only if the interface itself is accessible.

A field, method, or constructor of a class may be declared using at mos
of the public, private, or protected keywords. Apublic member may be
accessed by any Java code. Aprivate member may be accessed only fro
within the class that contains its declaration. A member that is not declaredpub-

lic, protected, or private is said to havedefault access and may be accessed
from, and only from, anywhere in the package in which it is declared.

A protected member of an object may be accessed only by code respon
for the implementation of that object. To be precise, aprotected member may be
accessed from anywhere in the package in which it is declared and, in addit
may be accessed from within any declaration of a subclass of the class typ
contains its declaration, provided that certain restrictions are obeyed.

2.7.9 Fully Qualified Names

Every package, class, interface, array type, and primitive type has a fully qua
name. It follows that every type except the null type has a fully qualified nam

• The fully qualified name of a primitive type is the keyword for that primiti
type, namelyboolean, char, byte, short, int, long, float, ordouble.

• The fully qualified name of a named package that is not a subpackage
named package is its simple name.

• The fully qualified name of a named package that is a subpackage of an
named package consists of the fully qualified name of the containing pac
followed by “.” followed by the simple (member) name of the subpackage

• The fully qualified name of a class or interface that is declared in an unna
package is the simple name of the class or interface.

THE JAVATM VIRTUAL MACHINE SPECIFICATION24

med
 “

me

nta-
isting

izers,

-

2.7.9).

ete.
s

s
th-

 both
r be
• The fully qualified name of a class or interface that is declared in a na
package consists of the fully qualified name of the package followed by.”
followed by the simple name of the class or interface.

• The fully qualified name of an array type consists of the fully qualified na
of the component type of the array type followed by “[]”.

2.8 Classes

A class declarationspecifies a new reference type and provides its impleme
tion. Each class is implemented as an extension or subclass of a single ex
class. A class may also implement one or more interfaces.

The body of a class declares members (fields and methods), static initial
and constructors.

2.8.1 Class Names

If a class is declared in a named package with the fully qualified nameP, then the
class has the fully qualified nameP.Identifier. If the class is in an unnamed pack
age, then the class has the fully qualified nameIdentifier.

Two classes are thesame class (and therefore thesame type) if they are loaded by
the same class loader (§2.16.2) and they have the same fully qualified name (§

2.8.2 Class Modifiers

A class declaration may includeclass modifiers. A class may be declaredpublic,
as discussed in §2.7.8.

An abstract class is a class which is incomplete, or considered incompl
Only abstract classes may haveabstract methods (§2.10.3), that is, method
which are declared but not yet implemented.

A class can be declaredfinal if its definition is complete and no subclasse
are desired or required. Because afinal class never has any subclasses, the me
ods of afinal class cannot be overridden in a subclass. A class cannot be
final andabstract, because the implementation of such a class could neve
completed.

JAVA CONCEPTS 25

an
s,

 lacks
e in

on of

lass is

ela-

e one
) are
A class is declaredpublic to make its type available to packages other th
the one in which it is declared. Apublic class is accessible from other package
using either its fully qualified name or a shorter name created by animport decla-
ration (§2.7.2), whenever the host permits access to its package. If a class
the public modifier, access to the class declaration is limited to the packag
which it is declared.

2.8.3 Superclasses and Subclasses

The optionalextends clause in a class declaration specifies thedirect superclass
of the current class, the class from whose implementation the implementati
the current class is derived. A class is said to be adirect subclass of the class it
extends. Only the classObject (§2.4.6) has no direct superclass. If theextends

clause is omitted from a class declaration, then the superclass of the new c
Object.

The subclass relationship is the transitive closure of the direct subclass r
tionship. A classA is a subclass of a classC if A is a direct subclass ofC, or if
there is a direct subclassB of C and classA is a subclass ofB. ClassA is said to be
asuperclass of classC wheneverC is a subclass ofA.

2.8.4 The Class Members

The members of a class type include all of the following:

• Members inherited from its direct superclass (§2.8.3), except in classObject,
which has no direct superclass.

• Members inherited from any direct superinterfaces (§2.13.2).

• Members declared in the body of the class.

Members of a superclass that are declaredprivate are not inherited by sub-
classes of that class. Members of a class that are not declaredprivate, protected,
or public are not inherited by subclasses declared in a package other than th
in which the class is declared. Constructors (§2.12) and static initializers (§2.11
not members and therefore are not inherited.

THE JAVATM VIRTUAL MACHINE SPECIFICATION26

clude

f that
me

rom its
s and
 a dec-
e (if it
rclass

d,
e cre-

nce is
uper-

a

t,
ut the

e
e-
n

p pri-
nta-
with
2.9 Fields

The variables of a class type are itsfields. Class (static) variables exist once per
class. Instance variables exist once per instance of the class. Fields may in
initializers and may be modified using various modifier keywords.

If the class declares a field with a certain name, then the declaration o
field is said tohide any and all accessible declarations of fields with the sa
name in the superclasses and superinterfaces of the class. A class inherits f
direct superclass and direct superinterfaces all the fields of the superclas
superinterfaces that are accessible to code in the class and are not hidden by
laration in the class. A hidden field can be accessed by using a qualified nam
is static) or by using a field access expression that contains a cast to a supe
type or the keywordsuper.

2.9.1 Field Modifiers

Fields may be declaredpublic, protected, orprivate, as discussed in §2.7.8.
If a field is declaredstatic, there exists exactly one incarnation of the fiel

no matter how many instances (possibly zero) of the class may eventually b
ated. Astatic field, sometimes called aclass variable, is incarnated when the
class is initialized (§2.16.4).

A field that is not declaredstatic is called aninstance variable. Whenever a
new instance of a class is created, a new variable associated with that insta
created for every instance variable declared in that class or in any of its s
classes.

A field can be declaredfinal, in which case its declarator must include
variable initializer (§2.9.2). Both class and instance variables (static and non-
static fields) may be declaredfinal. Once afinal field has been initialized, it
always contains the same value. If afinal field holds a reference to an objec
then the state of the object may be changed by operations on the object, b
field will always refer to the same object.

Variables may be markedtransient to indicate that they are not part of th
persistent state of an object. Thetransient attribute can be used by a Java impl
mentation to support special system services.The Java Language Specificatio
does not yet specify details of such services.

The Java language allows threads that access shared variables to kee
vate working copies of the variables; this allows a more efficient impleme
tion of multiple threads (§2.17). These working copies need be reconciled

JAVA CONCEPTS 27

ation
sure

hould
t con-

poses:
k-
able.
s on
t the

of an

when

each

ber of
 class
13.2)
excep-
th the
s said
flict
pe.
cation
the master copies in the shared main memory only at prescribed synchroniz
points, namely when objects are locked or unlocked (§2.17). As a rule, to en
that shared variables are consistently and reliably updated, a thread s
ensure that it has exclusive access to such variables by obtaining a lock tha
ventionally enforces mutual exclusion for those shared variables.

Java provides a second mechanism that is more convenient for some pur
a field may be declaredvolatile, in which case a thread must reconcile its wor
ing copy of the field with the master copy every time it accesses the vari
Moreover, operations on the master copies of one or more volatile variable
behalf of a thread are performed by the main memory in exactly the order tha
thread requested. Afinal field cannot also be declaredvolatile.

2.9.2 Initialization of Fields

If a field declaration contains a variable initializer, then it has the semantics
assignment to the declared variable, and:

• If the declaration is for a class variable (that is, astatic field), then the vari-
able initializer is evaluated and the assignment performed exactly once,
the class is initialized (§2.16.4).

• If the declaration is for an instance variable (that is, a field that is notstatic),
then the variable initializer is evaluated and the assignment performed
time an instance of the class is created.

2.10 Methods

A methoddeclares executable code that can be invoked, passing a fixed num
values as arguments. Every method declaration belongs to some class. A
inherits from its direct superclass (§2.8.3) and any direct superinterfaces (§2.
all the accessible methods of the superclass and superinterfaces, with one
tion: if a name is declared as a method in the new class, then no method wi
same signature (§2.10.2) is inherited. Instead, the newly declared method i
to override any such method declaration. An overriding method must not con
with the definition that it overrides, for instance, by having a different return ty
Overridden methods of the superclass can be accessed using a method invo
expression involving thesuper keyword.

THE JAVATM VIRTUAL MACHINE SPECIFICATION28

pa-
 identi-
values
ables

r and
 two

vid-
t

refer
class

rrent

r

 is
ely
th
2.10.1 Formal Parameters

The formal parameters of a method, if any, are specified by a list of comma-se
rated parameter specifiers. Each parameter specifier consists of a type and an
fier that specifies the name of the parameter. When the method is invoked, the
of the actual argument expressions initialize newly created parameter vari
(§2.5), each of the declared type, before execution of the body of the method.

2.10.2 Signature

Thesignature of a method consists of the name of the method and the numbe
type of formal parameters (§2.10.1) to the method. A class may not declare
methods with the same signature.

2.10.3 Method Modifiers

The access modifierspublic, protected, andprivate are discussed in §2.7.8.
An abstract method declaration introduces the method as a member, pro

ing its signature (§2.10.2), return type, andthrows clause (if any), but does no
provide an implementation. The declaration of anabstract methodm must
appear within anabstract class (call itA). Every subclass ofA that is not itself
abstract must provide an implementation form. A method declaredabstract
cannot also be declaredprivate, static, final, native, orsynchronized.

A method that is declaredstatic is called aclass method. A class method is
always invoked without reference to a particular object. A class method may
to other fields and methods of the class by simple name only if they are
methods and class (static) variables.

A method that is not declaredstatic is an instance method. An instance
method is always invoked with respect to an object, which becomes the cu
object to which the keywordsthis and super refer during execution of the
method body.

A method can be declaredfinal to prevent subclasses from overriding o
hiding it. A private method and all methods declared in afinal class (§2.8.2)
are implicitly final, because it is impossible to override them. If a method
final or implicitly final, a compiler or a runtime code generator can saf
“inline” the body of afinal method, replacing an invocation of the method wi
the code in its body.

JAVA CONCEPTS 29

e-
for

ck is

-
h as

ized
may

tual
clara-

 scope.
wise

. The
type.
by the

ked

odifi-
ot
 over-

tion

th a
A synchronized method will acquire a monitor lock (§2.17) before it ex
cutes. For a class (static) method, the lock associated with the class object
the method’s class is used. For an instance method, the lock associated withthis

(the object for which the method is invoked) is used. The same per-object lo
used by thesynchronized statement.

A method can be declarednative to indicate that it is implemented in plat
form-dependent code, typically written in another programming language suc
C, C++, or assembly language.

2.11 Static Initializers

Any static initializers declared in a class are executed when the class is initial
(§2.16.4) and, together with any field initializers (§2.9.2) for class variables,
be used to initialize the class variables of the class (§2.16.4).

The static initializers and class variable initializers are executed in tex
order. They may not refer to class variables declared in the class whose de
tions appear textually after the use, even though these class variables are in
This restriction is designed to catch, at compile time, most circular or other
malformed initializations.

2.12 Constructors

A constructor is used in the creation of an object that is an instance of a class
constructor declaration looks like a method declaration that has no result
Constructors are invoked by class instance creation expressions (§2.16.6),
conversions and concatenations caused by the string concatenation operator+, and
by explicit constructor invocations from other constructors; they are never invo
by method invocation expressions.

Access to and inheritance of constructors are governed by the access m
erspublic, protected, andprivate (§2.7.8). Constructor declarations are n
members. They are never inherited and therefore are not subject to hiding or
riding.

If a constructor body does not begin with an explicit constructor invoca
and the constructor being declared is not part of the primordial classObject,
then the constructor body is implicitly assumed by the compiler to begin wi

THE JAVATM VIRTUAL MACHINE SPECIFICATION30

uctor
 argu-

e

 from
nt the

s can

 a com-

, and

-

irect
tance
any

lue a
ement
nt all
must
idered
superclass constructor invocation “super();”, an invocation of the constructor
of its direct superclass that takes no arguments.

If a class declares no constructors, then adefault constructor which takes no
arguments is automatically provided. If the class being declared isObject, then
the default constructor has an empty body. Otherwise, the default constr
takes no arguments and simply invokes the superclass constructor with no
ments. If the class is declaredpublic, then the default constructor is implicitly
given the access modifierpublic. Otherwise, the default constructor has th
default access implied by no access modifier (§2.7.8).

A class can be designed to prevent code outside the class declaration
creating instances of the class by declaring at least one constructor, to preve
creation of an implicit constructor, and declaring all constructors to beprivate.

2.13 Interfaces

An interface is a reference type whose members are constants andabstract

methods. This type has no implementation, but otherwise unrelated classe
implement it by providing implementations for itsabstract methods. Java pro-
grams can use interfaces to make it unnecessary for related classes to share
monabstract superclass or to add methods toObject.

An interface may be declared to be adirect extensionof one or more other
interfaces, meaning that it implicitly specifies all theabstract methods and con-
stants of the interfaces it extends, except for any constants that it may hide
perhaps adding newly declared members of its own.

A class may be declared todirectly implement one or more interfaces, mean
ing that any instance of the class implements all theabstract methods specified
by that interface. A class necessarily implements all the interfaces that its d
superclasses and direct superinterfaces do. This (multiple) interface inheri
allows objects to support (multiple) common behaviors without sharing
implementation.

A variable whose declared type is an interface type may have as its va
reference to an object that is an instance of any class that is declared to impl
the specified interface. It is not sufficient that the class happens to impleme
theabstract methods of the interface; the class or one of its superclasses
actually be declared to implement the interface, or else the class is not cons
to implement the interface.

JAVA CONCEPTS 31

is

ss

each
nts of

tends

 that
nt

ost sys-

ll

rinter-
m the
 the

ce is
2.13.1 Interface Modifiers

An interface declaration may be preceded by the interface modifierspublic and
abstract. The access modifierpublic is discussed in (§2.7.8). Every interface
implicitly abstract. All members of interfaces are implicitlypublic.

An interface cannot befinal, because the implementation of such a cla
could never be completed.

2.13.2 Superinterfaces

If an extends clause is provided, then the interface being declared extends
of the other named interfaces, and therefore inherits the methods and consta
each of the other named interfaces. Any class thatimplements the declared inter-
face is also considered to implement all the interfaces that this interface ex
and that are accessible to the class.

Theimplements clause in a class declaration lists the names of interfaces
aredirect superinterfaces of the class being declared. All interfaces in the curre
package are accessible. Interfaces in other packages are accessible if the h
tem permits access to the package and the interface is declaredpublic.

An interface typeK is asuperinterface of class typeC if K is a direct super-
interface ofC; or if C has a direct superinterfaceJ that hasK as a superinterface; or
if K is a superinterface of the direct superclass ofC. A class is said toimplement
all its superinterfaces.

There is no analogue of the classObject for interfaces; that is, while every
class is an extension of classObject, there is no single interface of which a
interfaces are extensions.

2.13.3 Interface Members

The members of an interface are those members inherited from direct supe
faces and those members declared in the interface. The interface inherits, fro
interfaces it extends, all members of those interfaces, except for fields with
same names as fields it declares.

Interface members are either fields or methods.

2.13.4 Interface (Constant) Fields

Every field declaration in the body of an interface is implicitlystatic andfinal.
Interfaces do not have instance variables. Every field declaration in an interfa

THE JAVATM VIRTUAL MACHINE SPECIFICATION32

de

ion,
d and
6.4).

n
s
er, a

clared
od

aid to
f the

per-

e, or
 same

ables
.
ro, in
ve
itself implicitly public. A constant declaration in an interface must not inclu
either of the modifierstransient or volatile.

Every field in the body of an interface must have an initialization express
which need not be a constant expression. The variable initializer is evaluate
the assignment performed exactly once, when the interface is initialized (§2.1

2.13.5 Interface (Abstract) Methods

Every method declaration in the body of an interface is implicitlyabstract.
Every method declaration in the body of an interface is implicitlypublic.

A method declared in an interface must not be declaredstatic, because in
Javastatic methods cannot beabstract. A method declared in the body of a
interface must not be declarednative orsynchronized, because those keyword
describe implementation properties rather than interface properties; howev
method declared in an interface may be implemented by a method that is de
native or synchronized in a class that implements the interface. A meth
declared in the body of an interface must not be declaredfinal; however, one
may be implemented by a method that is declaredfinal in a class that imple-
ments the interface.

2.13.6 Overriding, Inheritance, and Overloading in Interfaces

If the interface declares a method, then the declaration of that method is s
override any and all methods with the same signature in the superinterfaces o
interface that would otherwise be accessible to code in this interface.

An interface inherits from its direct superinterfaces all methods of the su
interfaces that are not overridden by a declaration in the interface.

If two methods of an interface (whether both declared in the same interfac
both inherited by an interface, or one declared and one inherited) have the
name but different signatures, then the method name is said to beoverloaded.

2.14 Arrays

Javaarrays are objects, are dynamically created, and may be assigned to vari
of typeObject (§2.4.6). All methods of classObject may be invoked on an array

An array object contains a number of variables. That number may be ze
which case the array is said to beempty. The variables contained in an array ha

JAVA CONCEPTS 33

se non-

.

s

nents
array
e) the
onent

if the
ys,

nce.
orted;
tances

y have

le of
ompo-
array.
no names; instead they are referenced by array access expressions that u
negative integer index values. These variables are called thecomponents of the
array. If an array hasn components, we sayn is thelength of the array.

An array of zero components is not the same as the null reference (§2.4)

2.14.1 Array Types

All the components of an array have the same type, called thecomponent type of
the array. If the component type of an array isT, then the type of the array itself i
written T[].

The component type of an array may itself be an array type. The compo
of such an array may contain references to subarrays. If, starting from any
type, one considers its component type, and then (if that is also an array typ
component type of that type, and so on, eventually one must reach a comp
type that is not an array type; this is called theelement type of the original array,
and the components at this level of the data structure are called theelements of the
original array.

There is one situation in which an element of an array can be an array:
element type isObject (§2.4.6), then some or all of the elements may be arra
because every array object can be assigned to a variable of typeObject.

In Java, unlike C, an array ofchar is not aString (§2.4.6), and neither a
String nor an array ofchar is terminated by'\u0000' (the NUL-character). A
JavaString object is immutable (its value never changes), while an array ofchar

has mutable elements.
The element type of an array may be any type, whether primitive or refere

In particular, arrays with an interface type as the component type are supp
the elements of such an array may have as their value a null reference or ins
of any class type that implements the interface. Arrays with anabstract class
type as the component type are supported; the elements of such an array ma
as their value a null reference or instances of any subclass of thisabstract class
that is not itselfabstract.

2.14.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variab
array type does not create an array object or allocate any space for array c
nents. It creates only the variable itself, which can contain a reference to an

THE JAVATM VIRTUAL MACHINE SPECIFICATION34

 type
s cre-
of dif-
e.

s

s
e an
auses

age, a

 Java
lated
tion
 said

e an

tions
Because an array’s length is not part of its type, a single variable of array
may contain references to arrays of different lengths. Once an array object i
ated, its length never changes. To make an array variable refer to an array
ferent length, a reference to a different array must be assigned to the variabl

If an array variablev has typeA[], whereA is a reference type, thenv can
hold a reference to any array typeB[], providedB can be assigned toA (§2.6.6).

2.14.3 Array Creation

An array is created by anarray creation expression or anarray initializer.

2.14.4 Array Access

A component of an array is accessed using anarray access expression. Arrays
may be indexed byint values;short, byte, or char values may also be used a
they are subjected to unary numeric promotion (§2.6.9) and becomeint values.

All arrays are 0-origin. An array with lengthn can be indexed by the integer
0 throughn − 1. All array accesses are checked at run time; an attempt to us
index that is less than zero or greater than or equal to the length of the array c
anArrayIndexOutOfBoundsException to be thrown.

2.15 Exceptions

When a Java program violates the semantic constraints of the Java langu
Java Virtual Machine signals this error to the program as anexception. An exam-
ple of such a violation is an attempt to index outside the bounds of an array.
specifies that an exception will be thrown when semantic constraints are vio
and will cause a nonlocal transfer of control from the point where the excep
occurred to a point that can be specified by the programmer. An exception is
to bethrown from the point where it occurred and is said to becaught at the point
to which control is transferred. A method invocation that completes becaus
exception causes transfer of control to a point outside the method is said tocom-
plete abruptly.

Java programs can also throw exceptions explicitly, usingthrow statements.
This provides an alternative to the old-fashioned style of handling error condi
by returning distinguished error values, such as the integer value-1, where a neg-
ative value would not normally be expected.

JAVA CONCEPTS 35

int at
hed by
n, a

ents,
res-
s pro-
rown
of the

ation

 pre-
irtual
hese

 Vir-
 pro-
 of an

 such
Every exception is represented by an instance of the classThrowable or one of
its subclasses; such an object can be used to carry information from the po
which an exception occurs to the handler that catches it. Handlers are establis
catch clauses oftry statements. During the process of throwing an exceptio
Java Virtual Machine abruptly completes, one by one, any expressions, statem
method and constructor invocations, static initializers, and field initialization exp
sions that have begun but not completed execution in the current thread. Thi
cess continues until a handler is found that indicates that it handles the th
exception by naming the class of the exception or a superclass of the class
exception. If no such handler is found, then the methoduncaughtException is
invoked for theThreadGroup that is the parent of the current thread.

The Java exception mechanism is integrated with the Java synchroniz
model (§2.17), so that locks are properly released assynchronized statements
and invocations ofsynchronized methods complete abruptly.

The specific exceptions covered in this section are that subset of the
defined exceptions that can be thrown directly by the operation of the Java V
Machine. Additional exceptions can be thrown by class library or user code; t
exceptions are not covered here. SeeThe Java Language Specification for infor-
mation on all predefined exceptions.

2.15.1 The Causes of Exceptions

An exception is thrown for one of three reasons:

• An abnormal execution condition was synchronously detected by a Java
tual Machine. These exceptions are not thrown at an arbitrary point in the
gram, but rather at a point where they are specified as a possible result
expression evaluation or statement execution:

■ An operation that violates the normal semantics of the Java language,
as indexing outside the bounds of an array.

■ An error in loading or linking part of the Java program.

■ Exceeding some limit on a resource, such as using too much memory.

• A throw statement was executed in Java code.

• An asynchronous exception occurred because:

■ The methodstop of classThread was invoked, or

■ An internal error has occurred in the virtual machine.

THE JAVATM VIRTUAL MACHINE SPECIFICATION36

d the

y the

 was

the
on of

alized.

f the
e
of the
n

brupt
t
f that

rent
ter all

ays
tly, a
Exceptions are represented by instances of the classThrowable and instances
of its subclasses. These classes are, collectively, theexception classes.

2.15.2 Handling an Exception

When an exception is thrown, control is transferred from the code that cause
exception to the nearest dynamically enclosingcatch clause of atry statement
that handles the exception.

A statement or expression isdynamically enclosed by a catch clause if it
appears within thetry block of thetry statement of which thecatch clause is a
part, or if the caller of the statement or expression is dynamically enclosed b
catch clause.

Thecaller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation expression that
executed to cause the method to be invoked.

• If within a constructor or the initializer for an instance variable, then
caller is the class instance creation expression or the method invocati
newInstance that was executed to cause an object to be created.

• If within a static initializer or an initializer for astatic variable, then the caller
is the expression that used the class or interface so as to cause it to be initi

Whether a particularcatch clausehandles an exception is determined by
comparing the class of the object that was thrown to the declared type o
parameter of thecatch clause. Thecatch clause handles the exception if the typ
of its parameter is the class of the exception or a superclass of the class
exception. Equivalently, acatch clause will catch any exception object that is a
instanceof the declared parameter type.

The control transfer that occurs when an exception is thrown causes a
completion of expressions and statements until acatch clause is encountered tha
can handle the exception; execution then continues by executing the block o
catch clause. The code that caused the exception is never resumed.

If no catch clause handling an exception can be found, then the cur
thread (the thread that encountered the exception) is terminated, but only af
finally clauses have been executed and the methoduncaughtException has
been invoked for theThreadGroup that is the parent of the current thread.

In situations where it is desirable to ensure that one block of code is alw
executed after another, even if that other block of code completes abrup

JAVA CONCEPTS 37

e
f no

re.
y the
ed to
st, an
ram.
:

ll the
y may
 An
 the

e an
ized
andle

t of
ides a
nchro-
 some
ce.
ll
t from

sions,
ion is
tively
hich

execu-
try statement with afinally clause may be used. If atry or catch block in a
try–finally or try–catch–finally statement completes abruptly, then th
finally clause is executed during propagation of the exception, even i
matchingcatch clause is ultimately found. If afinally clause is executed
because of abrupt completion of atry block and thefinally clause itself com-
pletes abruptly, then the reason for the abrupt completion of thetry block is
discarded and the new reason for abrupt completion is propagated from the

Most exceptions in Java occur synchronously as a result of an action b
thread in which they occur, and at a point in the Java program that is specifi
possibly result in such an exception. An asynchronous exception is, by contra
exception that can potentially occur at any point in the execution of a Java prog

Asynchronous exceptions are rare in Java. They occur only as a result of

• An invocation of thestop methods of classThread or ThreadGroup.

• An InternalError in the Java Virtual Machine.

Thestop methods may be invoked by one thread to affect another thread or a
threads in a specified thread group. They are asynchronous because the
occur at any point in the execution of the other thread or threads.
InternalError is considered asynchronous so that it may be handled using
same mechanism that handles thestop method, as will now be described.

Java permits a small but bounded amount of execution to occur befor
asynchronous exception is thrown. This delay is permitted to allow optim
code to detect and throw these exceptions at points where it is practical to h
them while obeying the semantics of the Java language.

A simple implementation might poll for asynchronous exceptions at the poin
each control transfer instruction. Since a Java program has a finite size, this prov
bound on the total delay in detecting an asynchronous exception. Since no asy
nous exception will occur between control transfers, the code generator has
flexibility to reorder computation between control transfers for greater performan

All exceptions in Java areprecise: when the transfer of control takes place, a
effects of the statements executed and expressions evaluated before the poin
which the exception is thrown must appear to have taken place. No expres
statements, or parts thereof that occur after the point from which the except
thrown may appear to have been evaluated. If optimized code has specula
executed some of the expressions or statements which follow the point at w
the exception occurs, such code must be prepared to hide this speculative
tion from the user-visible state of the Java program.

THE JAVATM VIRTUAL MACHINE SPECIFICATION38

asses,

ing for
ecked
s

ary

ge

ch

m-
onent

 an

r

an
alues

ay
2.15.3 The Exception Hierarchy

The possible exceptions in a Java program are organized in a hierarchy of cl
rooted at classThrowable, a direct subclass ofObject. The classesException
andError are direct subclasses ofThrowable. The classRuntimeException is a
direct subclass ofException.

Java programs can use the preexisting exception classes inthrow statements,
or define additional exception classes, as subclasses ofThrowable or of any of its
subclasses, as appropriate. To take advantage of Java’s compile-time check
exception handlers, it is typical to define most new exception classes as ch
exception classes, specifically as subclasses ofException that are not subclasse
of RuntimeException.

2.15.4 The ClassesException and RuntimeException

The classException is the superclass of all the standard exceptions that ordin
programs may wish to recover from.

The classRuntimeException is a subclass of classException. The sub-
classes of RuntimeException are unchecked exception classes. Packa
java.lang defines the following standard unchecked runtime exceptions:

• ArithmeticException: An exceptional arithmetic situation has arisen, su
as an integer division or remainder operation with a zero divisor.

• ArrayStoreException: An attempt has been made to store into an array co
ponent a value whose class is not assignment compatible with the comp
type of the array.

• ClassCastException: An attempt has been made to cast a reference to
object to an inappropriate type.

• IllegalMonitorStateException: A thread has attempted to wait on o
notify other threads waiting on an object that it has not locked.

• IndexOutOfBoundsException: Either an index of some sort (such as to
array, a string, or a vector) or a subrange, specified either by two index v
or by an index and a length, was out of range.

• NegativeArraySizeException: An attempt was made to create an arr
with a negative length.

JAVA CONCEPTS 39

 a

rdi-

hing

ss of
n

ub-

ilure

 error

 will

t

ss of
n

• NullPointerException: An attempt was made to use a null reference in
case where an object reference was required.

• SecurityException: A security violation was detected.

The classError and its standard subclasses are exceptions from which o
nary programs are not ordinarily expected to recover. The classError is a sepa-
rate subclass ofThrowable, distinct fromException in the class hierarchy, to
allow programs to use the idiom

} catch (Exception e) {

to catch all exceptions from which recovery may be possible without catc
errors from which recovery is typically not possible. Packagejava.lang defines
all the error classes described here.

A Java Virtual Machine throws an object that is an instance of a subcla
LinkageError when a loading (§2.16.2), linking (§2.16.3), or initializatio
(§2.16.4) error occurs:

• The loading process is described in (§2.16.2). The errorsClassFormatError,
ClassCircularityError, andNoClassDefFoundError are described there.

• The linking process is described in (§2.16.3). The linking errors (all s
classes ofIncompatibleClassChangeError), namelyIllegalAccessError,
InstantiationError, NoSuchFieldError, andNoSuchMethodError, are
described there.

• The class verification process is described in (§2.16.3). The verification fa
errorVerifyError is described there.

• The class preparation process is described in (§2.16.3). The preparation
described there isAbstractMethodError.

• The class initialization process is described in (§2.16.4). A virtual machine
throw the errorExceptionInInitializerError if execution of a static ini-
tializer or of an initializer for astatic field (§2.11) results in an exception tha
is not anError or a subclass ofError.

A Java Virtual Machine throws an object that is an instance of a subcla
the classVirtualMachineError when an internal error or resource limitatio

THE JAVATM VIRTUAL MACHINE SPECIFICATION40

ifica-

e,
lt in
or is
t in a

r
claim

for
recur-

n, a

. It is
inter-
dures

ading
ro-

ribing
irtual

auses
 uses,
prevents it from implementing the semantics of the Java Language. This spec
tion defines the following virtual machine errors:

• InternalError: An internal error has occurred in a Java Virtual Machin
because of a fault in the software implementing the virtual machine, a fau
the underlying host system software, or a fault in the hardware. This err
delivered asynchronously when it is detected and may occur at any poin
Java program.

• OutOfMemoryError: A Java Virtual Machine has run out of either virtual o
physical memory, and the automatic storage manager was unable to re
enough memory to satisfy an object creation request.

• StackOverflowError: A Java Virtual Machine has run out of stack space
a thread, typically because the thread is doing an unbounded number of
sive invocations as a result of a fault in the executing program.

• UnknownError: An exception or error has occurred but, for some reaso
Java Virtual Machine is unable to report the actual exception or error.

2.16 Execution

This section specifies activities that occur during execution of a Java program
organized around the life cycle of a Java Virtual Machine and of the classes,
faces, and objects that form a Java program. It specifies the detailed proce
used in starting up the virtual machine (§2.16.1), class and interface type lo
(§2.16.2), linking (§2.16.3), and initialization (§2.16.4). It then specifies the p
cedures for creation of new class instances (§2.16.6). It concludes by desc
the unloading of classes (§2.16.8) and the procedure followed when a v
machine exits (§2.16.9).

2.16.1 Virtual Machine Start-up

A Java Virtual Machine starts execution by invoking the methodmain of some spec-
ified class, passing it a single argument, which is an array of strings. This c
the specified class to be loaded (§2.16.2), linked (§2.16.3) to other types that it
and initialized (§2.16.4). The methodmain must be declaredpublic, static, and
void.

JAVA CONCEPTS 41

hine
 that
 as a
 used

trings

cribed

ur-
 uses
this
er in

itial-
k-

 that
ual
ca-

at are
tected
3.

hat are

ta-
inked
The manner in which the initial class is specified to the Java Virtual Mac
is beyond the scope of this specification, but it is typical, in host environments
use command lines, for the fully qualified name of the class to be specified
command-line argument and for subsequent command-line arguments to be
as strings to be provided as the argument to the methodmain. For example, in
Sun’s JDK implementation on UNIX, the command line

java Terminator Hasta la vista Baby!

will start a Java Virtual Machine by invoking the methodmain of classTerminator
(a class in an unnamed package), passing it an array containing the four s
"Hasta", "la", "vista", and"Baby!".

We now outline the steps the virtual machine may take to executeTerminator,
as an example of the loading, linking, and initialization processes that are des
further in later sections.

The initial attempt to execute the methodmain of classTerminator discovers
that the classTerminator is not loaded—that is, the virtual machine does not c
rently contain a binary representation for this class. The virtual machine then
a ClassLoader (§2.16.2) to attempt to find such a binary representation. If
process fails, an error is thrown. This loading process is described furth
(§2.16.2).

After Terminator is loaded, it must be initialized beforemain can be
invoked, and a type (class or interface) must always be linked before it is in
ized. Linking involves verification, preparation, and (optionally) resolution. Lin
ing is described further in §2.16.3.

Verification checks that the loaded representation ofTerminator is well
formed, with a proper symbol table. Verification also checks that the code
implementsTerminator obeys the semantic requirements of the Java Virt
Machine. If a problem is detected during verification, an error is thrown. Verifi
tion is described further in §2.16.3.

Preparation involves allocation of static storage and any data structures th
used internally by the virtual machine, such as method tables. If a problem is de
during preparation, an error is thrown. Preparation is described further in §2.16.

Resolution is the process of checking symbolic references fromTerminator

to other classes and interfaces, by loading the other classes and interfaces t
mentioned and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implemen
tion may resolve a symbolic reference from a class or interface that is being l

THE JAVATM VIRTUAL MACHINE SPECIFICATION42

sses
esult
rep-
 done

 only
nces

ed one
cution

rors
some
age
en-
 the

class
ces.
d be

the
of

 ini-

ss of

-
en-

d-
very early, even to the point of resolving all symbolic references from the cla
and interfaces that are further referenced, recursively. (This resolution may r
in errors from further loading and linking steps.) This implementation choice
resents one extreme and is similar to the kind of static linkage that has been
for many years in simple implementations of the C language.

An implementation may instead choose to resolve a symbolic reference
when it is actively used; consistent use of this strategy for all symbolic refere
would represent the “laziest” form of resolution. In this case, ifTerminator had
several symbolic references to another class, the references might be resolv
at a time—perhaps not at all, if these references were never used during exe
of the program.

The only requirement on when resolution is performed is that any er
detected during resolution must be thrown at a point in the program where
action is taken by the program that might, directly or indirectly, require link
to the class or interface involved in the error. In the “static” example implem
tation choice described earlier, loading and linking errors could occur before
program is executed if they involved a class or interface mentioned in the
Terminator or any of the further, recursively referenced classes and interfa
In a system that implemented the “laziest” resolution, these errors woul
thrown only when a symbolic reference is actively used.

The resolution process is described further in §2.16.3.
In our running example, the virtual machine is still trying to execute

method main of classTerminator. This is an attempted active use (§2.16.4)
the class, which is permitted only if the class has been initialized.

Initialization consists of execution of any class variable initializers and static
tializers of the classTerminator, in textual order. But beforeTerminator can be
initialized, its direct superclass must be initialized, as well as the direct supercla
its direct superclass, and so on, recursively. In the simplest case,Terminator has
Object as its implicit direct superclass; if classObject has not yet been initialized,
then it must be initialized beforeTerminator is initialized.

If classTerminator has another classSuper as its superclass, thenSuper
must be initialized beforeTerminator. This requires loading, verifying, and pre
paringSuper, if this has not already been done, and, depending on the implem
tation, may also involve resolving the symbolic references fromSuper and so on,
recursively.

Initialization may thus cause loading, linking, and initialization errors, inclu
ing such errors involving other types.

JAVA CONCEPTS 43

ed),

type
 by
by a

lasses
related
nning
und

y of a
here

low-
-

e it

m-

e

and
n be
The initialization process is described further in §2.16.4.
Finally, after completion of the initialization for classTerminator (during

which other consequential loading, linking, and initializing may have occurr
the methodmain of Terminator is invoked.

2.16.2 Loading

Loading refers to the process of finding the binary form of a class or interface
with a particular name, perhaps by computing it on the fly, but more typically
retrieving a binary representation previously computed from source code
compiler and constructing, from that binary form, aClass object to represent the
class or interface. The binary format of a class or interface is normally theclass

file format (see Chapter 4, “Theclass File Format”).
The loading process is implemented by the classClassLoader and its sub-

classes. Different subclasses ofClassLoader may implement different loading
policies. In particular, a class loader may cache binary representations of c
and interfaces, prefetch them based on expected usage, or load a group of
classes together. These activities may not be completely transparent to a ru
Java application if, for example, a newly compiled version of a class is not fo
because an older version is cached by a class loader. It is the responsibilit
class loader, however, to reflect loading errors only at points in the program w
they could have arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the fol
ing subclasses of classLinkageError will be thrown at any point in the Java pro
gram that (directly or indirectly) uses the type:

• ClassCircularityError: A class or interface could not be loaded becaus
would be its own superclass or superinterface (§2.13.2).

• ClassFormatError: The binary data that purports to specify a requested co
piled class or interface is malformed.

• NoClassDefFoundError: No definition for a requested class or interfac
could be found by the relevant class loader.

2.16.3 Linking: Verification, Preparation, and Resolution

Linking is the process of taking a binary form of a class or interface type
combining it into the runtime state of the Java Virtual Machine, so that it ca

THE JAVATM VIRTUAL MACHINE SPECIFICATION44

 dif-
ion

nd,
e lan-
pared

point
 link-

efer-
olu-
ified
some

e is
per-

other
pro-
 the

ub-
at

 set
e and

ini-
quire
d as

lly
e

executed. A class or interface type is always loaded before it is linked. Three
ferent activities are involved in linking: verification, preparation, and resolut
of symbolic references.

Java allows an implementation flexibility as to when linking activities (a
because of recursion, loading) take place, provided that the semantics of th
guage are respected, that a class or interface is completely verified and pre
before it is initialized, and that errors detected during linkage are thrown at a
in the program where some action is taken by the program that might require
age to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic r
ence in a class or interface individually, only when it is used (lazy or late res
tion), or to resolve them all at once, for example, while the class is being ver
(static resolution). This means that the resolution process may continue, in
implementations, after a class or interface has been initialized.

Verification ensures that the binary representation of a class or interfac
structurally correct. For example, it checks that every instruction has a valid o
ation code; that every branch instruction branches to the start of some
instruction, rather than into the middle of an instruction; that every method is
vided with a structurally correct signature; and that every instruction obeys
type discipline of the Java language.

If an error occurs during verification, then an instance of the following s
class of classLinkageError will be thrown at the point in the Java program th
caused the class to be verified:

• VerifyError: The binary definition for a class or interface failed to pass a
of required checks to verify that it obeys the semantics of the Java languag
that it cannot violate the integrity of the Java Virtual Machine.

Preparation involves creating the static fields for a class or interface and
tializing such fields to the standard default values (§2.5.1). This does not re
the execution of any Java code; explicit initializers for static fields are execute
part of initialization (§2.16.4), not preparation.

Java implementations must detect the following error during preparation:

• AbstractMethodError: A class that is not declared to beabstract has an
abstract method. This can occur, for example, if a method that is origina
not abstract is changed to beabstract after another class that inherits th
now-abstract method declaration has been compiled.

JAVA CONCEPTS 45

data
 inter-
” or
 class

elds,
.7.9)
 refer-
eld or
riate

aced
ce is

ing
,
s
ym-

ec-
of an
t have

.

t is
reated

tion

s to
s not

 be
Implementations of the Java Virtual Machine may precompute additional
structures at preparation time in order to make later operations on a class or
face more efficient. One particularly useful data structure is a “method table
other data structure that allows any method to be invoked on instances of a
without requiring a search of superclasses at invocation time.

A Java binary file references other classes and interfaces and their fi
methods, and constructors symbolically, using the fully qualified names (§2
of the other classes and interfaces. For fields and methods these symbolic
ences include the name of the class or interface type which declares the fi
method, as well as the name of the field or method itself, together with approp
type information.

Before a symbolic reference can be used it must undergoresolution,
wherein a symbolic reference is checked to be correct and, typically, repl
with a direct reference that can be more efficiently processed if the referen
used repeatedly.

If an error occurs during resolution, then an instance of one of the follow
subclasses of classIncompatibleClassChangeError, or of some other subclass
or of IncompatibleClassChangeError itself (which is a subclass of the clas
LinkageError) may be thrown at any point in the Java program that uses a s
bolic reference to the type:

• IllegalAccessError: A symbolic reference has been encountered that sp
ifies a use or assignment of a field, or invocation of a method, or creation
instance of a class, to which the code containing the reference does no
access because the field or method was declaredprivate, protected, or
default access (notpublic), or because the class was not declaredpublic. This
can occur, for example, if a field that is originally declaredpublic is changed
to beprivate after another class that refers to the field has been compiled

• InstantiationError: A symbolic reference has been encountered tha
used in a class instance creation expression, but an instance cannot be c
because the reference turns out to refer to an interface or to anabstract class.
This can occur, for example, if a class that is originally notabstract is
changed to beabstract after another class that refers to the class in ques
has been compiled.

• NoSuchFieldError: A symbolic reference has been encountered that refer
a specific field of a specific class or interface, but the class or interface doe
declare a field of that name (it is specifically not sufficient for it simply to

THE JAVATM VIRTUAL MACHINE SPECIFICATION46

 if a
to the

fers
rface
t suf-
his

 after

 the
ter-
face

aces
es of

or
tly or

 a field
alue,

stent
e static
y not
xtually
tion is
an inherited field of that class or interface). This can occur, for example,
field declaration was deleted from a class after another class that refers
field was compiled.

• NoSuchMethodError: A symbolic reference has been encountered that re
to a specific method of a specific class or interface, but the class or inte
does not declare a method of that name and signature (it is specifically no
ficient for it simply to be an inherited method of that class or interface). T
can occur, for example, if a method declaration was deleted from a class
another class that refers to the method was compiled

2.16.4 Initialization

Initialization of a class consists of executing its static initializers (§2.11) and
initializers for static fields (§2.9.2) declared in the class. Initialization of an in
face consists of executing the initializers for fields declared in the inter
(§2.13.4).

Before a class is initialized, its superclass must be initialized, but interf
implemented by the class need not be initialized. Similarly, the superinterfac
an interface need not be initialized before the interface is initialized.

A class or interface typeT will be initialized at its firstactive use, which
occurs if:

• T is a class and a method actually declared inT (rather than inherited from a
superclass) is invoked.

• T is a class and a constructor for classT is invoked.

• A nonconstant field declared inT (rather than inherited from a superclass
superinterface) is used or assigned. A constant field is one that is (explici
implicitly) both final andstatic, and that is initialized with the value of a
compile-time constant expression. Java specifies that a reference to such
must be resolved at compile time to a copy of the compile-time constant v
so uses of such field are never active uses.

All other uses of a type arepassive uses.
The intent here is that a type has a set of initializers that put it in a consi

state, and that this state is the first state that is observed by other classes. Th
initializers and class variable initializers are executed in textual order and ma
refer to class variables declared in the class whose declarations appear te
after the use, even though these class variables are in scope. This restric

JAVA CONCEPTS 47

itial-

 not

actu-
class,

 of

reful
 class
of a
f that

e of
. It
t the

on or
.

ini-
 for

ead,
n

designed to detect, at compile time, most circular or otherwise malformed in
izations.

Before a class is initialized its superclasses are initialized, if they have
previously been initialized.

A reference to a field is an active use of only the class or interface that
ally declares it, even though it might be referred to through the name of a sub
a subinterface, or a class that implements an interface.

Initialization of an interface does not, of itself, require initialization of any
its superinterfaces.

2.16.5 Detailed Initialization Procedure

Because Java is multithreaded, initialization of a class or interface requires ca
synchronization, since some other thread may be trying to initialize the same
or interface at the same time. There is also the possibility that initialization
class or interface may be requested recursively as part of the initialization o
class or interface; for example, a variable initializer in classA might invoke a
method of an unrelated classB, which might in turn invoke a method of classA.
The implementation of the Java Virtual Machine is responsible for taking car
synchronization and recursive initialization by using the following procedure
assumes that theClass object has already been verified and prepared, and tha
Class object contains state that can indicates one of four situations:

• ThisClass object is verified and prepared but not initialized.

• ThisClass object is being initialized by some particular threadT.

• ThisClass object is fully initialized and ready for use.

• ThisClass object is in an erroneous state, perhaps because the verificati
preparation step failed, or because initialization was attempted and failed

The procedure for initializing a class or interface is then as follows:

1. Synchronize on theClass object that represents the class or interface to be
tialized. This involves waiting until the current thread can obtain the lock
that object (§8.13).

2. If initialization is in progress for the class or interface by some other thr
thenwait on thisClass object (which temporarily releases the lock). Whe
the current thread awakens from thewait, repeat this step.

THE JAVATM VIRTUAL MACHINE SPECIFICATION48

ad,
n the

on is

ble.

 the
form
e the
ptly

 the

f the
they

nd

ome
te

n

the
3. If initialization is in progress for the class or interface by the current thre
then this must be a recursive request for initialization. Release the lock o
Class object and complete normally.

4. If the class or interface has already been initialized, then no further acti
required. Release the lock on theClass object and complete normally.

5. If theClass object is in an erroneous state, then initialization is not possi
Release the lock on theClass object and throw aNoClassDefFoundError.

6. Otherwise, record the fact that initialization of theClass object is now in
progress by the current thread and release the lock on theClass object.

7. Next, if theClass object represents a class rather than an interface, and
superclass of this class has not yet been initialized, then recursively per
this entire procedure for the superclass. If necessary, verify and prepar
superclass first. If the initialization of the superclass completes abru
because of a thrown exception, then lock thisClass object, label it erroneous,
notify all waiting threads, release the lock, and complete abruptly, throwing
same exception that resulted from initializing the superclass.

8. Next, execute either the class variable initializers and static initializers o
class, or the field initializers of the interface, in textual order, as though
were a single block, except thatfinal static variables and fields of inter-
faces whose values are compile-time constants are initialized first.

9. If the execution of the initializers completes normally, then lock thisClass

object, label it fully initialized, notify all waiting threads, release the lock, a
complete this procedure normally.

10. Otherwise, the initializers must have completed abruptly by throwing s
exceptionE. If the class ofE is notError or one of its subclasses, then crea
a new instance of the classExceptionInInitializerError, with E as the
argument, and use this object in place ofE in the following step. But if a new
instance ofExceptionInInitializerError cannot be created because a
OutOfMemoryError occurs, then instead use anOutOfMemoryError object in
place ofE in the following step.

11. Lock theClass object, label it erroneous, notify all waiting threads, release
lock, and complete this procedure abruptly with reasonE or its replacement as
determined in the previous step.

JAVA CONCEPTS 49

liza-

ions

 of the

me

stant
.
ts for

peci-
.
 for it
l the
all the
ble to
letes
e

efault
ed as
In some early implementations of Java, an exception during class initia
tion was ignored, rather than causing anExceptionInInitializerError as
described here.

2.16.6 Creation of New Class Instances

A new class instance is explicitly created when one of the following situat
occurs:

• Evaluation of a class instance creation expression creates a new instance
class whose name appears in the expression.

• Invocation of thenewInstance method of classClass creates a new instance
of the class represented by theClass object for which the method was
invoked.

A new class instance may be implicitly created in the following situations:

• Loading of a class or interface that contains aString literal may create a new
String object (§2.4.7) to represent that literal. This may not occur if the sa
String has previously been interned.

• Execution of a string concatenation operator that is not part of a con
expression sometimes creates a newString object to represent the result
String concatenation operators may also create temporary wrapper objec
a value of a primitive type (§2.4.1).

Each of these situations identifies a particular constructor to be called with s
fied arguments (possibly none) as part of the class instance creation process

Whenever a new class instance is created, memory space is allocated
with room for all the instance variables declared in the class type and al
instance variables declared in each superclass of the class type, including
instance variables that may be hidden. If there is not sufficient space availa
allocate memory for the object, then creation of the class instance comp
abruptly with anOutOfMemoryError. Otherwise, all the instance variables in th
new object, including those declared in superclasses, are initialized to their d
values (§2.5.1). Just before a reference to the newly created object is return

THE JAVATM VIRTUAL MACHINE SPECIFICATION50

using

iables

her
d
ps. If
letes

ther
r
-
-
e five
com-

es to
hey
hese
 and

 con-
cor-
as

value

letes
ther-

 dis-
at are
iding
the result, the indicated constructor is processed to initialize the new object
the following procedure:

1. Assign the arguments for the constructor to newly created parameter var
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation of anot
constructor in the same class (usingthis), then evaluate the arguments an
process that constructor invocation recursively using these same five ste
that constructor invocation completes abruptly, then this procedure comp
abruptly for the same reason. Otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation of ano
constructor in the same class (usingthis). If this constructor is for a class othe
thanObject, then this constructor will begin with a explicit or implicit invoca
tion of a superclass constructor (usingsuper). Evaluate the arguments and pro
cess that superclass constructor invocation recursively using these sam
steps. If that constructor invocation completes abruptly, then this procedure
pletes abruptly for the same reason. Otherwise, continue with step 4.

4. Execute the instance variable initializers for this class, assigning their valu
the corresponding instance variables, in the left-to-right order in which t
appear textually in the source code for the class. If execution of any of t
initializers results in an exception, then no further initializers are processed
this procedure completes abruptly with that same exception. Otherwise,
tinue with step 5. (In some early Java implementations, the compiler in
rectly omitted the code to initialize a field if the field initializer expression w
a constant expression whose value was equal to the default initialization
for its type. This was a bug.)

5. Execute the rest of the body of this constructor. If that execution comp
abruptly, then this procedure completes abruptly for the same reason. O
wise, this procedure completes normally.

Unlike C++, the Java language does not specify altered rules for method
patch during the creation of a new class instance. If methods are invoked th
overridden in subclasses in the object being initialized, then these overr
methods are used, even before the new object is completely created.

JAVA CONCEPTS 51

n
oke

rs or
y an

mory
ld be

ked,
Also,
 any
cep-

,
ati-

oded

ver-

hat is

d.
matic

es
ly, the
ently
2.16.7 Finalization of Class Instances

The classObject has aprotected method calledfinalize; this method can be
overridden by other classes. The particular definition offinalize that can be
invoked for an object is called thefinalizer of that object. Before the storage for a
object is reclaimed by the garbage collector, the Java Virtual Machine will inv
the finalizer of that object.

Finalizers provide a chance to free up resources (such as file descripto
operating system graphics contexts) that cannot be freed automatically b
automatic storage manager. In such situations, simply reclaiming the me
used by an object would not guarantee that the resources it held wou
reclaimed.

The Java language does not specify how soon a finalizer will be invo
except to say that it will happen before the storage for the object is reused.
the Java language does not specify which thread will invoke the finalizer for
given object. If an uncaught exception is thrown during the finalization, the ex
tion is ignored and finalization of that object terminates.

Thefinalize method declared in classObject takes no action. However, the
fact that classObject declares afinalize method means that thefinalize
method for any class can always invoke thefinalize method for its superclass
which is usually good practice. (Unlike constructors, finalizers do not autom
cally invoke the finalizer for the superclass; such an invocation must be c
explicitly.)

For efficiency, an implementation may keep track of classes that do not o
ride thefinalize method of classObject, or override it in a trivial way, such as

protected void finalize() { super.finalize(); }

We encourage implementations to treat such objects as having a finalizer t
not overridden, and to finalize them more efficiently.

Thefinalize method may be invoked explicitly, just like any other metho
However, doing so does not have any effect on the object’s eventual auto
finalization.

The Java Virtual Machine imposes no ordering onfinalize method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becom
unreachable, then all the objects may become finalizable together. Eventual
finalizers for these objects may be invoked, in any order, or even concurr

THE JAVATM VIRTUAL MACHINE SPECIFICATION52

t the

lized
rent
s
le, to
 class
pplet

lass
l

,

his

ngs

izers
chine
using multiple threads. If the automatic storage manager later finds tha
objects are unreachable, then their storage can be reclaimed.

2.16.8 Finalization and Unloading of Classes and Interfaces

A Java Virtual Machine may provide mechanisms whereby classes are fina
and unloaded.2 The details of such mechanisms are not specified in the cur
version ofThe Java Language Specification. In general, groups of related clas
and interface types will be unloaded together. This can be used, for examp
unload a group of related types that have been loaded using a particular
loader. Such a group might consist of all the classes implementing a single a
in a Java-based browser such as HotJava, for example.

A class may not be unloaded while any instance of it is still reachable. A c
or interface may not be unloaded while theClass object that represents it is stil
reachable.

If a class declares a class methodclassFinalize that takes no arguments
and returns no result:

static void classFinalize() { . . . }

then this method will be invoked before the class is unloaded. Like thefinalize

method for objects, this method will be automatically invoked only once. T
method may optionally be declaredprivate, protected, orpublic.

2.16.9 Virtual Machine Exit

A Java Virtual Machine terminates all its activity and exits when one of two thi
happens:

• All the threads that are not daemon threads (§2.17) terminate.

• Some thread invokes theexit method of classRuntime or classSystem and
the exit operation is permitted by the security manager.

A Java program can specify that the finalizers of all objects that have final
that have not been automatically invoked are to be run before the virtual ma
exits. This is done by invoking the methodrunFinalizersOnExit of the class

2. Class finalization and unloading are not implemented as of Sun’s JDK release 1.0.2.

JAVA CONCEPTS 53

d

n-

r of
upport
a code
mory.

cing a

e-
 can

g the

l pur-
 died

hibit

on of
s of

 to

ocks
System with the argumenttrue.3 The default is to not run finalizers on exit, an
this behavior may be restored by invokingrunFinalizersOnExit with the argu-
mentfalse. An invocation of therunFinalizersOnExit method is permitted
only if the caller is allowed toexit, and is otherwise rejected by the security ma
ager.

2.17 Threads

While most of the preceding discussion is concerned only with the behavio
Java code as executed by a single thread, each Java Virtual Machine can s
many threads of execution at once. These threads independently execute Jav
that operates on Java values and objects residing in a shared main me
Threads may be supported by having many hardware processors, by time-sli
single hardware processor, or by time-slicing many hardware processors.

Any thread may be marked as adaemon thread. When code running in some
thread creates a newThread object, that new thread is initially marked as a da
mon thread if and only if the creating thread is a daemon thread. A program
change whether or not a particular thread is a daemon thread by callin
setDaemon method in classThread. The Java Virtual Machine initially starts up
with a single non-daemon thread which typically calls the methodmain of some
class. The virtual machine may also create other daemon threads for interna
poses. The Java Virtual Machine exits when all non-daemon threads have
(§2.16.9).

Java supports the coding of programs that, though concurrent, still ex
deterministic behavior, by providing mechanisms forsynchronizing the concur-
rent activity of threads. To synchronize threads, Java usesmonitors, which are a
high-level mechanism for allowing only one thread at a time to execute a regi
code protected by the monitor. The behavior of monitors is explained in term
locks. There is a lock associated with each object.

The synchronized statement performs two special actions relevant only
multithreaded operation:

1. After computing a reference to an object but before executing its body, it l
a lock associated with the object.

3. The methodrunFinalizersOnExit is not implemented in Sun’s JDK release 1.0.2.

THE JAVATM VIRTUAL MACHINE SPECIFICATION54

cks

ing”
te has
 using

cer–
an a
on

d may
-

o not
vari-
ing-
gram-
ram is

lues
ccess
rking
 the
k, a
ill be

ther,
t the

n any
redict
 inten-
tain
ed and
2. After execution of the body has completed, either normally or abruptly, it unlo
that same lock. As a convenience, a method may be declaredsynchronized;
such a method behaves as if its body were contained in asynchronized state-
ment.

The methodswait, notify, andnotifyAll of classObject support an effi-
cient transfer of control from one thread to another. Rather than simply “spinn
(repeatedly locking and unlocking an object to see whether some internal sta
changed), which consumes computational effort, a thread can suspend itself
wait until such time as another thread awakens it usingnotify or notifyAll.
This is especially appropriate in situations where threads have a produ
consumer relationship (actively cooperating on a common goal) rather th
mutual exclusion relationship (trying to avoid conflicts while sharing a comm
resource).

As a thread executes code, it carries out a sequence of actions. A threa
use the value of a variable orassign it a new value. (Other actions include arith
metic operations, conditional tests, and method invocations, but these d
involve variables directly.) If two or more concurrent threads act on a shared
able, there is a possibility that the actions on the variable will produce tim
dependent results. This dependence on timing is inherent in concurrent pro
ming and produces one of the few places in Java where the result of a prog
not determined solely byThe Java Language Specification.

Each thread has a working memory, in which it may keep copies of the va
of variables from the main memory that are shared between all threads. To a
a shared variable, a thread usually first obtains a lock and flushes its wo
memory. This guarantees that shared values will thereafter be loaded from
shared main memory to the working memory of the thread. By unlocking a loc
thread guarantees that the values held by the thread in its working memory w
written back to the main memory.

The interaction of threads with the main memory, and thus with each o
may be explained in terms of certain low-level actions. There are rules abou
order in which these actions may occur. These rules impose constraints o
implementation of Java, and a Java programmer may rely on the rules to p
the possible behaviors of a concurrent Java program. The rules do, however,
tionally give the implementor certain freedoms. The intent is to permit cer
standard hardware and software techniques that can greatly improve the spe
efficiency of concurrent code.

JAVA CONCEPTS 55

 of
les.

 value
 even
ple,

ence
r the
alue.

e to
 pro-

on.

with
Briefly put, the important consequences of the rules are the following:

• Proper use of synchronization constructs will allow reliable transmission
values or sets of values from one thread to another through shared variab

• When a thread uses the value of a variable, the value it obtains is in fact a
stored into the variable by that thread or by some other thread. This is true
if the program does not contain code for proper synchronization. For exam
if two threads store references to different objects into the same refer
value, the variable will subsequently contain a reference to one object o
other, not a reference to some other object or a corrupted reference v
(There is a special exception forlong anddouble values; see §8.4.)

• In the absence of explicit synchronization, a Java implementation is fre
update the main memory in an order that may be surprising. Therefore, the
grammer who prefers to avoid surprises should use explicit synchronizati

The details of the interaction of threads with the main memory, and thus
each other, are discussed in detail in Chapter 8, “Threads and Locks.”

C H A P T E R 3
icular

e to
ed
ne’s
and
ory

 opti-
) are

ypes:
es
d oper-

e at
 not
struc-
sing

o

Structure of the
Java Virtual Machine

THIS book specifies an abstract machine. It does not document any part
implementation of the Java Virtual Machine, including Sun’s.

To implement the Java Virtual Machine correctly, you need only be abl
read the Javaclass file format and correctly perform the operations specifi
therein. Implementation details that are not part of the Java Virtual Machi
specification would unnecessarily constrain the creativity of implementors,
will only be provided to make the exposition clearer. For example, the mem
layout of runtime data areas, the garbage-collection algorithm used, and any
mizations of the bytecodes (for example, translating them into machine code
left to the discretion of the implementor.

3.1 Data Types

Like the Java language, the Java Virtual Machine operates on two kinds of t
primitive types andreference types. There are, correspondingly, two kinds of valu
that can be stored in variables, passed as arguments, returned by methods, an
ated upon:primitive values andreference values.

The Java Virtual Machine expects that nearly all type checking is don
compile time, not by the Java Virtual Machine itself. In particular, data need
be tagged or otherwise be inspectable to determine types. Instead, the in
tion set of the Java Virtual Machine distinguishes its operand types u
instructions intended to operate on values of specific types. For instance,iadd,
ladd, fadd, anddadd are all Java Virtual Machine instructions that add tw
numeric values, but they require operands whose types areint, long, float,
57

THE JAVATM VIRTUAL MACHINE SPECIFICATION58

ual

t is
o an

fer-
era-
rated

rsion

va

se for
and double, respectively. For a summary of type support in the Java Virt
Machine’s instruction set, see §3.11.1.

The Java Virtual Machine contains explicit support for objects. An objec
either a dynamically allocated class instance or an array. A reference t
object is considered to have Java Virtual Machine typereference. Values of
type reference can be thought of as pointers to objects. More than one re
ence may exist to an object. Although the Java Virtual Machine performs op
tions on objects, it never addresses them directly. Objects are always ope
on, passed, and tested via values of typereference.

3.2 Primitive Types and Values

The primitive data types supported by the Java Virtual Machine are thenumeric
types and thereturnAddress type. The numeric types consist of theintegral types:

• byte, whose values are 8-bit signed two’s-complement integers

• short, whose values are 16-bit signed two’s-complement integers

• int, whose values are 32-bit signed two’s-complement integers

• long, whose values are 64-bit signed two’s-complement integers

• char, whose values are 16-bit unsigned integers representing Unicode ve
1.1.5 characters (§2.1)

and thefloating-point types:

• float, whose values are 32-bit IEEE 754 floating-point numbers

• double, whose values are 64-bit IEEE 754 floating-point numbers

The values of thereturnAddress type are pointers to the opcodes of Ja
Virtual Machine instructions. Only thereturnAddress type is not a Java lan-
guage type.

3.2.1 Integral Types and Values

The values of the integral types of the Java Virtual Machine are the same as tho
the integral types of the Java language (§2.4.1):

STRUCTURE OF THE JAVA VIRTUAL MACHINE 59

e as
point
64-

gni-

 to
h val-

e

 as
divid-
• Forbyte, from –128 to 127 (–27 to 27–1), inclusive

• Forshort, from –32768 to 32767 (–215 to 215–1), inclusive

• Forint, from –2147483648 to 2147483647 (–231 to 231–1), inclusive

• Forlong, from –9223372036854775808 to9223372036854775807 (–263 to
263–1), inclusive

• Forchar, from'\u0000' to '\uffff'; char is unsigned, so'\uffff' rep-
resents65535 when used in expressions, not –1

3.2.2 Floating-Point Types and Values

The values of the floating-point types of the Java Virtual Machine are the sam
those for the floating-point types of the Java language (§2.4.1). The floating-
typesfloat anddouble represent single-precision 32-bit and double-precision
bit format IEEE 754 values as specified inIEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std. 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative sign–ma
tude numbers, but also positive and negative zeroes, positive and negativeinfini-
ties, and a specialNot-a-Number (hereafter abbreviated NaN) value that is used
represent the result of certain operations such as dividing zero by zero. Suc
ues exist for bothfloat anddouble types.

The finite nonzero values of typefloat are of the forms ˙ m ˙ 2
e, wheres is

+1 or –1,m is a positive integer less than 224, ande is an integer between –149
and 104, inclusive. The largest positive finite floating-point literal of typefloat is
3.40282347e+38F. The smallest positive nonzero floating-point literal of typ
float is 1.40239846e−45F.

The finite nonzero values of typedouble are of the forms ˙ m ˙ 2
e, wheres is

+1 or –1,m is a positive integer less than 253, ande is an integer between –1075
and 970, inclusive.The largest positive finite floating-point literal of type double
is 1.79769313486231570e+308. The smallest positive nonzero floating-point lit-
eral of type double is 4.94065645841246544e−324.

Floating-point positive zero and floating-point negative zero compare
equal, but there are other operations that can distinguish them; for example,
ing 1.0 by0.0 produces positive infinity, but dividing1.0 by-0.0 produces neg-
ative infinity.

THE JAVATM VIRTUAL MACHINE SPECIFICATION60

zero,

r or
lse if
ue if
alue

cify
rob-
single

s
the

ve
n

t

s of
Except for NaN, floating-point values areordered. When arranged from
smallest to largest, they are negative infinity, negative finite values, negative
positive zero, positive finite values, and positive infinity.

NaN isunordered, so numerical comparisons have the value false if eithe
both of their operands are NaN. A test for numerical equality has the value fa
either operand is NaN, and a test for numerical inequality has the value tr
either operand is NaN. In particular, a test for numerical equality of a v
against itself has the value false if and only if the value is NaN.

IEEE 754 defines a large number of distinct NaN values but fails to spe
which NaN values are produced in various situations. To avoid portability p
lems, the Java Virtual Machine coalesces these NaN values together into a
conceptual NaN value.

3.2.3 ThereturnAddress Type and Values

ThereturnAddress type is used by the Java Virtual Machine’sjsr, ret, andjsr_w
instructions. The values of thereturnAddress type are pointers to the opcode
of Java Virtual Machine instructions. Unlike the numeric primitive types,
returnAddress type does not correspond to any Java data type.

3.2.4 There Is Noboolean Type

Although Java defines aboolean type, the Java Virtual Machine does not ha
instructions dedicated to operations onboolean values. Instead, a Java expressio
that operates onboolean values is compiled to use theint data type to represen
boolean variables.

Although the Java Virtual Machine has support for the creation of array
type boolean (see the description of thenewarray instruction), it does not have
dedicated support for accessing and modifying elements ofboolean arrays.
Arrays of typeboolean are accessed and modified using thebyte array instruc-
tions.1

For more information on the treatment ofboolean values in the Java Virtual
Machine, see Chapter 7, “Compiling for the Java Virtual Machine.”

1. In Sun’s JDK 1.0.2 release,boolean arrays are effectivelybyte arrays, using 8 bits per boolean
element.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 61

ay
rays, or

re by
ype

arious
a Vir-
Virtual

e

lat-

ay
re all

t the
 not
tual

tract

.17).
3.3 Reference Types and Values

There are three kinds ofreference types: class types, interface types, and arr
types, whose values are references to dynamically created class instances, ar
class instances or arrays that implement interfaces. Areference value may also be
the special null reference, a reference to no object, which will be denoted he
null. Thenull reference initially has no runtime type, but may be cast to any t
(§2.4).

3.4 Words

No mention has been made of the storage requirements for values of the v
Java Virtual Machine types, only the ranges those values may take. The Jav
tual Machine does not mandate the size of its data types. Instead, the Java
Machine defines an abstract notion of aword that has a platform-specific size. A
word is large enough to hold a value of typebyte, char, short, int, float, ref-
erence, or returnAddress, or to hold a native pointer. Two words are larg
enough to hold values of the larger types,long anddouble. Java’s runtime data
areas are all defined in terms of these abstract words.

A word is usually the size of a pointer on the host platform. On a 32-bit p
form, a word is 32 bits, pointers are 32 bits, andlongs anddoubles naturally take
up two words. A naive 64-bit implementation of the Java Virtual Machine m
waste half of a word used to store a 32-bit datum, but may also be able to sto
of along or adouble in one of the two words allotted to it.

The choice of a specific word size, although platform-specific, is made a
implementation level, not as part of the Java Virtual Machine’s design. It is
visible outside the implementation or to code compiled for the Java Vir
Machine.

Throughout this book, all references to a word datum are to this abs
notion of a word.

3.5 Runtime Data Areas

3.5.1 Thepc Register

A Java Virtual Machine can support many threads of execution at once (§2
Each Java Virtual Machine thread has its ownpc (program counter) register. At any

THE JAVATM VIRTUAL MACHINE SPECIFICATION62

thod,

 exe-

(§3.6).
s C: it
n and
d pop
e heap

er a
 size

 A Java
trol
and-

stack

d, the

ion is
pan-
ava

acks
tation.
ad ter-
. The
point, each Java Virtual Machine thread is executing the code of a single me
the current method (§3.6) for that thread. If that method is notnative, thepc regis-
ter contains the address of the Java Virtual Machine instruction currently being
cuted. If the method currently being executed by the thread isnative, the value of
the Java Virtual Machine’spc register is undefined. The Java Virtual Machine’spc

register is one word wide, the width guaranteed to hold areturnAddress or a
native pointer on the specific platform.

3.5.2 Java Stack

Each Java Virtual Machine thread (§2.17) has a privateJava stack, created at the
same time as the thread. A Java stack stores Java Virtual Machine frames
The Java stack is equivalent to the stack of a conventional language such a
holds local variables and partial results, and plays a part in method invocatio
return. Because the stack is never manipulated directly except to push an
frames, it may actually be implemented as a heap, and Java frames may b
allocated. The memory for a Java stack does not need to be contiguous.

The Java Virtual Machine specification permits Java stacks to be of eith
fixed or a dynamically varying size. If the Java stacks are of a fixed size, the
of each Java stack may be chosen independently when that stack is created.
Virtual Machine implementation may provide the programmer or the user con
over the initial size of Java stacks, as well as, in the case of dynamically exp
ing or contracting Java stacks, control over the maximum and minimum Java
sizes.

The following exceptional conditions are associated with Java stacks:

• If the computation in a thread requires a larger Java stack than is permitte
Java Virtual Machine throws aStackOverflowError.

• If Java stacks can be dynamically expanded, and Java stack expans
attempted but insufficient memory can be made available to effect the ex
sion, or if insufficient memory can be made available to create the initial J
stack for a new thread, the Java Virtual Machine throws anOutOfMemory-
Error.

In Sun’s JDK 1.0.2 implementation of the Java Virtual Machine, the Java st
are discontiguous and are independently expanded as required by the compu
The Java stacks do not contract, but are reclaimed when their associated thre
minates or is killed. Expansion is subject to a size limit for any one Java stack

STRUCTURE OF THE JAVA VIRTUAL MACHINE 63

 run-

he
arrays

bjects

ine
e stor-
ystem
ed as
omes

 the
nami-
size.

y the
s an

lly
 heap.
sing

s
e of a
 per-
ode for
s and
Java stack size limit may be set on virtual machine start-up using the “-oss” flag.
The Java stack size limit can be used to limit memory consumption or to catch
away recursions.

3.5.3 Heap

The Java Virtual Machine has aheap that is shared among all threads (§2.17). T
heap is the runtime data area from which memory for all class instances and
is allocated.

The Java heap is created on virtual machine start-up. Heap storage for o
is reclaimed by an automatic storage management system (typically agarbage
collector); objects are never explicitly deallocated. The Java Virtual Mach
assumes no particular type of automatic storage management system, and th
age management technique may be chosen according to the implementor’s s
requirements. The Java heap may be of a fixed size, or may be expand
required by the computation and may be contracted if a larger heap bec
unnecessary. The memory for the Java heap does not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or
user control over the initial size of the heap, as well as, if the heap can be dy
cally expanded or contracted, control over the maximum and minimum heap

The following exceptional condition is associated with the Java heap:

• If a computation requires more Java heap than can be made available b
automatic storage management system, the Java Virtual Machine throw
OutOfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine dynamica
expands its Java heap as required by the computation, but never contracts its
Its initial and maximum sizes may be specified on virtual machine start-up u
the “-ms” and “-mx” flags, respectively.

3.5.4 Method Area

The Java Virtual Machine has amethod area that is shared among all thread
(§2.17). The method area is analogous to the storage area for compiled cod
conventional language, or to the “text” segment in a UNIX process. It stores
class structures such as the constant pool, field and method data, and the c
methods and constructors, including the special methods (§3.8) used in clas
instance initialization and interface type initialization.

THE JAVATM VIRTUAL MACHINE SPECIFICATION64

thod
 may
irtual
r the
 size,
d if a
a does

 the
 vary-

ize.

ation

lly
ts. No
ed.

the
-
 ref-
nction
ge,

area

rtual

the

re
irtual
The method area is created on virtual machine start-up. Although the me
area is logically part of the garbage-collected heap, simple implementations
choose to neither garbage collect nor compact it. This version of the Java V
Machine specification does not mandate the location of the method area o
policies used to manage compiled code. The method area may be of a fixed
or may be expanded as required by the computation and may be contracte
larger method area becomes unnecessary. The memory for the method are
not need to be contiguous.

A Java Virtual Machine implementation may provide the programmer or
user control over the initial size of the method area, as well as, in the case of a
ing-size method area, control over the maximum and minimum method area s

The following exceptional condition is associated with the method area:

• If memory in the method area cannot be made available to satisfy an alloc
request, the Java Virtual Machine throws anOutOfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine dynamica
expands its method are as required by the computation, but never contrac
user control over the maximum or minimum size of the method area is provid

3.5.5 Constant Pool

A constant pool is a per-class or per-interface runtime representation of
constant_pool table in a Javaclass file (§4.4). It contains several kinds of con
stants, ranging from numeric literals known at compile time to method and field
erences that must be resolved at run time. The constant pool serves a fu
similar to that of a symbol table for a conventional programming langua
although it contains a wider range of data than a typical symbol table.

Each constant pool is allocated from the Java Virtual Machine’s method
(§3.5.4). The constant pool for a class or interface is created when a Javaclass

file for the class or interface is successfully loaded (§2.16.2) by a Java Vi
Machine.

The following exceptional condition is associated with the creation of
constant pool for a class or interface:

• When loading aclass file, if the creation of the constant pool requires mo
memory than can be made available in the method area of the Java V
Machine, the Java Virtual Machine throws anOutOfMemoryError.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 65

 con-
ation

ollo-
s
ulator
enta-
on-
ethod
d.
e of

 of a
dently
tation
ative
 make

 per-

thod
able,
tive

ed-
s may

cur-

r-
Constant pool resolution, a runtime operation performed on entries in the
stant pool, has its own set of associated exceptions. See Chapter 5 for inform
about the runtime management of the constant pool.

3.5.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks, c
quially called “C stacks,” to supportnative methods, methods written in language
other than Java. A native method stack may also be used to implement an em
for the Java Virtual Machine’s instruction set in a language such as C. Implem
tions that do not supportnative methods, and that do not themselves rely on c
ventional stacks, need not supply native method stacks. If supplied, native m
stacks are typically allocated on a per thread basis when each thread is create

The Java Virtual Machine specification permits native method stacks to b
either a fixed or a dynamically varying size. If the native method stacks are
fixed size, the size of each native method stack may be chosen indepen
when that stack is created. In any case, a Java Virtual Machine implemen
may provide the programmer or the user control over the initial size of the n
method stacks. In the case of varying-size native method stacks, it may also
available control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with Java stacks:

• If the computation in a thread requires a larger native method stack than is
mitted, the Java Virtual Machine throws aStackOverflowError.

• If native method stacks can be dynamically expanded, and native me
stack expansion is attempted but insufficient memory can be made avail
or if insufficient memory can be made available to create the initial na
method stack for a new thread, the Java Virtual Machine throws anOut-
OfMemoryError.

Sun’s JDK 1.0.2 implementation of the Java Virtual Machine allocates fix
size native method stacks of a single size. The size of its native method stack
be set on virtual machine start-up using the “-ss” flag. The native method stack
size limit can be used to limit memory consumption or to catch runaway re
sions innative methods.

Sun’s implementation doesnot currently check for native method stack ove
flow.

THE JAVATM VIRTUAL MACHINE SPECIFICATION66

s to
ns.
e is
bnor-
.2) of
3.6.1)
can be
erand
pends

t in a

is
ack

if its
 and
n, the
revi-
es the
eing
lso be

ot be

frame

rved
the
3.6 Frames

A Java Virtual Machineframe is used to store data and partial results, as well a
perform dynamic linking, to return values for methods, and to dispatch exceptio

A new frame is created each time a Java method is invoked. A fram
destroyed when its method completes, whether that completion is normal or a
mal (by throwing an exception). Frames are allocated from the Java stack (§3.5
the thread creating the frame. Each frame has its own set of local variables (§
and its own operand stack (§3.6.2). The memory space for these structures
allocated simultaneously, since the sizes of the local variable area and op
stack are known at compile time and the size of the frame data structure de
only upon the implementation of the Java Virtual Machine.

Only one frame, the frame for the executing method, is active at any poin
given thread of control. This frame is referred to as thecurrent frame, and its
method is known as thecurrent method. The class in which the current method
defined is thecurrent class. Operations on local variables and the operand st
always are with reference to the current frame.

A frame ceases to be current if its method invokes another method or
method completes. When a method is invoked, a new frame is created
becomes current when control transfers to the new method. On method retur
current frame passes back the result of its method invocation, if any, to the p
ous frame. The current frame is then discarded as the previous frame becom
current one. Java Virtual Machine frames may be naturally thought of as b
allocated on a stack, with one stack per Java thread (§2.17), but they may a
heap allocated.

Note that a frame created by a thread is local to that thread and cann
directly referenced by any other thread.

3.6.1 Local Variables

On each Java method invocation, the Java Virtual Machine allocates a Java
(§3.6), which contains an array of words known as itslocal variables. Local vari-
ables are addressed as word offsets from the base of that array.

Local variables are always one word wide. Two local variables are rese
for eachlong or double value. These two local variables are addressed by
index of the first of the variables.

For example, a local variable with indexn and containing a value of typedou-
ble actually occupies the two words at local variable indicesn andn+1. The Java

STRUCTURE OF THE JAVA VIRTUAL MACHINE 67

,
ntors
n two

frame

 return
uments

shed
r-
bcom-
e used

chine
ple-
alue

ate to

gard
rds of
in the

r the

to be
bolic
Virtual Machine does not requiren to be even. (In intuitive implementation terms
64-bit values need not be 64-bit aligned in the local variables array.) Impleme
are free to decide the appropriate way to divide a 64-bit data value betwee
local variables.

3.6.2 Operand Stacks

On each Java method invocation, the Java Virtual Machine allocates a Java
(§3.6), which contains anoperand stack. Most Java Virtual Machine instructions
take values from the operand stack of the current frame, operate on them, and
results to that same operand stack. The operand stack is also used to pass arg
to methods and receive method results.

For example, theiadd instruction adds twoint values together. It requires
that theint values to be added be the top two words of the operand stack, pu
there by previous instructions. Both of theint values are popped from the ope
and stack. They are added, and their sum is pushed back onto the stack. Su
putations may be nested on the operand stack, resulting in values that can b
by the encompassing computation.

Each entry on the operand stack is one word wide. Values of typeslong and
double are pushed onto the operand stack as two words. The Java Virtual Ma
does not require 64-bit values on the operand stack to be 64-bit aligned. Im
mentors are free to decide the appropriate way to divide a 64-bit data v
between two operand stack words.

Values from the operand stack must be operated upon in ways appropri
their types. It is incorrect, for example, to push twoint values and then treat them
as along, or to push twofloat values then add them with aniadd instruction. A
small number of Java Virtual Machine instructions (thedup instructions and
swap) operate on runtime data areas as raw values of a given width without re
to type; these instructions must not be used to break up or rearrange the wo
64-bit data. These restrictions on operand stack manipulation are enforced,
Sun implementation, by theclass file verifier (§4.9).

3.6.3 Dynamic Linking

A Java Virtual Machine frame contains a reference to the constant pool fo
type of the current method to supportdynamic linking of the method code. The
class file code for a method refers to methods to be invoked and variables
accessed via symbolic references. Dynamic linking translates these sym

THE JAVATM VIRTUAL MACHINE SPECIFICATION68

cessary
appro-
these

lasses

p-
as a
t
thod.
tions
eing

of the
nter
tion
me

ption
of an
ption
n. A
er.

ion-
method references into concrete method references, loading classes as ne
to resolve as-yet-undefined symbols, and translates variable accesses into
priate offsets in storage structures associated with the runtime location of
variables.

This late binding of the methods and variables makes changes in other c
that a method uses less likely to break this code.

3.6.4 Normal Method Completion

A method invocationcompletes normally if that invocation does not cause an exce
tion (§2.15, §3.9) to be thrown, either directly from the Java Virtual Machine or
result of executing an explicitthrow statement. If the invocation of the curren
method completes normally, then a value may be returned to the invoking me
This occurs when the invoked method executes one of the return instruc
(§3.11.8), the choice of which must be appropriate for the type of the value b
returned (if any).

The Java Virtual Machine frame is used in this case to restore the state
invoker, including its local variables and operand stack, with the program cou
of the invoker appropriately incremented to skip past the method invoca
instruction. Execution then continues normally in the invoking method’s fra
with the returned value (if any) pushed onto the operand stack of that frame.

3.6.5 Abnormal Method Completion

A method invocationcompletes abnormally if execution of a Java Virtual Machine
instruction within the method causes the Java Virtual Machine to throw an exce
(§2.15, §3.9), and that exception is not handled within the method. Evaluation
explicit throw statement also causes an exception to be thrown and, if the exce
is not caught by the current method, results in abnormal method completio
method invocation that completes abnormally never returns a value to its invok

3.6.6 Additional Information

A Java Virtual Machine frame may be extended with additional implementat
specific information, such as debugging information.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 69

 for
ce to
le

 Java

inline
les.

s an

hods

ance
uctor

ed

rface
are
ine

ess.

ntrol
static
3.7 Representation of Objects

The Java Virtual Machine does not require any particular internal structure
objects. In Sun’s current implementation of the Java Virtual Machine, a referen
a class instance is a pointer to ahandle that is itself a pair of pointers: one to a tab
containing the methods of the object and a pointer to theClass object that repre-
sents the type of the object, and the other to the memory allocated from the
heap for the object data.

Other Java Virtual Machine implementations may use techniques such as
caching rather than method table dispatch, and they may or may not use hand

3.8 Special Initialization Methods

At the level of the Java Virtual Machine, every constructor (§2.12) appears a
instance initialization method that has the special name<init>. This name is
supplied by a Java compiler. Because the name<init> is not a valid identifier, it
cannot be used directly by a Java programmer. Instance initialization met
may only be invoked within the Java Virtual Machine by theinvokespecial instruc-
tion, and they may only be invoked on uninitialized class instances. An inst
initialization method takes on the access permissions (§2.7.8) of the constr
from which it was derived.

At the level of the Java Virtual Machine, a class or interface is initializ
(§2.16.4) by invoking itsclass or interface initialization method with no arguments.
The initialization method of a class or interface has the special name<clinit>.
This name is supplied by a Java compiler. Because the name<clinit> is not a
valid identifier, it cannot be used directly by a Java programmer. Class and inte
initialization methods are invoked implicitly by the Java Virtual Machine; they
never invoked directly from Java code or directly from any Java Virtual Mach
instruction, but are only invoked indirectly as part of the class initialization proc

3.9 Exceptions

In general, throwing an exception results in an immediate dynamic transfer of co
that may exit multiple Java statements and multiple constructor invocations,
and field initializer evaluations, and method invocations until acatch clause
(§2.15.2) is found that catches the thrown value.

THE JAVATM VIRTUAL MACHINE SPECIFICATION70

ent
local
nvok-
me,

ion of

a
 of
it. An
 in
s or a

ndler

ne
c-
d in a
o find
h con-

an
oked
gh the
thod

h its

d in

ry file

l to
If no suchcatch clause is found in the current method, then the curr
method invocation completes abnormally (§3.6.5). Its operand stack and
variables are discarded and its frame is popped, reinstating the frame of the i
ing method. The exception is then rethrown in the context of the invoker’s fra
and so on continuing up the method invocation chain. If no suitablecatch clause
is found before the top of the method invocation chain is reached, the execut
the thread that threw the exception is terminated.

At the level of the Java Virtual Machine, eachcatch clause describes the Jav
Virtual Machine instruction range for which it is active, describes the types
exceptions that it is to handle, and gives the address of the code to handle
exception matches acatch clause if the instruction that caused the exception is
the appropriate instruction range, and the exception type is the same type a
subclass of the class of exception that thecatch clause handles. If a matching
catch clause is found, the system branches to the specified handler. If no ha
is found, the process is repeated until all the nestedcatch clauses of the current
method have been exhausted.

The order of thecatch clauses in the list is important. The Java Virtual Machi
execution continues at the first matchingcatch clause. Because Java code is stru
tured, it is always possible to arrange all the exception handlers for one metho
single list. For any possible program counter value, this list can be searched t
the proper exception handler, that is, the innermost exception handler that bot
tains the program counter value and can handle the exception being thrown.

If there is no matchingcatch clause, the current method is said to have
uncaught exception. The execution state of the invoker, the method that inv
this method, is restored. The propagation of the exception continues as thou
exception had occurred in the invoker at the instruction that invoked the me
actually raising the exception.

Java supports more sophisticated forms of exception handling throug
try-finally andtry-catch-finally statements. In such forms, thefinally
statement is executed even if no matchingcatch clause is found. The way the
Java Virtual Machine supports implementation of these forms is discusse
Chapter 7, “Compiling for the Java Virtual Machine.”

3.10 Theclass File Format

Compiled code to be executed by the Java Virtual Machine is stored in a bina
which has a platform-independent format, theclass file format. Given the aims of
the Java Virtual Machine, the definition of this file format is of importance equa

STRUCTURE OF THE JAVA VIRTUAL MACHINE 71

 a
 plat-

d con-

n is

code.

into

s are
al

 to
or of
enta-
 that

its
edi-

many
its other components. Theclass file format precisely defines the contents of such
file, including details such as byte ordering that might be taken for granted in a
form-specific object file format.

Chapter 4, “Theclass File Format,” covers theclass file format in detail.

3.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byteopcode specifying the
operation to be performed, followed by zero or moreoperandssupplying arguments
or data that are used by the operation. Many instructions have no operands an
sist only of an opcode.

Ignoring exceptions, the inner loop of the Java Virtual Machine executio
effectively

do {

fetch an opcode;

if (operands) fetch operands;

execute the action for the opcode;

} while (there is more to do);

The number and size of the additional operands are determined by the op
If an additional operand is more than one byte in size, then it is stored inbig-

endian order—high-order byte first. For example, an unsigned 16-bit index
the local variables is stored as two unsigned bytesbyte1 andbyte2 such that its
value is

(byte1 << 8) | byte2

The bytecode instruction stream is only single-byte aligned. The two exception
the tableswitch andlookupswitch instructions, which are padded to force intern
alignment of some of their operands on 4-byte boundaries.

The decision to limit the Java Virtual Machine opcode to a byte and
forego data alignment within compiled code reflects a conscious bias in fav
compactness, possibly at the cost of some performance in naive implem
tions. A one-byte opcode precludes certain implementation techniques
could improve the performance of a Java Virtual Machine emulator, and it lim
the size of the instruction set. Not assuming data alignment means that imm
ate data larger than a byte must be constructed from bytes at run time on
machines.

THE JAVATM VIRTUAL MACHINE SPECIFICATION72

type

.

ted

e let-
t

 into
struc-
ld be
on set
rtain
Sep-
d data

irtual
ific

umn
port-

gral
d

3.11.1 Types and the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode
information about the operations they perform. For instance, theiload instruction
loads the contents of a local variable, which must be anint, onto the operand stack
Thefload instruction does the same with afloat value. The two instructions may
have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represen
explicitly in the opcode mnemonic by a letter:i for anint operation,l for long, s
for short, b for byte, c for char, f for float, d for double, anda for refer-
ence. Some instructions for which the type is unambiguous do not have a typ
ter in their mnemonic. For instance,arraylength always operates on an object tha
is an array. Some instructions, such asgoto, an unconditional control transfer, do
not operate on typed operands.

Given the Java Virtual Machine’s one-byte opcode size, encoding types
opcodes places pressure on the design of its instruction set. If each typed in
tion supported all of the Java Virtual Machine’s runtime data types, there wou
more instructions than could be represented in a byte. Instead, the instructi
of the Java Virtual Machine provides a reduced level of type support for ce
operations. In other words, the instruction set is intentionally not orthogonal.
arate instructions can be used to convert between unsupported and supporte
types as necessary.

Table 3.1 summarizes the type support in the instruction set of the Java V
Machine. Only instructions that exist for multiple types are listed. A spec
instruction, with type information, is built by replacing theT in the instruction
template in the opcode column by the letter in the type column. If the type col
for some instruction template and type is blank, then no instruction exists sup
ing that type of operation. For instance, there is a load instruction for typeint,
iload, but there is no load instruction for typebyte.

Note that most instructions in Table 3.1 do not have forms for the inte
typesbyte, char, andshort. When writing to its local variables or operan
stacks, the Java Virtual Machine internally sign-extends values of typesbyte and
short to typeint, and zero-extends values of typechar to typeint. Thus, most
operations on values of typesbyte, char, andshort are correctly performed by
instructions operating on values of typeint. The Java Virtual Machine also
treats values of Java typeboolean specially, as noted in §3.2.4.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 73
opcode byte short int long float double char reference

Tipush bipush sipush

Tconst iconst lconst fconst dconst aconst

Tload iload lload fload dload aload

Tstore istore lstore fstore dstore astore

Tinc iinc

Taload baload saload iaload laload faload daload caload aload

Tastore bastore sastore iastore lastore fastore dastore castore aastore

Tadd iadd ladd fadd dadd

Tsub isub lsub fsub dsub

Tmul imul lmul fmul dmul

Tdiv idiv ldiv fdiv ddiv

Trem irem lrem frem drem

Tneg ineg lneg fneg dneg

Tshl ishl lshl

Tshr ishr lshr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor lxor

i2T i2b i2s i2l i2f i2d

l2T l2i l2f l2d

f2T f2i f2l f2d

d2T d2i d2l d2f

Tcmp lcmp

Tcmpl fcmpl dcmpl

Tcmpg fcmpg dcmpg

if_TcmpOP if_icmpOP if_acmpOP

Treturn ireturn lreturn freturn dreturn areturn

Table 3.1 Type support in the Java Virtual Machine instruction set

THE JAVATM VIRTUAL MACHINE SPECIFICATION74

puta-

ype
al
s

truc-

hine’s
The mapping between Java storage types and Java Virtual Machine com
tational types is summarized by Table 3.2.

The exception to this mapping is in the case of arrays. Arrays of t
boolean, byte, char, andshort can be directly represented by the Java Virtu
Machine. Arrays of typebyte, char, andshort are accessed using instruction
specialized to those types. Arrays of typeboolean are accessed usingbyte
array instructions.

The remainder of this chapter summarizes the Java Virtual Machine ins
tion set.

3.11.2 Load and Store Instructions

The load and store instructions transfer values between the Java Virtual Mac
local variables and operand stack:

• Load a local variable onto the operand stack:iload, iload_<n>, lload,
lload_<n>, fload, fload_<n>, dload, dload_<n>, aload, aload_<n>.

• Store a value from the operand stack into a local variable:istore, istore_<n>,
lstore, lstore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore_<n>.

• Load a constant onto the operand stack:bipush, sipush, ldc, ldc_w, ldc2_w,
aconst_null, iconst_m1, iconst_<i>, lconst_<l>, fconst_<f>, dconst_<d>.

Java (Storage) Type Size in Bits Computational Type

byte 8 int

char 16 int

short 16 int

int 32 int

long 64 long

float 32 float

double 64 double

Table 3.2 Storage types and computational types

STRUCTURE OF THE JAVA VIRTUAL MACHINE 75

edi-

data to

ack-
s

t and
 same

ruc-

m

val-
ere are
 and

etic
is no

nd
• Gain access to more local variables using a wider index, or to a larger imm
ate operand:wide.

Instructions that access fields of objects and elements of arrays also transfer
and from the operand stack (§3.6.2).

Instruction mnemonics shown above with trailing letters between angle br
ets (for instance,iload_<n>) denote families of instructions (with member
iload_0, iload_1, iload_2, andiload_3 in the case ofiload_<n>). Such families of
instructions are specializations of an additional generic instruction (iload) that
takes one operand. For the specialized instructions the operand is implici
does not need to be stored or fetched. The semantics are otherwise the
(iload_0 means the same thing asiload with the operand0). The letter between the
angle brackets specifies the type of the implicit operand for that family of inst
tions: for<n> a natural number, for<i> anint, for <l> along, for <f> afloat,
and for<d> a double. Forms for typeint are used in many cases to perfor
operations on values of typebyte, char, andshort (§3.11.1).

This notation for instruction families is used throughoutThe Java Virtual
Machine Specification.

3.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typically a function of two
ues on the operand stack, pushing the result back on the operand stack. Th
two main kinds of arithmetic instructions, those operating on integer values
those operating on floating-point values. Within each of these kinds, the arithm
instructions are specialized to Java Virtual Machine numeric types. There
direct support for integer arithmetic onbyte, short, andchar types (§3.11.1);
those operations are handled by instructions operating on typeint. Integer and
floating-point instructions also differ in their behavior on overflow, underflow, a
divide-by-zero. The arithmetic instructions are as follows:

• Add: iadd, ladd, fadd, dadd.

• Subtract:isub, lsub, fsub, dsub.

• Multiply: imul, lmul, fmul, dmul.

• Divide: idiv, ldiv, fdiv, ddiv.

• Remainder:irem, lrem, frem, drem.

THE JAVATM VIRTUAL MACHINE SPECIFICATION76

lues
rtual

ing
w an

ly as
port

s.
s if
eci-
e infi-
r, the

ard’s

of the
rded.
reater

ons.
der-
efinite
duce
• Negate:ineg, lneg, fneg, dneg.

• Shift: ishl, ishr, iushr, lshl, lshr, lushr.

• Bitwise OR:ior, lor.

• Bitwise AND: iand, land.

• Bitwise exclusive OR:ixor, lxor.

• Local variable increment:iinc.

The semantics of the Java operators on integer and floating-point va
(§2.4.2, §2.4.3) are directly supported by the semantics of the Java Vi
Machine instruction set.

The Java Virtual Machine does not indicate overflow or underflow dur
operations on integer data types. The only integer operations that can thro
exception are the integer divide instructions (idiv andldiv) and the integer remain-
der instructions (irem and lrem), which throw anArithmeticException if the
divisor is zero.

Java Virtual Machine operations on floating-point numbers behave exact
specified in IEEE 754. In particular, the Java Virtual Machine requires full sup
of IEEE 754denormalized floating-point numbers andgradual underflow,which
make it easier to prove desirable properties of particular numerical algorithm

The Java Virtual Machine requires that floating-point arithmetic behave a
every floating-point operator rounded its floating-point result to the result pr
sion.Inexact results must be rounded to the representable value nearest to th
nitely precise result; if the two nearest representable values are equally nea
one with its least significant bit zero is chosen. This is the IEEE 754 stand
default rounding mode, known asround-to-nearest.

The Java Virtual Machine usesround-towards-zero when converting a floating-
point value to an integer. This results in the number being truncated; any bits
significand that represent the fractional part of the operand value are disca
Round-towards-zero chooses as its result the type’s value closest to, but no g
in magnitude than, the infinitely precise result.

The Java Virtual Machine’s floating-point operators produce no excepti
An operation that overflows produces a signed infinity, an operation that un
flows produces a signed zero, and an operation that has no mathematically d
result produces NaN. All numeric operations with NaN as an operand pro
NaN as a result.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 77

hine
de, or
ine.
ric

ntions
e

 con-

nver-

 the
lue,

ver-

ing
3):
3.11.4 Type Conversion Instructions

The type conversion instructions allow conversion between Java Virtual Mac
numeric types. These may be used to implement explicit conversions in user co
to mitigate the lack of orthogonality in the instruction set of the Java Virtual Mach

The Java Virtual Machine directly supports the following widening nume
conversions, a subset of Java’s widening primitive conversions (§2.6.2):

• int to long, float, ordouble

• long to float or double

• float to double

The widening numeric conversion instructions arei2l, i2f, i2d, l2f, l2d, andf2d.
The mnemonics for these opcodes are straightforward given the naming conve
for typed instructions and the punning use of 2 to mean “to.” For instance, thi2d
instruction converts anint value to adouble. Widening numeric conversions do
not lose information about the overall magnitude of a numeric value. Indeed,
versions widening from theint type to thelong type and fromfloat to double

do not lose any information at all; the numeric value is preserved exactly. Co
sion of anint or along value tofloat, or of along value todouble, may lose
precision, that is, may lose some of the least significant bits of the value;
resulting floating-point value is a correctly rounded version of the integer va
using IEEE 754 round-to-nearest mode.

According to this rule, a widening numeric conversion of anint to along
simply sign-extends the two’s-complement representation of theint value to fill
the wider format. A widening numeric conversion of achar to an integral type
zero-extends the representation of thechar value to fill the wider format.

Despite the fact that loss of precision may occur, widening numeric con
sions never result in a runtime exception.

Note that widening numeric conversions do not exist from integral typesbyte,
char, andshort to typeint. As noted in §3.11.1, values of typebyte, char, and
short are internally widened to typeint, making these conversions implicit.

The Java Virtual Machine also directly supports the following narrow
numeric conversions, a subset of Java’s narrowing primitive conversions (§2.6.

• int to byte, short, orchar

• long to int

THE JAVATM VIRTUAL MACHINE SPECIFICATION78

if-
lose

sign

ype

 the
n type

 two

ative

itive
• float to int or long

• double to int, long, orfloat

The narrowing numeric conversion instructions arei2b, i2c, i2s, l2i, f2i, f2l,
d2i, d2l, andd2f. A narrowing numeric conversion can result in a value of d
ferent sign, or of a different order of magnitude, or both; they may thereby
precision.

A narrowing numeric conversion of anint or long to an integral typeT
simply discards all but theN lowest-order bits, whereN is the number of bits used
to represent typeT. This may cause the resulting value not to have the same
as the input value.

In a narrowing numeric conversion of a floating-point value to an integral t
T, whereT is eitherint or long, the floating-point value is converted to typeT as
follows:

• If the floating-point value is NaN, the result of the conversion is anint or
long 0.

• Otherwise, if the value of the floating-point value is greater than or equal to
smallest value and less than or equal to the largest value representable i
T, then the floating-point value is rounded to an integer valueV, rounding
towards zero using IEEE 754 round-towards-zero mode. Then there are
cases:

■ If T is long and this integer value can be represented as along, then the
result is thelong valueV.

■ If T is of typeint and this integer value can be represented as anint, then
the result is theint valueV.

• Otherwise either:

■ The value must be too small (a negative value of large magnitude or neg
infinity), and the result is the smallest representable value of typeint or
long.

■ The value must be too large (a positive value of large magnitude or pos
infinity), and the result is the largest representable value of typeint or
long.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 79

rest

ur,
ime

chine
ets of

of

and
A narrowing numeric conversion fromdouble tofloat behaves in accordance
with IEEE 754. The result is correctly rounded using IEEE 754 round-to-nea
mode. A value too small to be represented as afloat is converted to a positive or
negative zero of typefloat; a value too large to be represented as afloat is con-
verted to a positive or negative infinity. Adouble NaN is always converted to a
float NaN.

Despite the fact that overflow, underflow, or loss of precision may occ
narrowing conversions among numeric types never result in a runt
exception.

3.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Ma
creates and manipulates class instances and arrays using distinct s
instructions:

• Create a new class instance:new.

• Create a new array:newarray, anewarray, multianewarray.

• Access fields of classes (static fields, known as class variables) and fields
class instances (non-static fields, known as instance variables):getfield, put-
field, getstatic, putstatic.

• Load an array component onto the operand stack:baload, caload, saload, iaload,
laload, faload, daload, aaload.

• Store a value from the operand stack as an array component:bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

• Get the length of array:arraylength.

• Check properties of class instances or arrays:instanceof, checkcast.

3.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the oper
stack:pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

THE JAVATM VIRTUAL MACHINE SPECIFICATION80

 Vir-
ing

ally

onal
e
 and

d
EEE

f the

thods
hod:

 ini-
:

3.11.7 Control Transfer Instructions

The control transfer instructions conditionally or unconditionally cause the Java
tual Machine to continue execution with an instruction other than the one follow
the control transfer instruction. They are:

• Conditional branch:ifeq, iflt, ifle, ifne, ifgt, ifge, ifnull, ifnonnull, if_icmpeq,
if_icmpne, if_icmplt, if_icmpgt, if_icmple, if_icmpge, if_acmpeq, if_acmpne,
lcmp, fcmpl, fcmpg, dcmpl, dcmpg.

• Compound conditional branch:tableswitch, lookupswitch.

• Unconditional branch:goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions to condition
branch on comparison with data ofint, long, float, double, andreference
types. Comparison with data ofbyte, char, andshort types is done using anint
comparison instruction (§3.11.1). Because of this added emphasis onint compar-
isons, the Java Virtual Machine includes a larger complement of conditi
branch instructions for typeint than for other types. The Java Virtual Machin
has distinct conditional branch instructions that test for the null reference,
thus is not required to specify a concrete value fornull (§3.3).

All int and long conditional control transfer instructions perform signe
comparisons. Floating-point comparison is performed in accordance with I
754.

3.11.8 Method Invocation and Return Instructions

Four instructions invoke methods:

• Invoke an instance method of an object, dispatching on the (virtual) type o
object:invokevirtual. This is the normal method dispatch in Java.

• Invoke a method that is implemented by an interface, searching the me
implemented by the particular runtime object to find the appropriate met
invokeinterface.

• Invoke an instance method requiring special handling, either an instance
tialization method<init>, a private method, or a superclass method
invokespecial.

STRUCTURE OF THE JAVA VIRTUAL MACHINE 81

t an

ing a
ndled
n and
port

: the
plat-
ple-

ments
wed

d the
• Invoke a class (static) method in a named class:invokestatic.

The method return instructions, which are distinguished by return type, areireturn
(used to return values of typebyte, char, short, or int), lreturn, freturn,
dreturn, and areturn. In addition, thereturn instruction is used to return from
methods declared to bevoid.

3.11.9 Throwing and Handling Exceptions

An exception is thrown programmatically using theathrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detec
abnormal condition.

3.11.10 Implementingfinally

The implementation of thefinally keyword uses thejsr, jsr_w, andret instruc-
tions. See Section 4.9.6, “Exceptions andfinally” and Section 7.13, “Compiling
finally.”

3.11.11 Synchronization

The Java Virtual Machine supports method- and block-level synchronization us
single mechanism (monitors) in different ways. Synchronized methods are ha
as part of method invocation and return (see Section 3.11.8, “Method Invocatio
Return Instructions”). Synchronization of code blocks, however, has explicit sup
in the instruction set:monitorenter, monitorexit.

3.12 Public Design, Private Implementation

Thus far this book has sketched the public view of the Java Virtual Machine
class file format and the instruction set. These components are vital to the
form- and implementation-independence of the Java Virtual Machine. The im
mentor may prefer to think of them as a means to securely communicate frag
of programs between two platforms, rather than as a blueprint to be follo
exactly.

It is important to understand where the line between the public design an
private implementation lies. The Java Virtual Machine must be able to readclass

THE JAVATM VIRTUAL MACHINE SPECIFICATION82

hine
n and
sir-

the

these
s, as

le-
kes
. The

 to
d that

 (the
vir-

 into

d not
e is
sting

ments of
 with
e Java
files, and it must exactly implement the semantics of the Java Virtual Mac
code therein. One way of doing this is to take this document as a specificatio
to implement that specification literally. But it is also perfectly feasible and de
able for the implementor to modify or optimize the implementation within
constraints of this specification. So long as theclass file format can be read, and
the semantics of its code are maintained, the implementor may implement
semantics in any way. What is “under the hood” is the implementor’s busines
long as the correct external interface is carefully maintained.2

The implementor can use this flexibility to tailor Java Virtual Machine imp
mentations for high performance, low memory use, or portability. What ma
sense in a given implementation depends on the goals of that implementation
range of implementation options includes the following:

• Verifying properties of Java Virtual Machine code at linking time (§2.16.3)
reduce the need for runtime checks while ensuring that the code is safe an
the semantics of the Java language are preserved (as done by Sun’sclass file
verifier; see Section 4.9, “Verification ofclass Files”).

• Translating the Java Virtual Machine code at load time or during execution
subject of Chapter 9, “An Optimization”) into the instruction set of another
tual machine.

• Translating the Java Virtual Machine code at load time or during execution
the native instruction set of the host CPU (sometimes referred to asJust-In-
Time or JIT code generation).

The existence of a precisely defined virtual machine and object file format nee
significantly restrict the creativity of the implementor. The Java Virtual Machin
designed to support many different implementations, providing new and intere
solutions while retaining compatibility between implementations.

2. There are some exceptions: debuggers and JIT code generators can require access to ele
the Java Virtual Machine that are normally considered to be “under the hood.” Sun is working
other Java Virtual Machine implementors and tools vendors to standardize interfaces to th
Virtual Machine for use by such tools.

C H A P T E R 4
irtual

4-
e 8-

dian
inter-
s

r-
 such

 C-
ine
e Java
-

ral
ble
at it is
Theclass File Format

THIS chapter describes the Java Virtual Machineclass file format. Eachclass
file contains one Java type, either a class or an interface. Compliant Java V
Machine implementations must be capable of dealing with allclass files that con-
form to the specification provided by this book.

A class file consists of a stream of 8-bit bytes. All 16-bit, 32-bit, and 6
bit quantities are constructed by reading in two, four, and eight consecutiv
bit bytes, respectively. Multibyte data items are always stored in big-en
order, where the high bytes come first. In Java, this format is supported by
faces java.io.DataInput and java.io.DataOutput and classes such a
java.io.DataInputStream andjava.io.DataOutputStream.

This chapter defines its own set of data types representing Javaclass

file data: The typesu1, u2, andu4 represent an unsigned one-, two-, or fou
byte quantity, respectively. In Java, these types may be read by methods
as readUnsignedByte, readUnsignedShort, and readInt of the interface
java.io.DataInput.

The Javaclass file format is presented using pseudostructures written in a
like structure notation. To avoid confusion with the fields of Java Virtual Mach
classes and class instances, the contents of the structures describing th
class file format are referred to asitems. Unlike the fields of a C structure, suc
cessive items are stored in the Javaclass file sequentially, without padding or
alignment.

Variable-sizedtables, consisting of variable-sized items, are used in seve
class file structures. Although we will use C-like array syntax to refer to ta
items, the fact that tables are streams of varying-sized structures means th
not possible to directly translate a table index into a byte offset into the table.

Where we refer to a data structure as an array, it is literally an array.
83

THE JAVATM VIRTUAL MACHINE SPECIFICATION84
4.1 ClassFile

A class file contains a singleClassFile structure:

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count];

u2 methods_count;

method_info methods[methods_count];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items in theClassFile structure are as follows:

magic

Themagic item supplies the magic number identifying theclass

file format; it has the value0xCAFEBABE.

minor_version, major_version

The values of theminor_version andmajor_version items are
the minor and major version numbers of the compiler that
produced thisclass file. An implementation of the Java Virtual
Machine normally supportsclass files having a given major
version number and minor version numbers0 through some
particularminor_version.

If an implementation of the Java Virtual Machine supports some
range of minor version numbers and aclass file of the same

THEclass FILE FORMAT 85
major version but a higher minor version is encountered, the Java
Virtual Machine must not attempt to run the newer code.
However, unless the major version number differs, it will be
feasible to implement a new Java Virtual Machine that can run
code of minor versions up to and including that of the newer
code.

A Java Virtual Machine must not attempt to run code with a
different major version. A change of the major version number
indicates a major incompatible change, one that requires a
fundamentally different Java Virtual Machine.

In Sun’s Java Developer’s Kit (JDK) 1.0.2 release, documented
by this book, the value ofmajor_version is 45. The value of
minor_version is 3. Only Sun may define the meaning of new
class file version numbers.

constant_pool_count

The value of theconstant_pool_count item must be greater
than zero. It gives the number of entries in theconstant_pool

table of theclass file, where theconstant_pool entry at index
zero is included in the count but is not present in the
constant_pool table of the class file. Aconstant_pool index
is considered valid if it is greater than zero and less than
constant_pool_count.

constant_pool[]

Theconstant_pool is a table of variable-length structures
(§4.4) representing various string constants, class names, field
names, and other constants that are referred to within the
ClassFile structure and its substructures.

The first entry of theconstant_pool table,constant_pool[0],
is reserved for internal use by a Java Virtual Machine
implementation. That entry isnot present in theclass file. The
first entry in theclass file isconstant_pool[1].

Each of theconstant_pool table entries at indices1 through
constant_pool_count-1 is a variable-length structure (§4.4)
whose format is indicated by its first “tag” byte.

THE JAVATM VIRTUAL MACHINE SPECIFICATION86
access_flags

The value of theaccess_flags item is a mask of modifiers used
with class and interface declarations. Theaccess_flags

modifiers are shown in Table 4.1.

An interface is distinguished by itsACC_INTERFACE flag being
set. IfACC_INTERFACE is not set, this class file defines a class, not
an interface.

Interfaces may only use flags indicated in Table 4.1 as used by
interfaces. Classes may only use flags indicated in Table 4.1 as
used by classes. An interface is implicitlyabstract (§2.13.1); its
ACC_ABSTRACT flag must be set. An interface cannot befinal;
its implementation could never be completed (§2.13.1) if it were,
so it could not have itsACC_FINAL flag set.

The flagsACC_FINAL andACC_ABSTRACT cannot both be set for a
class; the implementation of such a class could never be
completed (§2.8.2).

The setting of theACC_SUPER flag directs the Java Virtual
Machine which of two alternative semantics for itsinvokespecial
instruction to express; it exists for backward compatibility for
code compiled by Sun’s older Java compilers. All new
implementations of the Java Virtual Machine should implement
the semantics forinvokespecial documented in Chapter 6, “Java
Virtual Machine Instruction Set.” All new compilers to the Java
Virtual Machine’s instruction set should set theACC_SUPER flag.

Flag Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be accessed
from outside its package.

Class, interface

ACC_FINAL 0x0010 Is final; no subclasses
allowed.

Class

ACC_SUPER 0x0020 Treat superclass methods
specially ininvokespecial.

Class, interface

ACC_INTERFACE 0x0200 Is an interface. Interface

ACC_ABSTRACT 0x0400 Is abstract; may not be
instantiated.

Class, interface

Table 4.1 Class access and modifier flags

THEclass FILE FORMAT 87
Sun’s older Java compilers generateClassFile flags with
ACC_SUPER unset. Sun’s older Java Virtual Machine
implementations ignore the flag if it is set.

All unused bits of theaccess_flags item, including those not
assigned in Table 4.1, are reserved for future use. They should be
set to zero in generatedclass files and should be ignored by Java
Virtual Machine implementations.

this_class

The value of thethis_class item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be aCONSTANT_Class_info (§4.4.1) structure representing
the class or interface defined by thisclass file.

super_class

For a class, the value of thesuper_class item either must be
zero or must be a valid index into theconstant_pool table. If
the value of thesuper_class item is nonzero, the
constant_pool entry at that index must be a
CONSTANT_Class_info (§4.4.1) structure representing the
superclass of the class defined by thisclass file. Neither the
superclass nor any of its superclasses may be afinal class.

If the value ofsuper_class is zero, then thisclass file must
represent the classjava.lang.Object, the only class or
interface without a superclass.

For an interface, the value ofsuper_class must always be a
valid index into theconstant_pool table. Theconstant_pool
entry at that index must be aCONSTANT_Class_info structure
representing the classjava.lang.Object.

interfaces_count

The value of theinterfaces_count item gives the number of
direct superinterfaces of this class or interface type.

interfaces[]

Each value in theinterfaces array must be a valid index into
theconstant_pool table. Theconstant_pool entry at each
value ofinterfaces[i], where0 ≤ i < interfaces_count,

THE JAVATM VIRTUAL MACHINE SPECIFICATION88
must be aCONSTANT_Class_info (§4.4.1) structure representing
an interface which is a direct superinterface of this class or
interface type, in the left-to-right order given in the source for the
type.

fields_count

The value of thefields_count item gives the number of
field_info structures in thefields table. Thefield_info
(§4.5) structures represent all fields, both class variables and
instance variables, declared by this class or interface type.

fields[]

Each value in thefields table must be a variable-length
field_info (§4.5) structure giving a complete description of a
field in the class or interface type. Thefields table includes only
those fields that are declared by this class or interface. It does not
include items representing fields that are inherited from
superclasses or superinterfaces.

methods_count

The value of themethods_count item gives the number of
method_info structures in themethods table.

methods[]

Each value in themethods table must be a variable-length
method_info (§4.6) structure giving a complete description of and
Java Virtual Machine code for a method in the class or interface.

Themethod_info structures represent all methods, both instance
methods and, for classes, class (static) methods, declared by
this class or interface type. Themethods table only includes
those methods that are explicitly declared by this class. Interfaces
have only the single method<clinit>, the interface initialization
method (§3.8). Themethods table does not include items
representing methods that are inherited from superclasses or
superinterfaces.

attributes_count

The value of theattributes_count item gives the number of
attributes (§4.7) in theattributes table of this class.

THEclass FILE FORMAT 89

 a
d as
ose
part

that
ss

 are
attributes[]

Each value of theattributes table must be a variable-length
attribute structure. AClassFile structure can have any number
of attributes (§4.7) associated with it.

The only attribute defined by this specification for the
attributes table of aClassFile structure is theSourceFile
attribute (§4.7.2).

A Java Virtual Machine implementation is required to silently
ignore any or all attributes in theattributes table of a
ClassFile structure that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of theclass file, but only to provide additional
descriptive information (§4.7.1).

4.2 Internal Form of Fully Qualified Class Names

Class names that appear inclass file structures are always represented in
fully qualified form (§2.7.9). These class names are always represente
CONSTANT_Utf8_info (§4.4.7) structures, and they are referenced from th
CONSTANT_NameAndType_info (§4.4.6) structures that have class names as
of their descriptor (§4.3), as well as from allCONSTANT_Class_info (§4.4.1)
structures.

For historical reasons the exact syntax of fully qualified class names
appear inclass file structures differs from the familiar Java fully qualified cla
name documented in §2.7.9. In the internal form, the ASCII periods ('.') that nor-
mally separate the identifiers (§2.2) that make up the fully qualified name
replaced by ASCII forward slashes ('/'). For example, the normal fully qualified
name of classThread is java.lang.Thread. In the form used in descriptors in
class files, a reference to the name of classThread is implemented using a
CONSTANT_Utf8_info structure representing the string"java/lang/Thread".

4.3 Descriptors

A descriptor is a string representing the type of a field or method.

THE JAVATM VIRTUAL MACHINE SPECIFICATION90

s that
ors of

l
olon.
suc-
at is
 pro-

es of

s

4.3.1 Grammar Notation

Descriptors are specified using a grammar. This grammar is a set of production
describe how sequences of characters can form syntactically correct descript
various types. Terminal symbols of the grammar are shown inbold fixed-width
font. Nonterminal symbols are shown initalic type. The definition of a nontermina
is introduced by the name of the nonterminal being defined, followed by a c
One or more alternative right-hand sides for the nonterminal then follow on
ceeding lines. A nonterminal symbol on the right-hand side of a production th
followed by an asterisk (*) represents zero or more possibly different values
duced from that nonterminal, appended without any intervening space.

4.3.2 Field Descriptors

A field descriptor represents the type of a class or instance variable. It is a seri
characters generated by the grammar:

FieldDescriptor:
FieldType

ComponentType:
FieldType

FieldType:
BaseType
ObjectType
ArrayType

BaseType:
B

C

D

F

I

J

S

Z

ObjectType:
L <classname> ;

ArrayType:
[ComponentType

The characters ofBaseType, theL and; of ObjectType, and the[of Array-
Type are all ASCII characters. The<classname> represents a fully qualified clas

THEclass FILE FORMAT 91

a

d the

s of

e is
name, for instance,java.lang.Thread. For historical reasons it is stored in
class file in a modified internal form (§4.2).

The meaning of the field types is as follows:

B byte signed byte
C char character
D double double-precision IEEE 754 float
F float single-precision IEEE 754 float
I int integer
J long long integer
L<classname>; ... an instance of the class
S short signed short
Z boolean true or false
[... one array dimension

For example, the descriptor of anint instance variable is simplyI. The descriptor
of an instance variable of typeObject is Ljava/lang/Object;. Note that the
internal form of the fully qualified class name for classObject is used. The descrip-
tor of an instance variable that is a multidimensionaldouble array,

double d[][][];

is
[[[D

4.3.3 Method Descriptors

A parameter descriptorrepresents a parameter passed to a method:

ParameterDescriptor:
FieldType

A method descriptor represents the parameters that the method takes an
value that it returns:

MethodDescriptor:
(ParameterDescriptor *) ReturnDescriptor

A return descriptorrepresents the return value from a method. It is a serie
characters generated by the grammar:

ReturnDescriptor:
FieldType
V

The characterV indicates that the method returns no value (its return typ
void). Otherwise, the descriptor indicates the type of the return value.

THE JAVATM VIRTUAL MACHINE SPECIFICATION92

thod

ters

eters,

oke

e

e fol-
 for-
A valid Java method descriptor must represent 255 or fewer words of me
parameters, where that limit includes the word forthis in the case of instance
method invocations. The limit is on the number of words of method parame
and not on the number of parameters themselves; parameters of typelong and
double each use two words.

For example, the method descriptor for the method

Object mymethod(int i, double d, Thread t)

is

(IDLjava/lang/Thread;)Ljava/lang/Object;

Note that internal forms of the fully qualified class names ofThread andObject
are used in the method descriptor.

The method descriptor formymethod is the same whethermymethod is
static or is an instance method. Although an instance method is passedthis, a
reference to the current class instance, in addition to its intended param
that fact is not reflected in the method descriptor. (A reference tothis is not
passed to astatic method.) The reference tothis is passed implicitly by the
method invocation instructions of the Java Virtual Machine used to inv
instance methods.

4.4 Constant Pool

All constant_pool table entries have the following general format:

cp_info {

u1 tag;

u1 info[];

}

Each item in theconstant_pool table must begin with a 1-byte tag indicating th
kind ofcp_info entry. The contents of theinfo array varies with the value oftag.
The valid tags and their values are listed in Table 4.2. Each tag byte must b
lowed by two or more bytes giving information about the specific constant. The
mat of the additional information varies with the tag value.

THEclass FILE FORMAT 93

e:
4.4.1 CONSTANT_Class

TheCONSTANT_Class_info structure is used to represent a class or an interfac

CONSTANT_Class_info {

u1 tag;

u2 name_index;

}

The items of theCONSTANT_Class_info structure are the following:

tag

Thetag item has the valueCONSTANT_Class (7).

name_index

The value of thename_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be aCONSTANT_Utf8_info (§4.4.7) structure representing a
valid fully qualified Java class name (§2.8.1) that has been
converted to theclass file’s internal form (§4.2).

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_String 8

CONSTANT_Integer 3

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6

CONSTANT_NameAndType 12

CONSTANT_Utf8 1

Table 4.2 Constant pool tags

THE JAVATM VIRTUAL MACHINE SPECIFICATION94

array

:

Because arrays are objects, the opcodesanewarray andmultianewarray can
reference array “classes” viaCONSTANT_Class_info (§4.4.1) structures in the
constant_pool table. In this case, the name of the class is the descriptor of the
type. For example, the class name representing a two-dimensionalint array type;

int[][]

is

[[I

The class name representing the type array of classThread;

Thread[]

is

[Ljava.lang.Thread;

A valid Java array type descriptor must have 255 or fewer array dimensions.

4.4.2 CONSTANT_Fieldref, CONSTANT_Methodref, and
CONSTANT_InterfaceMethodref

Fields, methods, and interface methods are represented by similar structures

CONSTANT_Fieldref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

CONSTANT_Methodref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

CONSTANT_InterfaceMethodref_info {

u1 tag;

u2 class_index;

u2 name_and_type_index;

}

THEclass FILE FORMAT 95
The items of these structures are as follows:

tag

Thetag item of aCONSTANT_Fieldref_info structure has the
valueCONSTANT_Fieldref (9).

Thetag item of aCONSTANT_Methodref_info structure has the
valueCONSTANT_Methodref (10).

Thetag item of aCONSTANT_InterfaceMethodref_info
structure has the valueCONSTANT_InterfaceMethodref (11).

class_index

The value of theclass_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be aCONSTANT_Class_info (§4.4.1) structure representing
the class or interface type that contains the declaration of the field
or method.

Theclass_index item of aCONSTANT_Fieldref_info or a
CONSTANT_Methodref_info structure must be a class type, not
an interface type. Theclass_index item of a
CONSTANT_InterfaceMethodref_info structure must be an
interface type that declares the given method.

name_and_type_index

The value of thename_and_type_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_NameAndType_info (§4.4.6)
structure. Thisconstant_pool entry indicates the name and
descriptor of the field or method.

If the name of the method of aCONSTANT_Methodref_info or
CONSTANT_InterfaceMethodref_info begins with a'<'
('\u003c'), then the name must be one of the special internal
methods (§3.8), either<init> or <clinit>. In this case, the
method must return no value.

THE JAVATM VIRTUAL MACHINE SPECIFICATION96

 the
4.4.3 CONSTANT_String

TheCONSTANT_String_info structure is used to represent constant objects of
typejava.lang.String:

CONSTANT_String_info {

u1 tag;

u2 string_index;

}

The items of theCONSTANT_String_info structure are as follows:

tag

Thetag item of theCONSTANT_String_info structure has the
valueCONSTANT_String (8).

string_index

The value of thestring_index item must be a valid index into
theconstant_pool table. Theconstant_pool entry at that
index must be aCONSTANT_Utf8_info (§4.4.3) structure
representing the sequence of characters to which the
java.lang.String object is to be initialized.

4.4.4 CONSTANT_Integer and CONSTANT_Float

The CONSTANT_Integer_info andCONSTANT_Float_info structures represent
four-byte numeric (int andfloat) constants:

CONSTANT_Integer_info {

u1 tag;

u4 bytes;

}

CONSTANT_Float_info {

u1 tag;

u4 bytes;

}

The items of these structures are as follows:

tag

Thetag item of theCONSTANT_Integer_info structure has the
valueCONSTANT_Integer (3).

THEclass FILE FORMAT 97
Thetag item of theCONSTANT_Float_info structure has the
valueCONSTANT_Float (4).

bytes

Thebytes item of theCONSTANT_Integer_info structure
contains the value of theint constant. The bytes of the value are
stored in big-endian (high byte first) order.

Thebytes item of theCONSTANT_Float_info structure contains
the value of thefloat constant in IEEE 754 floating-point
“single format” bit layout. The bytes of the value are stored in
big-endian (high byte first) order, and are first converted into an
int argument. Then:

• If the argument is0x7f800000, thefloat value will be positive
infinity.

• If the argument is0xff800000, thefloat value will be nega-
tive infinity.

• If the argument is in the range0x7f800001 through
0x7fffffff or in the range0xff800001 through0xffffffff,
thefloat value will be NaN.

• In all other cases, lets, e, andm be three values that might be
computed by

int s = ((bytes >> 31) == 0) ? 1 : -1;

int e = ((bytes >> 23) & 0xff);

int m = (e == 0) ?

(bytes & 0x7fffff) << 1 :

(bytes & 0x7fffff) | 0x800000;

Then thefloat value equals the result of the mathematical
expression .

4.4.5 CONSTANT_Long and CONSTANT_Double

The CONSTANT_Long_info and CONSTANT_Double_info represent eight-byte
numeric (long anddouble) constants:

s m 2e 150–⋅ ⋅

THE JAVATM VIRTUAL MACHINE SPECIFICATION98

t is

e.
CONSTANT_Long_info {

u1 tag;

u4 high_bytes;

u4 low_bytes;

}

CONSTANT_Double_info {

u1 tag;

u4 high_bytes;

u4 low_bytes;

}

All eight-byte constants take up two entries in theconstant_pool table of
the class file, as well as in the in-memory version of the constant pool tha
constructed when aclass file is read. If a CONSTANT_Long_info or
CONSTANT_Double_info structure is the item in theconstant_pool table at
index n, then the next valid item in the pool is located at indexn +2. The
constant_pool indexn +1 must be considered invalid and must not be used.1

The items of these structures are as follows:

tag

Thetag item of theCONSTANT_Long_info structure has the
valueCONSTANT_Long (5).

Thetag item of theCONSTANT_Double_info structure has the
valueCONSTANT_Double (6).

high_bytes, low_bytes

The unsignedhigh_bytes andlow_bytes items of the
CONSTANT_Long structure together contain the value of thelong

constant ((long)high_bytes << 32) +low_bytes, where the
bytes of each ofhigh_bytes andlow_bytes are stored in big-
endian (high byte first) order.

Thehigh_bytes andlow_bytes items of the
CONSTANT_Double_info structure contain thedouble value in
IEEE 754 floating-point “double format” bit layout. The bytes of
each item are stored in big-endian (high byte first) order. The
high_bytes andlow_bytes items are first converted into along
argument. Then:

1. In retrospect, making eight-byte constants take two constant pool entries was a poor choic

THEclass FILE FORMAT 99

or
• If the argument is0x7f80000000000000L, thedouble value
will be positive infinity.

• If the argument is0xff80000000000000L, thedouble value
will be negative infinity.

• If the argument is in the range0x7ff0000000000001L through
0x7fffffffffffffffL or in the range
0xfff0000000000001L through0xffffffffffffffffL, the
double value will be NaN.

• In all other cases, lets, e, andm be three values that might be
computed from the argument:

int s = ((bits >> 63) == 0) ? 1 : -1;

int e = (int)((bits >> 52) & 0x7ffL);

long m = (e == 0) ?

(bits & 0xfffffffffffffL) << 1 :

(bits & 0xfffffffffffffL) | 0x10000000000000L;

Then the floating-point value equals thedouble value of the
mathematical expression .

4.4.6 CONSTANT_NameAndType

The CONSTANT_NameAndType_info structure is used to represent a field
method, without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_info {

u1 tag;

u2 name_index;

u2 descriptor_index;

}

The items of theCONSTANT_NameAndType_info structure are as follows:

tag

Thetag item of theCONSTANT_NameAndType_info structure has
the valueCONSTANT_NameAndType (12).

name_index

The value of thename_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index

s m 2e 1075–⋅ ⋅

THE JAVATM VIRTUAL MACHINE SPECIFICATION100

y non-
r, but

range

d. The

s

must be aCONSTANT_Utf8_info (§4.4.7) structure representing a
valid Java field name or method name (§2.7) stored as a simple
(not fully qualified) name (§2.7.1), that is, as a Java identifier.

descriptor_index

The value of thedescriptor_index item must be a valid index
into theconstant_pool table. Theconstant_pool entry at that
index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing a valid Java field descriptor (§4.3.2) or method
descriptor (§4.3.3).

4.4.7 CONSTANT_Utf8

TheCONSTANT_Utf8_info structure is used to represent constant string values.
UTF-8 strings are encoded so that character sequences that contain onl

null ASCII characters can be represented using only one byte per characte
characters of up to 16 bits can be represented. All characters in the
'\u0001' to '\u007F' are represented by a single byte:

The seven bits of data in the byte give the value of the character represente
null character ('\u0000') and characters in the range'\u0080' to '\u07FF' are
represented by a pair of bytesx andy:

The bytes represent the character with the value ((x & 0x1f) << 6) + (y & 0x3f).
Characters in the range'\u0800' to '\uFFFF' are represented by three byte

x, y, andz:

The character with the value ((x & 0xf) << 12) + ((y & 0x3f) << 6) + (z & 0x3f) is
represented by the bytes.

The bytes of multibyte characters are stored in theclass file in big-endian
(high byte first) order.

0 bits 0-7

x: 1 1 0 bits 6-10 y: 1 0 bits 0-5

x: 1 1 1 0 bits 12-15 y: 1 0 bits 6-11 z: 1 0 bits 0-5

THEclass FILE FORMAT 101

 for-
an
ave

ts are
.

ISO/
There are two differences between this format and the “standard” UTF-8
mat. First, the null byte(byte)0 is encoded using the two-byte format rather th
the one-byte format, so that Java Virtual Machine UTF-8 strings never h
embedded nulls. Second, only the one-byte, two-byte, and three-byte forma
used. The Java Virtual Machine does not recognize the longer UTF-8 formats

For more information regarding the UTF-8 format, seeFile System Safe UCS
Transformation Format (FSS_UTF), X/Open Preliminary Specification, X/Open
Company Ltd., Document Number: P316. This information also appears in
IEC 10646, Annex P.

TheCONSTANT_Utf8_info structure is

CONSTANT_Utf8_info {

u1 tag;

u2 length;

u1 bytes[length];

}

The items of theCONSTANT_Utf8_info structure are the following:

tag

Thetag item of theCONSTANT_Utf8_info structure has the
valueCONSTANT_Utf8 (1).

length

The value of thelength item gives the number of bytes in the
bytes array (not the length of the resulting string). The strings in
theCONSTANT_Utf8_info structure are not null-terminated.

bytes[]

Thebytes array contains the bytes of the string. No byte may
have the value(byte)0 or (byte)0xf0-(byte)0xff.

4.5 Fields

Each field is described by a variable-lengthfield_info structure. The format of
this structure is

THE JAVATM VIRTUAL MACHINE SPECIFICATION102
field_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of thefield_info structure are as follows:

access_flags

The value of theaccess_flags item is a mask of modifiers used
to describe access permission to and properties of a field. The
access_flags modifiers are shown in Table 4.3.

Fields of interfaces may only use flags indicated in Table 4.3 as
used by any field. Fields of classes may use any of the flags in
Table 4.3.

All unused bits of theaccess_flags item, including those not
assigned in Table 4.3, are reserved for future use. They should be
set to zero in generatedclass files and should be ignored by Java
Virtual Machine implementations.

Class fields may have at most one of flagsACC_PUBLIC,
ACC_PROTECTED, andACC_PRIVATE set (§2.7.8). A class field
may not have bothACC_FINAL andACC_VOLATILE set (§2.9.1).

Flag Name Value Meaning Used By

ACC_PUBLIC 0x0001 Ispublic; may be accessed from
outside its package.

Any field

ACC_PRIVATE 0x0002 Is private; usable only within
the defining class.

Class field

ACC_PROTECTED 0x0004 Is protected; may be accessed
within subclasses.

Class field

ACC_STATIC 0x0008 Is static. Any field

ACC_FINAL 0x0010 Isfinal; no further overriding or
assignment after initialization.

Any field

ACC_VOLATILE 0x0040 Is volatile; cannot be cached. Class field

ACC_TRANSIENT 0x0080 Istransient; not written or read
by a persistent object manager.

Class field

Table 4.3 Field access and modifier flags

THEclass FILE FORMAT 103
Each interface field is implicitlystatic andfinal (§2.13.4) and
must have both itsACC_STATIC andACC_FINAL flags set. Each
interface field is implicitlypublic (§2.13.4) and must have its
ACC_PUBLIC flag set.

name_index

The value of thename_index item must be a valid index into
theconstant_pool table. Theconstant_pool entry at that
index must be aCONSTANT_Utf8_info (§4.4.7) structure
which must represent a valid Java field name (§2.7) stored as a
simple (not fully qualified) name (§2.7.1), that is, as a Java
identifier.

descriptor_index

The value of thedescriptor_index item must be a valid index
into theconstant_pool table. Theconstant_pool entry at that
index must be aCONSTANT_Utf8 (§4.4.7) structure which must
represent a valid Java field descriptor (§4.3.2).

attributes_count

The value of theattributes_count item indicates the number
of additional attributes (§4.7) of this field.

attributes[]

Each value of theattributes table must be a variable-length
attribute structure. A field can have any number of attributes
(§4.7) associated with it.

The only attribute defined for theattributes table of a
field_info structure by this specification is the
ConstantValue attribute (§4.7.3).

A Java Virtual Machine implementation must recognize
ConstantValue attributes in theattributes table of a
field_info structure. A Java Virtual Machine implementation is
required to silently ignore any or all other attributes in the
attributes table that it does not recognize. Attributes not
defined in this specification are not allowed to affect the
semantics of theclass file, but only to provide additional
descriptive information (§4.7.1).

THE JAVATM VIRTUAL MACHINE SPECIFICATION104
4.6 Methods

Each method, and each instance initialization method<init>, is described by a
variable-lengthmethod_info structure. The structure has the following format:

method_info {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of themethod_info structure are as follows:

access_flags

The value of theaccess_flags item is a mask of modifiers used to
describe access permission to and properties of a method or instance
initialization method (§3.8). Theaccess_flags modifiers are
shown in Table 4.4.

Flag Name Value Meaning Used By

ACC_PUBLIC 0x0001 Ispublic; may be accessed
from outside its package.

Any method

ACC_PRIVATE 0x0002 Is private; usable only
within the defining class.

Class/instance
method

ACC_PROTECTED 0x0004 Is protected; may be
accessed within sub-
classes.

Class/instance
method

ACC_STATIC 0x0008 Is static. Class/instance
method

ACC_FINAL 0x0010 Is final; no overriding is
allowed.

Class/instance
method

ACC_SYNCHRONIZED 0x0020 Is synchronized; wrap
use in monitor lock.

Class/instance
method

ACC_NATIVE 0x0100 Isnative; implemented in
a language other than Java.

Class/instance
method

ACC_ABSTRACT 0x0400 Is abstract; no imple-
mentation is provided.

Any method

Table 4.4 Method access and modifier flags

THEclass FILE FORMAT 105
Methods in interfaces may only use flags indicated in Table 4.4 as
used by any method. Class and instance methods (§2.10.3) may
use any of the flags in Table 4.4. Instance initialization methods
(§3.8) may only useACC_PUBLIC, ACC_PROTECTED, and
ACC_PRIVATE.

All unused bits of theaccess_flags item, including those not
assigned in Table 4.4, are reserved for future use. They should be
set to zero in generatedclass files and should be ignored by Java
Virtual Machine implementations.

At most one of the flagsACC_PUBLIC, ACC_PROTECTED, and
ACC_PRIVATE may be set for any method. Class and instance
methods may not useACC_ABSTRACT together withACC_FINAL,
ACC_NATIVE, orACC_SYNCHRONIZED (that is,native and
synchronized methods require an implementation). A class or
instance method may not useACC_PRIVATE with ACC_ABSTRACT

(that is, aprivate method cannot be overridden, so such a
method could never be implemented or used). A class or instance
method may not useACC_STATIC with ACC_ABSTRACT (that is, a
static method is implicitlyfinal and thus cannot be
overridden, so such a method could never be implemented or
used).

Class and interface initialization methods (§3.8), that is, methods
named<clinit>, are called implicitly by the Java Virtual
Machine; the value of theiraccess_flags item is ignored.

Each interface method is implicitlyabstract, and so must
have itsACC_ABSTRACT flag set. Each interface method is
implicitly public (§2.13.5), and so must have itsACC_PUBLIC
flag set.

name_index

The value of thename_index item must be a valid index into the
constant_pool table. Theconstant_pool entry at that index
must be aCONSTANT_Utf8_info (§4.4.7) structure representing
either one of the special internal method names (§3.8), either
<init> or <clinit>, or a valid Java method name (§2.7), stored
as a simple (not fully qualified) name (§2.7.1).

THE JAVATM VIRTUAL MACHINE SPECIFICATION106
descriptor_index

The value of thedescriptor_index item must be a valid index
into theconstant_pool table. Theconstant_pool entry at that
index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing a valid Java method descriptor (§4.3.3).

attributes_count

The value of theattributes_count item indicates the number
of additional attributes (§4.7) of this method.

attributes[]

Each value of theattributes table must be a variable-length
attribute structure. A method can have any number of optional
attributes (§4.7) associated with it.

The only attributes defined by this specification for the
attributes table of amethod_info structure are theCode
(§4.7.4) andExceptions (§4.7.5) attributes.

A Java Virtual Machine implementation must recognizeCode

(§4.7.4) andExceptions (§4.7.5) attributes. A Java Virtual
Machine implementation is required to silently ignore any or all
other attributes in theattributes table of amethod_info
structure that it does not recognize. Attributes not defined in this
specification are not allowed to affect the semantics of theclass

file, but only to provide additional descriptive information
(§4.7.1).

4.7 Attributes

Attributes are used in theClassFile (§4.1),field_info (§4.5),method_info
(§4.6), andCode_attribute (§4.7.4) structures of theclass file format. All
attributes have the following general format:

attribute_info {

u2 attribute_name_index;

u4 attribute_length;

u1 info[attribute_length];

}

THEclass FILE FORMAT 107

-

e ini-

ifi-

g
y

found
t
man-
uired

ng is
nore
-
n if
ation

w-

re.
For all attributes, theattribute_name_index must be a valid unsigned 16
bit index into the constant pool of the class. Theconstant_pool entry at
attribute_name_index must be aCONSTANT_Utf8 (§4.4.7) string representing
the name of the attribute. The value of theattribute_length item indicates the
length of the subsequent information in bytes. The length does not include th
tial six bytes that contain theattribute_name_index andattribute_length
items.

Certain attributes are predefined as part of theclass file specification. The
predefined attributes are theSourceFile (§4.7.2), ConstantValue (§4.7.3),
Code (§4.7.4),Exceptions (§4.7.5),LineNumberTable (§4.7.6), andLocal-
VariableTable (§4.7.7) attributes. Within the context of their use in this spec
cation, that is, in theattributes tables of theclass file structures in which they
appear, the names of these predefined attributes are reserved.

Of the predefined attributes, theCode, ConstantValue, and Exceptions

attributes must be recognized and correctly read by aclass file reader for correct
interpretation of theclass file by a Java Virtual Machine. Use of the remainin
predefined attributes is optional; aclass file reader may use the information the
contain, and otherwise must silently ignore those attributes.

4.7.1 Defining and Naming New Attributes

Compilers for Java source code are permitted to define and emitclass files contain-
ing new attributes in theattributes tables ofclass file structures. Java Virtual
Machine implementations are permitted to recognize and use new attributes
in the attributes tables ofclass file structures. However, all attributes no
defined as part of this Java Virtual Machine specification must not affect the se
tics of class or interface types. Java Virtual Machine implementations are req
to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debuggi
permitted. Because Java Virtual Machine implementations are required to ig
attributes they do not recognize,class files intended for that particular Java Vir
tual Machine implementation will be usable by other implementations eve
those implementations cannot make use of the additional debugging inform
that theclass files contain.

Java Virtual Machine implementations are specifically prohibited from thro
ing an exception or otherwise refusing to useclass files simply because of the
presence of some new attribute. Of course, tools operating onclass files may not
run correctly if givenclass files that do not contain all the attributes they requi

THE JAVATM VIRTUAL MACHINE SPECIFICATION108

 same
 that
ames

ave

ne
Two attributes that are intended to be distinct, but that happen to use the
attribute name and are of the same length, will conflict on implementations
recognize either attribute. Attributes defined other than by Sun must have n
chosen according to the package naming convention defined byThe Java Lan-
guage Specification. For instance, a new attribute defined by Netscape might h
the name"COM.Netscape.new-attribute".

Sun may define additional attributes in future versions of thisclass file spec-
ification.

4.7.2 SourceFile Attribute

TheSourceFile attribute is an optional fixed-length attribute in theattributes

table of the ClassFile (§4.1) structure. There can be no more than o
SourceFile attribute in theattributes table of a givenClassFile structure.

TheSourceFile attribute has the format

SourceFile_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 sourcefile_index;

}

The items of theSourceFile_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string"SourceFile".

attribute_length

The value of theattribute_length item of a
SourceFile_attribute structure must be2.

sourcefile_index

The value of thesourcefile_index item must be a valid index
into theconstant_pool table. The constant pool entry at that
index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string giving the name of the source file from
which thisclass file was compiled.

THEclass FILE FORMAT 109

e

.

Only the name of the source file is given by theSourceFile

attribute. It never represents the name of a directory containing
the file or an absolute path name for the file. For instance, the
SourceFile attribute might contain the file namefoo.java but
not the UNIX pathname /home/lindholm/foo.java.

4.7.3 ConstantValue Attribute

The ConstantValue attribute is a fixed-length attribute used in theattributes

table of thefield_info (§4.5) structures. AConstantValue attribute represents
the value of a constant field that must be (explicitly or implicitly)static; that is, the
ACC_STATIC bit (§Table 4.3) in theflags item of thefield_info structure must
be set. The field is not required to befinal. There can be no more than on
ConstantValue attribute in theattributes table of a givenfield_info struc-
ture. The constant field represented by thefield_info structure is assigned the
value referenced by itsConstantValue attribute as part of its initialization (§2.16.4)

Every Java Virtual Machine implementation must recognizeConstantValue

attributes.
TheConstantValue attribute has the format

ConstantValue_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 constantvalue_index;

}

The items of theConstantValue_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string"ConstantValue".

attribute_length

The value of theattribute_length item of a
ConstantValue_attribute structure must be2.

constantvalue_index

The value of theconstantvalue_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry

THE JAVATM VIRTUAL MACHINE SPECIFICATION110

e
liza-
 Vir-
y

at that index must give the constant value represented by this
attribute.

Theconstant_pool entry must be of a type appropriate to the
field, as shown by Table 4.5.

4.7.4 Code Attribute

The Code attribute is a variable-length attribute used in theattributes table of
method_info structures. ACode attribute contains the Java Virtual Machin
instructions and auxiliary information for a single Java method, instance initia
tion method (§3.8), or class or interface initialization method (§3.8). Every Java
tual Machine implementation must recognizeCode attributes. There must be exactl
oneCode attribute in eachmethod_info structure.

TheCode attribute has the format

Code_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 max_stack;

u2 max_locals;

u4 code_length;

u1 code[code_length];

u2 exception_table_length;

{ u2 start_pc;

u2 end_pc;

u2 handler_pc;

u2 catch_type;

} exception_table[exception_table_length];

u2 attributes_count;

attribute_info attributes[attributes_count];

}

Field Type Entry Type

long CONSTANT_Long

float CONSTANT_Float

double CONSTANT_Double

int, short, char, byte, boolean CONSTANT_Integer

java.lang.String CONSTANT_String

Table 4.5 Constant value attribute types

THEclass FILE FORMAT 111
The items of theCode_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string"Code".

attribute_length

The value of theattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

max_stack

The value of themax_stack item gives the maximum number of
words on the operand stack at any point during execution of this
method.

max_locals

The value of themax_locals item gives the number of local
variables used by this method, including the parameters passed to
the method on invocation. The index of the first local variable is
0. The greatest local variable index for a one-word value is
max_locals-1. The greatest local variable index for a two-word
value ismax_locals-2.

code_length

The value of thecode_length item gives the number of bytes in
thecode array for this method. The value ofcode_length must
be greater than zero; thecode array must not be empty.

code[]

Thecode array gives the actual bytes of Java Virtual Machine
code that implement the method.

When thecode array is read into memory on a byte addressable
machine, if the first byte of the array is aligned on a 4-byte
boundary, thetableswitch andlookupswitch 32-bit offsets will be
4-byte aligned; refer to the descriptions of those instructions for
more information on the consequences ofcode array alignment.

The detailed constraints on the contents of thecode array are
extensive and are given in a separate section (§4.8).

THE JAVATM VIRTUAL MACHINE SPECIFICATION112

ava
n that

piler
rtual
f any
exception_table_length

The value of theexception_table_length item gives the
number of entries in theexception_table table.

exception_table[]

Each entry in theexception_table array describes one
exception handler in thecode array. Eachexception_table
entry contains the following items:

start_pc, end_pc

The values of the two itemsstart_pc andend_pc indicate
the ranges in thecode array at which the exception handler
is active. The value ofstart_pc must be a valid index into
thecode array of the opcode of an instruction. The value of
end_pc either must be a valid index into thecode array of
the opcode of an instruction, or must be equal to
code_length, the length of thecode array. The value of
start_pc must be less than the value ofend_pc.

Thestart_pc is inclusive andend_pc is exclusive; that is,
the exception handler must be active while the program
counter is within the interval [start_pc, end_pc).2

handler_pc

The value of thehandler_pc item indicates the start of the
exception handler. The value of the item must be a valid
index into thecode array, must be the index of the opcode of
an instruction, and must be less than the value of the
code_length item.

catch_type

If the value of thecatch_type item is nonzero, it must be a
valid index into theconstant_pool table. The
constant_pool entry at that index must be a

2. The fact thatend_pc is exclusive is an historical mistake in the Java Virtual Machine: if the J
Virtual Machine code for a method is exactly 65535 bytes long and ends with an instructio
is one byte long, then that instruction cannot be protected by an exception handler. A com
writer can work around this bug by limiting the maximum size of the generated Java Vi
Machine code for any method, instance initialization method, or static initializer (the size o
code array) to 65534 bytes.

THEclass FILE FORMAT 113
CONSTANT_Class_info (§4.4.1) structure representing a
class of exceptions that this exception handler is designated
to catch. This class must be the classThrowable or one of
its subclasses. The exception handler will be called only if
the thrown exception is an instance of the given class or one
of its subclasses.

If the value of thecatch_type item is zero, this exception
handler is called for all exceptions. This is used to
implementfinally (see Section 7.13, “Compiling
finally”).

attributes_count

The value of theattributes_count item indicates the number
of attributes of theCode attribute.

attributes[]

Each value of theattributes table must be a variable-length
attribute structure. ACode attribute can have any number of
optional attributes associated with it.

Currently, theLineNumberTable (§4.7.6) and
LocalVariableTable (§4.7.7) attributes, both of which contain
debugging information, are defined and used with theCode attribute.

A Java Virtual Machine implementation is permitted to silently
ignore any or all attributes in theattributes table of aCode
attribute. Attributes not defined in this specification are not
allowed to affect the semantics of theclass file, but only to
provide additional descriptive information (§4.7.1).

4.7.5 Exceptions Attribute

The Exceptions attribute is a variable-length attribute used in theattributes

table of amethod_info (§4.6) structure. TheExceptions attribute indicates which
checked exceptions a method may throw. There must be exactly oneExceptions

attribute in eachmethod_info structure.
TheExceptions attribute has the format

THE JAVATM VIRTUAL MACHINE SPECIFICATION114

ree

in the

rtual
Java
Exceptions_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 number_of_exceptions;

u2 exception_index_table[number_of_exceptions];

}

The items of theExceptions_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be theCONSTANT_Utf8_info (§4.4.7)
structure representing the string"Exceptions".

attribute_length

The value of theattribute_length item indicates the attribute
length, excluding the initial six bytes.

number_of_exceptions

The value of thenumber_of_exceptions item indicates the
number of entries in theexception_index_table.

exception_index_table[]

Each nonzero value in theexception_index_table array must
be a valid index into theconstant_pool table. For each table
item, if exception_index_table[i] != 0, where0 ≤ i <
number_of_exceptions, then theconstant_pool entry at
indexexception_index_table[i] must be a
CONSTANT_Class_info (§4.4.1) structure representing a class
type that this method is declared to throw.

A method should only throw an exception if at least one of the following th
criteria is met:

• The exception is an instance ofRuntimeException or one of its subclasses.

• The exception is an instance ofError or one of its subclasses.

• The exception is an instance of one of the exception classes specified
exception_index_table above, or one of their subclasses.

The above requirements are not currently enforced by the Java Vi
Machine; they are only enforced at compile time. Future versions of the
language may require more rigorous checking ofthrows clauses when classes
are verified.

THEclass FILE FORMAT 115

e
 to

n
-

nfor-
4.7.6 LineNumberTable Attribute

The LineNumberTable attribute is an optional variable-length attribute in th
attributes table of aCode (§4.7.4) attribute. It may be used by debuggers
determine which part of the Java Virtual Machinecode array corresponds to a given
line number in the original Java source file. IfLineNumberTable attributes are
present in theattributes table of a givenCode attribute, then they may appear i
any order. Furthermore, multipleLineNumberTable attributes may together repre
sent a given line of a Java source file; that is,LineNumberTable attributes need not
be one-to-one with source lines.3

TheLineNumberTable attribute has the format

LineNumberTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 line_number_table_length;

{ u2 start_pc;

u2 line_number;

} line_number_table[line_number_table_length];

}

The items of theLineNumberTable_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string"LineNumberTable".

attribute_length

The value of theattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

line_number_table_length

The value of theline_number_table_length item indicates the
number of entries in theline_number_table array.

3. Thejavac compiler in Sun’s JDK 1.0.2 release can in fact generateLineNumberTable attributes
which are not in line number order and which are not one-to-one with source lines. This is u
tunate, as we would prefer to specify a one-to-one, ordered mapping ofLineNumberTable

attributes to source lines, but must yield to backward compatibility.

THE JAVATM VIRTUAL MACHINE SPECIFICATION116

 a
 of a
line_number_table[]

Each entry in theline_number_table array indicates that the line
number in the original Java source file changes at a given point in
thecode array. Each entry must contain the following items:

start_pc

The value of thestart_pc item must indicate the index into
thecode array at which the code for a new line in the
original Java source file begins. The value ofstart_pc must
be less than the value of thecode_length item of theCode
attribute of which thisLineNumberTable is an attribute.

line_number

The value of theline_number item must give the
corresponding line number in the original Java source file.

4.7.7 LocalVariableTable Attribute

The LocalVariableTable attribute is an optional variable-length attribute of
Code (§4.7.4) attribute. It may be used by debuggers to determine the value
given local variable during the execution of a method. IfLocalVariableTable

attributes are present in theattributes table of a givenCode attribute, then they
may appear in any order. There may be no more than oneLocalVariableTable

attribute per local variable in theCode attribute.
TheLocalVariableTable attribute has the format

LocalVariableTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 local_variable_table_length;

{ u2 start_pc;

u2 length;

u2 name_index;

u2 descriptor_index;

u2 index;

} local_variable_table[

local_variable_table_length];

}

THEclass FILE FORMAT 117
The items of theLocalVariableTable_attribute structure are as follows:

attribute_name_index

The value of theattribute_name_index item must be a valid
index into theconstant_pool table. Theconstant_pool entry
at that index must be aCONSTANT_Utf8_info (§4.4.7) structure
representing the string"LocalVariableTable".

attribute_length

The value of theattribute_length item indicates the length of
the attribute, excluding the initial six bytes.

local_variable_table_length

The value of thelocal_variable_table_length item
indicates the number of entries in thelocal_variable_table

array.

local_variable_table[]

Each entry in thelocal_variable_table array indicates a
range ofcode array offsets within which a local variable has a
value. It also indicates the index into the local variables of the
current frame at which that local variable can be found. Each
entry must contain the following items:

start_pc, length

The given local variable must have a value at indices into the
code array in the interval [start_pc, start_pc+length],
that is, betweenstart_pc andstart_pc+length
inclusive. The value ofstart_pc must be a valid index into
thecode array of thisCode attribute of the opcode of an
instruction. The value ofstart_pc+length must be either
a valid index into thecode array of thisCode attribute of the
opcode of an instruction, or the first index beyond the end of
thatcode array.

name_index, descriptor_index

The value of thename_index item must be a valid index
into theconstant_pool table. Theconstant_pool entry
at that index must contain aCONSTANT_Utf8_info (§4.4.7)

THE JAVATM VIRTUAL MACHINE SPECIFICATION118

3.8),

he
de of
static

s

 the
), the
structure representing a valid Java local variable name stored
as a simple name (§2.7.1).

The value of thedescriptor_index item must be a valid
index into theconstant_pool table. Theconstant_pool
entry at that index must contain aCONSTANT_Utf8_info
(§4.4.7) structure representing a valid descriptor for a Java
local variable. Java local variable descriptors have the same
form as field descriptors (§4.3.2).

index

The given local variable must be atindex in its method’s
local variables. If the local variable atindex is a two-word
type (double or long), it occupies bothindex and
index+1.

4.8 Constraints on Java Virtual Machine Code

The Java Virtual Machine code for a method, instance initialization method (§
or class or interface initialization method (§3.8) is stored in thecode array of the
Code attribute of amethod_info structure of aclass file. This section describes
the constraints associated with the contents of theCode_attribute structure.

4.8.1 Static Constraints

Thestatic constraints on aclass file are those defining the well-formedness of t
file. With the exception of the static constraints on the Java Virtual Machine co
theclass file, these constraints have been given in the previous section. The
constraints on the Java Virtual Machine code in aclass file specify how Java Vir-
tual Machine instructions must be laid out in thecode array, and what the operand
of individual instructions must be.

The static constraints on the instructions in thecode array are as follows:

• Thecode array must not be empty, so thecode_length attribute cannot have
the value0.

• The opcode of the first instruction in thecode array begins at index0.

• Only instances of the instructions documented in (§6.4) may appear in
code array. Instances of instructions using the reserved opcodes (§6.2

THEclass FILE FORMAT 119

des

de
ction

peci-
e
h-

x

uc-
ified

ts
to

by
_quick opcodes documented in Chapter 9, “An Optimization,” or any opco
not documented in this specification may not appear in thecode array.

• For each instruction in thecode array except the last, the index of the opco
of the next instruction equals the index of the opcode of the current instru
plus the length of that instruction, including all its operands. Thewide instruc-
tion is treated like any other instruction for these purposes; the opcode s
fying the operation that awide instruction is to modify is treated as one of th
operands of thatwide instruction. That opcode must never be directly reac
able by the computation.

• The last byte of the last instruction in thecode array must be the byte at inde
code_length-1.

The static constraints on the operands of instructions in thecode array are as fol-
lows:

• The target of each jump and branch instruction (jsr, jsr_w, goto, goto_w,
ifeq, ifne, iflt, ifge, ifgt, ifle, ifnull, ifnonnull, if_icmpeq, if_icmpne, if_icmplt,
if_icmpge, if_icmpgt, if_icmple, if_acmpeq, if_acmpne) must be the opcode of
an instruction within this method. The target of a jump or branch instr
tion must never be the opcode used to specify the operation to be mod
by awide instruction; a jump or branch target may be thewide instruction
itself.

• Each target, including the default, of eachtableswitch instruction must be the
opcode of an instruction within this method. Eachtableswitch instruction must
have a number of entries in its jump table that is consistent with itslow and
high jump table operands, and itslow value must be less than or equal to i
high value. No target of atableswitch instruction may be the opcode used
specify the operation to be modified by awide instruction; atableswitch target
may be awide instruction itself.

• Each target, including the default, of eachlookupswitch instruction must be the
opcode of an instruction within this method. Eachlookupswitch instruction
must have a number ofmatch-offset pairs that is consistent with itsnpairs oper-
and. Thematch-offset pairs must be sorted in increasing numerical order
signedmatch value. No target of alookupswitch instruction may be the opcode
used to specify the operation to be modified by awide instruction; alook-
upswitch target may be awide instruction itself

THE JAVATM VIRTUAL MACHINE SPECIFICATION120

e
ust

e
ust
t
d the

-

gins
n

y

d

r of

d

type

255
• The operand of eachldc andldc_w instruction must be a valid index into th
constant_pool table. The constant pool entry referenced by that index m
be of typeCONSTANT_Integer, CONSTANT_Float, orCONSTANT_String.

• The operand of eachldc2_w instruction must be a valid index into th
constant_pool table. The constant pool entry referenced by that index m
be of typeCONSTANT_Long or CONSTANT_double. In addition, the subsequen
constant pool index must also be a valid index into the constant pool, an
constant pool entry at that index must not be used.

• The operand of eachgetfield, putfield, getstatic, andputstatic instruction must
be a valid index into theconstant_pool table. The constant pool entry refer
enced by that index must be of typeCONSTANT_Fieldref.

• The index operand of eachinvokevirtual, invokespecial, and invokestatic
instruction must be a valid index into theconstant_pool table. The constant
pool entry referenced by that index must be of typeCONSTANT_Methodref.

• Only theinvokespecial instruction is allowed to invoke the method<init>, the
instance initialization method (§3.8). No other method whose name be
with the character'<' ('\u003c') may be called by the method invocatio
instructions. In particular, the class initialization method<clinit> is never
called explicitly from Java Virtual Machine instructions, but only implicitly b
the Java Virtual Machine itself.

• The index operand of eachinvokeinterface instruction must be a valid
index into theconstant_pool table. The constant pool entry reference
by that index must be of typeCONSTANT_InterfaceMethodref. The
value of thenargs operand of eachinvokeinterface instruction must be
the same as the number of argument words implied by the descripto
the CONSTANT_NameAndType_info structure referenced by the
CONSTANT_InterfaceMethodref constant pool entry. The fourth operan
byte of eachinvokeinterface instruction must have the value zero.

• The index operand of eachinstanceof, checkcast, new, anewarray, and
multi-anewarray instruction must be a valid index into theconstant_pool
table. The constant pool entry referenced by that index must be of
CONSTANT_Class.

• No anewarray instruction may be used to create an array of more than
dimensions.

THEclass FILE FORMAT 121

te
r an
.

ype

e

. The

s

 of

s
s fol-

mber
xecu-
type

pes
• No new instruction may reference aCONSTANT_Class constant_pool table
entry representing an array class. Thenew instruction cannot be used to crea
an array. Thenew instruction also cannot be used to create an interface o
instance of anabstract class, but those checks are performed at link time

• A multianewarray instruction must only be used to create an array of a t
that has at least as many dimensions as the value of itsdimensions operand.
That is, while amultianewarray instruction is not required to create all of th
dimensions of the array type referenced by itsCONSTANT_Class operand, it
must not attempt to create more dimensions than are in the array type
dimensions operand of eachmultianewarray instruction must not be zero.

• The atype operand of eachnewarray instruction must take one of the value
T_BOOLEAN (4), T_CHAR (5), T_FLOAT (6), T_DOUBLE (7), T_BYTE (8), T_SHORT
(9), T_INT (10), orT_LONG (11).

• The index operand of eachiload, fload, aload, istore, fstore, astore, wide, iinc,
andret instruction must be a natural number no greater thanmax_locals-1.

• The implicit index of eachiload_<n>, fload_<n>, aload_<n>, istore_<n>,
fstore_<n>, andastore_<n> instruction must be no greater than the value
max_locals-1.

• The index operand of eachlload, dload, lstore, anddstore instruction must be
no greater than the value ofmax_locals-2.

• The implicit index of eachlload_<n>, dload_<n>, lstore_<n>, and
dstore_<n> instruction must be no greater than the value ofmax_locals-2.

4.8.2 Structural Constraints

The structural constraints on thecode array specify constraints on relationship
between Java Virtual Machine instructions. The structural constraints are a
lows:

• Each instruction must only be executed with the appropriate type and nu
of arguments in the operand stack and local variables, regardless of the e
tion path that leads to its invocation. An instruction operating on values of
int is also permitted to operate on values of typebyte, char, andshort. (As
noted in §3.11.1, the Java Virtual Machine internally converts values of ty
byte, char, andshort to typeint.)

THE JAVATM VIRTUAL MACHINE SPECIFICATION122

aths,
struc-

ype
o-

n be

 than

rand

n
-

. The

le is
e vari-

 or in
be an
ption
 be

re dis-

tion

f
ed.
• Where an instruction can be executed along several different execution p
the operand stack must have the same size prior to the execution of the in
tion, regardless of the path taken.

• At no point during execution can the order of the words of a two-word t
(long or double) be reversed or split up. At no point can the words of a tw
word type be operated on individually.

• No local variable (or local variable pair, in the case of a two-word type) ca
accessed before it is assigned a value.

• At no point during execution can the operand stack grow to contain more
max_stack words.

• At no point during execution can more words be popped from the ope
stack than it contains.

• Each invokespecial instruction must name only an instance initializatio
method<init>, a method inthis, aprivate method, or a method in a super
class ofthis.

• When the instance initialization method<init> is invoked, an uninitialized
class instance must be in an appropriate position on the operand stack
<init> method must never be invoked on an initialized class instance.

• When any instance method is invoked, or when any instance variab
accessed, the class instance that contains the instance method or instanc
able must already be initialized.

• There must never be an uninitialized class instance on the operand stack
a local variable when any backwards branch is taken. There must never
uninitialized class instance in a local variable in code protected by an exce
handler or afinally clause. However, an uninitialized class instance may
on the operand stack in code protected by an exception handler or afinally

clause. When an exception is thrown, the contents of the operand stack a
carded.

• Each instance initialization method (§3.8), except for the instance initializa
method derived from the constructor of classObject, must call either another
instance initialization method ofthis or an instance initialization method o
its immediate superclasssuper before its instance members are access
However, this is not necessary in the case of classObject, which does not have
a superclass (§2.4.6).

THEclass FILE FORMAT 123

pat-

hod

s a

iptor
rs,

ubclass

 be the

f the

class

om-

type

ass
• The arguments to each method invocation must be method invocation com
ible (§2.6.7) with the method descriptor (§4.3.3).

• An abstract method must never be invoked.

• Each return instruction must match its method’s return type. If the met
returns abyte, char, short, orint, only theireturn instruction may be used.
If the method returns afloat, long, or double, only anfreturn, lreturn, or
dreturn instruction, respectively, may be used. If the method return
reference type, it must do so using anareturn instruction, and the returned
value must be assignment compatible (§2.6.6) with the return descr
(§4.3.3) of the method. All instance initialization methods, static initialize
and methods declared to returnvoid must only use thereturn instruction.

• If getfield or putfield is used to access aprotected field of a superclass, then
the type of the class instance being accessed must be the same as or a s
of the current class. Ifinvokevirtual is used to access aprotected method of
a superclass, then the type of the class instance being accessed must
same as or a subclass of the current class.

• The type of every class instance loaded from or stored into by agetfield or
putfield instruction must be an instance of the class type or a subclass o
class type.

• The type of every value stored by aputfield or putstatic instruction must be
compatible with the descriptor of the field (§4.3.2) of the class instance or
being stored into. If the descriptor type isbyte, char, short, orint, then the
value must be anint. If the descriptor type isfloat, long, or double, then
the value must be afloat, long, ordouble, respectively. If the descriptor type
is areference type, then the value must be of a type that is assignment c
patible (§2.6.6) with the descriptor type.

• The type of every value stored into an array of typereference by anaastore
instruction must be assignment compatible (§2.6.6) with the component
of the array.

• Eachathrow instruction must only throw values that are instances of cl
Throwable or of subclasses ofThrowable.

• Execution never falls off the bottom of thecode array.

• No return address (a value of typereturnAddress) may be loaded from a
local variable.

THE JAVATM VIRTUAL MACHINE SPECIFICATION124

hat
an be

sfy all
 guar-
perly

own-
eady-

ng to

ser

 time
eturn
 from
riable

ee

verify

ed
run
data
• The instruction following eachjsr or jsr_w instruction only may be returned to
by a singleret instruction.

• No jsr or jsr_w instruction may be used to recursively call a subroutine if t
subroutine is already present in the subroutine call chain. (Subroutines c
nested when usingtry-finally constructs from within afinally clause. For
more information on Java Virtual Machine subroutines, see §4.9.6.)

• Each instance of typereturnAddress can be returned to at most once. If aret
instruction returns to a point in the subroutine call chain above theret instruc-
tion corresponding to a given instance of typereturnAddress, then that
instance can never be used as a return address.

4.9 Verification of class Files

Even though Sun’s Java compiler attempts to produce only class files that sati
the static constraints in the previous sections, the Java Virtual Machine has no
antee that any file it is asked to load was generated by that compiler, or is pro
formed. Applications such as Sun’s HotJava World Wide Web browser do not d
load source code which they then compile; these applications download alr
compiledclass files. The HotJava browser needs to determine whether theclass

file was produced by a trustworthy Java compiler or by an adversary attempti
exploit the interpreter.

An additional problem with compile-time checking is version skew. A u
may have successfully compiled a class, sayPurchaseStockOptions, to be a
subclass ofTradingClass. But the definition ofTradingClass might have
changed in a way that is not compatible with preexisting binaries since the
the class was compiled. Methods might have been deleted, or had their r
types or modifiers changed. Fields might have changed types or changed
instance variables to class variables. The access modifiers of a method or va
may have changed frompublic to private. For a discussion of these issues, s
Chapter 13, “Binary Compatibility,” inThe Java Language Specification.

Because of these potential problems, the Java Virtual Machine needs to
for itself that the desired constraints hold on theclass files it attempts to incorpo-
rate. A well-written Java Virtual Machine emulator could reject poorly form
instructions when aclass file is loaded. Other constraints could be checked at
time. For example, a Java Virtual Machine implementation could tag runtime
and have each instruction check that its operands are of the right type.

THEclass FILE FORMAT 125

time
cked

en-
t run
hine
he Java

alid

ify
 that
ld not
tic

lan-

l
rmat

All

in any

),
e
tion
Instead, Sun’s Java Virtual Machine implementation verifies that eachclass

file it considers untrustworthy satisfies the necessary constraints at linking
(§2.16.3). Structural constraints on the Java Virtual Machine code are che
using a simple theorem prover.

Linking-time verification enhances the performance of the interpreter. Exp
sive checks that would otherwise have to be performed to verify constraints a
time for each interpreted instruction can be eliminated. The Java Virtual Mac
can assume that these checks have already been performed. For example, t
Virtual Machine will already know the following:

• There are no operand stack overflows or underflows.

• All local variable uses and stores are valid.

• The arguments to all the Java Virtual Machine instructions are of v
types.

Sun’sclass file verifier is independent of any Java compiler. It should cert
all code generated by Sun’s current Java compiler; it should also certify code
other compilers can generate, as well as code that the current compiler cou
possibly generate. Anyclass file that satisfies the structural criteria and sta
constraints will be certified by the verifier.

The class file verifier is also independent of the Java language. Other
guages can be compiled into theclass format, but will only pass verification if
they satisfy the same constraints as aclass file compiled from Java source.

4.9.1 The Verification Process

Theclass file verifier operates in four passes:

Pass 1:When a prospectiveclass file is loaded (§2.16.2) by the Java Virtua
Machine, the Java Virtual Machine first ensures that the file has the basic fo
of a Javaclass file. The first four bytes must contain the right magic number.
recognized attributes must be of the proper length. Theclass file must not be
truncated or have extra bytes at the end. The constant pool must not conta
superficially unrecognizable information.

While class file verification properly occurs during class linking (§2.16.3
this check for basicclass file integrity is necessary for any interpretation of th
class file contents and can be considered to be logically part of the verifica
process.

THE JAVATM VIRTUAL MACHINE SPECIFICATION126

-

ts; for
oints

t pool

eck to
oes it
 these

 mat-

pes of

ppro-

in the

d in
ed. In
Pass 2:When theclass file is linked, the verifier performs all additional verifica
tion that can be done without looking at thecode array of theCode attribute
(§4.7.4). The checks performed by this pass include the following:

• Ensuring thatfinal classes are not subclassed, and thatfinal methods are
not overridden.

• Checking that every class (exceptObject) has a superclass.

• Ensuring that the constant pool satisfies the documented static constrain
example, class references in the constant pool must contain a field that p
to aCONSTANT_Utf8 string reference in the constant pool.

• Checking that all field references and method references in the constan
have valid names, valid classes, and a valid type descriptor.

Note that when it looks at field and method references, this pass does not ch
make sure that the given field or method actually exists in the given class; nor d
check that the type descriptors given refer to real classes. It only checks that
items are well formed. More detailed checking is delayed until passes 3 and 4.

Pass 3:Still during linking, the verifier checks thecode array of theCode
attribute for each method of theclass file by performing data-flow analysis on
each method. The verifier ensures that at any given point in the program, no
ter what code path is taken to reach that point:

• The operand stack is always the same size and contains the same ty
objects.

• No local variable is accessed unless it is known to contain a value of an a
priate type.

• Methods are invoked with the appropriate arguments.

• Fields are assigned only using values of appropriate types.

• All opcodes have appropriate type arguments on the operand stack and
local variables.

For further information on this pass, see Section 4.9.2, “The Bytecode Verifier.”

Pass 4:For efficiency reasons, certain tests that could in principle be performe
Pass 3 are delayed until the first time the code for the method is actually invok
so doing, Pass 3 of the verifier avoids loadingclass files unless it has to.

THEclass FILE FORMAT 127

ce of
rifier
o

irtual
 exe-

een

d, the

nced

 oper-
cted in

eps,
rtual

as
ced
a-

 has
ations
ion
the
For example, if a method invokes another method that returns an instan
classA, and that instance is only assigned to a field of the same type, the ve
does not bother to check if the classA actually exists. However, if it is assigned t
a field of the typeB, the definitions of bothA andB must be loaded in to ensure
thatA is a subclass ofB.

Pass 4 is a virtual pass whose checking is done by the appropriate Java V
Machine instructions. The first time an instruction that references a type is
cuted, the executing instruction does the following:

• Loads in the definition of the referenced type if it has not already b
loaded.

• Checks that the currently executing type is allowed to reference the type.

• Initializes the class, if this has not already been done.

The first time an instruction invokes a method, or accesses or modifies a fiel
executing instruction does the following:

• Ensures that the referenced method or field exists in the given class.

• Checks that the referenced method or field has the indicated descriptor.

• Checks that the currently executing method has access to the refere
method or field.

The Java Virtual Machine does not have to check the type of the object on the
and stack. That check has already been done by Pass 3. Errors that are dete
Pass 4 cause instances of subclasses ofLinkageError to be thrown.

A Java Virtual Machine is allowed to perform any or all of the Pass 4 st
except for class or interface initialization, as part of Pass 3; see 2.16.1, “Vi
Machine Start-up” for an example and more discussion.

In Sun’s Java Virtual Machine implementation, after the verification h
been performed, the instruction in the Java Virtual Machine code is repla
with an alternative form of the instruction (see Chapter 9, “An Optimiz
tion”). For example, the opcodenew is replaced withnew_quick. This alter-
native instruction indicates that the verification needed by this instruction
taken place and does not need to be performed again. Subsequent invoc
of the method will thus be faster. It is illegal for these alternative instruct
forms to appear inclass files, and they should never be encountered by
verifier.

THE JAVATM VIRTUAL MACHINE SPECIFICATION128

f the
va

make
to the
then
is pass
hine
ed to

tion.
e

f an

 than

type.

ed by
must
 valid

f the
f that
 type
f the
4.9.2 The Bytecode Verifier

As indicated earlier, Pass 3 of the verification process is the most complex o
four passes ofclass file verification. This section looks at the verification of Ja
Virtual Machine code in more detail.

The code for each method is verified independently. First, the bytes that
up the code are broken up into a sequence of instructions, and the index in
code array of the start of each instruction is placed in an array. The verifier
goes through the code a second time and parses the instructions. During th
a data structure is built to hold information about each Java Virtual Mac
instruction in the method. The operands, if any, of each instruction are check
make sure they are valid. For instance:

• Branches must be within the bounds of thecode array for the method.

• The targets of all control-flow instructions are each the start of an instruc
In the case of awide instruction, thewide opcode is considered the start of th
instruction, and the opcode giving the operation modified by thatwide instruc-
tion is not considered to start an instruction. Branches into the middle o
instruction are disallowed.

• No instruction can access or modify a local variable at an index greater
the number of local variables that its method indicates it uses.

• All references to the constant pool must be to an entry of the appropriate
For example: the instructionldc can only be used for data of typeint or
float, or for instances of classString; the instructiongetfield must reference
a field.

• The code does not end in the middle of an instruction.

• Execution cannot fall off the end of the code.

• For each exception handler, the starting and ending point of code protect
the handler must be at the beginning of an instruction. The starting point
be before the ending point. The exception handler code must start at a
instruction, and it may not start at an opcode being modified by thewide
instruction.

For each instruction of the method, the verifier records the contents o
operand stack and the contents of the local variables prior to the execution o
instruction. For the operand stack, it needs to know the stack height and the
of each value on it. For each local variable, it needs to know either the type o

THEclass FILE FORMAT 129

le or
d to

he
es of
mpty.
ich
rand

 bit
ed”

low-

ruc-
n ver-

s:

ssor
contents of that local variable, or that the local variable contains an unusab
unknown value (it might be uninitialized). The bytecode verifier does not nee
distinguish between the integral types (e.g.,byte, short, char) when determin-
ing the value types on the operand stack.

Next, a data-flow analyzer is initialized. For the first instruction of t
method, the local variables which represent parameters initially contain valu
the types indicated by the method’s type descriptor; the operand stack is e
All other local variables contain an illegal value. For the other instructions, wh
have not been examined yet, no information is available regarding the ope
stack or local variables.

Finally, the data-flow analyzer is run. For each instruction, a “changed”
indicates whether this instruction needs to be looked at. Initially, the “chang
bit is only set for the first instruction. The data-flow analyzer executes the fol
ing loop:

1. Select a virtual machine instruction whose “changed” bit is set. If no inst
tion remains whose “changed” bit is set, the method has successfully bee
ified. Otherwise, turn off the “changed” bit of the selected instruction.

2. Model the effect of the instruction on the operand stack and local variable

• If the instruction uses values from the operand stack, ensure that
there are a sufficient number of values on the stack and that the
top values on the stack are of an appropriate type. Otherwise,
verification fails.

• If the instruction uses a local variable, ensure that the specified
local variable contains a value of the appropriate type. Other-
wise, verification fails.

• If the instruction pushes values onto the operand stack, ensure
that there is sufficient room on the operand stack for the new
values. Add the indicated types to the top of the modeled oper-
and stack.

• If the instruction modifies a local variable, record that the local
variable now contains the new type.

3. Determine the instructions that can follow the current instruction. Succe
instructions can be one of the following:

• The next instruction, if the current instruction is not an uncon-
ditional control transfer instruction (for instancegoto, return or

THE JAVATM VIRTUAL MACHINE SPECIFICATION130

e exe-
 the
 is set

 han-

st be
at dif-
two

 two

rifica-

s are

f both
 a

tion
athrow). Verification fails if it is possible to “fall off” the last
instruction of the method.

• The target(s) of a conditional or unconditional branch or switch.

• Any exception handlers for this instruction.

4. Merge the state of the operand stack and local variables at the end of th
cution of the current instruction into each of the successor instructions. In
special case of control transfer to an exception handler, the operand stack
to contain a single object of the exception type indicated by the exception
dler information.

• If this is the first time the successor instruction has been visited,
record that the operand stack and local variables values calcu-
lated in steps 2 and 3 are the state of the operand stack and local
variables prior to executing the successor instruction. Set the
“changed” bit for the successor instruction.

• If the successor instruction has been seen before, merge the
operand stack and local variable values calculated in steps 2 and
3 into the values already there. Set the “changed” bit if there is
any modification to the values.

5. Continue at step 1.

To merge two operand stacks, the number of values on each stack mu
identical. The types of values on the stacks must also be identical, except th
ferently typedreference values may appear at corresponding places on the
stacks. In this case, the merged operand stack contains areference to an
instance of the first common superclass or common superinterface of the
types. Such a reference type always exists because the typeObject is a supertype
of all class and interface types. If the operand stacks cannot be merged, ve
tion of the method fails.

To merge two local variable states, corresponding pairs of local variable
compared. If the two types are not identical, then unless both containreference

values, the verifier records that the local variable contains an unusable value. I
of the pair of local variables containreference values, the merged state contains
reference to an instance of the first common superclass of the two types.

If the data-flow analyzer runs on a method without reporting a verifica
failure, then the method has been successfully verified by Pass 3 of theclass file
verifier.

THEclass FILE FORMAT 131

 now

er-

nt

iable

sable
st

ifier
or the
ck
pe

es of
he
Certain instructions and data types complicate the data-flow analyzer. We
examine each of these in more detail.

4.9.3 Long Integers and Doubles

Values of thelong anddouble types each take two consecutive words on the op
and stack and in the local variables.

Whenever along or double is moved into a local variable, the subseque
local variable is marked as containing the second half of along or double. This
special value indicates that all references to thelong or double must be through
the index of the lower-numbered local variable.

Whenever any value is moved to a local variable, the preceding local var
is examined to see if it contains the first word of along or adouble. If so, that
preceding local variable is changed to indicate that it now contains an unu
value. Since half of thelong or double has been overwritten, the other half mu
no longer be used.

Dealing with 64-bit quantities on the operand stack is simpler; the ver
treats them as single units on the stack. For example, the verification code f
dadd opcode (add twodouble values) checks that the top two items on the sta
are both of typedouble. When calculating operand stack length, values of ty
long anddouble have length two.

Untyped instructions that manipulate the operand stack must treat valu
typedouble andlong as atomic. For example, the verifier reports a failure if t
top value on the stack is adouble and it encounters an instruction such aspop or
dup. The instructionspop2 or dup2 must be used instead.

4.9.4 Instance Initialization Methods and Newly Created Objects

Creating a new class instance is a multistep process. The Java statement

...

new myClass(i, j, k);

...

can be implemented by the following:

...

new #1 // Allocate uninitialized space for myClass
dup // Duplicate object on the operand stack
iload_1 // Push i

THE JAVATM VIRTUAL MACHINE SPECIFICATION132

op of
set of
tual

izes
za-
d
ent
l type
laced
before
 that
d in

f the

d the
d is
ed by
o sub-

 there
rand

e that

.
ccur-
iload_2 // Push j
iload_3 // Push k
invokespecial myClass.<init> // Initialize object
...

This instruction sequence leaves the newly created and initialized object on t
the operand stack. (More examples of compiling Java code to the instruction
the Java Virtual Machine are given in Chapter 7, “Compiling for the Java Vir
Machine.”)

The instance initialization method<init> for classmyClass sees the new
uninitialized object as itsthis argument in local variable0. It must either invoke
an alternative instance initialization method for classmyClass or invoke the ini-
tialization method of a superclass on thethis object before it is allowed to do
anything else withthis.

When doing dataflow analysis on instance methods, the verifier initial
local variable0 to contain an object of the current class, or, for instance initiali
tion methods, local variable0 contains a special type indicating an uninitialize
object. After an appropriate initialization method is invoked (from the curr
class or the current superclass) on this object, all occurrences of this specia
on the verifier’s model of the operand stack and in the local variables are rep
by the current class type. The verifier rejects code that uses the new object
it has been initialized or that initializes the object twice. In addition, it ensures
every normal return of the method has either invoked an initialization metho
the class of this method or in the direct superclass.

Similarly, a special type is created and pushed on the verifier’s model o
operand stack as the result of the Java Virtual Machine instructionnew. The spe-
cial type indicates the instruction by which the class instance was created an
type of the uninitialized class instance created. When an initialization metho
invoked on that class instance, all occurrences of the special type are replac
the intended type of the class instance. This change in type may propagate t
sequent instructions as the dataflow analysis proceeds.

The instruction number needs to be stored as part of the special type, as
may be multiple not-yet-initialized instances of a class in existence on the ope
stack at one time. For example, the Java Virtual Machine instruction sequenc
implements

new InputStream(new Foo(), new InputStream("foo"))

may have two uninitialized instances ofInputStream on the operand stack at once
When an initialization method is invoked on a class instance, only those o

THEclass FILE FORMAT 133

e

 the
 vari-

ass
 pass

rates

lers
ther.

pro-

sible

a
ional
d stack,
code.
rences of the special type on the operand stack or in the registers that are thsame
object as the class instance are replaced.

A valid instruction sequence must not have an uninitialized object on
operand stack or in a local variable during a backwards branch, or in a local
able in code protected by an exception handler or afinally clause. Otherwise, a
devious piece of code might fool the verifier into thinking it had initialized a cl
instance when it had, in fact, initialized a class instance created in a previous
through the loop.

4.9.5 Exception Handlers

Java Virtual Machine code produced from Sun’s Java compiler always gene
exception handlers such that:

• The ranges of instructions protected by two different exception hand
always are either completely disjoint, or else one is a subrange of the o
There is never a partial overlap of ranges.

• The handler for an exception will never be inside the code that is being
tected.

• The only entry to an exception handler is through an exception. It is impos
to fall through or “goto” the exception handler.

These restrictions are not enforced by theclass file verifier since they do not pose
threat to the integrity of the Java Virtual Machine. As long as every nonexcept
path to the exception handler causes there to be a single object on the operan
and as long as all other criteria of the verifier are met, the verifier will pass the

4.9.6 Exceptions andfinally

Given the fragment of Java code

...

try {

 startFaucet();

 waterLawn();

} finally {

 stopFaucet();

}

...

THE JAVATM VIRTUAL MACHINE SPECIFICATION134

)
rting
e
by

p-

the
e
the

e end
ri-

a
-

le.

ption

er.
 par-
the Java language guarantees thatstopFaucet is invoked (the faucet is turned off
whether we finish watering the lawn or whether an exception occurs while sta
the faucet or watering the lawn. That is, thefinally clause is guaranteed to b
executed whether itstry clause completes normally, or completes abruptly
throwing an exception.

To implement thetry-finally construct, the Java compiler uses the exce
tion-handling facilities together with two special instructionsjsr (“jump to sub-
routine”) andret (“return from subroutine”). Thefinally clause is compiled as a
subroutine within the Java Virtual Machine code for its method, much like
code for an exception handler. When ajsr instruction that invokes the subroutin
is executed, it pushes its return address, the address of the instruction after jsr
that is being executed, onto the operand stack as a value of typereturnAddress.
The code for the subroutine stores the return address in a local variable. At th
of the subroutine, aret instruction fetches the return address from the local va
able and transfers control to the instruction at the return address.

Control can be transferred to thefinally clause (thefinally subroutine can
be invoked) in several different ways. If thetry clause completes normally, the
finally subroutine is invoked via ajsr instruction before evaluating the next Jav
expression. Abreak or continue inside thetry clause that transfers control out
side thetry clause executes ajsr to the code for thefinally clause first. If the
try clause executes areturn, the compiled code does the following:

1. Saves the return value (if any) in a local variable.

2. Executes ajsr to the code for thefinally clause.

3. Upon return from thefinally clause, returns the value saved in the local variab

The compiler sets up a special exception handler which catches any exce
thrown by thetry clause. If an exception is thrown in thetry clause, this exception
handler does the following:

1. Saves the exception in a local variable.

2. Executes ajsr to thefinally clause.

3. Upon return from thefinally clause, rethrows the exception.

For more information about the implementation of Java’stry-finally construct,
see Section 7.13, “Compilingfinally.”

The code for thefinally clause presents a special problem to the verifi
Usually, if a particular instruction can be reached via multiple paths and a

THEclass FILE FORMAT 135

iple

um-

able

-

te

t-
e
 that
inate

a

t
 for

or
on of

u-
 can

to a

uc-

at the
the
ticular local variable contains incompatible values through those mult
paths, then the local variable becomes unusable. However, afinally clause
might be called from several different places, yielding several different circ
stances:

• The invocation from the exception handler may have a certain local vari
that contains an exception.

• The invocation to implementreturn may have some local variable that con
tains the return value.

• The invocation from the bottom of thetry clause may have an indetermina
value in that same local variable.

The code for thefinally clause itself might pass verification, but after upda
ing all the successors of theret instruction, the verifier would note that th
local variable that the exception handler expects to hold an exception, or
the return code expects to hold a return value, now contains an indeterm
value.

Verifying code that contains afinally clause is complicated. The basic ide
is the following:

• Each instruction keeps track of the list ofjsr targets needed to reach tha
instruction. For most code, this list is empty. For instructions inside code
the finally clause, it is of length one. For multiply nestedfinally code
(extremely rare!), it may be longer than one.

• For each instruction and eachjsr needed to reach that instruction, a bit vect
is maintained of all local variables accessed or modified since the executi
thejsr instruction.

• When executing theret instruction, which implements a return from a subro
tine, there must be only one possible subroutine from which the instruction
be returning. Two different subroutines cannot “merge” their execution
singleret instruction.

• To perform the data-flow analysis on aret instruction, a special procedure
is used. Since the verifier knows the subroutine from which the instr
tion must be returning, it can find all thejsr instructions that call the sub-
routine and merge the state of the operand stack and local variables
time of theret instruction into the operand stack and local variables of

THE JAVATM VIRTUAL MACHINE SPECIFICATION136

e

ates
l vari-

n of

-bit
s

s of

yte
f the
f

the

 the

 the
s

instructions following thejsr. Merging uses a special set of values for th
local variables:

■ For any local variable for which the bit vector (constructed above) indic
that the subroutine has accessed or modified, use the type of the loca
able at the time of theret.

■ For other local variables, use the type of the local variable before thejsr
instruction.

4.10 Limitations of the Java Virtual Machine and
class File Format

The following limitations in the Java Virtual Machine are imposed by this versio
the Java Virtual Machine specification:

• The per-class constant pool is limited to 65535 entries by the 16
constant_pool_count field of theClassFile structure (§4.1). This acts a
an internal limit on the total complexity of a single class.

• The amount of code per method is limited to 65535 bytes by the size
the indices in theexception_table of theCode attribute (§4.7.4), in the
LineNumberTable attribute (§4.7.6), and in theLocalVariableTable
attribute (§4.7.7).

• The number of local variables in a method is limited to 65535 by the two-b
index operand of many Java Virtual Machine instructions and the size o
max_locals item of theClassFile structure (§4.1). (Recall that values o
typelong anddouble are considered to occupy two local variables.)

• The number of fields of a class is limited to 65535 by the size of
fields_count item of theClassFile structure (§4.1).

• The number of methods of a class is limited to 65535 by the size of
methods_count item of theClassFile structure (§4.1).

• The size of an operand stack is limited to 65535 words by themax_stack field
of theCode_attribute structure (§4.7.4).

• The number of dimensions in an array is limited to 255 by the size of
dimensions opcode of themultianewarray instruction, and by the constraint

THEclass FILE FORMAT 137

s of

s of
nts of
ne
imposed on themultianewarray, anewarray, and newarray instructions by
§4.8.2.

• A valid Java method descriptor (§4.3.3) must require 255 or fewer word
method arguments, where that limit includes the word forthis in the case of
instance method invocations. Note that the limit is on the number of word
method arguments, and not on number of arguments themselves. Argume
typelong anddouble are two words long; arguments of all other types are o
word long.

C H A P T E R 5

n

lass
m, a
ing a
f the
ts of

lass.
rough
serves
mple,
 take
nstant
chine
pool.
rtual
 in the
nta-
on of
lues

nter-
s of
y to

on-
t pool
Constant Pool Resolutio

JAVA classes and interfaces are dynamically loaded(§2.16.2), linked (§2.16.3),
and initialized (§2.16.4). Loading is the process of finding the binary form of a c
or interface type with a particular name and constructing, from that binary for
Class object to represent the class or interface. Linking is the process of tak
binary form of a class or interface type and combining it into the runtime state o
Java Virtual Machine so that it can be executed. Initialization of a class consis
executing its static initializers and the initializers for static fields declared in the c

The Java Virtual Machine performs most aspects of these procedures th
operations on a constant pool (§4.4), a per-type runtime data structure that
many of the purposes of the symbol table of a conventional language. For exa
Java Virtual Machine instructions that might otherwise have been designed to
immediate numeric or string operands instead fetch their operands from the co
pool. Classes, methods, and fields, whether referenced from Java Virtual Ma
instructions or from other constant pool entries, are named using the constant

A Java compiler does not presume to know the way in which a Java Vi
Machine lays out classes, interfaces, class instances, or arrays. References
constant pool are always initially symbolic. At run time, the symbolic represe
tion of the reference in the constant pool is used to work out the actual locati
the referenced entity. The process of dynamically determining concrete va
from symbolic references in the constant pool is known asconstant pool resolu-
tion. Constant pool resolution may involve loading one or more classes or i
faces, linking several types, and initializing types. There are several kind
constant pool entries, and the details of resolution differ with the kind of entr
be resolved.

Individual Java Virtual Machine instructions that reference entities in the c
stant pool are responsible for resolving the entities they reference. Constan
139

THE JAVATM VIRTUAL MACHINE SPECIFICATION140

en the

 Vir-
reso-
. An
sfully
uced

Vir-
e the
ine
rize
t be

those

ruc-

d it
 not a
ng
hine
d in

tions,
tions
f the

tions
w they
, any

r

ution
nce
entries that are referenced from other constant pool entries are resolved wh
referring entry is resolved.

A given constant pool entry may be referred to from any number of Java
tual Machine instructions or other constant pool entries; thus, constant pool
lution can be attempted on a constant pool entry that is already resolved
attempt to resolve a constant pool entry that has already been succes
resolved always succeeds trivially, and always results in the same entity prod
by the initial resolution of that entry.

Constant pool resolution is normally initiated by the execution of a Java
tual Machine instruction that references the constant pool. Rather than giv
full description of the resolution process performed by Java Virtual Mach
instructions in their individual descriptions, we will use this chapter to summa
the constant pool resolution process. We will specify the errors that mus
detected when resolving each kind of constant pool entry, the order in which
errors must be responded to, and the errors thrown in response.

When referenced from the context of certain Java Virtual Machine inst
tions, additional constraints are put on linking operations. For instance, theget-
field instruction requires not only that the constant pool entry for the fiel
references can be successfully resolved, but also that the resolved field is
class (static) field. If it is a class field, an exception must be thrown. Linki
exceptions that are specific to the execution of a particular Java Virtual Mac
instruction are given in the description of that instruction and are not covere
this general discussion of constant pool resolution. Note that such excep
although described as part of the execution of Java Virtual Machine instruc
rather than constant pool resolution, are still properly considered failure o
linking phase of Java Virtual Machine execution.

The Java Virtual Machine specification documents and orders all excep
that can arise as a result of constant pool resolution. It does not mandate ho
should be detected, only that they must be. In addition, as mentioned in §6.3
of the virtual machine errors listed as subclasses ofVirtualMachineError may
be thrown at any time during constant pool resolution.

5.1 Class and Interface Resolution
A constant pool entry tagged asCONSTANT_Class (§4.4.1) represents a class o
interface. Various Java Virtual Machine instructions referenceCONSTANT_Class

entries in the constant pool of the class that is current upon their exec
(§3.6). Several other kinds of constant pool entries (§4.4.2) refere

CONSTANT POOL RESOLUTION 141

o be
re a

solu-

sses
er the
s or

-
p-
lved.

 be
ay

 “nor-

tion-

 be
ss.

a class
-

ne
CONSTANT_Class entries and cause those class or interface references t
resolved when the referencing entries are resolved. For instance, befo
method reference (aCONSTANT_Methodref constant pool entry) can be
resolved, the reference it makes to the class of the method (via theclass_index

item of the constant pool entry) must first be resolved.
If a class or interface has not been resolved already, the details of the re

tion process depend on what kind of entity is represented by theCONSTANT_Class

entry being resolved. Array classes are handled differently from non-array cla
and from interfaces. Details of the resolution process also depend on wheth
reference prompting the resolution of this class or interface is from a clas
interface that was loaded using a class loader (§2.16.2).

The name_index item of aCONSTANT_Class constant pool entry is a refer
ence to aCONSTANT_Utf8 constant pool entry (§4.4.7) for a UTF-8 string that re
resents the fully qualified name (§2.7.9) of the class or interface to be reso
What kind of entity is represented by aCONSTANT_Class constant pool entry, and
how to resolve that entry, is determined as follows:

• If the first character of the fully qualified name of the constant pool entry to
resolved is not a left bracket (“[”), then the entry is a reference to a non-arr
class or to an interface.

■ If the current class (§3.6) has not been loaded by a class loader, then
mal” class resolution is used (§5.1.1).

■ If the current class has been loaded by a class loader, then applica
defined code is used (§5.1.2) to resolve the class.

• If the first character of the fully qualified name of the constant pool entry to
resolved is a left bracket (“[”), then the entry is a reference to an array cla
Array classes are resolved specially (§5.1.3).

5.1.1 Current Class or Interface Not Loaded by a Class Loader

If a class or interface that has been loaded, and that was not loaded using
loader, references a non-array class or interfaceC, then the following steps are per
formed to resolve the reference toC:

1. The class or interfaceC and its superclasses are first loaded (§2.16.2).

a. If class or interfaceC has not been loaded yet, the Java Virtual Machi
will search for a fileC.class and attempt to load class or interfaceC from

THE JAVATM VIRTUAL MACHINE SPECIFICATION142

t the

nter-

ed

d

 is
a

, it is
t any
 class

 thus
–

n-

void
that file. Note that there is no guarantee that the fileC.class will actually
contain the class or interfaceC, or that the fileC.class is even a valid
class file. It is also possible that class or interfaceC might have already
been loaded, but not yet initialized. This phase of loading must detec
following errors:

• If no file with the appropriate name can be found and read, class or i
face resolution throws aNoClassDefFoundError.

• Otherwise, if it is determined that the selected file is not a well-form
class file (pass 1 of §4.9.1), or is not aclass file of a supported major or
minor version (§4.1), class or interface resolution throws aNoClassDef-

FoundError.

• Otherwise, if the selectedclass file did not actually contain the desire
class or interface, class or interface resolution throws aNoClassDef-

FoundError.

• Otherwise, if the selectedclass file does not specify a superclass and
not theclass file for classObject, class or interface resolution throws
ClassFormatError.

b. If the superclass of the class being loaded has not yet been loaded
loaded using this step 1 recursively. Loading a superclass must detec
of the errors in step 1a, where this superclass is considered to be the
being loaded. Note that all interfaces must havejava.lang.Object as
their superclass, which must already have been loaded.

2. If loading classC and its superclasses was successful, the superclass (and
its superclasses, if any) of classC is linked and initialized by applying steps 2
4 recursively.

3. The classC is linked (§2.16.3), that is, it is verified (§4.9) and prepared.

a. First, the class or interfaceC is verified to ensure that its binary represe
tation is structurally valid (passes 2 and 3 of §4.9.1).1 Verification may
itself cause classes and interfaces to be loaded, but not initialized (to a
circularity), using the procedure in step 1.

1. Sun’s JDK release 1.0.2 only verifiesclass files that have class loaders; it assumes thatclass

files loaded locally are trusted and do not need verification.

CONSTANT POOL RESOLUTION 143

tion

s
s for
fault
n of

ra-
tion:

ons,
, are

 see

s.

n in

the
d

class

 class

gi-
t

• If the class or interfaceC contained inclass file C.class does not satisfy
the static or structural constraints on validclass files listed in Section 4.8,
“Constraints on Java Virtual Machine Code,” class or interface resolu
throws aVerifyError.

b. If theclass file for class or interfaceC is successfully verified, the clas
or interface is prepared. Preparation involves creating the static field
the class or interface and initializing those fields to their standard de
values (§2.5.1). Preparation should not be confused with the executio
static initializers (§2.11); unlike execution of static initializers, prepa
tion does not require the execution of any Java code. During prepara

• If a class that is not declaredabstract has anabstract method, class
resolution throws anAbstractMethodError.

Certain checks that are specific to individual Java Virtual Machine instructi
but that are logically related to this phase of constant pool resolution
described in the documentation of those instructions. For instance, thegetfield
instruction resolves its field reference, and only afterward checks to
whether that field is an instance field (that is, it is notstatic). Such exceptions
are still considered and documented to be linking, not runtime, exception

4. Next, the class is initialized. Details of the initialization procedure are give
§2.16.5 and inThe Java Language Specification.

• If an initializer completes abruptly by throwing some exceptionE, and if the
class ofE is notError or one of its subclasses, then a new instance of
classExceptionInInitializerError, with E as the argument, is create
and used in place ofE.

• If the Java Virtual Machine attempts to create a new instance of the
ExceptionInInitializerError but is unable to do so because anOutOf-

MemoryError occurs, then theOutOfMemoryError object is thrown instead.

5. Finally, access permissions to the class being resolved are checked:

• If the current class or interface does not have permission to access the
or interface being resolved, class or interface resolution throws anIllegal-

AccessError. This condition can occur, for example, if a class that is ori
nally declaredpublic is changed to beprivate after another class tha
refers to the class has been compiled.

THE JAVATM VIRTUAL MACHINE SPECIFICATION144

f the
if an

 have

and

rform

lass or

ss to
e

lass
n files.
erated

rgu-
ec-
st
e

sses

 class
rack
ility is
ace
sure
If none of the preceding errors were detected, constant pool resolution o
class or interface reference must have completed successfully. However,
error was detected, one of the following must be true.

• If some exception is thrown in steps 1–4, the class being resolved must
been marked as unusable or must have been discarded.

• If an exception is thrown in step 5, the class being resolved is still valid
usable.

In either case, the resolution fails, and the class or interface attempting to pe
the resolution is prohibited from accessing the referenced class or interface.

5.1.2 Current Class or Interface Loaded by a Class Loader

If a class or interface, loaded using a class loader, references a non-array c
interfaceC, then that same class loader is used to loadC. TheloadClass method of
that class loader is invoked on the fully qualified path name (§2.7.9) of the cla
be resolved. The value returned by theloadClass method is the resolved class. Th
remainder of the section describes this process in more detail.

Every class loader is an instance of a subclass of the abstract classClass-
Loader. Applications implement subclasses ofClassLoader in order to extend
the manner in which the Java Virtual Machine dynamically loads classes. C
loaders can be used to create classes that originate from sources other tha
For example, a class could be downloaded across a network, it could be gen
on the fly, or it could be decrypted from a scrambled file.

The Java Virtual Machine invokes theloadClass method of a class loader in
order to cause it to load (and optionally link and initialize) a class. The first a
ment toloadClass is the fully qualified name of the class to be loaded. The s
ond argument is a boolean. The valuefalse indicates that the specified class mu
be loaded, but not linked or initialized; the valuetrue indicates the class must b
loaded, linked, and initialized.

Implementations of class loaders are required to keep track of which cla
they have already loaded, linked, and initialized:2

2. Future implementations may change the API between the Java Virtual Machine and the
ClassLoader. Specifically, the Java Virtual Machine rather than the class loader will keep t
of which classes and interfaces have been loaded by a particular class loader. One possib
that theloadClass method will be called with a single argument indicating the class or interf
to be loaded. The virtual machine will handle the details of linking and initialization and en
that the class loader is not invoked with the same class or interface name multiple times.

CONSTANT POOL RESOLUTION 145

face
en it

ace
ader
lize

at it
ply

a
ne of

 file of

this

r
fined
rived
s

be
orm
d

ssfully,
d

class

-

• If a class loader is asked to load (but not link or initialize) a class or inter
that it has already loaded (and possibly already linked and initialized), th
should simply return that class or interface.

• If a class loader is asked to load, link, and initialize a class or interf
that it has already loaded but not yet linked and initialized, the class lo
should not reload the class or interface, but should only link and initia
it.

• If a class loader is asked to load, link, and initialize a class or interface th
has already loaded, linked, and initialized, the class loader should sim
return that class or interface.

When the class loader’sloadClass method is invoked with the name of
class or interface that it has not yet loaded, the class loader must perform o
the following two operations in order to load the class or interface:

• The class loader can create an array of bytes representing the bytes of a
class file format; it then must invoke the methoddefineClass of class
ClassLoader on those bytes to convert them into a class or interface with
class loader as the class loader for the newly defined class. Invokingdefine-

Class causes the Java Virtual Machine to perform step 1a of §5.1.1.

InvokingdefineClass then causes theloadClass method of the class loade
to be invoked recursively in order to load the superclass of the newly de
class or interface. The fully qualified path name of the superclass is de
from thesuper_class item in theclass file format. When the superclass i
loaded in, the second argument toloadClass is false, indicating that the
superclass is not to be linked and initialized immediately.

• The class loader can also invoke the static methodfindSystemClass in class
ClassLoader with the fully qualified name of the class or interface to
loaded. Invoking this method causes the Java Virtual Machine to perf
step 1 of §5.1.1. The resultingclass file is not marked as having been loade
by a class loader.

After the class or interface and its superclasses have been loaded succe
if the second argument toloadClass is true the class or interface is linked an
initialized. This second argument is alwaystrue if the class loader is being called
upon to resolve an entry in the constant pool of a class or interface. The
loader links and initializes a class or interface by invoking the methodresolve-

Class in the classClassLoader. Linking and initializing a class or interface cre

THE JAVATM VIRTUAL MACHINE SPECIFICATION146

face

lling
he
d
 ini-

rs of

 ini-
 so, it
e

er-
tect
 Run-

ared

 5 of
ss the

iza-

s

 array
riptor
 field

 from

riptor
ated by a class loader is very similar to linking and initializing a class or inter
without a class loader (steps 2–4 of §5.1.1):

First, the superclass of the class or interface is linked and initialized by ca
the loadClass method of the class loader with the fully qualified name of t
superclass as the first argument, andtrue as the second argument. Linking an
initialization may result in the superclass’s own superclass being linked and
tialized. Linking and initialization of a superclass must detect any of the erro
step 3 of §5.1.1.

Next, the bytecode verifier is run on the class or interface being linked and
tialized. The verifier may itself need classes or interfaces to be loaded, and if
loads them by invoking theloadClass method of the same class loader with th
second argument beingfalse. Since verification may itself cause classes or int
faces to be loaded (but not linked or initialized, to avoid circularity), it must de
the errors of step 1 of §5.1.1 for any classes or interfaces it attempts to load.
ning the verifier may also cause the errors of step 3a of §5.1.1.

If the class file is successfully verified, the class or interface is then prep
(step 3b of §5.1.1) and initialized (step 4 of §5.1.1).

Finally, access permissions to the class or interface are checked (step
§5.1.1). If the current class or interface does not have permission to acce
class being resolved, class resolution throws anIllegalAccessError exception.

If none of the preceding errors were detected, loading, linking, and initial
tion of the class or interface must have completed successfully.

5.1.3 Array Classes

A constant pool entry tagged asCONSTANT_Class (§4.4.1) represents an array clas
if the first character of the UTF-8 string (§4.4.7) referenced by thename_index

item of that constant pool entry is a left bracket (“[”). The number of initial consec-
utive left brackets in the name represents the number of dimensions of the
class. Following the one or more initial consecutive left brackets is a field desc
(§4.3.2) representing either a primitive type or a non-array reference type; this
descriptor represents thebase type of the array class.

The following steps are performed to resolve an array class referenced
the constant pool of a class or interface:

1. Determine the number of dimensions of the array class and the field desc
that represents the base type of the array class.

CONSTANT POOL RESOLUTION 147

not

acter
ence
or in

ber of
 array
e and

r
 that
d as

ds are
f

mber
rown
 a

fully
 be

 res-

refer-
2. Determine the base type of the array class:

• If the field descriptor represents a primitive type (its first character is
“L”), that primitive type is the base type of the array class.

• If the field descriptor represents a non-array reference type (its first char
is “L”), that reference type is the base type of the array class. The refer
type is itself resolved using the procedures indicated above in §5.1.1
§5.1.2.

3. If an array class representing the same base type and the same num
dimensions has already been created, the result of the resolution is that
class. Otherwise, a new array class representing the indicated base typ
number of dimensions is created.

5.2 Field and Method Resolution

A constant pool entry tagged asCONSTANT_Fieldref (§4.4.2) represents a class o
instance variable (§2.9) or a (constant) field of an interface (§2.13.4). Note
interfaces do not have instance variables. A constant pool entry tagge
CONSTANT_Methodref (§4.4.2) represents a method of a class (astatic method)
or of a class instance (an instance method). References to interface metho
made usingCONSTANT_InterfaceMethodref constant pool entries; resolution o
such entries is described in §5.3.

To resolve a field reference or a method reference, theCONSTANT_Class

(§4.4.1) entry representing the class of which the field or method is a me
must first be successfully resolved (§5.1). Thus, any exception that can be th
when resolving aCONSTANT_Class constant pool entry can also be thrown as
result of resolving aCONSTANT_Fieldref or CONSTANT_Methodref entry. If the
CONSTANT_Class entry representing the class or interface can be success
resolved, exceptions relating to the linking of the method or field itself can
thrown. When resolving a field reference:

• If the referenced field does not exist in the specified class or interface, field
olution throws aNoSuchFieldError.

• Otherwise, if the current class does not have permission to access the
enced field, field resolution throws anIllegalAccessError exception.

THE JAVATM VIRTUAL MACHINE SPECIFICATION148

, field

ethod

nt pool
error

e

the

 that
 same

rned if

men-

 iden-
If resolving a method:

• If the referenced method does not exist in the specified class or interface
resolution throws aNoSuchMethodError.

• Otherwise, if the current class does not have permission to access the m
being resolved, method resolution throws anIllegalAccessError excep-
tion.

5.3 Interface Method Resolution

A constant pool entry tagged asCONSTANT_InterfaceMethodref (§4.4.2) repre-
sents a call to an instance method declared by an interface. Such a consta
entry is resolved by converting it into a machine-dependent internal format. No
or exception is possible except for those documented in §6.3.

5.4 String Resolution

A constant pool entry tagged asCONSTANT_String (§4.4.3) represents an instanc
of a string literal (§2.3), that is, a literal of the built-in typejava.lang.String.
The Unicode characters (§2.1) of the string literal represented by
CONSTANT_String entry are found in theCONSTANT_Utf8 (§4.4.7) constant pool
entry that theCONSTANT_String entry references.

The Java language requires that identical string literals (that is, literals
contain the same sequence of Unicode characters) must reference the
instance of classString. In addition, if the methodintern is called on any
string, the result is a reference to the same class instance that would be retu
that string appeared as a literal. Thus,

(“a” + “b” + “c”).intern() == “abc”

must have the valuetrue.3

3. String literal resolution is not implemented correctly in Sun’s JDK release 1.0.2. In that imple
tation of the Java Virtual Machine, resolving aCONSTANT_String in the constant pool always
allocates a new string. Two string literals in two different classes, even if they contained the
tical sequence of characters, would never be== to each other. A string literal could never be== to
a result of theintern method.

CONSTANT POOL RESOLUTION 149

TF-8

en the

 of
 rep-
rence

e

ocu-

e
cep-

ced
To resolve a constant pool entry taggedCONSTANT_String, the Java Virtual
Machine examines the series of Unicode characters represented by the U
string that theCONSTANT_String entry references.

• If another constant pool entry taggedCONSTANT_String and representing the
identical sequence of Unicode characters has already been resolved, th
result of resolution is a reference to the instance of classString created for
that earlier constant pool entry.

• Otherwise, if the methodintern has previously been called on an instance
classString containing a sequence of Unicode characters identical to that
resented by the constant pool entry, then the result of resolution is a refe
to that same instance of classString.

• Otherwise, a new instance of classString is created containing the sequenc
of Unicode characters represented by theCONSTANT_String entry; that class
instance is the result of resolution.

No error or exception is possible during string resolution except for those d
mented in §6.3.

5.5 Resolution of Other Constant Pool Items

Constant pool entries that are taggedCONSTANT_Integer or CONSTANT_Float
(§4.4.4),CONSTANT_Long or CONSTANT_Double (§4.4.5) all have values that ar
directly represented within the constant pool. Their resolution cannot throw ex
tions except for those documented in §6.3.

Constant pool entries that are taggedCONSTANT_NameAndType (§4.4.6), and
CONSTANT_Utf8 (§4.4.7) are never resolved directly. They are only referen
directly or indirectly by other constant pool entries.

C H A P T E R 6
ation
oper-
chine

rtual
, “The
c-
“The
ch

 an
rtual

sted
 load

er-
ne at
mply
Java Virtual Machine
Instruction Set

A Java Virtual Machine instruction consists of an opcode specifying the oper
to be performed, followed by zero or more operands embodying values to be
ated upon. This chapter gives details about the format of each Java Virtual Ma
instruction and the operation it performs.

6.1 Assumptions: The Meaning of “Must”

The description of each instruction is always given in the context of Java Vi
Machine code that satisfies the static and structural constraints of Chapter 4
class File Format.” In the description of individual Java Virtual Machine instru
tions, we frequently state that some situation “must” or “must not” be the case:
value2 must be of typeint.” The constraints of Chapter 4 guarantee that all su
expectations will in fact be met. If some constraint (a “must” or “must not”) in
instruction description is not satisfied at run time, the behavior of the Java Vi
Machine is undefined.

The Sun implementation of the Java Virtual Machine checks that all untru
Java Virtual Machine code satisfies the static and structural constraints at
time using aclass file verifier (see Section 4.9, “Verification ofclass Files”).
Thus, Sun’s Java Virtual Machine will only see validclass files. Performing
most verification atclass file load time is attractive in that the checks are p
formed just once, substantially reducing the amount of work that must be do
run time. Other implementation strategies are possible, provided that they co
with Chapter 12 ofThe Java Language Specification.
151

THE JAVATM VIRTUAL MACHINE SPECIFICATION152

atic
have

h are

Sun
erved

 the
 to
le-
 num-
y

side a

teract
 may
f they

 class
 it
chine
y be
us, any

hine.

f the
age.
Alternatively, a naive Java Virtual Machine implementation may check st
and structural constraints at run time. However, this lazier approach may
serious performance implications.

6.2 Reserved Opcodes

In addition to the opcodes of the instructions specified later this chapter, whic
used in Javaclass files (see Chapter 4, “Theclass File Format”), three opcodes
are reserved for internal use by a Java Virtual Machine implementation. If
extends the instruction set of the Java Virtual Machine in the future, these res
opcodes are guaranteed not to be used.

Two of the reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have
mnemonicsimpdep1 andimpdep2, respectively. These instructions are intended
provide “back doors” or traps to implementation-specific functionality imp
mented in software and hardware, respectively. The third reserved opcode,
ber 202 (0xca), has the mnemonicbreakpoint and is intended to be used b
debuggers to implement breakpoints.

Although these opcodes have been reserved, they may only be used in
Java Virtual Machine implementation. They cannot appear in validclass files.
Tools such as debuggers or JIT code generators (§3.12) that might directly in
with Java Virtual Machine code that has been already loaded and executed
encounter these opcodes. Such tools should attempt to behave gracefully i
encounter any of these reserved instructions.

6.3 Virtual Machine Errors

A Java Virtual Machine throws an object that is an instance of a subclass of the
VirtualMachineError when an internal error or resource limitation prevents
from implementing the semantics of the Java Language. The Java Virtual Ma
specification cannot predict where resource limitations or internal errors ma
encountered and does not mandate precisely when they can be reported. Th
of the virtual machine errors listed as subclasses ofVirtualMachineError in
§2.15.4 may be thrown at any time during the operation of the Java Virtual Mac

6.4 The Java Virtual Machine Instruction Set

Java Virtual Machine instructions are represented in this chapter by entries o
form shown in Figure 6.1, in alphabetical order and each beginning on a new p

JAVA VIRTUAL MACHINE INSTRUCTION SET 153

 The
d is

on-
e of

is
ey

 an
ey

 an
ns

are
Each cell in the instruction format diagram represents a single 8-bit byte.
instruction’smnemonic is its name. Its opcode is its numeric representation an

mnemonic mnemonic

Operation Short description of the instruction

Operation

Forms mnemonic = opcode

Stack …, value1, value2 ⇒
…, value3

Description A longer description detailing constraints on operand stack c
tents or constant pool entries, the operation performed, the typ
the results, etc.

Linking
Exceptions

If any linking exceptions may be thrown by the execution of th
instruction they are set off one to a line, in the order in which th
must be thrown.

Runtime
Exceptions

If any runtime exceptions can be thrown by the execution of
instruction they are set off one to a line, in the order in which th
must be thrown.

Other than the linking and runtime exceptions, if any, listed for
instruction, that instruction must not throw any runtime exceptio
except for instances ofVirtualMachineError or its subclasses.

Notes Comments not strictly part of the specification of an instruction
set aside as notes at the end of the description.

Format mnemonic
operand1
operand2

...

Figure 6.1 An example instruction page

THE JAVATM VIRTUAL MACHINE SPECIFICATION154

on is

bed-
d at
 sev-
e oper-
itly

 them
 etc.,

tions
amily
amily
s line
r the
he

 an
.6) is
ord

he
y a

f the
-

er-
tation:
given in both decimal and hexadecimal forms. Only the numeric representati
actually present in the Java Virtual Machine code in aclass file.

Keep in mind that there are “operands” generated at compile time and em
ded within Java Virtual Machine instructions, as well as “operands” calculate
run time and supplied on the operand stack. Although they are supplied from
eral different areas, all these operands represent the same thing: values to b
ated upon by the Java Virtual Machine instruction being executed. By implic
taking many of its operands from its operand stack, rather than representing
explicitly in its compiled code as additional operand bytes, register numbers,
the Java Virtual Machine’s code stays compact.

Some instructions are presented as members of a family of related instruc
sharing a single description, format, and operand stack diagram. As such, a f
of instructions includes several opcodes and opcode mnemonics; only the f
mnemonic appears in the instruction format diagram, and a separate form
lists all member mnemonics and opcodes. For example, the forms line fo
lconst_<l> family of instructions, giving mnemonic and opcode information for t
two instructions in that family (lconst_0 andlconst_1), is

Forms lconst_0 = 9 (0x9),
lconst_1 = 10 (0xa)

In the description of the Java Virtual Machine instructions, the effect of
instruction’s execution on the operand stack (§3.6.2) of the current frame (§3
represented textually, with the stack growing from left to right and each w
(§3.4) represented separately. Thus,

Stack …, value1, value2 ⇒
…, result

shows an operation that begins by having a one-wordvalue2 on top of the operand
stack with a one-wordvalue1 just beneath it. As a result of the execution of t
instruction,value1 andvalue2 are popped from the operand stack and replaced b
one-wordresult, which has been calculated by the instruction. The remainder o
operand stack, represented by an ellipsis (…), is unaffected by the instruction’s exe
cution.

The typeslong anddouble take two words on the operand stack. In the op
and stack representation, each word is represented separately using a dot no

JAVA VIRTUAL MACHINE INSTRUCTION SET 155

s are
r

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

The Java Virtual Machine specification does not mandate how the two word
used to represent the 64-bitlong or double value; it only requires that a particula
implementation be internally consistent.

THE JAVATM VIRTUAL MACHINE SPECIFICATION156

d

d

aaload aaload

Operation Loadreference from array

Forms aaload = 50 (0x32)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typereference. The index must be of
type int. Both arrayref and index are popped from the operan
stack. Thereference value in the component of the array atindex
is retrieved and pushed onto the top of the operand stack.

Runtime
Exceptions

If arrayref is null, aaload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the aaload instruction throws anArrayIndex-
OutOfBoundsException.

Format aaload

JAVA VIRTUAL MACHINE INSTRUCTION SET 157

he
aastore aastore

Operation Store intoreference array

Forms aastore = 83 (0x53)

Stack …, arrayref, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typereference. The index must be of
typeint andvalue must be of typereference. Thearrayref, index,
andvalue are popped from the operand stack. Thereference value
is stored as the component of the array atindex.

The type ofvalue must be assignment compatible (§2.6.6) with t
type of the components of the array referenced byarrayref. Assign-
ment of a value of reference typeS (source) to a variable of refer-
ence typeT (target) is allowed only when the typeS supports all
the operations defined on typeT. The detailed rules follow:

• If S is a class type, then:

■ If T is a class type, thenS must be the same class (§2.8.1) asT,
or S must be a subclass ofT;

■ If T is an interface type,S must implement (§2.13) interfaceT.

Format aastore

THE JAVATM VIRTUAL MACHINE SPECIFICATION158

es of

d

po-
aastore (cont.) aastore (cont.)

• If S is an array type, namely the typeSC[], that is, an array of
components of typeSC, then:

■ If T is a class type,T must beObject (§2.4.6), or:

• If T is an array type, namely the typeTC[], an array of com-
ponents of typeTC, then eitherTC andSC must be the same
primitive type, or

• TC andSC must both be reference types with typeSC assign-
able toTC, by these rules.

S cannot be an interface type, because there are no instanc
interfaces, only instances of classes and arrays.

Runtime
Exceptions

If arrayref is null, aastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the aastore instruction throws anArrayIndex-
OutOfBoundsException.

Otherwise, ifarrayref is notnull and the actual type ofvalue is not
assignment compatible (§2.6.6) with the actual type of the com
nents of the array,aastore throws anArrayStoreException.

JAVA VIRTUAL MACHINE INSTRUCTION SET 159

 for
aconst_null aconst_null

Operation Pushnull

Forms aconst_null = 1 (0x1)

Stack … ⇒
…, null

Description Push thenull objectreference onto the operand stack.

Notes The Java Virtual Machine does not mandate a concrete value
null.

Format aconst_null

THE JAVATM VIRTUAL MACHINE SPECIFICATION160

the
 at

m-
aload aload

Operation Loadreference from local variable

Forms aload = 25 (0x19)

Stack … ⇒
…, objectref

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). The local variable
index must contain areference. Theobjectref in the local variable
at index is pushed onto the operand stack.

Notes Theaload instruction cannot be used to load a value of typeretur-

nAddress from a local variable onto the operand stack. This asy
metry with theastore instruction is intentional.

Theaload opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format aload
index

JAVA VIRTUAL MACHINE INSTRUCTION SET 161

nt

-

pe
is
aload_<n> aload_<n>

Operation Loadreference from local variable

Forms aload_0 = 42 (0x2a)
aload_1 = 43 (0x2b)
aload_2 = 44 (0x2c)
aload_3 = 45 (0x2d)

Stack … ⇒
…, objectref

Description The<n> must be a valid index into the local variables of the curre
frame (§3.6). The local variable at<n> must contain areference.
Theobjectref in the local variable atindex is pushed onto the oper
and stack.

Notes An aload_<n> instruction cannot be used to load a value of ty
returnAddress from a local variable onto the operand stack. Th
asymmetry with the correspondingastore_<n> instruction is inten-
tional. Each of theaload_<n> instructions is the same asaload with
anindex of <n>, except that the operand<n> is implicit.

Format aload_<n>

THE JAVATM VIRTUAL MACHINE SPECIFICATION162

.
 be

.6),

ed
ay,
ew

om-

 of
t of a
anewarray anewarray

Operation Create new array ofreference

Forms anewarray = 189 (0xbd)

Stack …, count ⇒
…, arrayref

Description Thecount must be of typeint. It is popped off the operand stack
Thecount represents the number of components of the array to
created. The unsignedindexbyte1 andindexbyte2 are used to con-
struct an index into the constant pool of the current class (§3
where the value of the index is (indexbyte1 << 8) | indexbyte2.
The item at that index in the constant pool must be tagg
CONSTANT_Class (§4.4.1), a symbolic reference to a class, arr
or interface type. The symbolic reference is resolved (§5.1). A n
array with components of that type, of lengthcount, is allocated
from the garbage-collected heap, and areference arrayref to
this new array object is pushed onto the operand stack. All c
ponents of the new array are initialized tonull, the default value
for reference types (§2.5.1).

Linking
Exceptions

During resolution of theCONSTANT_Class constant pool item, any
of the exceptions documented in §5.1 can be thrown.

Runtime
Exception

Otherwise, ifcount is less than zero, theanewarray instruction
throws aNegativeArraySizeException.

Notes The anewarray instruction is used to create a single dimension
an array of object references. It can also be used to create par
multidimensional array.

Format anewarray
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 163

the
ing
r-
e of

rent

the
of a

urns
areturn areturn

Operation Returnreference from method

Forms areturn = 176 (0xb0)

Stack …, objectref ⇒
[empty]

Description The objectref must be of typereference and must refer to an
object of a type that is assignment compatible (§2.6.6) with
type represented by the return descriptor (§4.3.3) of the return
method. Theobjectref is popped from the operand stack of the cu
rent frame (§3.6) and pushed onto the operand stack of the fram
the invoker. Any other values on the operand stack of the cur
method are discarded. If the returning method is asynchronized

method, the monitor acquired or reentered on invocation of
method is released or exited (respectively) as if by execution
monitorexit instruction.

The interpreter then reinstates the frame of the invoker and ret
control to the invoker.

Format areturn

THE JAVATM VIRTUAL MACHINE SPECIFICATION164

.

k

arraylength arraylength

Operation Get length of array

Forms arraylength = 190 (0xbe)

Stack …, arrayref ⇒
…, length

Description Thearrayref must be of typereference and must refer to an array
It is popped from the operand stack. Thelength of the array it refer-
ences is determined. Thatlength is pushed onto the operand stac
as anint.

Runtime
Exception

If the arrayref is null, the arraylength instruction throws a
NullPointerException.

Format arraylength

JAVA VIRTUAL MACHINE INSTRUCTION SET 165

the

 of
astore astore

Operation Storereference into local variable

Forms astore = 58 (0x3a)

Stack …, objectref ⇒
…

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). Theobjectref on the top
of the operand stack must be of typereturnAddress or of type
reference. It is popped from the operand stack, and the value
the local variable atindex is set toobjectref.

Notes The astore instruction is used with anobjectref of type return-
Address when implementing Java’sfinally keyword (see Sec-
tion 7.13, “Compilingfinally”). The aload instruction cannot be
used to load a value of typereturnAddress from a local variable
onto the operand stack. This asymmetry with theastore instruction
is intentional.

Theastore opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format astore
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION166

r-
k

able

rre-
astore_<n> astore_<n>

Operation Storereference into local variable

Forms astore_0 = 75 (0x4b)
astore_1 = 76 (0x4c)
astore_2 = 77 (0x4d)
astore_3 = 78 (0x4e)

Stack …, objectref ⇒
…

Description The <n> must be a valid index into the local variables of the cu
rent frame (§3.6). Theobjectref on the top of the operand stac
must be of typereturnAddress or of type reference. It is
popped from the operand stack, and the value of the local vari
at <n> is set toobjectref.

Notes An astore_<n> instruction is used with anobjectref of typeretur-
nAddress when implementing Java’sfinally keyword (see Sec-
tion 7.13, “Compiling finally”). An aload_<n> instruction
cannot be used to load a value of typereturnAddress from a local
variable onto the operand stack. This asymmetry with the co
spondingastore_<n> instruction is intentional.

Each of theastore_<n> instructions is the same asastore with an
index of <n>, except that the operand<n> is implicit.

Format astore_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 167

ost

de

es. If
e is

ent
athrow athrow

Operation Throw exception or error

Forms athrow = 191 (0xbf)

Stack …, objectref ⇒
objectref

Description The objectref must be of typereference and must refer to an
object which is an instance of classThrowable or of a subclass of
Throwable. It is popped from the operand stack. Theobjectref is
then thrown by searching the current frame (§3.6) for the m
recentcatch clause that catches the class ofobjectref or one of its
superclasses.

If a catch clause is found, it contains the location of the co
intended to handle this exception. Thepc register is reset to that
location, the operand stack of the current frame is cleared,objectref
is pushed back onto the operand stack, and execution continu
no appropriate clause is found in the current frame, that fram
popped, the frame of its invoker is reinstated, and theobjectref is
rethrown.

If no catch clause is found that handles this exception, the curr
thread exits.

Runtime
Exception

If objectref is null, athrow throws aNullPointerException
instead ofobjectref.

Format athrow

THE JAVATM VIRTUAL MACHINE SPECIFICATION168

nt
r-
er, if
 is

and
red
n-
 to,
are
athrow (cont.) athrow (cont.)

Notes The operand stack diagram for theathrow instruction may be mis-
leading: If a handler for this exception is found in the curre
method, theathrow instruction discards all the words on the ope
and stack, then pushes the thrown object onto the stack. Howev
no handler is found in the current method and the exception
thrown farther up the method invocation chain, then the oper
stack of the method (if any) that handles the exception is clea
andobjectref is pushed onto that empty operand stack. All interve
ing stack frames from the method that threw the exception up
but not including, the method that handles the exception
discarded.

JAVA VIRTUAL MACHINE INSTRUCTION SET 169

t

d

al

ent
baload baload

Operation Loadbyte or boolean from array

Forms baload = 51 (0x33)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typebyte or of typeboolean. Theindex
must be of typeint. Botharrayref andindex are popped from the
operand stack. Thebyte value in the component of the array a
index is retrieved, sign-extended to anint value, and pushed onto
the top of the operand stack.

Runtime
Exceptions

If arrayref is null, baload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the baload instruction throws anArrayIndex-
OutOfBoundsException.

Notes The baload instruction is used to load values from bothbyte and
boolean arrays. In Sun’s implementation of the Java Virtu
Machine,boolean arrays (arrays of typeT_BOOLEAN; see §3.1 and
the description of thenewarray instruction) are implemented as
arrays of 8-bit values. Other implementations may implem
packedboolean arrays; thebaload instruction of such implementa-
tions must be used to access those arrays.

Format baload

THE JAVATM VIRTUAL MACHINE SPECIFICATION170

ed

d

al

ent
bastore bastore

Operation Store intobyte or boolean array

Forms bastore = 84 (0x54)

Stack …, arrayref, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typebyte or of typeboolean. Theindex
and thevalue must both be of typeint. Thearrayref, index, and
value are popped from the operand stack. Theint value is trun-
cated to abyte and stored as the component of the array index
by index.

Runtime
Exceptions

If arrayref is null, bastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, thebastore instruction throws anArrayIndexOutOf-
BoundsException.

Notes The bastore instruction is used to store values into bothbyte and
boolean arrays. In Sun’s implementation of the Java Virtu
Machine,boolean arrays (arrays of typeT_BOOLEAN; see §3.1 and
the description of thenewarray instruction) are implemented as
arrays of 8-bit values. Other implementations may implem
packedboolean arrays; thebastore instruction of such implemen-
tations must be used to store into those arrays.

Format bastore

JAVA VIRTUAL MACHINE INSTRUCTION SET 171
bipush bipush

Operation Pushbyte

Forms bipush = 16 (0x10)

Stack … ⇒
…, value

Description The immediatebyte is sign-extended to anint, and the resulting
value is pushed onto the operand stack.

Format bipush
byte

THE JAVATM VIRTUAL MACHINE SPECIFICATION172

k.

r-

d

caload caload

Operation Loadchar from array

Forms caload = 52 (0x34)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typechar. The index must be of type
int. Both arrayref and index are popped from the operand stac
Thechar value in the component of the array atindex is retrieved,
zero-extended to anint value, and pushed onto the top of the ope
and stack.

Runtime
Exceptions

If arrayref is null, caload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the caload instruction throws anArrayIndexOutOf-
BoundsException.

Format caload

JAVA VIRTUAL MACHINE INSTRUCTION SET 173

d

castore castore

Operation Store intochar array

Forms castore = 85 (0x55)

Stack …, arrayref, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typechar. Theindex and thevalue must
both be of typeint. The arrayref, index, and value are popped
from the operand stack. Theint value is truncated to achar and
stored as the component of the array indexed byindex.

Runtime
Exceptions

If arrayref is null, castore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, thecastore instruction throws anArrayIndexOutOf-
BoundsException.

Format castore

THE JAVATM VIRTUAL MACHINE SPECIFICATION174

ool
 is
x
a
lved

 or
 the

r

checkcast checkcast

Operation Check whether object is of given type

Forms checkcast = 192 (0xc0)

Stack …, objectref ⇒
…, objectref

Description Theobjectref must be of typereference. The unsignedindexbyte1
andindexbyte2 are used to construct an index into the constant p
of the current class (§3.6), where the value of the index
(indexbyte1 << 8) |indexbyte2. The constant pool item at the inde
must be aCONSTANT_Class (§4.4.1), a symbolic reference to
class, array, or interface type. The symbolic reference is reso
(§5.1).

If objectref is null or can be cast to the resolved class, array,
interface type, the operand stack is unchanged; otherwise,
checkcast instruction throws aClassCastException.

The following rules are used to determine whether anobjectref that
is notnull can be cast to the resolved type: ifS is the class of the
object referred to byobjectref andT is the resolved class, array, o
interface type,checkcast determines whetherobjectref can be cast to
typeT as follows:

Format checkcast
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 175

f

es of

 or
checkcast (cont.) checkcast (cont.)

• If S is an ordinary (non-array) class, then:

■ If T is a class type, thenS must be the same class (§2.8.1) asT,
or a subclass ofT.

■ If T is an interface type, thenS must implement (§2.13) inter-
faceT.

• If S is a class representing the array typeSC[], that is, an array of
components of typeSC, then:

■ If T is a class type, thenT must beObject (§2.4.6).

■ If T is an array typeTC[], that is, an array of components o
typeTC, then one of the following must be true:

• TC andSC are the same primitive type (§2.4.1).

• TC andSC are reference types (§2.4.5), and typeSC can be
cast toTC by these runtime rules.

S cannot be an interface type, because there are no instanc
interfaces, only instances of classes and arrays.

Linking
Exceptions

During resolution of theCONSTANT_Class constant pool item, any
of the exceptions documented in §5.1 can be thrown.

Runtime
Exception

Otherwise, ifobjectref cannot be cast to the resolved class, array,
interface type, thecheckcast instruction throws aClassCast-
Exception.

Notes The checkcast instruction is very similar to theinstanceof instruc-
tion. It differs in its treatment ofnull, its behavior when its test
fails (checkcast throws an exception,instanceof pushes a result
code), and its effect on the operand stack.

THE JAVATM VIRTUAL MACHINE SPECIFICATION176

s

n
 of
d2f d2f

Operation Convertdouble to float

Forms d2f = 144 (0x90)

Stack …, value.word1, value.word2 ⇒
…, result

Description Thevalue on the top of the operand stack must be of typedouble.
It is popped from the operand stack and converted to afloat result
using IEEE 754 round-to-nearest mode. Theresult is pushed onto
the operand stack.

A finite value too small to be represented as afloat is converted to
a zero of the same sign; a finitevalue too large to be represented a
afloat is converted to an infinity of the same sign. Adouble NaN
is converted to afloat NaN.

Notes The d2f instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value and may also lose precision.

Format d2f

JAVA VIRTUAL MACHINE INSTRUCTION SET 177

r
ds-

f

he

n
 of
d2i d2i

Operation Convertdouble to int

Forms d2i = 142 (0x83)

Stack …, value.word1, value.word2 ⇒
…, result

Description Thevalue on the top of the operand stack must be of typedouble.
It is popped from the operand stack and converted to anint. The
result is pushed onto the operand stack:

• If the value is NaN, theresult of the conversion is anint 0.

• Otherwise, if thevalue is not an infinity, it is rounded to an intege
valueV , rounding towards zero using IEEE 754 round-towar
zero mode. If this integer valueV can be represented as anint,
then theresult is theint valueV.

• Otherwise, either thevalue must be too small (a negative value o
large magnitude or negative infinity), and theresult is the small-
est representable value of typeint, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and t
result is the largest representable value of typeint.

Notes The d2i instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value, and may also lose precision.

Format d2i

THE JAVATM VIRTUAL MACHINE SPECIFICATION178

r
ds-

f

he

n
 of
d2l d2l

Operation Convertdouble to long

Forms d2l = 143 (0x8f)

Stack …, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typedouble.
It is popped from the operand stack and converted to along. The
result is pushed onto the operand stack:

• If the value is NaN, theresult of the conversion is along 0.

• Otherwise, if thevalue is not an infinity, it is rounded to an intege
valueV, rounding towards zero using IEEE 754 round-towar
zero mode. If this integer valueV can be represented as along,
then theresult is thelong valueV.

• Otherwise, either thevalue must be too small (a negative value o
large magnitude or negative infinity), and theresult is the smallest
representable value of typelong, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and t
result is the largest representable value of typelong.

Notes The d2l instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value, and may also lose precision.

Format d2l

JAVA VIRTUAL MACHINE INSTRUCTION SET 179

E

at

ty.
dadd dadd

Operation Add double

Forms dadd = 99 (0x63)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 andvalue2 must be of typedouble. The values are
popped from the operand stack. Thedouble result is value1 +
value2. Theresult is pushed onto the operand stack.

The result of adadd instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of th
sign.

• The sum of an infinity and any finite value is equal to the infini

• The sum of two zeroes of opposite sign is positive zero.

Format dadd

THE JAVATM VIRTUAL MACHINE SPECIFICATION180

n.

on-

and

 nor
ffer-
arest
f the

n.

ign.

 as
 or
dadd (cont.) dadd (cont.)

• The sum of two zeroes of the same sign is the zero of that sig

• The sum of a zero and a nonzero finite value is equal to the n
zero value.

• The sum of two nonzero finite values of the same magnitude
opposite sign is positive zero.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, and the values have the same sign or have di
ent magnitudes, the sum is computed and rounded to the ne
representable value using IEEE 754 round-to-nearest mode. I
magnitude is too large to represent as adouble, we say the oper-
ation overflows; the result is then an infinity of appropriate sig
If the magnitude is too small to represent as adouble, we say the
operation underflows; the result is then a zero of appropriate s

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of adadd instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 181

k.

d

daload daload

Operation Loaddouble from array

Forms daload = 49 (0x31)

Stack …, arrayref, index ⇒
…, value.word1, value.word2

Description Thearrayref must be of typereference and must refer to an array
whose components are of typedouble. Theindex must be of type
int. Both arrayref and index are popped from the operand stac
The double value in the component of the array atindex is
retrieved and pushed onto the top of the operand stack.

Runtime
Exceptions

If arrayref is null, daload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the daload instruction throws anArrayIndexOutOf-
BoundsException.

Format daload

THE JAVATM VIRTUAL MACHINE SPECIFICATION182

d

dastore dastore

Operation Store intodouble array

Forms dastore = 82 (0x52)

Stack …, arrayref, index, value.word1, value.word2 ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typedouble. Theindex must be of type
int andvalue must be of typedouble. The arrayref, index, and
value are popped from the operand stack. Thedouble value is
stored as the component of the array indexed byindex.

Runtime
Exceptions

If arrayref is null, dastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, dastore throws anArrayIndexOutOfBounds-Excep-
tion.

Format dastore

JAVA VIRTUAL MACHINE INSTRUCTION SET 183

n is

er

EE
ity
ite

f

ith

r
un-

trol
dcmp<op> dcmp<op>

Operation Comparedouble

Forms dcmpg = 152 (0x98)
dcmpl = 151 (0x97)

Stack …, value1.word1, value1.word2, value2.word1, value2.word1 ⇒
…, result

Description Both value1 andvalue2 must be of typedouble. The values are
popped from the operand stack, and a floating-point compariso
performed. Ifvalue1 is greater thanvalue2, the int value 1 is
pushed onto the operand stack. Ifvalue1 is equal tovalue2, theint
value 0 is pushed onto the operand stack. Ifvalue1 is less than
value2, theint value−1 is pushed onto the operand stack. If eith
value1 or value2 is NaN, thedcmpg instruction pushes theint
value1 onto the operand stack and thedcmpl instruction pushes the
int value−1 onto the operand stack.

Floating-point comparison is performed in accordance with IE
754. All values other than NaN are ordered, with negative infin
less than all finite values and positive infinity greater than all fin
values. Positive zero and negative zero are considered equal.

Notes Thedcmpg anddcmpl instructions differ only in their treatment o
a comparison involving NaN. NaN is unordered, so anydouble

comparison fails if either or both of its operands are NaN. W
both dcmpg anddcmpl available, anydouble comparison may be
compiled to push the sameresult onto the operand stack whethe
the comparison fails on non-NaN values or fails because it enco
tered a NaN. For more information, see Section 7.5, “More Con
Examples.”

Format dcmp<op>

THE JAVATM VIRTUAL MACHINE SPECIFICATION184
dconst_<d> dconst_<d>

Operation Pushdouble

Forms dconst_0 = 14 (0xe)
dconst_1 = 15 (0xf)

Stack … ⇒
…, <d>.word1, <d>.word2

Description Push thedouble constant<d> (0.0 or 1.0) onto the operand stack.

Format dconst_<d>

JAVA VIRTUAL MACHINE INSTRUCTION SET 185

E

al-
igns.

y,
ddiv ddiv

Operation Divide double

Forms ddiv = 111 (0x6f)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typedouble. The values are
popped from the operand stack. Thedouble result isvalue1 / value2.
Theresult is pushed onto the operand stack.

The result of addiv instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result is positive if both v
ues have the same sign, negative if the values have different s

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinit
with the sign-producing rule just given.

Format ddiv

THE JAVATM VIRTUAL MACHINE SPECIFICATION186

o,

ny
ing

ed

 nor
the
e

n.

ign.

 as
w,
ddiv (cont.) ddiv (cont.)

• Division of a finite value by an infinity results in a signed zer
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero by a
other finite value results in a signed zero, with the sign-produc
rule just given.

• Division of a nonzero finite value by a zero results in a sign
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, the quotient is computed and rounded to
nearestdouble using IEEE 754 round-to-nearest mode. If th
magnitude is too large to represent as adouble, we say the oper-
ation overflows; the result is then an infinity of appropriate sig
If the magnitude is too small to represent as adouble, we say the
operation underflows; the result is then a zero of appropriate s

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflo
division by zero, or loss of precision may occur, execution of addiv
instruction never throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 187

6).
dload dload

Operation Loaddouble from local variable

Forms dload = 24 (0x18)

Stack … ⇒
…, value.word1, value.word2

Description The index is an unsigned byte. Bothindex andindex + 1 must be
valid indices into the local variables of the current frame (§3.
The local variables atindex andindex + 1 together must contain a
double. Thevalue of the local variables atindex andindex + 1 is
pushed onto the operand stack.

Notes Thedload opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format dload
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION188

i-
dload_<n> dload_<n>

Operation Loaddouble from local variable

Forms dload_0 = 38 (0x26)
dload_1 = 39 (0x27)
dload_2 = 40 (0x28)
dload_3 = 41 (0x29)

Stack … ⇒
…, value.word1, value.word2

Description Both <n> and<n> + 1 must be valid indices into the local var
ables of the current frame (§3.6). The local variables at<n> and
<n> + 1 together must contain adouble. The value of the local
variables at<n> and<n> + 1 is pushed onto the operand stack.

Notes Each of thedload_<n> instructions is the same asdload with an
index of <n>, except that the operand<n> is implicit.

Format dload_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 189

E

al-
rent

d

 is
 rep-
 the

n.

ign.
dmul dmul

Operation Multiply double

Forms dmul = 107 (0x6b)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 andvalue2 must be of typedouble. The values are
popped from the operand stack. Thedouble result is value1 *
value2. Theresult is pushed onto the operand stack.

The result of admul instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result is positive if both v
ues have the same sign, and negative if the values have diffe
signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signe
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity nor NaN
involved, the product is computed and rounded to the nearest
resentable value using IEEE 754 round-to-nearest mode. If
magnitude is too large to represent as adouble, we say the oper-
ation overflows; the result is then an infinity of appropriate sig
If the magnitude is too small to represent as adouble, we say the
operation underflows; the result is then a zero of appropriate s

Format dmul

THE JAVATM VIRTUAL MACHINE SPECIFICATION190

 as
 or
dmul (cont.) dmul (cont.)

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of admul instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 191

om

 no

ite

.

dneg dneg

Operation Negatedouble

Forms dneg = 119 (0x77)

Stack …, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description The value must be of typedouble. It is popped from the operand
stack. Thedouble result is the arithmetic negation ofvalue,
namely−value. Theresult is pushed onto the operand stack.

For double values, negation is not the same as subtraction fr
zero. If x is +0.0, then0.0-x equals+0.0, but -x equals-0.0.
Unary minus merely inverts the sign of adouble.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has
sign).

• If the operand is an infinity, the result is the infinity of oppos
sign.

• If the operand is a zero, the result is the zero of opposite sign

Format dneg

THE JAVATM VIRTUAL MACHINE SPECIFICATION192

o-
54

ing

, the
-
uc-
y

 the

he

lt
drem drem

Operation Remainderdouble

Forms drem = 115 (0x73)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 andvalue2 must be of typedouble. The values are
popped from the operand stack. Theresult is calculated and pushed
onto the operand stack as adouble.

The result of adrem instruction is not the same as that of the s
called remainder operation defined by IEEE 754. The IEEE 7
“remainder” operation computes the remainder from a round
division, not a truncating division, and so its behavior isnot analo-
gous to that of the usual integer remainder operator. Instead
Java Virtual Machine definesdrem to behave in a manner analo
gous to that of the Java Virtual Machine integer remainder instr
tions (irem and lrem); this may be compared with the C librar
functionfmod.

The result of adrem instruction is governed by these rules:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result equals the sign of
dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, t
result is NaN.

• If the dividend is finite and the divisor is an infinity, the resu
equals the dividend.

Format drem

JAVA VIRTUAL MACHINE INSTRUCTION SET 193

als

 nor

l

y
 as
ati-

 of
w,

ava
drem (cont.) drem (cont.)

• If the dividend is a zero and the divisor is finite, the result equ
the dividend.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, the floating-point remainderresult from a divi-
dendvalue1 and a divisorvalue2 is defined by the mathematica
relation , whereq is an integer that
is negative only if is negative and positive onl
if is positive, and whose magnitude is as large
possible without exceeding the magnitude of the true mathem
cal quotient ofvalue1 andvalue2.

Despite the fact that division by zero may occur, evaluation
a drem instruction never throws a runtime exception. Overflo
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the J
library routineMath.IEEEremainder.

result value1 value2 q⋅()–=

value1 value2⁄
value1 value2⁄

THE JAVATM VIRTUAL MACHINE SPECIFICATION194

stack
ack
is a
o-
 by

od,
dreturn dreturn

Operation Returndouble from method

Forms dreturn = 175 (0xaf)

Stack …, value.word1, value.word2 ⇒
[empty]

Description The returning method must have return typedouble. The value
must be of typedouble. The value is popped from the operand
stack of the current frame (§3.6) and pushed onto the operand
of the frame of the invoker. Any other values on the operand st
of the current method are discarded. If the returning method
synchronized method, the monitor acquired or reentered on inv
cation of the method is released or exited (respectively) as if
execution of amonitorexit instruction.

The interpreter then returns control to the invoker of the meth
reinstating the frame of the invoker.

Format dreturn

JAVA VIRTUAL MACHINE INSTRUCTION SET 195

ned
dstore dstore

Operation Storedouble into local variable

Forms dstore = 57 (0x39)

Stack …, value.word1, value.word2 ⇒
…

Description The index is an unsigned byte. Bothindex andindex + 1 must be
valid indices into the of the current frame (§3.6). Thevalue on the
top of the operand stack must be of typedouble. It is popped from
the operand stack, and the local variables atindex andindex + 1 are
set tovalue.

Notes The dstore opcode can be used in conjunction with thewide
instruction to access a local variable using a two-byte unsig
index.

Format dstore
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION196

-

dstore_<n> dstore_<n>

Operation Storedouble into local variable

Forms dstore_0 = 71 (0x47)
dstore_1 = 72 (0x48)
dstore_2 = 73 (0x49)
dstore_3 = 74 (0x4a)

Stack …, value.word1, value.word2 ⇒
…

Description Both <n> and<n> + 1 must be valid indices into the local vari
ables of the current frame (§3.6). Thevalue on the top of the oper-
and stack must be of typedouble. It is popped from the operand
stack, and the local variables at<n> and<n> + 1 are set tovalue.

Notes Each of thedstore_<n> instructions is the same asdstore with an
index of <n>, except that the operand<n> is implicit.

Format dstore_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 197

 as
 or
dsub dsub

Operation Subtractdouble

Forms dsub = 103 (0x67)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 andvalue2 must be of typedouble. The values are
popped from the operand stack. Thedouble result is value1 −
value2. Theresult is pushed onto the operand stack.

For double subtraction, it is always the case thata-b produces the
same result asa+(-b). However, for thedsub instruction, subtrac-
tion from zero is not the same as negation, because ifx is +0.0,
then0.0-x equals+0.0, but-x equals-0.0.

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of adsub instruction never
throws a runtime exception.

Format dsub

THE JAVATM VIRTUAL MACHINE SPECIFICATION198

onto

es,
pe
dup dup

Operation Duplicate top operand stack word

Forms dup = 89 (0x59)

Stack …, word ⇒
…, word, word

Description The top word on the operand stack is duplicated and pushed
the operand stack.

Thedup instruction must not be used unlessword contains a 32-bit
data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
thedup instruction operates on an untyped word, ignoring the ty
of the datum it contains.

Format dup

JAVA VIRTUAL MACHINE INSTRUCTION SET 199

opy

es,
he
dup_x1 dup_x1

Operation Duplicate top operand stack word and put two down

Forms dup_x1 = 90 (0x5a)

Stack …, word2, word1 ⇒
…, word1, word2, word1

Description The top word on the operand stack is duplicated and the c
inserted two words down in the operand stack.

Thedup_x1 instruction must not be used unless each ofword1 and
word2 is a word that contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
the dup_x1 instruction operates on untyped words, ignoring t
types of the data they contain.

Format dup_x1

THE JAVATM VIRTUAL MACHINE SPECIFICATION200

opy

 the

es,
he
dup_x2 dup_x2

Operation Duplicate top operand stack word and put three down

Forms dup_x2 = 91 (0x5b)

Stack …, word3, word2, word1 ⇒
…, word1, word3, word2, word1

Description The top word on the operand stack is duplicated and the c
inserted three words down in the operand stack.

Thedup_x2 instruction must not be used unless each ofword2 and
word3 is a word that contains a 32-bit data type or together are
two words of a single 64-bit datum, and unlessword1 contains a
32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
the dup_x2 instruction operates on untyped words, ignoring t
types of the data they contain.

Format dup_x2

JAVA VIRTUAL MACHINE INSTRUCTION SET 201

shed

 are

es,
es
dup2 dup2

Operation Duplicate top two operand stack words

Forms dup2 = 92 (0x5c)

Stack …, word2, word1 ⇒
…, word2, word1, word2, word1

Description The top two words on the operand stack are duplicated and pu
onto the operand stack, in the original order.

The dup2 instruction must not be used unless each ofword1 and
word2 is a word that contains a 32-bit data type or both together
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data typ
thedup2 instruction operates on untyped words, ignoring the typ
of the data they contain.

Format dup2

THE JAVATM VIRTUAL MACHINE SPECIFICATION202

 cop-
and

th
and

es,
he
dup2_x1 dup2_x1

Operation Duplicate top two operand stack words and put three down

Forms dup2_x1 = 93 (0x5d)

Stack …, word3, word2, word1 ⇒
…, word2, word1, word3, word2, word1

Description The top two words on the operand stack are duplicated and the
ies inserted, in the original order, three words down in the oper
stack.

The dup2_x1 instruction must not be used unless each ofword1
and word2 is a word that contains a 32-bit data type or bo
together are the two words that contain a single 64-bit datum,
unlessword3 is a word that contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
the dup2_x1 instruction operates on untyped words, ignoring t
types of the data they contain.

Format dup2_x1

JAVA VIRTUAL MACHINE INSTRUCTION SET 203

 cop-
nd

rds

two

es,
he
dup2_x2 dup2_x2

Operation Duplicate top two operand stack words and put four down

Forms dup2_x2 = 94 (0x5e)

Stack …, word4, word3, word2, word1 ⇒
…, word2, word1, word4, word3, word2, word1

Description The top two words on the operand stack are duplicated and the
ies inserted, in the original order, four words down in the opera
stack.

The dup2_x2 instruction must not be used unless each ofword1
andword2 is a 32-bit data type or both together are the two wo
of a single 64-bit datum, and unlessword3 andword4 are each a
word that contains a 32-bit data type or both together are the
words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data typ
the dup2_x2 instruction operates on untyped words, ignoring t
types of the data they contain.

Format dup2_x2

THE JAVATM VIRTUAL MACHINE SPECIFICATION204

n

f2d f2d

Operation Convertfloat to double

Forms f2d = 141 (0x8d)

Stack …, value ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typefloat. It
is popped from the operand stack and converted to adouble. The
result is pushed onto the operand stack.

Notes The f2d instruction performs a widening primitive conversio
(§2.6.2). Because all values of typefloat are exactly representable
by typedouble, the conversion is exact.

Format f2d

JAVA VIRTUAL MACHINE INSTRUCTION SET 205

r
ds-

f

he

n
 of
f2i f2i

Operation Convertfloat to int

Forms f2i = 139 (0x8b)

Stack …, value ⇒
…, result

Description Thevalue on the top of the operand stack must be of typefloat. It
is popped from the operand stack and converted to anint. The
result is pushed onto the operand stack:

• If the value is NaN, theresult of the conversion is anint 0.

• Otherwise, if thevalue is not an infinity, it is rounded to an intege
valueV, rounding towards zero using IEEE 754 round-towar
zero mode. If this integer valueV can be represented as anint,
then theresult is theint valueV.

• Otherwise, either thevalue must be too small (a negative value o
large magnitude or negative infinity), and theresult is the small-
est representable value of typeint, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and t
result is the largest representable value of typeint.

Notes The f2i instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value, and may also lose precision.

Format f2i

THE JAVATM VIRTUAL MACHINE SPECIFICATION206

r
ds-

f

he

n
 of
f2l f2l

Operation Convertfloat to long

Forms f2l = 140 (0x8c)

Stack …, value ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typefloat. It
is popped from the operand stack and converted to along. The
result is pushed onto the operand stack:

• If the value is NaN, theresult of the conversion is along 0.

• Otherwise, if thevalue is not an infinity, it is rounded to an intege
valueV, rounding towards zero using IEEE 754 round-towar
zero mode. If this integer valueV can be represented as along,
then theresult is thelong valueV.

• Otherwise, either thevalue must be too small (a negative value o
large magnitude or negative infinity), and theresult is the smallest
representable value of typelong, or thevalue must be too large
(a positive value of large magnitude or positive infinity), and t
result is the largest representable value of typelong.

Notes The f2l instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value, and may also lose precision.

Format f2l

JAVA VIRTUAL MACHINE INSTRUCTION SET 207

E

at

ty.

n.

on-
fadd fadd

Operation Add float

Forms fadd = 98 (0x62)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack. Thefloat result is value1 +
value2. Theresult is pushed onto the operand stack.

The result of anfadd instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of th
sign.

• The sum of an infinity and any finite value is equal to the infini

• The sum of two zeroes of opposite sign is positive zero.

• The sum of two zeroes of the same sign is the zero of that sig

• The sum of a zero and a nonzero finite value is equal to the n
zero value.

Format fadd

THE JAVATM VIRTUAL MACHINE SPECIFICATION208

and

 nor
ffer-
arest
f the

. If

ign.

 as
 or
fadd (cont.) fadd (cont.)

• The sum of two nonzero finite values of the same magnitude
opposite sign is positive zero.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, and the values have the same sign or have di
ent magnitudes, the sum is computed and rounded to the ne
representable value using IEEE 754 round-to-nearest mode. I
magnitude is too large to represent as afloat, we say the opera-
tion overflows; the result is then an infinity of appropriate sign
the magnitude is too small to represent as afloat, we say the
operation underflows; the result is then a zero of appropriate s

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of anfadd instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 209

k.

d

faload faload

Operation Loadfloat from array

Forms faload = 48 (0x30)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typefloat. The index must be of type
int. Both arrayref and index are popped from the operand stac
Thefloat value in the component of the array atindex is retrieved
and pushed onto the top of the operand stack.

Runtime
Exceptions

If arrayref is null, faload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the faload instruction throws anArrayIndexOutOf-
BoundsException.

Format faload

THE JAVATM VIRTUAL MACHINE SPECIFICATION210

d

fastore fastore

Operation Store intofloat array

Forms fastore = 81 (0x51)

Stack …, arrayref, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typefloat. The index must be of type
int and thevalue must be of typefloat. Thearrayref, index, and
value are popped from the operand stack. Thefloat value is stored
as the component of the array indexed byindex.

Runtime
Exceptions

If arrayref is null, fastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the fastore instruction throws anArrayIndexOutOf-
BoundsException.

Format fastore

JAVA VIRTUAL MACHINE INSTRUCTION SET 211

n is

er

EE
ity
ite

th

e
ered
rol
fcmp<op> fcmp<op>

Operation Comparefloat

Forms fcmpg = 150 (0x96)
fcmpl = 149 (0x95)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack, and a floating-point compariso
performed. Ifvalue1 is greater thanvalue2, the int value 1 is
pushed onto the operand stack. Ifvalue1 is equal tovalue2, theint
value 0 is pushed onto the operand stack. Ifvalue1 is less than
value2, theint value−1 is pushed onto the operand stack. If eith
value1 or value2 is NaN, thefcmpg instruction pushes theint
value1 onto the operand stack and thefcmpl instruction pushes the
int value−1 onto the operand stack.

Floating-point comparison is performed in accordance with IE
754. All values other than NaN are ordered, with negative infin
less than all finite values and positive infinity greater than all fin
values. Positive zero and negative zero are considered equal.

Notes The fcmpg andfcmpl instructions differ only in their treatment of a
comparison involving NaN. NaN is unordered, so anyfloat com-
parison fails if either or both of its operands are NaN. With bo
fcmpg and fcmpl available, anyfloat comparison may be com-
piled to push the sameresult onto the operand stack whether th
comparison fails on non-NaN values or fails because it encount
a NaN. For more information, see Section 7.5, “More Cont
Examples.”

Format fcmp<op>

THE JAVATM VIRTUAL MACHINE SPECIFICATION212
fconst_<f> fconst_<f>

Operation Pushfloat

Forms fconst_0 = 11 (0xb)
fconst_1 = 12 (0xc)
fconst_2 = 13 (0xd)

Stack … ⇒
…, <f>

Description Push thefloat constant<f> (0.0, 1.0, or 2.0) onto the operand
stack.

Format fconst_<f>

JAVA VIRTUAL MACHINE INSTRUCTION SET 213

E

al-
igns.

y,

o,

ny
ing
fdiv fdiv

Operation Divide float

Forms fdiv = 110 (0x6e)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack. Thefloat result is value1 /
value2. Theresult is pushed onto the operand stack.

The result of anfdiv instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result is positive if both v
ues have the same sign, negative if the values have different s

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinit
with the sign-producing rule just given.

• Division of a finite value by an infinity results in a signed zer
with the sign-producing rule just given.

• Division of a zero by a zero results in NaN; division of zero by a
other finite value results in a signed zero, with the sign-produc
rule just given.

Format fdiv

THE JAVATM VIRTUAL MACHINE SPECIFICATION214

ed

 nor
the
g-

he

 as
w,
an
fdiv (cont.) fdiv (cont.)

• Division of a nonzero finite value by a zero results in a sign
infinity, with the sign-producing rule just given.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, the quotient is computed and rounded to
nearestfloat using IEEE 754 round-to-nearest mode. If the ma
nitude is too large to represent as afloat, we say the operation
overflows; the result is then an infinity of appropriate sign. If t
magnitude is too small to represent as afloat, we say the opera-
tion underflows; the result is then a zero of appropriate sign.

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflo
division by zero, or loss of precision may occur, execution of
fdiv instruction never throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 215

the
 at
fload fload

Operation Loadfloat from local variable

Forms fload = 23 (0x17)

Stack … ⇒
…, value

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). The local variable
index must contain afloat. The value of the local variable at
index is pushed onto the operand stack.

Notes Thefloat opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format fload
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION216

r-

d

fload_<n> fload_<n>

Operation Loadfloat from local variable

Forms fload_0 = 34 (0x22)
fload_1 = 35 (0x23)
fload_2 = 36 (0x24)
fload_3 = 37 (0x25)

Stack … ⇒
…, value

Description The <n> must be a valid index into the local variables of the cu
rent frame (§3.6). The local variable at<n> must contain afloat.
The value of the local variable at<n> is pushed onto the operan
stack.

Notes Each of thefload_<n> instructions is the same asfload with an
index of <n>, except that the operand<n> is implicit.

Format fload_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 217

E

al-
rent

d

fmul fmul

Operation Multiply float

Forms fmul = 106 (0x6a)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack. Thefloat result is value1 *
value2. Theresult is pushed onto the operand stack.

The result of anfmul instruction is governed by the rules of IEE
arithmetic:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result is positive if both v
ues have the same sign, and negative if the values have diffe
signs.

• Multiplication of an infinity by a zero results in NaN.

• Multiplication of an infinity by a finite value results in a signe
infinity, with the sign-producing rule just given.

Format fmul

THE JAVATM VIRTUAL MACHINE SPECIFICATION218

 is
 rep-
 the

. If

ign.

 as
 or
fmul (cont.) fmul (cont.)

• In the remaining cases, where neither an infinity nor NaN
involved, the product is computed and rounded to the nearest
resentable value using IEEE 754 round-to-nearest mode. If
magnitude is too large to represent as afloat, we say the opera-
tion overflows; the result is then an infinity of appropriate sign
the magnitude is too small to represent as afloat, we say the
operation underflows; the result is then a zero of appropriate s

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of anfmul instruction never
throws a runtime exception.

JAVA VIRTUAL MACHINE INSTRUCTION SET 219

om

 no

ite

.

fneg fneg

Operation Negatefloat

Forms fneg = 118 (0x76)

Stack …, value ⇒
…, result

Description The value must be of typefloat. It is popped from the operand
stack. Thefloat result is the arithmetic negation ofvalue, −value.
Theresult is pushed onto the operand stack.

For float values, negation is not the same as subtraction fr
zero. If x is +0.0, then0.0-x equals+0.0, but -x equals-0.0.
Unary minus merely inverts the sign of afloat.

Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has
sign).

• If the operand is an infinity, the result is the infinity of oppos
sign.

• If the operand is a zero, the result is the zero of opposite sign

Format fneg

THE JAVATM VIRTUAL MACHINE SPECIFICATION220

he
754
ing

, the
s
ns
n

 the

he
frem frem

Operation Remainderfloat

Forms frem = 114 (0x72)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack. Theresult is calculated and pushed
onto the operand stack as afloat.

The result of anfrem instruction is not the same that of the as t
so-called remainder operation defined by IEEE 754. The IEEE
“remainder” operation computes the remainder from a round
division, not a truncating division, and so its behavior isnot analo-
gous to that of the usual integer remainder operator. Instead
Java Virtual Machine definesfrem to behave in a manner analogou
to that of the Java Virtual Machine integer remainder instructio
(irem andlrem); this may be compared with the C library functio
fmod.

The result of anfrem instruction is governed by these rules:

• If either value is NaN, the result is NaN.

• If neither value is NaN, the sign of the result equals the sign of
dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, t
result is NaN.

Format frem

JAVA VIRTUAL MACHINE INSTRUCTION SET 221

lt

als

 nor

l

e
s

true

 an
w,

ava
frem (cont.) frem (cont.)

• If the dividend is finite and the divisor is an infinity, the resu
equals the dividend.

• If the dividend is a zero and the divisor is finite, the result equ
the dividend.

• In the remaining cases, where neither an infinity, nor a zero,
NaN is involved, the floating-point remainderresult from a divi-
dendvalue1 and a divisorvalue2 is defined by the mathematica
relation , whereq is an integer
that is negative only if is negative and positiv
only if is positive, and whose magnitude is a
large as possible without exceeding the magnitude of the
mathematical quotient ofvalue1 andvalue2.

Despite the fact that division by zero may occur, evaluation of
frem instruction never throws a runtime exception. Overflo
underflow, or loss of precision cannot occur.

Notes The IEEE 754 remainder operation may be computed by the J
library routineMath.IEEEremainder.

result value1 value2 q⋅()–=

value1 value2⁄
value1 value2⁄

THE JAVATM VIRTUAL MACHINE SPECIFICATION222

and
and
hod
on
s if

od,
freturn freturn

Operation Returnfloat from method

Forms freturn = 174 (0xae)

Stack …, value ⇒
[empty]

Description The returning method must have return typefloat. The value
must be of typefloat. The value is popped from the operand
stack of the current frame (§3.6) and pushed onto the oper
stack of the frame of the invoker. Any other values on the oper
stack of the current method are discarded. If the returning met
is asynchronized method, the monitor acquired or reentered
invocation of the method is released or exited (respectively) a
by execution of amonitorexit instruction.

The interpreter then returns control to the invoker of the meth
reinstating the frame of the invoker.

Format freturn

JAVA VIRTUAL MACHINE INSTRUCTION SET 223

the
fstore fstore

Operation Storefloat into local variable

Forms fstore = 56 (0x38)

Stack …, value ⇒
…

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). Thevalue on the top of
the operand stack must be of typefloat. It is popped from the
operand stack, and the value of the local variable atindex is set to
value.

Notes Thefstore opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format fstore
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION224

r-
st
he
fstore_<n> fstore_<n>

Operation Storefloat into local variable

Forms fstore_0 = 67 (0x43)
fstore_1 = 68 (0x44)
fstore_2 = 69 (0x45)
fstore_3 = 70 (0x46)

Stack …, value ⇒
…

Description The <n> must be a valid index into the local variables of the cu
rent frame (§3.6). Thevalue on the top of the operand stack mu
be of typefloat. It is popped from the operand stack, and t
value of the local variable at<n> is set tovalue.

Notes Each of thefstore_<n> is the same asfstore with anindex of <n>,
except that the operand<n> is implicit.

Format fstore_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 225

 as
 or
fsub fsub

Operation Subtractfloat

Forms fsub = 102 (0x66)

Stack …, value1, value2 ⇒
…, result

Description Both value1 and value2 must be of typefloat. The values are
popped from the operand stack. Thefloat result is value1 −
value2. Theresult is pushed onto the operand stack.

For float subtraction, it is always the case thata-b produces the
same result asa+(-b). However, for thefsub instruction, subtrac-
tion from zero is not the same as negation, because ifx is +0.0,
then0.0-x equals+0.0, but-x equals-0.0.

The Java Virtual Machine requires support of gradual underflow
defined by IEEE 754. Despite the fact that overflow, underflow,
loss of precision may occur, execution of anfsub instruction never
throws a runtime exception.

Format fsub

THE JAVATM VIRTUAL MACHINE SPECIFICATION226

rent

ld is
ent
 class
cur-

nd
r-
getfield getfield

Operation Fetch field from object

Forms getfield = 180 (0xb4)

Stack …, objectref ⇒
…, value

OR
Stack …, objectref ⇒

…, value.word1, value.word2

Description The objectref, which must be of typereference, is popped from
the operand stack. The unsignedindexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the cur
class(§3.6), where the index is (indexbyte1 << 8) |indexbyte2. The
constant pool item at the index must be aCONSTANT_Fieldref

(§4.4.2), a reference to a class name and a field name. If the fie
protected (§4.6), then it must be either a member of the curr
class or a member of a superclass of the current class, and the
of objectref must be either the current class or a subclass of the
rent class.

The item is resolved (§5.2), determining both the field width a
the field offset. Thevalue at that offset into the class instance refe
enced byobjectref is fetched and pushed onto the operand stack.

Format getfield
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 227

de
getfield (cont.) getfield (cont.)

Linking
Exceptions

During resolution of theCONSTANT_Fieldref constant pool item,
any of the errors documented in §5.2 can be thrown.

Otherwise, if the specified field exists but is astatic field, getfield
throws anIncompatibleClassChangeError.

Runtime
Exception

Otherwise, ifobjectref is null, the getfield instruction throws a
NullPointerException.

Notes The getfield instruction operates on both one- and two-word wi
fields.

THE JAVATM VIRTUAL MACHINE SPECIFICATION228

 the

of a

 its
he
getstatic getstatic

Operation Getstatic field from class

Forms getstatic = 178 (0xb2)

Stack …, ⇒
…, value

OR

Stack …, ⇒
…, value.word1, value.word2

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
index is (indexbyte1 << 8) | indexbyte2. The constant pool item at
the index must be aCONSTANT_Fieldref (§4.4.2), a reference to a
class name and a field name. If the field isprotected (§4.6), then
it must be either a member of the current class or a member
superclass of the current class.

The item is resolved (§5.2), determining both the class field and
width. Thevalue of the class field is fetched and pushed onto t
operand stack.

Format getstatic
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 229

de
getstatic (cont.) getstatic (cont.)

Linking
Exceptions

During resolution of theCONSTANT_Fieldref constant pool item,
any of the exceptions documented in §5.2 can be thrown.

Otherwise, if the specified field exists but is not astatic (class)
field, getstatic throws anIncompatibleClassChangeError.

Notes Thegetstatic instruction operates on both one- and two-word wi
fields.

THE JAVATM VIRTUAL MACHINE SPECIFICATION230

t

the
goto goto

Operation Branch always

Forms goto = 167 (0xa7)

Stack No change

Description The unsigned bytesbranchbyte1 and branchbyte2 are used to
construct a signed 16-bitbranchoffset, where branchoffset is
(branchbyte1 << 8) |branchbyte2. Execution proceeds at that offse
from the address of the opcode of thisgoto instruction. The target
address must be that of an opcode of an instruction within
method that contains thisgoto instruction.

Format goto
branchbyte1
branchbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 231

t

 the

er
his
e.
goto_w goto_w

Operation Branch always (wide index)

Forms goto_w = 200 (0xc8)

Stack No change

Description The unsigned bytesbranchbyte1, branchbyte2, branchbyte3, and
branchbyte4 are used to construct a signed 32-bitbranchoffset,
wherebranchoffset is (branchbyte1 << 24) | (branchbyte2 << 16) |
(branchbyte3 << 8) |branchbyte4. Execution proceeds at that offse
from the address of the opcode of thisgoto_w instruction. The tar-
get address must be that of an opcode of an instruction within
method that contains thisgoto_w instruction.

Notes Although thegoto_w instruction has a 4-byte branch offset, oth
factors limit the size of a Java method to 65535 bytes (§4.10). T
limit may be raised in a future release of the Java Virtual Machin

Format goto_w
branchbyte1
branchbyte2
branchbyte3
branchbyte4

THE JAVATM VIRTUAL MACHINE SPECIFICATION232

d

n
 of
i2b i2b

Operation Convertint to byte

Forms i2b = 145 (0x91)

Stack …, value ⇒
…, result

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack, truncated to abyte, then sign-
extended to anint result. The result is pushed onto the operan
stack.

Notes The i2b instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value. Theresult may also not have the same sign asvalue.

Format i2b

JAVA VIRTUAL MACHINE INSTRUCTION SET 233

d

n
 of
e

i2c i2c

Operation Convertint to char

Forms i2c = 146 (0x92)

Stack …, value ⇒
…, result

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack, truncated tochar, then zero-
extended to anint result. The result is pushed onto the operan
stack.

Notes The i2c instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value. Theresult (which is always positive) may also not have th
same sign asvalue.

Format i2c

THE JAVATM VIRTUAL MACHINE SPECIFICATION234

n

i2d i2d

Operation Convertint to double

Forms i2d = 135 (0x87)

Stack …, value ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack and converted to adouble result.
Theresult is pushed onto the operand stack.

Notes The i2d instruction performs a widening primitive conversio
(§2.6.2). Because all values of typeint are exactly representable
by typedouble, the conversion is exact.

Format i2d

JAVA VIRTUAL MACHINE INSTRUCTION SET 235

n

i2f i2f

Operation Convertint to float

Forms i2f = 134 (0x86)

Stack …, value ⇒
…, result

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack and converted to thefloat result
using IEEE 754 round-to-nearest mode. Theresult is pushed onto
the operand stack.

Notes The i2f instruction performs a widening primitive conversio
(§2.6.2), but may result in a loss of precision because typefloat

has only 24 mantissa bits.

Format i2f

THE JAVATM VIRTUAL MACHINE SPECIFICATION236

n

i2l i2l

Operation Convertint to long

Forms i2l = 133 (0x85)

Stack …, value ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack and sign-extended to along result.
Theresult is pushed onto the operand stack.

Notes The i2l instruction performs a widening primitive conversio
(§2.6.2). Because all values of typeint are exactly representable
by typelong, the conversion is exact.

Format i2l

JAVA VIRTUAL MACHINE INSTRUCTION SET 237

d

n
 of
i2s i2s

Operation Convertint to short

Forms i2s = 147 (0x93)

Stack …, value ⇒
…, result

Description Thevalue on the top of the operand stack must be of typeint. It is
popped from the operand stack, truncated to ashort, then sign-
extended to anint result. The result is pushed onto the operan
stack.

Notes The i2s instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value. Theresult may also not have the same sign asvalue.

Format i2s

THE JAVATM VIRTUAL MACHINE SPECIFICATION238

ue
r-
he
iadd iadd

Operation Add int

Forms iadd = 96 (0x60)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Theint result is value1 + value2. The
result is pushed onto the operand stack.

If an iadd overflows, then the result is the low-order bits of the tr
mathematical result in a sufficiently wide two’s-complement fo
mat. If overflow occurs, then the sign of the result will not be t
same as the sign of the mathematical sum of the two values.

Format iadd

JAVA VIRTUAL MACHINE INSTRUCTION SET 239

e

d

iaload iaload

Operation Loadint from array

Forms iaload = 46 (0x2e)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typeint. Theindex must be of typeint.
Both arrayref and index are popped from the operand stack. Th
int value in the component of the array atindex is retrieved and
pushed onto the top of the operand stack.

Runtime
Exceptions

If arrayref is null, iaload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the iaload instruction throws anArrayIndexOutOf-
BoundsException.

Format iaload

THE JAVATM VIRTUAL MACHINE SPECIFICATION240
iand iand

Operation Boolean ANDint

Forms iand = 126 (0x7e)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. They are popped from
the operand stack. Anint result is calculated by taking the bitwise
AND (conjunction) ofvalue1 andvalue2. Theresult is pushed onto
the operand stack.

Format iand

JAVA VIRTUAL MACHINE INSTRUCTION SET 241

e

d

iastore iastore

Operation Store intoint array

Forms iastore = 79 (0x4f)

Stack …, arrayref, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typeint. Both index andvalue must be
of type int. The arrayref, index, andvalue are popped from the
operand stack. Theint value is stored as the component of th
array indexed byindex.

Runtime
Exceptions

If arrayref is null, iastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the iastore instruction throws anArrayIndexOutOf-
BoundsException.

Format iastore

THE JAVATM VIRTUAL MACHINE SPECIFICATION242
iconst_<i> iconst_<i>

Operation Pushint constant

Forms iconst_m1 = 2 (0x2)
iconst_0 = 3 (0x3)
iconst_1 = 4 (0x4)
iconst_2 = 5 (0x5)
iconst_3 = 6 (0x6)
iconst_4 = 7 (0x7)
iconst_5 = 8 (0x8)

Stack … ⇒
…, <i>

Description Push theint constant<i> (−1, 0, 1, 2, 3, 4 or 5) onto the operand
stack.

Notes Each of this family of instructions is equivalent tobipush <i> for
the respective value of<i>, except that the operand<i> is implicit.

Format iconst_<i>

JAVA VIRTUAL MACHINE INSTRUCTION SET 243

d

for
s

divi-
 the
lt
 is
idiv idiv

Operation Divide int

Forms idiv = 108 (0x6c)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Theint result is the value of the Java
expressionvalue1 / value2. Theresult is pushed onto the operan
stack.

An int division rounds towards 0; that is, the quotient produced
int values inn/d is anint valueq whose magnitude is as large a
possible while satisfying . Moreover,q is positive
when andn andd have the same sign, butq is negative
when andn andd have opposite signs.

There is one special case that does not satisfy this rule: if the
dend is the negative integer of largest possible magnitude for
int type, and the divisor is−1, then overflow occurs, and the resu
is equal to the dividend. Despite the overflow, no exception
thrown in this case.

Runtime
Exception

If the value of the divisor in anint division is 0,idiv throws an
ArithmeticException.

Format idiv

d q⋅ n≤
n d≥
n d≥

THE JAVATM VIRTUAL MACHINE SPECIFICATION244

f the

the

e of
 of
this

the
if_acmp<cond> if_acmp<cond>

Operation Branch ifreference comparison succeeds

Forms if_acmpeq = 165 (0xa5)
if_acmpne = 166 (0xa6)

Stack …, value1, value2 ⇒
…

Description Both value1 andvalue2 must be of typereference. They are both
popped from the operand stack and compared. The results o
comparison are as follows:

• eq succeeds if and only ifvalue1 = value2

• ne succeeds if and only ifvalue1 ≠ value2

If the comparison succeeds, the unsignedbranchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
offset is calculated to be (branchbyte1 << 8) |branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcod
this if_acmp<cond> instruction. The target address must be that
an opcode of an instruction within the method that contains
if_acmp<cond> instruction.

Otherwise, if the comparison fails, execution proceeds at
address of the instruction following thisif_acmp<cond> instruc-
tion.

Format if_acmp<cond>
branchbyte1
branchbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 245

ned.
if_icmp<cond> if_icmp<cond>

Operation Branch ifint comparison succeeds

Forms if_icmpeq = 159 (0x9f)
if_icmpne = 160 (0xa0)
if_icmplt = 161 (0xa1)
if_icmpge = 162 (0xa2)
if_icmpgt = 163 (0xa3)
if_icmple = 164 (0xa4)

Stack …, value1, value2 ⇒
…

Description Both value1 andvalue2 must be of typeint. They are both popped
from the operand stack and compared. All comparisons are sig
The results of the comparison are as follows:

• eq succeeds if and only ifvalue1 = value2

• ne succeeds if and only ifvalue1 ≠ value2

• lt succeeds if and only ifvalue1 < value2

• le succeeds if and only ifvalue1 ≤ value2

• gt succeeds if and only ifvalue1 > value2

• ge succeeds if and only ifvalue1 ≥ value2

Format if_icmp<cond>
branchbyte1
branchbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION246

the

e of
 of
this

 fol-
if_icmp<cond> (cont.) if_icmp<cond> (cont.)

If the comparison succeeds, the unsignedbranchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
offset is calculated to be (branchbyte1 << 8) |branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcod
this if_icmp<cond> instruction. The target address must be that
an opcode of an instruction within the method that contains
if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
lowing thisif_icmp<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 247

k
sults
if<cond> if<cond>

Operation Branch ifint comparison with zero succeeds

Forms ifeq = 153 (0x99)
ifne = 154 (0x9a)
iflt = 155 (0x9b)
ifge = 156 (0x9c)
ifgt = 157 (0x9d)
ifle = 158 (0x9e)

Stack …, value ⇒
…

Description Thevalue must be of typeint. It is popped from the operand stac
and compared against zero. All comparisons are signed. The re
of the comparisons are as follows:

• eq succeeds if and only ifvalue = 0

• ne succeeds if and only ifvalue ≠ 0

• lt succeeds if and only ifvalue < 0

• le succeeds if and only ifvalue ≤ 0

• gt succeeds if and only ifvalue > 0

• ge succeeds if and only ifvalue ≥ 0

Format if<cond>
branchbyte1
branchbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION248

the

e of
an
his

 fol-
if<cond> (cont.) if<cond> (cont.)

If the comparison succeeds, the unsignedbranchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
offset is calculated to be (branchbyte1 << 8) |branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcod
this if<cond> instruction. The target address must be that of
opcode of an instruction within the method that contains t
if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction
lowing thisif<cond> instruction.

JAVA VIRTUAL MACHINE INSTRUCTION SET 249

the

e of
an

 fol-
ifnonnull ifnonnull

Operation Branch ifreference notnull

Forms ifnonnull = 199 (0xc7)

Stack …, value ⇒
…

Description The value must of typereference. It is popped from the oper-
and stack. Ifvalue is not null, the unsignedbranchbyte1 and
branchbyte2 are used to construct a signed 16-bit offset, where
offset is calculated to be (branchbyte1 << 8) |branchbyte2. Execu-
tion then proceeds at that offset from the address of the opcod
this ifnonnull instruction. The target address must be that of
opcode of an instruction within the method that contains thisifnon-
null instruction.

Otherwise, execution proceeds at the address of the instruction
lowing thisifnonnull instruction.

Format ifnonnull
branchbyte1
branchbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION250

 cal-

f an

 fol-
ifnull ifnull

Operation Branch ifreference is null

Forms ifnull = 198 (0xc6)

Stack …, value ⇒
…

Description Thevalue must of typereference. It is popped from the operand
stack. Ifvalue is null, the unsignedbranchbyte1 andbranchbyte2
are used to construct a signed 16-bit offset, where the offset is
culated to be (branchbyte1 << 8) |branchbyte2. Execution then pro-
ceeds at that offset from the address of the opcode of thisifnull
instruction. The target address must be that of an opcode o
instruction within the method that contains thisifnull instruction.

Otherwise, execution proceeds at the address of the instruction
lowing thisifnull instruction.

Format ifnull
branchbyte1
branchbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 251

the

 and
iinc iinc

Operation Increment local variable by constant

Forms iinc = 132 (0x84)

Stack No change

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). Theconst is a immediate
signed byte. The local variable atindex must contain anint. The
valueconst is first sign-extended to anint, then the local variable
at index is incremented by that amount.

Notes The iinc opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index
increment it by a two-byte immediate value.

Format iinc
index
const

THE JAVATM VIRTUAL MACHINE SPECIFICATION252

the
 at
iload iload

Operation Loadint from local variable

Forms iload = 21 (0x15)

Stack … ⇒
…, value

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). The local variable
index must contain anint. Thevalue of the local variable atindex
is pushed onto the operand stack.

Notes The iload opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format iload
index

JAVA VIRTUAL MACHINE INSTRUCTION SET 253

r-

d

iload_<n> iload_<n>

Operation Loadint from local variable

Forms iload_0 = 26 (0x1a)
iload_1 = 27 (0x1b)
iload_2 = 28 (0x1c)
iload_3 = 29 (0x1d)

Stack … ⇒
…, value

Description The <n> must be a valid index into the local variables of the cu
rent frame (§3.6). The local variable at<n> must contain anint.
The value of the local variable at<n> is pushed onto the operan
stack.

Notes Each of theiload_<n> instructions is the same asiload with an
index of <n>, except that the operand<n> is implicit.

Format iload_<n>

THE JAVATM VIRTUAL MACHINE SPECIFICATION254

er

athe-
imul imul

Operation Multiply int

Forms imul = 104 (0x68)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Theint result is value1 * value2. The
result is pushed onto the operand stack.

If an int multiplication overflows, then the result is the low-ord
bits of the mathematical product as anint. If overflow occurs, then
the sign of the result may not be the same as the sign of the m
matical product of the two values.

Format imul

JAVA VIRTUAL MACHINE INSTRUCTION SET 255

.

ero.
pre-
s is

ver-
ineg ineg

Operation Negateint

Forms ineg = 116 (0x74)

Stack …, value ⇒
…, result

Description Thevalue must be of typeint. It is popped from the operand stack
The int result is the arithmetic negation ofvalue, −value. The
result is pushed onto the operand stack.

For int values, negation is the same as subtraction from z
Because the Java Virtual Machine uses two’s-complement re
sentation for integers and the range of two’s-complement value
not symmetric, the negation of the maximum negativeint results
in that same maximum negative number. Despite the fact that o
flow has occurred, no exception is thrown.

For allint valuesx, -x equals(~x) + 1.

Format ineg

THE JAVATM VIRTUAL MACHINE SPECIFICATION256

lass

 a
ay,

s,

,

instanceof instanceof

Operation Determine if object is of given type

Forms instanceof = 193 (0xc1)

Stack …, objectref ⇒
…, result

Description The objectref, which must be of typereference, is popped from
the operand stack. The unsignedindexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current c
(§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The item at that index in the constant pool must be
CONSTANT_Class (§4.4.1), a symbolic reference to a class, arr
or interface. The symbolic reference is resolved (§5.1).

If objectref is not null and is an instance of the resolved clas
array, or interface, theinstanceof instruction pushes anint result
of 1 as an int on the operand stack. Otherwise, it pushes anint

result of 0.

The following rules are used to determine whether anobjectref that
is notnull is an instance of the resolved type: IfS is the class of
the object referred to byobjectref andT is the resolved class, array
or interface type,instanceof determines whetherobjectref is an
instance ofT as follows:

Format instanceof
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 257

f

es of

e

instanceof (cont.) instanceof (cont.)

• If S is an ordinary (non-array) class, then:

■ If T is a class type, thenS must be the same class (§2.8.1) asT

or a subclass ofT.

■ If T is an interface type, thenS must implement (§2.13) inter-
faceT.

• If S is a class representing the array typeSC[], that is, an array of
components of typeSC, then:

■ If T is a class type, thenT must beObject (§2.4.6).

■ If T is an array typeTC[], that is, an array of components o
typeTC, then one of the following must be true:

• TC andSC are the same primitive type (§2.4.1).

• TC andSC are reference types (§2.4.5), and typeSC can be
cast toTC by these runtime rules.

S cannot be an interface type, because there are no instanc
interfaces, only instances of classes and arrays.

Linking
Exceptions

During resolution of theCONSTANT_Class constant pool item, any
of the exceptions documented in §5.1 can be thrown.

Notes The instanceof instruction is fundamentally very similar to th
checkcast instruction. It differs in its treatment ofnull, its behavior
when its test fails (checkcast throws an exception,instanceof pushes
a result code), and its effect on the operand stack.

THE JAVATM VIRTUAL MACHINE SPECIFICATION258

 the

ag
-
3.3).
hod
r

The

f
pre-
face

e and
lved
invokeinterface invokeinterface

Operation Invoke interface method

Forms invokeinterface = 185 (0xb9)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 andindexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index in the constant pool must have the t
CONSTANT_InterfaceMethodref (§4.4.2), a reference to an inter
face name, a method name, and the method’s descriptor (§4.
The constant pool item is resolved (§5.3). The interface met
must not be<init>, an instance initialization method (§3.8), o
<clinit>, a class or interface initialization method (§3.8).

Thenargs operand is an unsigned byte which must not be zero.
objectref must be of typereference and must be followed on the
operands stack bynargs − 1 words of arguments. The number o
words of arguments and the type and order of the values they re
sent must be consistent with the descriptor of the selected inter
method.

The method table of the class of the type ofobjectref is determined.
If objectref is an array type, then the method table of classObject

is used. The method table is searched for a method whose nam
descriptor are identical to the name and descriptor of the reso
constant pool entry.

Format invokeinterface
indexbyte1
indexbyte2

nargs
0

JAVA VIRTUAL MACHINE INSTRUCTION SET 259

s a
the

and

e is

tual
e

ion

at
 Vir-

ple-
an-

 be

rip-
invokeinterface (cont.) invokeinterface (cont.)

The result of the search is a method table entry, which include
direct reference to the code for the interface method and
method’s modifier information (see Table 4.4, “Method access
modifier flags”). The method table entry must be that of apublic

method.

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exceptions

During resolution of theCONSTANT_InterfaceMethodref con-
stant pool item, any of the exceptions documented in §5.3 can
thrown.

Otherwise, if no method matching the resolved name and desc
tor can be found in the class ofobjectref, invokeinterface throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is a class (static) method, the
invokeinterface instruction throws an IncompatibleClass-
ChangeError.

THE JAVATM VIRTUAL MACHINE SPECIFICATION260

the
den-
i-
 for

rve
invokeinterface (cont.) invokeinterface (cont.)

Otherwise, if the selected method is notpublic, invokeinterface
throws anIllegalAccessError.

Otherwise, if the selected method isabstract, invokeinterface
throws anAbstractMethodError.

Otherwise, if the selected method isnative and the code that
implements the method cannot be loaded or linked,invokeinterface
throws anUnsatisfiedLinkError.

Runtime
Exception

Otherwise, if objectref is null, the invokeinterface instruction
throws aNullPointerException.

Notes Unlike invokevirtual, invokestatic, and invokespecial, the number
of arguments words (nargs) for the method invocation is made
available as an operand of theinvokeinterface instruction. As with
the other instructions, that value can also be derived from
descriptor of the selected method. The derived value must be i
tical to the value of thenargs operand. This redundancy is histor
cal, but thenargs operand also reserves space in the instruction
an operand used by theinvokeinterface_quick pseudo-instruction
which may replaceinvokeinterface at run time. See Chapter 9, “An
Optimization,” for information oninvokeinterface_quick.

The fourth operand byte of theinvokeinterface instruction is unused
by the instruction itself and must be zero. It exists only to rese
space for an additional operand added if theinvokeinterface
instruction is replaced by theinvokeinterface_quick pseudo-instruc-
tion at run time.

JAVA VIRTUAL MACHINE INSTRUCTION SET 261

ate,

 the

ag
 a
med
hod
the

g

rrent

er
invokespecial invokespecial

Operation Invoke instance method; special handling for superclass, priv
and instance initialization method invocations

Forms invokespecial = 183 (0xb7)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 andindexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index in the constant pool must have the t
CONSTANT_Methodref (§4.4.2), a reference to a class name,
method name, and the method’s descriptor (§4.3.3). The na
method is resolved (§5.2). The descriptor of the resolved met
must be identical to the descriptor of one of the methods of
resolved class.

Next, the Java Virtual Machine determines if all of the followin
conditions are true:

• The name of the method is not<init>, an instance initialization
method (§3.8).

• The method is not aprivate method.

• The class of the method is a superclass of the class of the cu
method.

• TheACC_SUPER flag (see Table 4.1, “Class access and modifi
flags”) is set for the current class.

Format invokespecial
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION262

the
 the

,
ed

cu-

 cur-
s

des
byte
ion

e
lues
cted
invokespecial (cont.) invokespecial (cont.)

If so, then the Java Virtual Machine selects the method with
identical descriptor in the closest superclass, possibly selecting
method just resolved.

The resulting method must not be<clinit>, a class or interface
initialization method (§3.8).

If the method is<init>, an instance initialization method (§3.8)
then the method must only be invoked once on an uninitializ
object, and before the first backward branch following the exe
tion of thenew instruction that allocated the object.

Finally, if the method isprotected (§4.6), then it must be either a
member of the current class or a member of a superclass of the
rent class, and the class ofobjectref must be either the current clas
or a subclass of the current class.

The constant pool entry representing the resolved method inclu
a direct reference to the code for the method, an unsigned
nargs that must not be zero, and the method’s modifier informat
(see Table 4.4, “Method access and modifier flags”).

Theobjectref must be of typereference and must be followed on
the operand stack bynargs − 1 words of arguments, where th
number of words of arguments and the type and order of the va
they represent must be consistent with the descriptor of the sele
instance method.

If the method issynchronized, the monitor associated with
objectref is acquired.

JAVA VIRTUAL MACHINE INSTRUCTION SET 263

e is

tual
e

ion

at
 Vir-

ple-
an-
invokespecial (cont.) invokespecial (cont.)

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exceptions

During resolution of theCONSTANT_Methodref constant pool
item, any of the exceptions documented in §5.2 can be thrown.

Otherwise, if the specified method exists but is a class (static)
method, theinvokespecial instruction throws anIncompatible-
ClassChangeError.

Otherwise, if the specified method isabstract, invokespecial
throws anAbstractMethodError.

Otherwise, if the specified method isnative and the code that
implements the method cannot be loaded or linked,invokespecial
throws anUnsatisfiedLinkError.

Runtime
Exception

Otherwise, ifobjectref is null, theinvokespecial instruction throws
aNullPointerException.

THE JAVATM VIRTUAL MACHINE SPECIFICATION264

e

invokespecial (cont.) invokespecial (cont.)

Notes The difference between theinvokespecial and theinvokevirtual
instructions is thatinvokevirtual invokes a method based on th
class of the object. Theinvokespecial instruction is used to invoke
instance initialization methods (<init>) as well asprivate meth-
ods and methods of a superclass of the current class.

The invokespecial instruction was namedinvokenonvirtual prior to
Sun’s JDK 1.0.2 release.

JAVA VIRTUAL MACHINE INSTRUCTION SET 265

 the

ag
 a
med
hod
the

class

des
byte
see
invokestatic invokestatic

Operation Invoke a class (static) method

Forms invokestatic = 184 (0xb8)

Stack …, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 andindexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index in the constant pool must have the t
CONSTANT_Methodref (§4.4.2), a reference to a class name,
method name, and the method’s descriptor (§4.3.3). The na
method is resolved (§5.2). The descriptor of the resolved met
must be identical to the descriptor of one of the methods of
resolved class. The method must not be<init>, an instance initial-
ization method (§3.8), or<clinit>, a class or interface initializa-
tion method (§3.8). It must bestatic, and therefore cannot be
abstract. Finally, if the method isprotected (§4.6), then it must
be either a member of the current class or a member of a super
of the current class.

The constant pool entry representing the resolved method inclu
a direct reference to the code for the method, an unsigned
nargs that may be zero, and the method’s modifier information (
Table 4.4, “Method access and modifier flags”).

Format invokestatic
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION266

 the
f the

 for
ade

is

cu-

d
d is

n

invokestatic (cont.) invokestatic (cont.)

The operand stack must containnargs words of arguments, where
the number of words of arguments and the type and order of
values they represent must be consistent with the descriptor o
resolved method.

If the method issynchronized, the monitor associated with the
current class is acquired.

If the method is notnative, the nargs words of arguments are
popped from the operand stack. A new stack frame is created
the method being invoked, and the words of arguments are m
the values of its firstnargs local variables, witharg1 in local vari-
able0, arg2 in local variable1, and so on. The new stack frame
then made current, and the Java Virtual Machinepc is set to the
opcode of the first instruction of the method to be invoked. Exe
tion continues with the first instruction of the method.

If the method isnative, thenargs words of arguments are poppe
from the operand stack; the code that implements the metho
invoked in an implementation-dependent manner.

Linking
Exceptions

During resolution of theCONSTANT_Methodref constant pool
item, any of the exceptions documented in §5.2 can be thrown.

Otherwise, i f the specified method exists but is a
instance method, theinvokestatic instruct ion throws an
IncompatibleClassChangeError.

Otherwise, if the specified method isnative and the code that
implements the method cannot be loaded or linked,invokestatic
throws anUnsatisfiedLinkError.

JAVA VIRTUAL MACHINE INSTRUCTION SET 267

 the

ag
 a
med
hod
 the

er of

des
nd
invokevirtual invokevirtual

Operation Invoke instance method; dispatch based on class

Forms invokevirtual = 182 (0xb6)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 andindexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index in the constant pool must have the t
CONSTANT_Methodref (§4.4.2), a reference to a class name,
method name, and the method’s descriptor (§4.3.3). The na
method is resolved (§5.2). The descriptor of the resolved met
must be identical to the descriptor of the one of the methods of
resolved class. The method must not be<init>, an instance initial-
ization method (§3.8), or<clinit>, a class or interface initializa-
tion method (§3.8). Finally, if the method isprotected (§4.6),
then it must be either a member of the current class or a memb
a superclass of the current class, and the class ofobjectref must be
either the current class or a subclass of the current class.

The constant pool entry representing the resolved method inclu
an unsignedindex into the method table of the resolved class a
an unsigned bytenargs that must not be zero.

Format invokevirtual
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION268

e to
.4,

 and
stent

e is

tual
e

ion

at
ava

hat
ent
invokevirtual (cont.) invokevirtual (cont.)

The objectref must be of typereference. Theindex is used as an
index into the method table of the class of the type ofobjectref. If
theobjectref is an array type, then the method table of classObject

is used. The table entry at that index includes a direct referenc
the method’s code and its modifier information (see Table 4
“Method access and modifier flags”).

The objectref must be followed on the operand stack bynargs − 1
words of arguments, where the number of words of arguments
the type and order of the values they represent must be consi
with the descriptor of the selected instance method.

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the J
Virtual Machine, that is done. Thenargs − 1 words of arguments
and objectref are popped from the operand stack; the code t
implements the method is invoked in an implementation-depend
manner.

Linking
Exceptions

During resolution of theCONSTANT_Methodref constant pool item,
any of the exceptions documented in §5.2 can be thrown.

JAVA VIRTUAL MACHINE INSTRUCTION SET 269

ss
invokevirtual (cont.) invokevirtual (cont.)

Otherwise, i f the specified method exists but is a c la
(static) method, theinvokevirtual instruct ion throws an
IncompatibleClassChangeError.

Otherwise, if the specified method isabstract, invokevirtual
throws anAbstractMethodError.

Otherwise, if the specified method isnative and the code that
implements the method cannot be loaded or linked,invokevirtual
throws anUnsatisfiedLinkError.

Runtime
Exception

Otherwise, ifobjectref is null, theinvokevirtual instruction throws
aNullPointerException.

THE JAVATM VIRTUAL MACHINE SPECIFICATION270
ior ior

Operation Boolean ORint

Forms ior = 128 (0x80)

Stack …, value1, value2 ⇒
…, result

Description Both value1 andvalue2 must both be of typeint. They are popped
from the operand stack. Anint result is calculated by taking the
bitwise inclusive OR ofvalue1 andvalue2. The result is pushed
onto the operand stack.

Format ior

JAVA VIRTUAL MACHINE INSTRUCTION SET 271

ivi-
e

f the
os-
 the
irem irem

Operation Remainderint

Forms irem = 112 (0x70)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Theint result is value1 − (value1 /
value2) * value2. Theresult is pushed onto the operand stack.

The result of theirem instruction is such that(a/b)*b + (a%b) is
equal toa. This identity holds even in the special case that the d
dend is the negativeint of largest possible magnitude for its typ
and the divisor is−1 (the remainder is0). It follows from this rule
that the result of the remainder operation can be negative only i
dividend is negative and can be positive only if the dividend is p
itive. Moreover, the magnitude of the result is always less than
magnitude of the divisor.

Runtime
Exception

If the value of the divisor for anint remainder operator is 0,irem
throws anArithmeticException.

Format irem

THE JAVATM VIRTUAL MACHINE SPECIFICATION272

per-
per-
ing
-
pec-

od,
ireturn ireturn

Operation Returnint from method

Forms ireturn = 172 (0xac)

Stack …, value ⇒
[empty]

Description The returning method must have return typebyte, short, char, or
int. Thevalue must be of typeint. Thevalue is popped from the
operand stack of the current frame (§3.6) and pushed onto the o
and stack of the frame of the invoker. Any other values on the o
and stack of the current method are discarded. If the return
method is asynchronized method, the monitor acquired or re
entered on invocation of the method is released or exited (res
tively) as if by execution of amonitorexit instruction.

The interpreter then returns control to the invoker of the meth
reinstating the frame of the invoker.

Format ireturn

JAVA VIRTUAL MACHINE INSTRUCTION SET 273

 2
he
ishl ishl

Operation Shift left int

Forms ishl = 120 (0x78)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Anint result is calculated by shifting
value1 left by s bit positions, wheres is the value of the low five
bits ofvalue2. Theresult is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by
to the powers. The shift distance actually used is always in t
range 0 to 31, inclusive, as ifvalue2 were subjected to a bitwise
logical AND with the mask value 0x1f.

Format ishl

THE JAVATM VIRTUAL MACHINE SPECIFICATION274

s

ishr ishr

Operation Arithmetic shift rightint

Forms ishr = 122 (0x7a)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Anint result is calculated by shifting
value1 right by s bit positions, with sign extension, wheres is the
value of the low five bits ofvalue2. Theresult is pushed onto the
operand stack.

Notes The resulting value is , wheres is value2 & 0x1f.
For nonnegativevalue1, this is equivalent to truncatingint divi-
sion by 2 to the powers. The shift distance actually used is alway
in the range 0 to 31, inclusive, as ifvalue2 were subjected to a bit-
wise logical AND with the mask value 0x1f.

Format ishr

value1() 2
s⁄

JAVA VIRTUAL MACHINE INSTRUCTION SET 275

the
istore istore

Operation Storeint into local variable

Forms istore = 54 (0x36)

Stack …, value ⇒
…

Description The index is an unsigned byte that must be a valid index into
local variables of the current frame (§3.6). Thevalue on the top of
the operand stack must be of typeint. It is popped from the oper-
and stack, and the value of the local variable atindex is set tovalue.

Notes Theistore opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format istore
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION276

r-
st
lue
istore_<n> istore_<n>

Operation Storeint into local variable

Forms istore_0 = 59 (0x3b)
istore_1 = 60 (0x3c)
istore_2 = 61 (0x3d)
istore_3 = 62 (0x3e)

Stack …, value ⇒
…

Description The <n> must be a valid index into the local variables of the cu
rent frame (§3.6). Thevalue on the top of the operand stack mu
be of typeint. It is popped from the operand stack, and the va
of the local variable at<n> is set tovalue.

Notes Each of theistore_<n> instructions is the same asistore with an
index of <n>, except that the operand<n> is implicit.

Format istore_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 277

ch
cal
isub isub

Operation Subtractint

Forms isub = 100 (0x64)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Theint result is value1 − value2. The
result is pushed onto the operand stack.

For int subtraction,a − b produces the same result asa + (−b).
Forint values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occur, in whi
case theresult may have a different sign than the true mathemati
result, execution of anisub instruction never throws a runtime
exception.

Format isub

THE JAVATM VIRTUAL MACHINE SPECIFICATION278

s
e

ift
iushr iushr

Operation Logical shift rightint

Forms iushr = 124 (0x7c)

Stack …, value1, value2 ⇒
…, result

Description Bothvalue1 andvalue2 must be of typeint. The values are popped
from the operand stack. Anint result is calculated by shifting
value1 right by s bit positions, with zero extension, wheres is the
value of the low five bits ofvalue2. Theresult is pushed onto the
operand stack.

Notes If value1 is positive ands is value2 & 0x1f, the result is the same a
that ofvalue1 >> s; if value1 is negative, the result is equal to th
value of the expression (value1 >> s) + (2<< ~s). The addition of
the (2<< ~s) term cancels out the propagated sign bit. The sh
distance actually used is always in the range 0 to 31, inclusive.

Format iushr

JAVA VIRTUAL MACHINE INSTRUCTION SET 279
ixor ixor

Operation Boolean XORint

Forms ixor = 130 (0x82)

Stack …, value1, value2 ⇒
…, result

Description Both value1 andvalue2 must both be of typeint. They are popped
from the operand stack. Anint result is calculated by taking the
bitwise exclusive OR ofvalue1 andvalue2. The result is pushed
onto the operand stack.

Format ixor

THE JAVATM VIRTUAL MACHINE SPECIFICATION280

g
e of

t is
t
e
ins

ion
o
is
jsr jsr

Operation Jump subroutine

Forms jsr = 168 (0xa8)

Stack … ⇒
…, address

Description Theaddress of the opcode of the instruction immediately followin
this jsr instruction is pushed onto the operand stack as a valu
typereturnAddress. The unsignedbranchbyte1 andbranchbyte2
are used to construct a signed 16-bit offset, where the offse
(branchbyte1 << 8) |branchbyte2. Execution proceeds at that offse
from the address of thisjsr instruction. The target address must b
that of an opcode of an instruction within the method that conta
this jsr instruction.

Notes The jsr instruction is used with theret instruction in the implemen-
tation of thefinally clauses of the Java language (see Sect
7.13, “Compilingfinally”). Note thatjsr pushes the address ont
the stack andret gets it out of a local variable. This asymmetry
intentional.

Format jsr
branchbyte1
branchbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 281

g
e of

it

t
s
that

ion

y

er
his
e.
jsr_w jsr_w

Operation Jump subroutine (wide index)

Forms jsr_w = 201 (0xc9)

Stack … ⇒
…, address

Description Theaddress of the opcode of the instruction immediately followin
this jsr_w instruction is pushed onto the operand stack as a valu
type returnAddress. The unsignedbranchbyte1, branchbyte2,
branchbyte3, andbranchbyte4 are used to construct a signed 32-b
offset, where the offset is (branchbyte1 << 24) | (branchbyte2 <<
16) | (branchbyte3 << 8) |branchbyte4. Execution proceeds at tha
offset from the address of thisjsr_w instruction. The target addres
must be that of an opcode of an instruction within the method
contains thisjsr_w instruction.

Notes The jsr_w instruction is used with theret instruction in the imple-
mentation of thefinally clauses of the Java language (see Sect
7.13, “Compilingfinally”). Note thatjsr_w pushes the address
onto the stack andret gets it out of a local variable. This asymmetr
is intentional.

Although thejsr_w instruction has a 4-byte branch offset, oth
factors limit the size of a Java method to 65535 bytes (§4.10). T
limit may be raised in a future release of the Java Virtual Machin

Format jsr_w
branchbyte1
branchbyte2
branchbyte3
branchbyte4

THE JAVATM VIRTUAL MACHINE SPECIFICATION282

n

l2d l2d

Operation Convertlong to double

Forms l2d = 138 (0x8a)

Stack …, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description Thevalue on the top of the operand stack must be of typelong. It
is popped from the operand stack and converted to adouble result
using IEEE 754 round-to-nearest mode. Theresult is pushed onto
the operand stack.

Notes The l2d instruction performs a widening primitive conversio
(§2.6.2) that may lose precision because typedouble has only 53
mantissa bits.

Format l2d

JAVA VIRTUAL MACHINE INSTRUCTION SET 283

n

l2f l2f

Operation Convertlong to float

Forms l2f = 137 (0x89)

Stack …, value.word1, value.word2 ⇒
…, result

Description Thevalue on the top of the operand stack must be of typelong. It
is popped from the operand stack and converted to afloat result
using IEEE 754 round-to-nearest mode. Theresult is pushed onto
the operand stack.

Notes The l2f instruction performs a widening primitive conversio
(§2.6.2) that may lose precision because typefloat has only 24
mantissa bits.

Format l2f

THE JAVATM VIRTUAL MACHINE SPECIFICATION284

n
 of
l2i l2i

Operation Convertlong to int

Forms l2i = 136 (0x88)

Stack …, value.word1, value.word2 ⇒
…, result

Description Thevalue on the top of the operand stack must be of typelong. It
is popped from the operand stack and converted to anint result by
taking the low-order 32 bits of thelong value and discarding the
high-order 32 bits. Theresult is pushed onto the operand stack.

Notes The l2i instruction performs a narrowing primitive conversio
(§2.6.3). It may lose information about the overall magnitude
value. Theresult may also not have the same sign asvalue.

Format l2i

JAVA VIRTUAL MACHINE INSTRUCTION SET 285

 of

 the
ladd ladd

Operation Add long

Forms ladd = 97 (0x61)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. The values are
popped from the operand stack. Thelong result is value1 + value2.
Theresult is pushed onto the operand stack.

If a long addition overflows, then the result is the low-order bits
the mathematical sum as represented by along. If overflow occurs,
then the sign of the result will not be the same as the sign of
mathematical sum of the two values.

Format ladd

THE JAVATM VIRTUAL MACHINE SPECIFICATION286

k.

d

laload laload

Operation Loadlong from array

Forms laload = 47 (0x2f)

Stack …, arrayref, index ⇒
…, value.word1, value.word2

Description Thearrayref must be of typereference and must refer to an array
whose components are of typelong. The index must be of type
int. Both arrayref and index are popped from the operand stac
Thelong value in the component of the array atindex is retrieved
and pushed onto the top of the operand stack.

Runtime
Exceptions

If arrayref is null, laload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the laload instruction throws anArrayIndexOutOf-
BoundsException.

Format laload

JAVA VIRTUAL MACHINE INSTRUCTION SET 287
land land

Operation Boolean ANDlong

Forms land = 127 (0x7f)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must both be of typelong. They are
popped from the operand stack. Along result is calculated by tak-
ing the bitwise AND ofvalue1 andvalue2. The result is pushed
onto the operand stack.

Format land

THE JAVATM VIRTUAL MACHINE SPECIFICATION288

d

lastore lastore

Operation Store intolong array

Forms lastore = 80 (0x50)

Stack …, arrayref, index, value.word1, value.word2 ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typelong. The index must be of type
int andvalue must be of typelong. Thearrayref, index, andvalue
are popped from the operand stack. Thelong value is stored as the
component of the array indexed byindex.

Runtime
Exceptions

If arrayref is null, lastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the lastore instruction throws anArrayIndexOutOf-
BoundsException.

Format lastore

JAVA VIRTUAL MACHINE INSTRUCTION SET 289

on is
lcmp lcmp

Operation Comparelong

Forms lcmp = 148 (0x94)

Stack …, value1.word1, value1.word2, value2.word1, value2.word1 ⇒
…, result

Description Both value1 and value2 must be of typelong. They are both
popped from the operand stack, and a signed integer comparis
performed. Ifvalue1 is greater thanvalue2, the int value 1 is
pushed onto the operand stack. Ifvalue1 is equal tovalue2, theint
value 0 is pushed onto the operand stack. Ifvalue1 is less than
value2, theint value –1 is pushed onto the operand stack.

Format lcmp

THE JAVATM VIRTUAL MACHINE SPECIFICATION290
lconst_<l> lconst_<l>

Operation Pushlong constant

Forms lconst_0 = 9 (0x9)
lconst_1 = 10 (0xa)

Stack … ⇒
…, <l>.word1, <l>.word2

Description Push thelong constant<l> (0 or 1) onto the operand stack.

Format lconst_<l>

JAVA VIRTUAL MACHINE INSTRUCTION SET 291

the
ry at

s

ldc ldc

Operation Push item from constant pool

Forms ldc = 18 (0x12)

Stack … ⇒
…, item

Description The index is an unsigned byte that must be a valid index into
constant pool of the current class (§3.6). The constant pool ent
index must be aCONSTANT_Integer (§4.4.4),CONSTANT_Float
(§4.4.4), orCONSTANT_String (§4.4.3). The constant pool entry i
resolved (§5.4, §5.5). If the entry is aCONSTANT_Integer or
CONSTANT_Float, it must contain a numericitem which is pushed
onto the operand stack as anint or float, respectively.

If the entry atindex is a CONSTANT_String, it must contain a
CONSTANT_Utf8 (§4.4.7) string. An instance of classString is
created and initialized to theCONSTANT_Utf8 string. Theitem, a
reference to the instance, is pushed onto the operand stack.

Linking
Exceptions

During resolution of aCONSTANT_String constant pool item, any
of the exceptions documented in §5.4 can be thrown.

Format ldc
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION292

ass

nt
ust

d

e

ldc_w ldc_w

Operation Push item from constant pool (wide index)

Forms ldc_w = 19 (0x13)

Stack … ⇒
…, item

Description The unsignedindexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current cl
(§3.6), where the value of the index is calculated as (indexbyte1 <<
8) | indexbyte2. The index must be a valid index into the consta
pool of the current class. The constant pool entry at the index m
be aCONSTANT_Integer (§4.4.4),CONSTANT_Float (§4.4.4), or
CONSTANT_String (§4.4.3). The constant pool entry is resolve
(§5.4, §5.5). If the entry is aCONSTANT_Integer or
CONSTANT_Float, it must contain a numericitem which is pushed
onto the operand stack as anint or float, respectively.

If the entry at the constant pool index is aCONSTANT_String, it
must contain aCONSTANT_Utf8 (§4.4.7) string. An instance of
class String is created and initialized to theCONSTANT_Utf8
string. Theitem, a reference to the instance, is pushed onto th
operand stack.

Linking
Exceptions

During resolution of aCONSTANT_String constant pool item, any
of the exceptions documented in §5.4 can be thrown.

Format ldc_w
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 293
ldc_w (cont.) ldc_w (cont.)

Notes The ldc_w instruction is identical to theldc instruction except for
its wider constant pool index.

THE JAVATM VIRTUAL MACHINE SPECIFICATION294

ass

nt
ust

n a
ldc2_w ldc2_w

Operation Pushlong or double from constant pool (wide index)

Forms ldc2_w = 20 (0x14)

Stack … ⇒
…, item.word1, item.word2

Description The unsignedindexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current cl
(§3.6), where the value of the index is calculated as (indexbyte1 <<
8) | indexbyte2. The index must be a valid index into the consta
pool of the current class. The constant pool entry at the index m
be aCONSTANT_Long (§4.4.5) orCONSTANT_Double (§4.4.5). The
constant pool entry is resolved (§5.5). The entry must contai
numericitem which is pushed onto the operand stack as along or
double, respectively.

Notes Only a wide-index version of theldc2_w instruction exists; there is
no ldc2 instruction that pushes along or double with a single-byte
index.

Format ldc2_w
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 295

-

for
e

divi-
 the
lt
 is
ldiv ldiv

Operation Divide long

Forms ldiv = 109 (0x6d)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. The values are
popped from the operand stack. Thelong result is the value of the
Java expressionvalue1 / value2. Theresult is pushed onto the oper
and stack.

A long division rounds towards 0; that is, the quotient produced
long values inn / d is along valueq whose magnitude is as larg
as possible while satisfying . Moreover,q is positive
when andn andd have the same sign, butq is negative
when andn andd have opposite signs.

There is one special case that does not satisfy this rule: if the
dend is the negative integer of largest possible magnitude for
long type and the divisor is−1, then overflow occurs and the resu
is equal to the dividend; despite the overflow, no exception
thrown in this case.

Runtime
Exception

If the value of the divisor in along division is 0,ldiv throws an
ArithmeticException.

Format ldiv

d q⋅ n≤
n d≥
n d≥

THE JAVATM VIRTUAL MACHINE SPECIFICATION296

6).
lload lload

Operation Loadlong from local variable

Forms lload = 22 (0x16)

Stack … ⇒
…, value.word1, value.word2

Description The index is an unsigned byte. Bothindex andindex + 1 must be
valid indices into the local variables of the current frame (§3.
The local variables atindex andindex + 1 together must contain a
long. The value of the local variables atindex and index + 1 is
pushed onto the operand stack.

Notes The lload opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format lload
index

JAVA VIRTUAL MACHINE INSTRUCTION SET 297

i-
lload_<n> lload_<n>

Operation Loadlong from local variable

Forms lload_0 = 30 (0x1e)
lload_1 = 31 (0x1f)
lload_2 = 32 (0x20)
lload_3 = 33 (0x21)

Stack … ⇒
…, value.word1, value.word2

Description Both <n> and<n> + 1 must be valid indices into the local var
ables of the current frame (§3.6). The local variables at<n> and
<n> + 1 together must contain along. Thevalue of the local vari-
ables at<n> and<n> + 1 is pushed onto the operand stack.

Notes Each of thelload_<n> instructions is the same aslload with an
index of <n>, except that the operand<n> is implicit.

Format lload_<n>

THE JAVATM VIRTUAL MACHINE SPECIFICATION298

er

ign of
lmul lmul

Operation Multiply long

Forms lmul = 105 (0x69)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. The values are
popped from the operand stack. Thelong result is value1 * value2.
Theresult is pushed onto the operand stack.

If a long multiplication overflows, then the result is the low-ord
bits of the mathematical product represented as along. If overflow
occurs, then the sign of the result may not be the same as the s
the mathematical product of the two values.

Format lmul

JAVA VIRTUAL MACHINE INSTRUCTION SET 299

ero.
pre-
s is

ver-
lneg lneg

Operation Negatelong

Forms lneg = 117 (0x75)

Stack …, value.word1, value.word2 ⇒
…, result.word1, result.word2

Description The value must be of typelong. It is popped from the operand
stack. Thelong result is the arithmetic negation ofvalue, −value.
Theresult is pushed onto the operand stack.

For long values, negation is the same as subtraction from z
Because the Java Virtual Machine uses two’s-complement re
sentation for integers and the range of two’s-complement value
not symmetric, the negation of the maximum negativelong results
in that same maximum negative number. Despite the fact that o
flow has occurred, no exception is thrown.

For alllong valuesx, −x equals(~x) + 1.

Format lneg

THE JAVATM VIRTUAL MACHINE SPECIFICATION300

r
ed
r of

od
ing

n-
lookupswitch lookupswitch

Operation Access jump table by key match and jump

Forms lookupswitch = 171 (0xab)

Stack …, key ⇒
…

Description A lookupswitch is a variable-length instruction. Immediately afte
thelookupswitch opcode, between zero and three null bytes (zero
bytes, not the null object) are inserted as padding. The numbe
null bytes is chosen so that thedefaultbyte1 begins at an address
that is a multiple of four bytes from the start of the current meth
(the opcode of its first instruction). Immediately after the padd
follow a series of signed 32-bit values:default, npairs, and then
npairs pairs of signed 32-bit values. Thenpairs must be greater
than or equal to 0. Each of thenpairs pairs consists of anint match
and a signed 32-bitoffset. Each of these signed 32-bit values is co
structed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) |
(byte3 << 8) |byte4.

Format lookupswitch
<0-3 byte pad>

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

npairs1
npairs2
npairs3
npairs4

match-offset pairs…

JAVA VIRTUAL MACHINE INSTRUCTION SET 301

k.

rre-

s

each

 that

and

are
lookupswitch (cont.) lookupswitch (cont.)

The tablematch-offset pairs of thelookupswitch instruction must be
sorted in increasing numerical order bymatch.

Thekey must be of typeint and is popped from the operand stac
Thekey is compared against thematch values. If it is equal to one
of them, then a target address is calculated by adding the co
spondingoffset to the address of the opcode of thislookupswitch
instruction. If thekey does not match any of thematch values, the
target address is calculated by addingdefault to the address of the
opcode of thislookupswitch instruction. Execution then continue
at the target address.

The target address that can be calculated from the offset of
match-offset pair, as well as the one calculated fromdefault, must
be the address of an opcode of an instruction within the method
contains thislookupswitch instruction.

Notes The alignment required of the 4-byte operands of thelookupswitch
instruction guarantees 4-byte alignment of those operands if
only if the method that contains thelookupswitch is positioned on a
4-byte boundary.

Thematch-offset pairs are sorted to support lookup routines that
quicker than linear search.

THE JAVATM VIRTUAL MACHINE SPECIFICATION302
lor lor

Operation Boolean ORlong

Forms lor = 129 (0x81)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. They are popped
from the operand stack. Along result is calculated by taking the
bitwise inclusive OR ofvalue1 andvalue2. The result is pushed
onto the operand stack.

Format lor

JAVA VIRTUAL MACHINE INSTRUCTION SET 303

d

ivi-
e

f the
os-
 the
lrem lrem

Operation Remainderlong

Forms lrem = 113 (0x71)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. The values are
popped from the operand stack. Thelong result is value1 −
(value1 / value2) * value2. Theresult is pushed onto the operan
stack.

The result of thelrem instruction is such that(a/b)*b + (a%b) is
equal toa. This identity holds even in the special case that the d
dend is the negativelong of largest possible magnitude for its typ
and the divisor is−1 (the remainder is0). It follows from this rule
that the result of the remainder operation can be negative only i
dividend is negative and can be positive only if the dividend is p
itive; moreover, the magnitude of the result is always less than
magnitude of the divisor.

Runtime
Exception

If the value of the divisor for along remainder operator is 0,lrem
throws anArithmeticException.

Format lrem

THE JAVATM VIRTUAL MACHINE SPECIFICATION304

and
er-
ing

r
ited

od,
lreturn lreturn

Operation Returnlong from method

Forms lreturn = 173 (0xad)

Stack …, value.word1, value.word2 ⇒
[empty]

Description The returning method must have return typelong. The value
must be of typelong. The value is popped from the operand
stack of the current frame (§3.6) and pushed onto the oper
stack of the frame of the invoker. Any other values on the op
and stack of the current method are discarded. If the return
method is asynchronized method, the monitor acquired o
reentered on invocation of the method is released or ex
(respectively) as if by execution of amonitorexit instruction.

The interpreter then returns control to the invoker of the meth
reinstating the frame of the invoker.

Format lreturn

JAVA VIRTUAL MACHINE INSTRUCTION SET 305

 2
ys
lshl lshl

Operation Shift left long

Forms lshl = 121 (0x79)

Stack …, value1.word1, value1.word2, value2 ⇒
…, result.word1, result.word2

Description Thevalue1 must be of typelong andvalue2 must be of typeint.
The values are popped from the operand stack. Along result is cal-
culated by shiftingvalue1 left by s bit positions, wheres is the low
six bits ofvalue2. Theresult is pushed onto the operand stack.

Notes This is equivalent (even if overflow occurs) to multiplication by
to the power s. The shift distance actually used is therefore alwa
in the range 0 to 63, inclusive, as ifvalue2 were subjected to a bit-
wise logical AND with the mask value 0x3f.

Format lshl

THE JAVATM VIRTUAL MACHINE SPECIFICATION306

e-
lshr lshr

Operation Arithmetic shift rightlong

Forms lshr = 123 (0x7b)

Stack …, value1.word1, value1.word2, value2 ⇒
…, result.word1, result.word2

Description Thevalue1 must be of typelong andvalue2 must be of typeint.
The values are popped from the operand stack. Along result is cal-
culated by shiftingvalue1 right bys bit positions, with sign exten-
sion, wheres is the value of the low six bits ofvalue2. Theresult is
pushed onto the operand stack.

Notes The resulting value is , wheres is value2 & 0x3f.
For nonnegativevalue1, this is equivalent to truncatinglong divi-
sion by 2 to the powers. The shift distance actually used is ther
fore always in the range 0 to 63, inclusive, as ifvalue2 were
subjected to a bitwise logical AND with the mask value 0x3f.

Format lshr

value1() 2
s⁄

JAVA VIRTUAL MACHINE INSTRUCTION SET 307

6).
lstore lstore

Operation Storelong into local variable

Forms lstore = 55 (0x37)

Stack …, value.word1, value.word2 ⇒
…

Description The index is an unsigned byte. Bothindex andindex + 1 must be
valid indices into the local variables of the current frame (§3.
Thevalue on the top of the operand stack must be of typelong. It
is popped from the operand stack, and the local variables atindex
andindex + 1 are set tovalue.

Notes Thelstore opcode can be used in conjunction with thewide instruc-
tion to access a local variable using a two-byte unsigned index.

Format lstore
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION308

i-
lstore_<n> lstore_<n>

Operation Storelong into local variable

Forms lstore_0 = 63 (0x3f)
lstore_1 = 64 (0x40)
lstore_2 = 65 (0x41)
lstore_3 = 66 (0x42)

Stack …, value.word1, value.word2 ⇒
…

Description Both <n> and<n> + 1 must be valid indices into the local var
ables of the current frame (§3.6). Thevalue on the top of the oper-
and stack must be of typelong. It is popped from the operand
stack, and the local variables at<n> and<n> + 1 are set tovalue.

Notes Each of thelstore_<n> instructions is the same aslstore with an
index of <n>, except that the operand<n> is implicit.

Format lstore_<n>

JAVA VIRTUAL MACHINE INSTRUCTION SET 309

ch
cal
lsub lsub

Operation Subtractlong

Forms lsub = 101 (0x65)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. The values are
popped from the operand stack. Thelong result is value1 − value2.
Theresult is pushed onto the operand stack.

Forlong subtraction,a−b produces the same result asa+(−b). For
long values, subtraction from zero is the same as negation.

Despite the fact that overflow or underflow may occur, in whi
case theresult may have a different sign than the true mathemati
result, execution of anlsub instruction never throws a runtime
exception.

Format lsub

THE JAVATM VIRTUAL MACHINE SPECIFICATION310

s
e

he
ive.
lushr lushr

Operation Logical shift rightlong

Forms lushr = 125 (0x7d)

Stack …, value1.word1, value1.word2, value2 ⇒
…, result.word1, result.word2

Description Thevalue1 must be of typelong andvalue2 must be of typeint.
The values are popped from the operand stack. Along result is cal-
culated by shiftingvalue1 right logically (with zero extension) by
the amount indicated by the low six bits ofvalue2. The result is
pushed onto the operand stack.

Notes If value1 is positive ands is value2 & 0x3f, the result is the same a
that ofvalue1 >> s; if value1 is negative, the result is equal to th
value of the expression (value1 >> s) + (2L << ~s). The addition
of the (2L<< ~s) term cancels out the propagated sign bit. T
shift distance actually used is always in the range 0 to 63, inclus

Format lushr

JAVA VIRTUAL MACHINE INSTRUCTION SET 311
lxor lxor

Operation Boolean XORlong

Forms lxor = 131 (0x83)

Stack …, value1.word1, value1.word2, value2.word1, value2.word2 ⇒
…, result.word1, result.word2

Description Both value1 and value2 must be of typelong. They are popped
from the operand stack. Along result is calculated by taking the
bitwise exclusive OR ofvalue1 andvalue2. The result is pushed
onto the operand stack.

Format lxor

THE JAVATM VIRTUAL MACHINE SPECIFICATION312

exe-
th
ted
d,
ady

as

f the

ava
monitorenter monitorenter

Operation Enter monitor for object

Forms monitorenter = 194 (0xc2)

Stack …, objectref ⇒
…

Description Theobjectref must be of typereference.

Each object has a monitor associated with it. The thread that
cutesmonitorenter gains ownership of the monitor associated wi
objectref. If another thread already owns the monitor associa
with objectref, the current thread waits until the object is unlocke
then tries again to gain ownership. If the current thread alre
owns the monitor associated withobjectref, it increments a counter
in the monitor indicating the number of times this thread h
entered the monitor. If the monitor associated withobjectref is not
owned by any thread, the current thread becomes the owner o
monitor, setting the entry count of this monitor to 1.

Runtime
Exception

If objectref isnull,monitorenter throws aNullPointerException.

Notes For detailed information about threads and monitors in the J
Virtual Machine, see Chapter 8, “Threads and Locks.”

Format monitorenter

JAVA VIRTUAL MACHINE INSTRUCTION SET 313

ntry

ee
r-

 in
 For
ame
 at
 the
 the

sup-
ing

age
it
 the
monitorenter (cont.) monitorenter (cont.)

Themonitorenter instruction may be used with amonitorexit instruc-
tion to implement a Javasynchronized block. Themonitorenter
instruction is not used in the implementation ofsynchronized

methods, although it provides equivalent semantics; monitor e
on invocation of asynchronized method is handled implicitly by
the Java Virtual Machine’s method invocation instructions. S
§7.14, in “Compiling for the Java Virtual Machine,” for more info
mation on the use of themonitorenter andmonitorexit instructions.

The association of a monitor with an object may be managed
various ways that are beyond the scope of this specification.
instance, the monitor may be allocated and deallocated at the s
time as the object. Alternatively, it may be dynamically allocated
the time when a thread attempts to gain exclusive access to
object and freed at some later time when no thread remains in
monitor for the object.

The synchronization constructs of the Java Language require
port for operations on monitors besides entry and exit, includ
waiting on a monitor (Object.wait) and notifying other threads
waiting in a monitor (Object.notify andObject.notifyAll).
These operations are supported in the standard pack
java.lang, supplied with the Java Virtual Machine. No explic
support for these operations appears in the instruction set of
Java Virtual Machine.

THE JAVATM VIRTUAL MACHINE SPECIFICATION314

ated

oni-
rrent

nitor

tor,

ava
monitorexit monitorexit

Operation Exit monitor for object

Forms monitorexit = 195 (0xc3)

Stack …, objectref ⇒
…

Description Theobjectref must be of typereference.

The current thread must be the owner of the monitor associ
with the instance referenced byobjectref. The thread decrements
the counter indicating the number of times it has entered this m
tor. If as a result the value of the counter becomes zero, the cu
thread releases the monitor. If the monitor associated withobjectref
becomes free, other threads that are waiting to acquire that mo
are allowed to attempt to do so.

Runtime
Exceptions

If objectref isnull, monitorexit throws aNullPointerException.

Otherwise, if the current thread is not the owner of the moni
monitorexit throws anIllegalMonitorStateException.

Notes For detailed information about threads and monitors in the J
Virtual Machine, see Chapter 8, “Threads and Locks.”

Format monitorexit

JAVA VIRTUAL MACHINE INSTRUCTION SET 315

l or

he

4,
n

monitorexit (cont.) monitorexit (cont.)

The monitorenter and monitorexit instructions may be used to
implement Java’ssynchronized blocks. Themonitorexit instruc-
tion is not used in the implementation ofsynchronized methods,
although it provide equivalent semantics; monitor exit on norma
abnormalsynchronized method completion is handled implicitly
by the Java Virtual Machine’s method invocation instructions. T
Java Virtual Machine also implicitly handles monitor exit from
within asynchronized block when an error is thrown. See §7.1
in “Compiling for the Java Virtual Machine,” for more informatio
on the use of themonitorenter andmonitorexit instructions.

THE JAVATM VIRTUAL MACHINE SPECIFICATION316

 or
o be

ber
The

he
x
e of

 an
multianewarray multianewarray

Operation Create new multidimensional array

Forms multianewarray = 197 (0xc5)

Stack …, count1, [count2, …] ⇒
…, arrayref

Description Thedimensions is an unsigned byte which must be greater than
equal to 1. It represents the number of dimensions of the array t
created. The operand stack must containdimensions words, which
must be of typeint and nonnegative, each representing the num
of components in a dimension of the array to be created.
count1 is the desired length in the first dimension,count2 in the
second, etc.

All of the count values are popped off the operand stack. T
unsignedindexbyte1 andindexbyte2 are used to construct an inde
into the constant pool of the current class (§3.6), where the valu
the index is (indexbyte1 << 8) | indexbyte2. The item at that index
in the constant pool must be aCONSTANT_Class (§4.4.1). The sym-
bolic reference is resolved (§5.1.3). The resulting entry must be
array class type of dimensionality greater than or equal todimen-
sions.

Format multianewarray
indexbyte1
indexbyte2
dimensions

JAVA VIRTUAL MACHINE INSTRUCTION SET 317

m
 the

ond
f the
he

cess

s

may
multianewarray (cont.) multianewarray (cont.)

A new multidimensional array of the array type is allocated fro
the garbage-collected heap. The components of the array of in
first dimension are initialized to subarrays of the type of the sec
dimension, and so on. The components of the first dimension o
array are initialized to the default initial value for the type of t
components (§2.5.1). Areference arrayref to the new array is
pushed onto the operand stack.

Linking
Exceptions

During resolution of theCONSTANT_Class constant pool item, any
of the exceptions documented in §5.1 can be thrown.

Otherwise, if the current class does not have permission to ac
the base class of the resolved array class,multianewarray throws
anIllegalAccessError.

Runtime
Exception

Otherwise, if any of thedimensions values on the operand stack i
less than zero, themultianewarray instruction throws aNegative-
ArraySizeException.

Notes It may be more efficient to usenewarray or anewarray when creat-
ing an array of a single dimension.

The array class referenced via the constant pool instruction
have more dimensions than thedimensions operand of themulti-
anewarray instruction. In that case, only the firstdimensions of the
dimensions of the array are created.

THE JAVATM VIRTUAL MACHINE SPECIFICATION318

 the

sult
e).
ar-

bject
new new

Operation Create new object

Forms new = 187 (0xbb)

Stack … ⇒
…, objectref

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index in the constant pool must be aCONSTANT_Class
(§4.4.1). The symbolic reference is resolved (§5.1) and must re
in a class type (it must not result in an array or interface typ
Memory for a new instance of that class is allocated from the g
bage-collected heap, and the instance variables of the new o
are initialized to their default initial values (§2.5.1). Theobjectref, a
reference to the instance, is pushed onto the operand stack.

Linking
Exceptions

During resolution of theCONSTANT_Class constant pool item, any
of the exceptions documented in §5.1 can be thrown.

Otherwise, if theCONSTANT_Class constant pool item re-
solves to an interface or is anabstract class,new throws an
InstantiationError.

Format new
indexbyte1
indexbyte2

JAVA VIRTUAL MACHINE INSTRUCTION SET 319

cess

ce;
ion
new (cont.) new (cont.)

Otherwise, if the current class does not have permission to ac
the resolved class (§2.7.8),new throws anIllegalAccessError.

Note The new instruction does not completely create a new instan
instance creation is not completed until an instance initializat
method has been invoked on the uninitialized instance.

THE JAVATM VIRTUAL MACHINE SPECIFICATION320

.
cre-

ust

ck.
ult
newarray newarray

Operation Create new array

Forms newarray = 188 (0xbc)

Stack …, count ⇒
…, arrayref

Description Thecount must be of typeint. It is popped off the operand stack
Thecount represents the number of elements in the array to be
ated.

Theatype is a code that indicates the type of array to create. It m
take one of the following values:

A new array whose components are of typeatype, of length
count, is allocated from the garbage-collected heap. Areference

arrayref to this new array object is pushed into the operand sta
All of the elements of the new array are initialized to the defa
initial values for its type (§2.5.1).

Format newarray
atype

Array Type atype

T_BOOLEAN 4

T_CHAR 5

T_FLOAT 6

T_DOUBLE 7

T_BYTE 8

T_SHORT 9

T_INT 10

T_LONG 11

JAVA VIRTUAL MACHINE INSTRUCTION SET 321

of
t

se
newarray (cont.) newarray (cont.)

Runtime
Exception

If count is less than zero,newarray throws aNegativeArray-
SizeException.

Notes In Sun’s implementation of the Java Virtual Machine, arrays
type boolean (atype is T_BOOLEAN) are stored as arrays of 8-bi
values and are manipulated using thebaload andbastore instruc-
tions, instructions that also access arrays of typebyte. Other
implementations may implement packedboolean arrays; the
baload andbastore instructions must still be used to access tho
arrays.

THE JAVATM VIRTUAL MACHINE SPECIFICATION322
nop nop

Operation Do nothing

Forms nop = 0 (0x0)

Stack No change

Description Do nothing.

Format nop

JAVA VIRTUAL MACHINE INSTRUCTION SET 323

es,
pe
pop pop

Operation Pop top operand stack word

Forms pop = 87 (0x57)

Stack …, word ⇒
…

Description The top word is popped from the operand stack.

The pop instruction must not be used unlessword is a word that
contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
thepop instruction operates on an untyped word, ignoring the ty
of the datum it contains.

Format pop

THE JAVATM VIRTUAL MACHINE SPECIFICATION324

 are

es,
 of
pop2 pop2

Operation Pop top two operand stack words

Forms pop2 = 88 (0x58)

Stack …, word2, word1 ⇒
…

Description The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of wordword1
andword2 is a word that contains a 32-bit data types or together
the two words of a single 64-bit datum.

Notes Except for restrictions preserving the integrity of 64-bit data typ
the pop2 instruction operates on raw words, ignoring the types
the data they contain.

Format pop2

JAVA VIRTUAL MACHINE INSTRUCTION SET 325

 the

ass
ss of
rent
putfield putfield

Operation Set field in object

Forms putfield = 181 (0xb5)

Stack …, objectref, value ⇒
…

OR

Stack …, objectref, value.word1, value.word2 ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at the index must be aCONSTANT_Fieldref (§4.4.2), a
reference to a class name and a field name. If the field ispro-

tected (§4.6), then it must be either a member of the current cl
or a member of a superclass of the current class, and the cla
objectref must be either the current class or a subclass of the cur
class.

Format putfield
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION326

the

ld
rip-

tor

start

de
putfield (cont.) putfield (cont.)

The constant pool item is resolved (§5.2), determining both
field width and the field offset. The type of avalue stored by aput-
field instruction must be compatible with the descriptor of the fie
(§4.3.2) of the class instance being stored into. If the field desc
tor type isbyte, char, short, or int, then thevalue must be an
int. If the field descriptor type isfloat, long, ordouble, then the
value must be afloat, long, or double, respectively. If the field
descriptor type is a reference type, then thevalue must be of a type
that is assignment compatible (§2.6.6) with the field descrip
type.

The value and objectref, which must be of typereference, are
popped from the operand stack. The field at the offset from the
of the object referenced byobjectref is set to thevalue.

Linking
Exceptions

During resolution of theCONSTANT_Fieldref constant pool item,
any of the exceptions documented in §5.2 can be thrown.

Otherwise, if the specified field exists but is astatic field,putfield
throws anIncompatibleClassChangeError.

Runtime
Exception

Otherwise, ifobjectref is null, the putfield instruction throws a
NullPointerException.

Notes The putfield instruction operates on both one- and two-word wi
fields.

JAVA VIRTUAL MACHINE INSTRUCTION SET 327

 the

ass
putstatic putstatic

Operation Setstatic field in class

Forms putstatic = 179 (0xb3)

Stack …, value ⇒
…

OR

Stack …, value.word1, value.word2 ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at the index must be aCONSTANT_Fieldref (§4.4.2), a
reference to a class name and a field name. If the field ispro-

tected (§4.6), then it must be either a member of the current cl
or a member of a superclass of the current class.

Format putstatic
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION328

the

ld
rip-

tor

d is

de
putstatic (cont.) putstatic (cont.)

The constant pool item is resolved (§5.2), determining both
class field and its width. The type of avalue stored by aputstatic
instruction must be compatible with the descriptor of the fie
(§4.3.2) of the class instance being stored into. If the field desc
tor type isbyte, char, short, or int, then thevalue must be an
int. If the field descriptor type isfloat, long, ordouble, then the
value must be afloat, long, or double, respectively. If the field
descriptor type is a reference type, then thevalue must be of a type
that is assignment compatible (§2.6.6) with the field descrip
type.

The value is popped from the operand stack, and the class fiel
set tovalue.

Linking
Exceptions

During resolution of theCONSTANT_Fieldref constant pool item,
any of the exceptions documented in §5.2 can be thrown.

Otherwise, if the specified field exists but is not astatic

field (class variable),putstatic throws anIncompatibleClass-
ChangeError.

Notes Theputstatic instruction operates on both one- and two-word wi
fields.

JAVA VIRTUAL MACHINE INSTRUCTION SET 329

he
a

e

its
ret ret

Operation Return from subroutine

Forms ret = 169 (0xa9)

Stack No change

Description The index is an unsigned byte between 0 and 255, inclusive. T
local variable atindex in the current frame (§3.6) must contain
value of typereturnAddress. The contents of the local variable
are written into the Java Virtual Machine’spc register, and execu-
tion continues there.

Notes The ret instruction is used withjsr or jsr_w instructions in the
implementation of thefinally keyword of the Java language (se
Section 7.13, “Compilingfinally”). Note that jsr pushes the
address onto the stack andret gets it out of a local variable. This
asymmetry is intentional.

Theret instruction should not be confused with thereturn instruc-
tion. A return instruction returns control from a Java method to
invoker, without passing any value back to the invoker.

Theret opcode can be used in conjunction with thewide instruction
to access a local variable using a two-byte unsigned index.

Format ret
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION330

 the

ited

od,
return return

Operation Returnvoid from method

Forms return = 177 (0xb1)

Stack … ⇒
[empty]

Description The returning method must have return typevoid. Any values on
the operand stack of the current frame (§3.6) are discarded. If
returning method is asynchronized method, the monitor acquired
or reentered on invocation of the method is released or ex
(respectively) as if by execution of amonitorexit instruction.

The interpreter then returns control to the invoker of the meth
reinstating the frame of the invoker.

Format return

JAVA VIRTUAL MACHINE INSTRUCTION SET 331

k.

f

d

saload saload

Operation Loadshort from array

Forms saload = 53 (0x35)

Stack …, arrayref, index ⇒
…, value

Description Thearrayref must be of typereference and must refer to an array
whose components are of typeshort. The index must be of type
int. Both arrayref and index are popped from the operand stac
The short value in the component of the array atindex is
retrieved, sign-extended to anint value, and pushed onto the top o
the operand stack.

Runtime
Exceptions

If arrayref is null, saload throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the saload instruction throws anArrayIndexOutOf-
BoundsException.

Format saload

THE JAVATM VIRTUAL MACHINE SPECIFICATION332

d

sastore sastore

Operation Store intoshort array

Forms sastore = 86 (0x56)

Stack …, array, index, value ⇒
…

Description Thearrayref must be of typereference and must refer to an array
whose components are of typeshort. Both index andvalue must
be of typeint. Thearrayref, index, andvalue are popped from the
operand stack. Theint value is truncated to ashort and stored as
the component of the array indexed byindex.

Runtime
Exceptions

If arrayref is null, sastore throws aNullPointerException.

Otherwise, ifindex is not within the bounds of the array reference
by arrayref, the sastore instruction throws anArrayIndexOutOf-
BoundsException.

Format sastore

JAVA VIRTUAL MACHINE INSTRUCTION SET 333
sipush sipush

Operation Pushshort

Forms sipush = 17 (0x11)

Stack … ⇒
…, value

Description The immediate unsignedbyte1 andbyte2 values are assembled into
an intermediateshort where the value of the short is (byte1 << 8) |
byte2. The intermediate value is then sign-extended to anint, and
the resultingvalue is pushed onto the operand stack.

Format sipush
byte1
byte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION334

es,
es
swap swap

Operation Swap top two operand stack words

Forms swap = 95 (0x5f)

Stack …, word2, word1 ⇒
…, word1, word2

Description The top two words on the operand stack are swapped.

The swap instruction must not be used unless each ofword2 and
word1 is a word that contains a 32-bit data type.

Notes Except for restrictions preserving the integrity of 64-bit data typ
theswap instruction operates on untyped words, ignoring the typ
of the data they contain.

Format swap

JAVA VIRTUAL MACHINE INSTRUCTION SET 335
tableswitch tableswitch

Operation Access jump table by index and jump

Forms tableswitch = 170 (0xaa)

Stack …, index ⇒
…

Format tableswitch
<0-3 byte pad>

defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

lowbyte1
lowbyte2
lowbyte3
lowbyte4
highbyte1
highbyte2
highbyte3
highbyte4

jump offsets…

THE JAVATM VIRTUAL MACHINE SPECIFICATION336

e
ed
r of
ress
od

ing
es:

ble.

d

i-
s is
 this
et

able

 that

and
tableswitch (cont.) tableswitch (cont.)

Description A tableswitch is a variable-length instruction. Immediately after th
tableswitch opcode, between zero and three null bytes (zero
bytes, not the null object) are inserted as padding. The numbe
null bytes is chosen so that the following byte begins at an add
that is a multiple of four bytes from the start of the current meth
(the opcode of its first instruction). Immediately after the padd
follow the bytes constituting a series of signed 32-bit valu
default, low, high, and thenhigh − low + 1 further signed 32-bit off-
sets. The valuelow must be less than or equal tohigh. Thehigh −
low + 1 signed 32-bit offsets are treated as a 0-based jump ta
Each of these signed 32-bit values is constructed as (byte1 << 24) |
(byte2 << 16) | (byte3 << 8) |byte4.

The index must be of typeint and is popped from the operan
stack. Ifindex is less thanlow or index is greater thanhigh, then a
target address is calculated by addingdefault to the address of the
opcode of thistableswitch instruction. Otherwise, the offset at pos
tion index − low of the jump table is extracted. The target addres
calculated by adding that offset to the address of the opcode of
tableswitch instruction. Execution then continues at the targ
address.

The target address which can be calculated from each jump t
offset, as well as the ones that can be calculated fromdefault, must
be the address of an opcode of an instruction within the method
contains thistableswitch instruction.

Notes The alignment required of the 4-byte operands of thetableswitch
instruction guarantees 4-byte alignment of those operands if
only if the method that contains thetableswitch starts on a 4-byte
boundary.

JAVA VIRTUAL MACHINE INSTRUCTION SET 337

 It
odi-
wide wide

Operation Extend local variable index by additional bytes

where<opcode> is one ofiload, fload, aload, lload, dload, istore,
fstore, astore, lstore, dstore, or ret

Forms wide = 196 (0xc4)

Stack Same as modified instruction

Description Thewide instruction modifies the behavior of another instruction.
takes one of two formats, depending on the instruction being m
fied. The first form of thewide instruction modifies one of the
instructionsiload, fload, aload, lload, dload, istore, fstore, astore,
lstore, dstore, or ret. The second form applies only to theiinc
instruction.

Format 1: wide
<opcode>

indexbyte1
indexbyte2

Format 2: wide
iinc

indexbyte1
indexbyte2
constbyte1
constbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION338

local
x is
a
the

lso
wo

lso
nt is

f the
cre-

r

-

uted
sfer
wide (cont.) wide (cont.)

In either case, thewide opcode itself is followed in the compiled
code by the opcode of the instructionwide modifies. In either form,
two unsigned bytesindexbyte1 andindexbyte2 follow the modified
opcode and are assembled into a 16-bit unsigned index to a
variable in the current frame (§3.6), where the value of the inde
(indexbyte1 << 8) | indexbyte2. The calculated index must be
valid index into the local variables of the current frame. Where
wide instruction modifies anlload, dload, lstore, or dstore instruc-
tion, the index following the calculated index (index + 1) must a
be a valid index into the local variables. In the second form, t
immediate unsigned bytesconstbyte1 and constbyte2 follow
indexbyte1 andindexbyte2 in the code stream. Those bytes are a
assembled into a signed 16-bit constant, where the consta
(constbyte1 << 8) |constbyte2.

The widened bytecode operates as normal, except for the use o
wider index and, in the case of the second form, the larger in
ment range.

Notes Although we say thatwide “modifies the behavior of anothe
instruction,” thewide instruction effectively treats the modified
instruction as operands towide, denaturing the embedded instruc
tion in the process. In the case of a modifiediinc instruction, one of
the logical operands of theiinc is not even at the normal offset from
the opcode. The embedded instruction must never be exec
directly; its opcode must never be the target of any control tran
instruction.

C H A P T E R 7
uage.
mpiler

pec-
f the

irtual
 from
piling

irtual
uages
port

irtual
t us at

lator
spe-
era-

hine
ddress
Compiling for the
Java Virtual Machine

THE Java Virtual Machine is designed to support the Java programming lang
Sun’s JDK 1.0.2 release of the Java programming language contains both a co
from Java source code to the Java Virtual Machine’s instruction set (javac) and a
runtime system that implements the Java Virtual Machine itself (java). Understand-
ing how one Java compiler utilizes the Java Virtual Machine is useful to the pros
tive Java compiler writer, as well as to one trying to understand the operation o
Java Virtual Machine.

Although this chapter concentrates on compiling Java code, the Java V
Machine does not assume that the instructions it executes were generated
Java source code. While there have been a number of efforts aimed at com
other languages to the Java Virtual Machine, version 1.0.2 of the Java V
Machine was not designed to support a wide range of languages. Some lang
may be hosted fairly directly by the Java Virtual Machine. Others may sup
constructs that only can be implemented inefficiently.

We are considering bounded extensions to future versions of the Java V
Machine to support a wider range of languages more directly. Please contac
jvm@javasoft.com if you have interest in this effort.

Note that the term “compiler” is sometimes used when referring to a trans
from the instruction set of a Java Virtual Machine to the instruction set of a
cific CPU. One example of such a translator is a “Just In Time” (JIT) code gen
tor, which generates platform-specific instructions only after Java Virtual Mac
code has been loaded into the Java Virtual Machine. This chapter does not a
339

THE JAVATM VIRTUAL MACHINE SPECIFICATION340

 from

anno-

ode is

sem-

ains

of a

ntrol
struc-
re

 sign,
fer-

ch as
issues associated with code generation, only those associated with compiling
Java source code to Java Virtual Machine instructions.

7.1 Format of Examples

This chapter consists mainly of examples of Java source code together with
tated listings of the Java Virtual Machine code that thejavac compiler in Sun’s
JDK 1.0.2 release generates for the examples. The Java Virtual Machine c
written in the informal “virtual machine assembly language” output by Sun’sjavap

utility, also distributed with the JDK. You can usejavap to generate additional
examples of compiled Java methods.

The format of the examples should be familiar to anyone who has read as
bly code. Each instruction takes the form

<index> <opcode> [<operand1> [<operand2>...]] [<comment>]

The<index> is the index of the opcode of the instruction in the array that cont
the bytes of Java Virtual Machine code for this method. Alternatively, the<index>
may be thought of as a byte offset from the beginning of the method. The<opcode>
is the mnemonic for the instruction’s opcode, and the zero or more<operandN> are
the operands of the instruction. The optional<comment> is given in Java-style end-
of-line comment syntax:

8 bipush 100 // Push constant 100

Some of the material in the comments is emitted byjavap; the rest is supplied by
the authors. The<index> prefacing each instruction may be used as the target
control transfer instruction. For instance, agoto 8 instruction transfers control to the
instruction at index 8. Note that the actual operands of Java Virtual Machine co
transfer instructions are offsets from the addresses of the opcodes of those in
tions; these operands are displayed byjavap, and are shown in this chapter, as mo
easily read offsets into their methods.

We preface an operand representing a constant pool index with a hash
and follow the instruction by a comment identifying the constant pool item re
enced, as in

10 ldc #1 // Float 100.000000

or

9 invokevirtual #4 // Method Example.addTwo(II)I

For the purposes of this chapter, we do not worry about specifying details su
operand sizes.

COMPILING FOR THE JAVA VIRTUAL MACHINE 341

y the
unter

 one
rrent
eated
ck and
t any
ually
ethod

s by

n

7.2 Use of Constants, Local Variables, and Control Constructs

Java Virtual Machine code exhibits a set of general characteristics imposed b
Java Virtual Machine’s design and use of types. In the first example we enco
many of these, and we consider them in some detail.

Thespin method simply spins around an emptyfor loop 100 times:

void spin() {

int i;

for (i = 0; i < 100; i++) {

; // Loop body is empty

}

}

The Java compiler compilesspin to

Method void spin()

 0 iconst_0 // Push int constant 0
 1 istore_1 // Store into local 1 (i=0)
 2 goto 8 // First time through don’t increment
 5 iinc 1 1 // Increment local 1 by 1 (i++)
 8 iload_1 // Push local 1 (i)
 9 bipush 100 // Push int constant (100)
 11 if_icmplt 5 // Compare, loop if < (i < 100)
 14 return // Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking
or more operands from the operand stack of the Java Virtual Machine’s cu
frame, or pushing results back onto the operand stack. A new frame is cr
each time a Java method is invoked, and with it is created a new operand sta
set of local variables for use by that method (see Section 3.6, “Frames”). A
one point of the computation, there are thus likely to be many frames and eq
many operand stacks per thread of control, corresponding to many nested m
invocations. Only the operand stack in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand type
using distinct bytecodes for operations on its various data types. The methodspin

only operates on values of typeint. The instructions in its compiled code chose
to operate on typed data (iconst_0, istore_1, iinc, iload_1, if_icmplt) are all spe-
cialized for typeint.

THE JAVATM VIRTUAL MACHINE SPECIFICATION342

ck

cer-

 the

code
t

plicit
piled

oper-
alues
ed for
n the
ing
al
s

piler
piler

aster,

lly by
al
The two constants inspin, 0 and100, are pushed onto the operand sta
using two different instructions. The0 is pushed using aniconst_0 instruction,
one of the family oficonst_<i> instructions. The100 is pushed using abipush
instruction, which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of
tain operands (int constants−1, 0, 1, 2, 3, 4 and5 in the case of theiconst_<i>
instructions) by making those operands implicit in the opcode. Because
iconst_0 instruction knows it is going to push anint 0, iconst_0 does not need to
store an operand to tell it what value to push, nor does it need to fetch or de
an operand. Compiling the push of0 asbipush 0 would have been correct, bu
would have made the compiled code forspin one byte longer. A simple virtual
machine would have also spent additional time fetching and decoding the ex
operand each time around the loop. Use of implicit operands makes com
code more compact and efficient.

Theint i in spin is stored as Java Virtual Machine local variable1. Because
most Java Virtual Machine instructions operate on values popped from the
and stack rather than directly on local variables, instructions that transfer v
between local variables and the operand stack are common in code compil
the Java Virtual Machine. These operations also have special support i
instruction set. Inspin, values are transferred to and from local variables us
the istore_1 and iload_1 instructions, each of which implicitly operates on loc
variable1. Theistore_1 instruction pops anint from the operand stack and store
it in local variable1. Theiload_1 instruction pushes the value in local variable1
onto the operand stack.

The use (and reuse) of local variables is the responsibility of the com
writer. The specialized load and store instructions should encourage the com
writer to reuse local variables as much as is feasible. The resulting code is f
more compact, and uses less space in the Java frame.

Certain very frequent operations on local variables are catered to specia
the Java Virtual Machine. Theiinc instruction increments the contents of a loc
variable by a one-byte signed value. Theiinc instruction inspin increments the
first local variable (its first operand) by1 (its second operand). Theiinc instruction
is very handy when implementing looping constructs.

Thefor loop ofspin is accomplished mainly by these instructions:

 5 iinc 1 1 // Increment local 1 by 1 (i++)
 8 iload_1 // Push local 1 (i)
 9 bipush 100 // Push int constant (100)
 11 if_icmplt 5 // Compare, loop if < (i < 100)

COMPILING FOR THE JAVA VIRTUAL MACHINE 343

to

. For

he
Thebipush instruction pushes the value100 onto the operand stack as anint, then
the if_icmplt instruction pops that value off the stack and compares it againsti. If
the comparison succeeds (the Java variablei is less than100), control is transferred
to index5 and the next iteration of thefor loop begins. Otherwise, control passes
the instruction following theif_icmplt.

If the spin example had used a data type other thanint for the loop counter,
the compiled code would necessarily change to reflect the different data type
instance, if instead of anint thespin example uses adouble:

void dspin() {

double i;

for (i = 0.0; i < 100.0; i++) {

; // Loop body is empty

}

}

the compiled code is

Method void dspin()

 0 dconst_0 // Push double constant 0.0
 1 dstore_1 // Store into locals 1 and 2 (i = 0.0)
 2 goto 9 // First time through don’t increment
 5 dload_1 // Push double onto operand stack
 6 dconst_1 // Push double constant 1 onto stack
 7 dadd // Add; there is no dinc instruction
 8 dstore_1 // Store result in locals 1 and 2
 9 dload_1 // Push local
 10 ldc2_w #4 // Double 100.000000
 13 dcmpg // There is no if_dcmplt instruction
 14 iflt 5 // Compare, loop if < (i < 100.000000)
 17 return // Return void when done

The instructions that operate on typed data are now specialized for typedouble.
(Theldc2_w instruction will be discussed later in this chapter.)

Note that indspin, double values use two words of storage, whether on t
operand stack or in local variables. This is also the case for values of typelong.
As another example:

double doubleLocals(double d1, double d2) {

return d1 + d2;

}

THE JAVATM VIRTUAL MACHINE SPECIFICATION344

nd in

iled
va Vir-
irtual
tely
tion

sing
n

type
local
 inte-
y

g on
becomes

Method double doubleLocals(double,double)

 0 dload_1 // First argument in locals 1 and 2
 1 dload_3 // Second argument in locals 3 and 4
 2 dadd // Each also uses two words on stack
 3 dreturn

It is always necessary to access the words of a two-word type in pairs a
their original order. For instance, the words of thedouble values indoubleLocals
must never be manipulated individually.

The Java Virtual Machine’s opcode size of one byte results in its comp
code being very compact. However, one-byte opcodes also mean that the Ja
tual Machine’s instruction set must stay small. As a compromise, the Java V
Machine does not provide equal support for all data types: it is not comple
orthogonal (see Table 3.1, “Type support in the Java Virtual Machine instruc
set”). In the case ofdspin, note that there is noif_dcmplt instruction in the Java
Virtual Machine instruction set. Instead, the comparison must be performed u
a dcmpg followed by aniflt, requiring one more Java Virtual Machine instructio
than theint version ofspin.

The Java Virtual Machine provides the most direct support for data of
int. This is partly because the Java Virtual Machine’s operand stack and
variables are one word wide, and a word is guaranteed to hold values of all
gral types up to and including anint value. It is also motivated by the frequenc
of int data in typical Java programs.

Smaller integral types have less direct support. There are nobyte, char, or
short versions of the store, load, or add instructions, for instance. Here is thespin

example written using ashort:

void sspin() {

short i;

for (i = 0; i < 100; i++) {

 ; // Loop body is empty

}

}

It must be compiled for the Java Virtual Machine using instructions operatin
another type, most likelyint, converting betweenshort andint values as neces-
sary to ensure that the results of operations onshort data stay within the appro-
priate range:

COMPILING FOR THE JAVA VIRTUAL MACHINE 345

 pro-

 the
rol

xcep-
le).

, and
f arith-
esting
method void sspin()

 0 iconst_0
 1 istore_1
 2 goto 10
 5 iload_1 // The short is stored in an int

 6 iconst_1
 7 iadd
 8 i2s // Truncate int to short
 9 istore_1
 10 iload_1
 11 bipush 100
 13 if_icmplt 5
 16 return

The lack of direct support forbyte, char, andshort types in the Java Virtual
Machine is not particularly painful, because values of those types are internally
moted toint (byte andshort are sign-extended toint, char is zero-extended).
Operations onbyte, char, andshort data can thus be done usingint instructions.
The only additional cost is that of truncating the values ofint operations to valid
ranges.

Thelong and floating-point types have an intermediate level of support in
Java Virtual Machine, lacking only the full complement of conditional cont
transfer instructions.

7.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack (the e
tion is theiinc instruction, which directly increments the value of a local variab
For instance, thealign2grain method aligns anint value to a given power of 2
grain size:

int align2grain(int i, int grain) {

return ((i + grain-1) & ~(grain-1));

}

Operands for arithmetic operations are popped from the operand stack
the results of operations are pushed back onto the operand stack. Results o
metic subcomputations can thus be made available as operands of their n

THE JAVATM VIRTUAL MACHINE SPECIFICATION346

their
vail-

ent

ed via
). Java
of
computation. For instance, the calculation of~(grain−1) is handled by these
instructions:

 5 iload_2 // Load grain onto operand stack
 6 iconst_1 // Load constant 1 onto operand stack
 7 isub // Subtract; push result onto stack
 8 iconst_m1 // Load constant −1 onto operand stack
 9 ixor // Do XOR; push result onto stack

First grain−1 is calculated using the contents of local variable2 and an imme-
diateint value1. These operands are popped from the operand stack and
difference pushed back onto the operand stack, where it is immediately a
able for use as one operand of theixor instruction (recall that~x == −1^x). Sim-
ilarly, the result of theixor instruction becomes an operand for the subsequ
iand instruction.

The code for the entire method follows:

Method int align2grain(int,int)

 0 iload_1
 1 iload_2
 2 iadd
 3 iconst_1
 4 isub
 5 iload_2
 6 iconst_1
 7 isub
 8 iconst_m1
 9 ixor
 10 iand
 11 ireturn

7.4 Accessing the Constant Pool

Many numeric constants, as well as objects, fields, and methods, are access
the constant pool of the current class. Object access is considered later (§7.8
data of typesint, long, float, anddouble, as well as references to instances
String (constant pool items taggedCONSTANT_String), is managed using theldc,
ldc_w, andldc2_w instructions.

COMPILING FOR THE JAVA VIRTUAL MACHINE 347

con-

ess an
on-

-
 the

con-
The ldc andldc_w instructions are used to access one-word values in the
stant pool (including instances of classString), and ldc2_w is used to access
two-word values. Theldc_w instruction is used in place ofldc only when there is
a large number of constant pool items and a larger index is needed to acc
item. Theldc2_w instruction is used to access all two-word items; there is no n
wide variant.

Integral constants of typesbyte, char, orshort, as well as smallint values,
may be compiled using thebipush, sipush, or iconst_<i> instructions, as seen ear
lier (§7.2). Certain small floating-point constants may be compiled using
fconst_<f> anddconst_<d> instructions.

In all of these cases compilation is straightforward. For instance, the
stants for

void useManyNumeric() {

int i = 100;

int j = 1000000;

long l1 = 1;

long l2 = 0xffffffff;

double d = 2.2;

...do some calculations...

}

are set up as follows:

Method void useManyNumeric()

 0 bipush 100 // Push a small int with bipush
 2 istore_1
 3 ldc #1 // Integer 1000000; a larger int

// value uses ldc
 5 istore_2
 6 lconst_1 // A tiny long value uses short, fast lconst_1
 7 lstore_3
 8 ldc2_w #6 // A long 0xffffffff (that is, an int -1); any

// long constant value can be pushed by ldc2_w
 11 lstore 5
 13 ldc2_w #8 // Double 2.200000; so do

// uncommon double values
 16 dstore 7
...do those calculations...

THE JAVATM VIRTUAL MACHINE SPECIFICATION348

t of

 of
iling

dling

h
rtual

his
the
n
truc-
is
tting
each
ould
7.5 More Control Examples

Compilation of Java’sfor statement was shown in an earlier section (§7.2). Mos
Java’s other intramethod control transfer constructs (if-then-else, do, while,
break, andcontinue) are also compiled in the obvious ways. The compilation
Java’sswitch statement is handled in a separate section (Section 7.10, “Comp
Switches”), as is the compilation of exceptions (Section 7.12, “Throwing and Han
Exceptions”) and Java’sfinally statement (Section 7.13, “Compilingfinally”).

As a further example, awhile loop is compiled in an obvious way, althoug
the specific control transfer instructions made available by the Java Vi
Machine vary by data type. As usual, there is more support for data of typeint:

void whileInt() {

int i = 0;

while (i < 100) {

 i++;

}

}

is compiled to

Method void whileInt()

 0 iconst_0
 1 istore_1
 2 goto 8
 5 iinc 1 1
 8 iload_1
 9 bipush 100
 11 if_icmplt 5
 14 return

Note that the test of thewhile statement (implemented using theif_icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (T
was also the case in thespin examples earlier.) The test being at the bottom of
loop forces the use of agoto instruction to get to the test prior to the first iteratio
of the loop. If that test fails, and the loop body is never entered, this extra ins
tion is wasted. However,while loops are typically used when their body
expected to be run, often for many iterations. For subsequent iterations, pu
the test at the bottom of the loop saves a Java Virtual Machine instruction
time around the loop: if the test were at the top of the loop, the loop body w
need a trailinggoto instruction to get back to the top.

COMPILING FOR THE JAVA VIRTUAL MACHINE 349

, but
at less

il if
pari-
er the
Control constructs involving other data types are compiled in similar ways
must use the instructions available for those data types. This leads to somewh
efficient code because more Java Virtual Machine instructions are needed:

void whileDouble() {

double i = 0.0;

while (i < 100.1) {

 i++;

}

}

is compiled to

Method void whileDouble()

 0 dconst_0
 1 dstore_1
 2 goto 9
 5 dload_1
 6 dconst_1
 7 dadd
 8 dstore_1
 9 dload_1
 10 ldc2_w #4 // Double 100.100000
 13 dcmpg // To test we have to use
 14 iflt 5 // two instructions...
 17 return

Each floating-point type has two comparison instructions:fcmpl and fcmpg
for typefloat, anddcmpl anddcmpg for typedouble. The variants differ only in
their treatment of NaN. NaN is unordered, so all floating-point comparisons fa
either of their operands is NaN. The compiler chooses the variant of the com
son instruction for the appropriate type that produces the same result wheth
comparison fails on non-NaN values or encounters a NaN. For instance:

int lessThan100(double d) {

if (d < 100.0) {

 return 1;

} else {

 return -1;

}

}

THE JAVATM VIRTUAL MACHINE SPECIFICATION350

,

 is
compiles to

Method int lessThan100(double)

 0 dload_1
 1 ldc2_w #4 // Double 100.000000
 4 dcmpg // Push 1 if d is NaN or d > 100.000000;

// push 0 if d == 100.000000

 5 ifge 10 // Branch on 0 or 1
 8 iconst_1
 9 ireturn
 10 iconst_m1
 11 ireturn

If d is not NaN and is less than100.0, thedcmpg instruction pushes anint –1 onto
the operand stack, and theifge instruction does not branch. Whetherd is greater than
100.0 or is NaN, thedcmpg instruction pushes anint 1 onto the operand stack
and theifge branches. Ifd is equal to100.0, thedcmpg instruction pushes anint 0
onto the operand stack, and theifge branches.

The dcmpl instruction achieves the same effect if the comparison
reversed:

int greaterThan100(double d) {

if (d > 100.0) {

 return 1;

} else {

 return -1;

}

}

becomes

Method int greaterThan100(double)

 0 dload_1
 1 ldc2_w #4 // Double 100.000000
 4 dcmpl // Push −1 if d is Nan or d < 100.000000;

// push 0 if d == 100.000000

 5 ifle 10 // Branch on 0 or −1
 8 iconst_1
 9 ireturn
 10 iconst_m1
 11 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE 351

 it is
k
f

vention,
d
ple:

nce

ocal
 index
ed in
Once again, whether the comparison fails on a non-NaN value or because
passed a NaN, thedcmpl instruction pushes anint value onto the operand stac
that causes theifle to branch. If both of thedcmp instructions did not exist, one o
the example methods would have had to do more work to detect NaN.

7.6 Receiving Arguments

If n arguments are passed to a Java instance method, they are received, by con
in the local variables numbered1 throughn of the frame created for the new metho
invocation. The arguments are received in the order they were passed. For exam

int addTwo(int i, int j) {

return i + j;

}

compiles to

Method int addTwo(int,int)

 0 iload_1 // Push value of local 1 (i)
 1 iload_2 // Push value of local 2 (j)
 2 iadd // Add; leave int result on val stack
 3 ireturn // Return int result

By convention, an instance method is passed areference to its instance in
local variable zero. The instance is accessible in Java via thethis keyword. Code
to pushthis into local variable zero must be present in the invoker of an insta
method (see Section 7.7, “Invoking Methods”).

Class (static) methods do not have an instance, so for them this use of l
variable zero is unnecessary. A class method starts using local variables at
zero. If theaddTwo method was a class method, its arguments would be pass
a similar way to the first version:

static int addTwoStatic(int i, int j) {

return i + j;

}

compiles to

Method int addTwoStatic(int,int)

 0 iload_0
 1 iload_1
 2 iadd
 3 ireturn

THE JAVATM VIRTUAL MACHINE SPECIFICATION352

ble

ntime
ple-
 to
ject,
voke

 local
to
bles

r of

 of the
er’s
The only difference is that the method arguments appear starting in local varia0
rather than1.

7.7 Invoking Methods

The normal method invocation for a Java instance method dispatches on the ru
type of the object (they are virtual, in C++ terms). Such an invocation is im
mented using theinvokevirtual instruction, which takes as its argument an index
a constant pool entry giving the fully qualified name of the class type of the ob
the name of the method to invoke, and that method’s descriptor (§4.3.3). To in
theaddTwo method, defined earlier as an instance method, we might write

int add12and13() {

return addTwo(12, 13);

}

This compiles to

Method int add12and13()

 0 aload_0 // Push this local 0 (this) onto stack
 1 bipush 12 // Push int constant 12 onto stack
 3 bipush 13 // Push int constant 13 onto stack
 5 invokevirtual #4 // Method Example.addtwo(II)I

 8 ireturn // Return int on top of stack; it is
// the int result of addTwo()

The invocation is set up by first pushing areference to the current instance,
this, onto the operand stack. The method invocation’s arguments,int values12
and13, are then pushed. When the frame for theaddTwo method is created, the
arguments passed to the method become the initial values of the new frame’s
variables. That is, thereference for this and the two arguments, pushed on
the operand stack by the invoker, will become the initial values of local varia
0, 1, and2 of the invoked method.

Finally, addTwo is invoked. When it returns, itsint return value is pushed
onto the operand stack of the frame of the invoker, theadd12and13 method. The
return value is thus put in place to be immediately returned to the invoke
add12and13.

The return fromadd12and13 is handled by theireturn instruction of
add12and13. Theireturn instruction takes theint value returned byaddTwo, on
the operand stack of the current frame, and pushes it onto the operand stack
frame of the invoker. It then returns control to the invoker, making the invok

COMPILING FOR THE JAVA VIRTUAL MACHINE 353

 for

or all

ol
piler
bolic

t pool.
ethod
cess

:

e

n
lso
frame current. The Java Virtual Machine provides distinct return instructions
many of its numeric andreference data types, as well as areturn instruction for
methods with no return value. The same set of return instructions is used f
varieties of method invocations.

The operand of theinvokevirtual instruction (in the example, the constant po
index #4) is not the offset of the method in the class instance. The Java com
does not know the internal layout of a class instance. Instead, it generates sym
references to the methods of an instance, which are stored in the constan
Those constant pool items are resolved at run time to determine the actual m
location. The same is true for all other Java Virtual Machine instructions that ac
class instances.

InvokingaddTwoStatic, a class (static) variant ofaddTwo, is similar:

int add12and13() {

return addTwoStatic(12, 13);

}

although a different Java Virtual Machine method invocation instruction is used

Method int add12and13()

 0 bipush 12
 2 bipush 13
 4 invokestatic #3 // Method Example.addTwoStatic(II)I

 7 ireturn

Compiling an invocation of a class (static) method is very much like compiling an
invocation of an instance method, exceptthis is not passed by the invoker. Th
method arguments will thus be received beginning with local variable0 (see Section
7.6, “Receiving Arguments”). Theinvokestatic instruction is always used to invoke
class methods.

The invokespecial instruction must be used to invoke instance initializatio
(<init>) methods (see Section 7.8, “Working with Class Instances”). It is a
used when invoking methods in the superclass (super) and when invoking
private methods. For instance, given classesNear andFar declared as

class Near {

int it;

public int getItNear() {

return getIt();

}

THE JAVATM VIRTUAL MACHINE SPECIFICATION354

le

hine’s
riables,
 their

ctor

 ini-
iven
private int getIt() {

return it;

}

}

class Far extends Near {

int getItFar() {

return super.getItNear();

}

}

the methodNear.getItNear (which invokes aprivate method) becomes

Method int getItNear()

 0 aload_0
 1 invokespecial #5 // Method Near.getIt()I

 4 ireturn

The methodFar.getItFar (which invokes a superclass method) becomes

Method int getItFar()

 0 aload_0
 1 invokespecial #4 // Method Near.getItNear()I

 4 ireturn

Note that methods called using theinvokespecial instruction always passthis to
the invoked method as its first argument. As usual, it is received in local variab0.

7.8 Working with Class Instances

Java Virtual Machine class instances are created using the Java Virtual Mac
new instruction. Once the class instance has been created and its instance va
including those of the class and all of its superclasses, have been initialized to
default values, an instance initialization method of the new class instance (<init>)
is invoked. [Recall that at the level of the Java Virtual Machine, a constru
appears as a method with the special compiler-supplied name<init>. This special
method is known as the instance initialization method (§3.8). Multiple instance
tialization methods, corresponding to multiple constructors, may exist for a g
class.] For example:

Object create() {

return new Object();

}

COMPILING FOR THE JAVA VIRTUAL MACHINE 355

-

compiles to

Method java.lang.Object create()

 0 new #1 // Class java.lang.Object
 3 dup
 4 invokespecial #4 // Method java.lang.Object.<init>()V

 7 areturn

Class instances are passed and returned (asreference types) very much like
numeric values, although typereference has its own complement of instruc
tions:

int i; // An instance variable

MyObj example() {

MyObj o = new MyObj();

return silly(o);

}

MyObj silly(MyObj o) {

if (o != null) {

 return o;

} else {

 return o;

}

}

becomes

Method MyObj example()

 0 new #2 // Class MyObj
 3 dup
 4 invokespecial #5 // Method MyObj.<init>()V

 7 astore_1
 8 aload_0
 9 aload_1
 10 invokevirtual #4

// Method Example.silly(LMyObj;)LMyObj;

 13 areturn

THE JAVATM VIRTUAL MACHINE SPECIFICATION356

e

 fields
s are

ulated
n

Method MyObj silly(MyObj)

 0 aload_1
 1 ifnull 6
 4 aload_1
 5 areturn
 6 aload_1
 7 areturn

The fields of a class instance (instance variables) are accessed using thget-
field andputfield instructions. Ifi is an instance variable of typeint, the methods
setIt andgetIt, defined as

void setIt(int value) {

i = value;

}

int getIt() {

return i;

}

become

Method void setIt(int)

 0 aload_0
 1 iload_1
 2 putfield #4 // Field Example.i I

 5 return

Method int getIt()

 0 aload_0
 1 getfield #4 // Field Example.i I

 4 ireturn

As with the operands of method invocation instructions, the operands of theputfield
andgetfield instructions (the constant pool index#4) are not the offsets of the fields
in the class instance. The Java compiler generates symbolic references to the
of an instance, which are stored in the constant pool. Those constant pool item
resolved at run time to determine the actual field offset.

7.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manip
using a distinct set of instructions. Thenewarray instruction is used to create a
array of a numeric type. The code

COMPILING FOR THE JAVA VIRTUAL MACHINE 357

ject
void createBuffer() {

int buffer[];

int bufsz = 100;

int value = 12;

buffer = new int[bufsz];

buffer[10] = value;

value = buffer[11];

}

might be compiled to

Method void createBuffer()

 0 bipush 100 // Push bufsz

 2 istore_2 // Store bufsz in local 2
 3 bipush 12 // Push value

 5 istore_3 // Store value in local 3
 6 iload_2 // Push bufsz...
 7 newarray int // ...and create new array of int
 9 astore_1 // Store new array in buffer

 10 aload_1 // Push buffer

 11 bipush 10 // Push constant 10
 13 iload_3 // Push value

 14 iastore // Store value at buffer[10]
 15 aload_1 // Push buffer

 16 bipush 11 // Push constant 11
 18 iaload // Push value at buffer[11]
 19 istore_3 // ...and store it in value

 20 return

Theanewarray instruction is used to create a one-dimensional array of ob
references:

void createThreadArray() {

Thread threads[];

int count = 10;

threads = new Thread[count];

threads[0] = new Thread();

}

becomes

THE JAVATM VIRTUAL MACHINE SPECIFICATION358

ulti-
e
ing:

e
ay type
n-

-

Method void createThreadArray()

 0 bipush 10 // Push 10...
 2 istore_2 // ...and initialize count to that
 3 iload_2 // Push count, used by anewarray
 4 anewarray class #1 // Create new array of class Thread
 7 astore_1 // Store new array in threads

 8 aload_1 // Load value of threads on stack
 9 iconst_0 // Load 0 into stack
 10 new #1 // Create instance of class Thread
 13 dup // Make duplicate reference...
 14 invokespecial #5 // ...to pass to initialization method

// Method java.lang.Thread.<init>()V

 17 aastore // Store new Thread in array at 0
 18 return

The anewarray instruction can also be used to create the first dimension of a m
dimensional array. Alternatively, themultianewarray instruction can be used to creat
several dimensions at once. For example, the three-dimensional array in the follow

int[][][] create3DArray() {

int grid[][][];

grid = new int[10][5][];

return grid;

}

is created by

Method int create3DArray()[][][]

 0 bipush 10 // Push 10 (dimension one)
 2 iconst_5 // Push 5 (dimension two)
 3 multianewarray #1 dim #2 // Class [[[I, a three

// dimensional int array;
// only create first two
// dimensions

 7 astore_1 // Store new array...
 8 aload_1 // ...then prepare to return it
 9 areturn

The first operand of themultianewarray instruction is the constant pool index to th
array class type to be created. The second is the number of dimensions of that arr
to actually create. Themultianewarray instruction can be used to create all the dime
sions of the type, as the code forcreate3DArray shows. Note that the multidimen
sional array is just an object, and so is loaded and returned by anaload_1 andareturn
instruction, respectively. For information about array class names, see §4.4.1.

COMPILING FOR THE JAVA VIRTUAL MACHINE 359
All arrays have associated lengths, which are accessed via thearraylength
instruction.

7.10 Compiling Switches

Java’sswitch statements are compiled using thetableswitch and lookupswitch
instructions. Thetableswitch instruction is used when the cases of theswitch can
be efficiently represented as indices into a table of target offsets. Thedefault target
of theswitch is used if the value of the expression of theswitch falls outside the
range of valid indices. For instance,

int chooseNear(int i) {

switch (i) {

 case 0: return 0;

 case 1: return 1;

 case 2: return 2;

 default: return -1;

}

}

compiles to

Method int chooseNear(int)

 0 iload_1 // Load local 1 (argument i)
 1 tableswitch 0 to 2: // Valid indices are 0 through 2

0: 28 // If i is 0, continue at 28
1: 30 // If i is 1, continue at 30
2: 32 // If i is 2, continue at 32
default:34 // Otherwise, continue at 34

 28 iconst_0 // i was 0; push int 0...
 29 ireturn // ...and return it
 30 iconst_1 // i was 1; push int 1...
 31 ireturn // ...and return it
 32 iconst_2 // i was 2; push int 2...
 33 ireturn // ...and return it
 34 iconst_m1 // otherwise push int –1...
 35 ireturn // ...and return it

The Java Virtual Machine’stableswitch and lookupswitch instructions only
operate onint data. Because operations onbyte, char, or short values are

THE JAVATM VIRTUAL MACHINE SPECIFICATION360

of

he

lue of
 key

d

internally promoted toint, a switch whose expression evaluates to one
those types is compiled as though it evaluated to typeint. If the chooseNear

method had been written using typeshort, the same Java Virtual Machine
instructions would have been generated as when using typeint. Other numeric
types must be narrowed to typeint for use in aswitch.

Where the cases of theswitch are sparse, the table representation of t
tableswitch instruction becomes inefficient in terms of space. Thelookupswitch
instruction may be used instead. Thelookupswitch instruction pairsint keys
(the values of thecase labels) with target offsets in a table. When alook-
upswitch instruction is executed, the value of the expression of theswitch is
compared against the keys in the table. If one of the keys matches the va
the expression, execution continues at the associated target offset. If no
matches, execution continues at thedefault target. For instance, the compile
code for

int chooseFar(int i) {

switch (i) {

 case -100: return -1;

 case 0: return 0;

 case 100: return 1;

 default: return -1;

}

}

looks just like the code forchooseNear, except for the use of thelookupswitch
instruction:

Method int chooseFar(int)

 0 iload_1
 1 lookupswitch 3:

−100: 36
0: 38
100: 40
default:42

 36 iconst_m1
 37 ireturn
 38 iconst_0
 39 ireturn
 40 iconst_1

COMPILING FOR THE JAVA VIRTUAL MACHINE 361

e effi-
s
e like

ulate
 These
 of its
 41 ireturn
 42 const_m1
 43 ireturn

The Java Virtual Machine specifies that the table of thelookupswitch instruc-
tion must be sorted by key so that implementations may use searches mor
cient than a linear scan. Even so, thelookupswitch instruction must search its key
for a match rather than simply perform a bounds check and index into a tabl
tableswitch. Thus, atableswitch instruction is probably more efficient than alook-
upswitch where space considerations permit a choice.

7.11 Operations on the Operand Stack

The Java Virtual Machine has a large complement of instructions that manip
the contents of the operand stack as untyped words or pairs of untyped words.
are useful because of the Java Virtual Machine’s reliance on deft manipulation
operand stack. For instance:

public long nextIndex() {

return index++;

}

private long index = 0;

is compiled to

Method long nextIndex()

 0 aload_0 // Write this onto operand stack
 1 dup // Make a copy of it
 2 getfield #4 // One of the copies of this is consumed

// loading long field index onto stack,
// above the original this

5 dup2_x1 // The long on top of the stack is
// inserted into the stack below the
// original this

 6 lconst_1 // A long 1 is loaded onto the stack
 7 ladd // The index value is incremented
 8 putfield #4 // and the result stored back in the field
 11 lreturn // The original value of index is left on

// top of the stack, ready to be returned

THE JAVATM VIRTUAL MACHINE SPECIFICATION362

ation
.

Note that the Java Virtual Machine never allows its operand stack manipul
instructions to modify or move the words of its two-word data types individually

7.12 Throwing and Handling Exceptions

Exceptions are thrown from Java programs using thethrow keyword. Its compila-
tion is simple:

void cantBeZero(int i) throws TestExc {

if (i == 0) {

 throw new TestExc();

}

}

becomes

Method void cantBeZero(int)

 0 iload_1 // Load argument 1 (i) onto stack
 1 ifne 12 // If i==0, allocate instance and throw
 4 new #1 // Create instance of TestExc
 7 dup // One reference goes to the constructor
 8 invokespecial #7 // Method TestExc.<init>()V

 11 athrow // Second reference is thrown
 12 return // Never get here if we threw TestExc

Compilation of Java’stry-catch is straightforward. For example:

void catchOne() {

try {

 tryItOut();

} catch (TestExc e) {

 handleExc(e);

}

}

is compiled as

Method void catchOne()

 0 aload_0 // Beginning of try block
 1 invokevirtual #6 // Method Example.tryItOut()V

 4 return // End of try block; normal return

COMPILING FOR THE JAVA VIRTUAL MACHINE 363

the

r the
ce of

s
in-
l

 5 astore_1 // Store thrown value in local variable 1
 6 aload_0 // Load this onto stack
 7 aload_1 // Load thrown value onto stack
 8 invokevirtual #5 // Invoke handler method:

// Example.handleExc(LTestExc;)V
 11 return // Return after handling TestExc

Exception table:
From To Target Type
0 4 5 Class TestExc

Looking more closely, thetry block is compiled just as it would be if thetry were
not present:

Method void catchOne()

 0 aload_0 // Beginning of try block
 1 invokevirtual #4 // Method Example.tryItOut()V

 4 return // End of try block; normal return

If no exception is thrown during the execution of thetry block, it behaves as though
thetry were not there:tryItOut is invoked andcatchOne returns.

Following thetry block is the Java Virtual Machine code that implements
singlecatch clause:

 5 astore_1 // Store thrown value in local variable 1
 6 aload_0 // Load this onto stack
 7 aload_1 // Load thrown value onto stack
 8 invokevirtual #5 // Invoke handler method:

// Example.handleExc(LTestExc;)V
 11 return // Return after handling TestExc

Exception table:
From To Target Type
0 4 5 Class TestExc

The invocation ofhandleExc, the contents of thecatch clause, is also compiled
like a normal method invocation. However, the presence of acatch clause causes
the compiler to generate an exception table entry. The exception table fo
catchOne method has one entry corresponding to the one argument (an instan
classTestExc) that thecatch clause ofcatchOne can handle. If some value that i
an instance ofTestExc is thrown during execution of the instructions between
dices0 and4 (inclusive) incatchOne, control is transferred to the Java Virtua
Machine code at index5, which implements the block of thecatch clause. If the

THE JAVATM VIRTUAL MACHINE SPECIFICATION364

g
g

value that is thrown is not an instance ofTestExc, thecatch clause ofcatchOne
cannot handle it. Instead, the value is rethrown to the invoker ofcatchOne.

A try may have multiplecatch clauses:

void catchTwo() {

try {

 tryItOut();

} catch (TestExc1 e) {

 handleExc(e);

} catch (TestExc2 e) {

 handleExc(e);

}

}

Multiple catch clauses of a giventry statement are compiled by simply appendin
the Java Virtual Machine code for eachcatch clause one after the other, and addin
entries to the exception table:

Method void catchTwo()

 0 aload_0 // Begin try block
 1 invokevirtual #5 // Method Example.tryItOut()V

 4 return // End of try block; normal return
 5 astore_1 // Beginning of handler for TestExc1;

// Store thrown value in local variable 1
 6 aload_0 // Load this onto stack
 7 aload_1 // Load thrown value onto stack
 8 invokevirtual #7 // Invoke handler method:

// Example.handleExc(LTestExc1;)V
 11 return // Return after handling TestExc1

 12 astore_1 // Beginning of handler for TestExc2;
// Store thrown value in local variable 1

 13 aload_0 // Load this onto stack
 14 aload_1 // Load thrown value onto stack
 15 invokevirtual #7 // Invoke handler method:

// Example.handleExc(LTestExc2;)V
 18 return // Return after handling TestExc2

Exception table:
From To Target Type
0 4 5 Class TestExc1
0 4 12 Class TestExc2

COMPILING FOR THE JAVA VIRTUAL MACHINE 365

f that

ng
If during the execution of thetry clause (between indices0 and4) a value is thrown
that matches the parameter of one or more of thecatch blocks (the value is an
instance of one or more of the parameters), the first (leftmost) suchcatch clause is
selected. Control is transferred to the Java Virtual Machine code for the block o
catch clause. If the value thrown does not match the parameter of any of thecatch

clauses ofcatchTwo, the Java Virtual Machine rethrows the value without invoki
code in anycatch clause ofcatchTwo.

Nestedtry-catch statements are compiled very much like atry statement
with multiplecatch clauses:

void nestedCatch() {

try {

 try {

 tryItOut();

 } catch (TestExc1 e) {

handleExc1(e);

 }

} catch (TestExc2 e) {

 handleExc2(e);

}

}

becomes

Method void nestedCatch()

 0 aload_0 // Begin try block
 1 invokevirtual #8 // Method Example.tryItOut()V

 4 return // End of try block; normal return
 5 astore_1 // Beginning of handler for TestExc1;

// Store thrown value in local variable 1
 6 aload_0 // Load this onto stack
 7 aload_1 // Load thrown value onto stack
 8 invokevirtual #7 // Invoke handler method:

// Example.handleExc1(LTestExc1;)V
 11 return // Return after handling TestExc1

 12 astore_1 // Beginning of handler for TestExc2;
// Store thrown value in local variable 1

 13 aload_0 // Load this onto stack
 14 aload_1 // Load thrown value onto stack
 15 invokevirtual #6 // Invoke handler method:

THE JAVATM VIRTUAL MACHINE SPECIFICATION366

 an
xcep-
 invo-

dle

able

 by

or
-

// Example.handleExc2(LTestExc2;)V
 18 return // Return after handling TestExc2

Exception table:
From To Target Type
0 4 5 Class TestExc1
0 12 12 Class TestExc2

The nesting ofcatch clauses is represented only in the exception table. When
exception is thrown, the innermost catch clause that contains the site of the e
tion and with a matching parameter is selected to handle it. For instance, if the
cation of tryItOut (at index1) threw an instance ofTestExc1, it would be
handled by thecatch clause that invokeshandleExc1. This is so even though the
exception occurs within the bounds of the outercatch clause (catchingTestExc2),
and even though that outercatch clause might otherwise have been able to han
the thrown value.

As a subtle point, note that the range of acatch clause is inclusive on the
“from” end and exclusive on the “to” end (see §4.7.4). Thus, the exception t
entry for thecatch clause catchingTestExc1 does not cover thereturn instruc-
tion at offset4. However, the exception table entry for thecatch clause catching
TestExc2 does cover thereturn instruction at offset11. Return instructions
within nestedcatch clauses are included in the range of instructions covered
nestingcatch clauses.

7.13 Compilingfinally

Compilation of atry-finally statement is similar to that oftry-catch. Prior to
transferring control outside thetry statement, whether that transfer is normal
abrupt, because an exception has been thrown, thefinally clause must first be exe
cuted. For a simple example:

void tryFinally() {

try {

 tryItOut();

} finally {

 wrapItUp();

}

}

the compiled code is

COMPILING FOR THE JAVA VIRTUAL MACHINE 367

-

the
l-

ess

f
al

p-

xecu-
Method void tryFinally()

 0 aload_0 // Beginning of try block
 1 invokevirtual #6 // Method Example.tryItOut()V

 4 jsr 14 // Call finally block
 7 return // End of try block
 8 astore_1 // Beginning of handler for any throw
 9 jsr 14 // Call finally block
 12 aload_1 // Push thrown value,
 13 athrow // and rethrow the value to the invoker
 14 astore_2 // Beginning of finally block
 15 aload_0 // Push this onto stack
 16 invokevirtual #5 // Method Example.wrapItUp()V

 19 ret 2 // Return from finally block
Exception table:

From To Target Type
0 4 8 any

There are four ways for control to pass outside of thetry statement: by falling
through the bottom of that block, by returning, by executing abreak or continue
statement, or by raising an exception. IftryItOut returns without raising an excep
tion, control is transferred to thefinally block using ajsr instruction. Thejsr 14
instruction at index4 makes a “subroutine call” to the code for thefinally block at
index 14 (thefinally block is compiled as an embedded subroutine). When
finally block completes, theret 2 instruction returns control to the instruction fo
lowing thejsr instruction at index4.

In more detail, the subroutine call works as follows: Thejsr instruction pushes
the address of the following instruction (return at index7) onto the operand stack
before jumping. Theastore_2 instruction that is the jump target stores the addr
on the operand stack into local variable2. The code for thefinally block (in this
case theaload_0 and invokevirtual instructions) is run. Assuming execution o
that code completes normally, theret instruction retrieves the address from loc
variable2 and resumes execution at that address. Thereturn instruction is exe-
cuted, andtryFinally returns normally.

A try statement with afinally clause is compiled to have a special exce
tion handler, one that can handle any exception thrown within thetry statement.
If tryItOut throws an exception, the exception table fortryFinally is searched
for an appropriate exception handler. The special handler is found, causing e
tion to continue at index8. Theastore_1 instruction at index8 stores the thrown

THE JAVATM VIRTUAL MACHINE SPECIFICATION368

o

 and
value into local variable1. The followingjsr instruction does a subroutine call t
the code for thefinally block. Assuming that code returns normally, theaload_1
instruction at index12 pushes the thrown value back onto the operand stack,
the followingathrow instruction rethrows the value.

Compiling atry statement with both acatch clause and afinally clause is
more complex:

void tryCatchFinally() {

try {

 tryItOut();

} catch (TestExc e) {

 handleExc(e);

} finally {

 wrapItUp();

}

}

becomes

Method void tryCatchFinally()

 0 aload_0 // Beginning of try block
 1 invokevirtual #4 // Method Example.tryItOut()V

 4 goto 16 // Jump to finally block
 7 astore_3 // Beginning of handler for TestExc;

// Store thrown value in local variable 3
 8 aload_0 // Push this onto stack
 9 aload_3 // Push thrown value onto stack
 10 invokevirtual #6 // Invoke handler method:

// Example.handleExc(LTestExc;)V
 13 goto 16 // Huh???1

 16 jsr 26 // Call finally block
 19 return // Return after handling TestExc

 20 astore_1 // Beginning of handler for exceptions
// other than TestExc, or exceptions
// thrown while handling TestExc

 21 jsr 26 // Call finally block
 24 aload_1 // Push thrown value,

1. Thisgoto instruction is strictly unnecessary, but is generated by thejavac compiler of Sun’s JDK
1.0.2 release.

COMPILING FOR THE JAVA VIRTUAL MACHINE 369

. The
lue to

n the

t

n

 its
ost

the
ns.
 25 athrow // and rethrow the value to the invoker
 26 astore_2 // Beginning of finally block
 27 aload_0 // Push this onto stack
 28 invokevirtual #5 // Method Example.wrapItUp()V

 31 ret 2 // Return from finally block
Exception table:

From To Target Type
0 4 7 Class TestExc
0 16 20 any

If the try statement completes normally, thegoto instruction at index4 jumps
to the subroutine call for thefinally block at index16. Thefinally block at
index 26 is executed, control returns to thereturn instruction at index19, and
tryCatchFinally returns normally.

If tryItOut throws an instance ofTestExc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception
code for that exception handler, beginning at index 7, passes the thrown va
handleExc, and on its return makes the same subroutine call to thefinally block
at index26 as in the normal case. If an exception is not thrown byhandleExc,
tryCatchFinally returns normally.

If tryItOut throws a value that is not an instance ofTestExc, or if handle-
Exc itself throws an exception, the condition is handled by the second entry i
exception table, which handles any value thrown between indices0 and16. That
exception handler transfers control to index20, where the thrown value is firs
stored in local variable1. The code for thefinally block at index26 is called as
a subroutine. If it returns, the thrown value is retrieved from local variable1 and
rethrown using theathrow instruction. If a new value is thrown during executio
of thefinally clause, thefinally clause aborts andtryCatchFinally returns
abnormally, throwing the new value to its invoker.

7.14 Synchronization

The Java Virtual Machine provides explicit support for synchronization through
monitorenter and monitorexit instructions. For Java, however, perhaps the m
common form of synchronization is thesynchronized method.

A synchronized method is not normally implemented usingmonitorenter
and monitorexit. Rather, it is simply distinguished in the constant pool by
ACC_SYNCHRONIZED flag, which is checked by the method invocation instructio

THE JAVATM VIRTUAL MACHINE SPECIFICATION370

ether
exe-
on is

ically

s
n
leases
When invoking a method for whichACC_SYNCHRONIZED is set, the current thread
acquires a monitor, invokes the method itself, and releases the monitor wh
the method invocation completes normally or abruptly. During the time the
cuting thread owns the monitor, no other thread may acquire it. If an excepti
thrown during invocation of thesynchronized method, and thesynchronized
method does not handle the exception, the monitor for the method is automat
released before the exception is rethrown out of thesynchronized method.

The monitorenter and monitorexit instructions exist to support Java’
synchronized statements. Asynchronized statement acquires a monitor o
behalf of the executing thread, executes the body of the statement, then re
the monitor:

void onlyMe(Foo f) {

synchronized(f) {

 doSomething();

}

}

Compilation of synchronized statements is straightforward:

Method void onlyMe(Foo)

 0 aload_1 // Load f onto operand stack
 1 astore_2 // Store it in local variable 2
 2 aload_2 // Load local variable 2 (f) onto stack
 3 monitorenter // Enter the monitor associated with f

 4 aload_0 // Holding the monitor, pass this and
 5 invokevirtual #5 // call Example.doSomething()V
 8 aload_2 // Load local variable 2 (f) onto stack
 9 monitorexit // Exit the monitor associated with f

 10 return // Return normally
 11 aload_2 // In case of any throw, end up here
 12 monitorexit // Be sure to exit monitor,
 13 athrow // then rethrow the value to the invoker
Exception table:

FromTo Target Type
4 8 11 any

C H A P T E R 8

s

erac-
een

his
nts of
se
other
t of as
 that

it oper-

ed to
 vice

h

these
Threads and Lock

This chapter details the low-level actions that may be used to explain the int
tion of Java Virtual Machine threads with a shared main memory. It has b
reprinted with minimal changes fromThe Java Language Specification, by James
Gosling, Bill Joy, and Guy Steele.

8.1 Terminology and Framework

A variable is any location within a Java program that may be stored into. T
includes not only class variables and instance variables, but also compone
arrays. Variables are kept in amain memory that is shared by all threads. Becau
it is impossible for one thread to access parameters or local variables of an
thread, it does not matter whether parameters and local variables are though
residing in the shared main memory or in the working memory of the thread
owns them.

Every thread has aworking memory in which it keeps its ownworking copy of
variables that it must use or assign. As the thread executes a Java program,
ates on these working copies. The main memory contains themaster copy of
every variable. There are rules about when a thread is permitted or requir
transfer the contents of its working copy of a variable into the master copy or
versa.

The main memory also containslocks; there is one lock associated with eac
object. Threads may compete to acquire a lock.

For the purposes of this chapter, the verbsuse, assign, load, store, lock, and
unlock name actions that a thread can perform. The verbsread, write, lock, and
unlock name actions that the main memory subsystem can perform. Each of
operations is atomic (indivisible).
371

THE JAVATM VIRTUAL MACHINE SPECIFICATION372

d’s

main
work-
 to a

ain

y and
tion;
other
tions
er as

detail

derly-

nts,
 the

then
. The

ough
speed
.

opy
hen-
 of a

tion
med
 vari-
A use or assign operation is a tightly coupled interaction between a threa
execution engine and the thread’s working memory. Alock or unlock operation is
a tightly coupled interaction between a thread’s execution engine and the
memory. But the transfer of data between the main memory and a thread’s
ing memory is loosely coupled. When data is copied from the main memory
working memory, two actions must occur: aread operation performed by the main
memory, followed some time later by a correspondingload operation performed
by the working memory. When data is copied from a working memory to the m
memory, two actions must occur: astore operation performed by the working
memory, followed some time later by a correspondingwrite operation performed
by the main memory. There may be some transit time between main memor
a working memory, and the transit time may be different for each transac
thus, operations initiated by a thread on different variables may viewed by an
thread as occurring in a different order. For each variable, however, the opera
in main memory on behalf of any one thread are performed in the same ord
the corresponding operations by that thread. (This is explained in greater
later.)

A single Java thread issues a stream ofuse, assign, lock, andunlock opera-
tions as dictated by the semantics of the Java program it is executing. The un
ing Java implementation is then required additionally to perform appropriateload,
store, read, and write operations so as to obey a certain set of constrai
explained later. If the Java implementation correctly follows these rules and
Java application programmer follows certain other rules of programming,
data can be reliably transferred between threads through shared variables
rules are designed to be “tight” enough to make this possible, but “loose” en
to allow hardware and software designers considerable freedom to improve
and throughput through such mechanisms as registers, queues, and caches

Here are the detailed definitions of each of the operations:

• A use action (by a thread) transfers the contents of the thread’s working c
of a variable to the thread’s execution engine. This action is performed w
ever a thread executes a virtual machine instruction that uses the value
variable.

• An assign action (by a thread) transfers a value from the thread’s execu
engine into the thread's working copy of a variable. This action is perfor
whenever a thread executes a virtual machine instruction that assigns to a
able.

THREADS AND LOCKS 373

opy

y a

opy

ad’s
in

s a

ses

of a
a

ad’s

may
:

r any

tally
 the

ally
 the
• A read action (by the main memory) transmits the contents of the master c
of a variable to a thread’s working memory for use by a laterload operation.

• A load action (by a thread) puts a value transmitted from main memory b
read action into the thread's working copy of a variable.

• A storeaction (by a thread) transmits the contents of the thread’s working c
of a variable to main memory for use by a laterwrite operation.

• A write action (by the main memory) puts a value transmitted from the thre
working memory by astore action into the master copy of a variable in ma
memory.

• A lock action (by a thread tightly synchronized with main memory) cause
thread to acquire one claim on a particular lock.

• An unlock action (by a thread tightly synchronized with main memory) cau
a thread to release one claim on a particular lock.

Thus, the interaction of a thread with a variable over time consists
sequence ofuse, assign, load, andstore operations. Main memory performs
read operation for everyload and awrite operation for everystore. A thread’s
interactions with a lock over time consist of a sequence oflock andunlock opera-
tions. All the globally visible behavior of a thread thus comprises all the thre
operations on variables and locks.

8.2 Execution Order and Consistency

The rules of execution order constrain the order in which certain events
occur. There are four general constraints on the relationships among actions

• The actions performed by any one thread are totally ordered; that is, fo
two actions performed by a thread, one action precedes the other.

• The actions performed by the main memory for any one variable are to
ordered; that is, for any two actions performed by the main memory on
same variable, one action precedes the other.

• The actions performed by the main memory for any one lock are tot
ordered; that is, for any two actions performed by the main memory on
same lock, one action precedes the other.

• It is not permitted for an action to follow itself.

THE JAVATM VIRTUAL MACHINE SPECIFICATION374

xplic-
ions
s that

ared
ons of

in

ich
follow

o

r-
ll the

era-

exam-

e

The last rule may seem trivial, but it does need to be stated separately and e
itly for completeness. Without it, it would be possible to propose a set of act
by two or more threads and precedence relationships among the action
would satisfy all the other rules but would require an action to follow itself.

Threads do not interact directly; they communicate only through the sh
main memory. The relationships between the actions of a thread and the acti
main memory are constrained in three ways:

• Eachlock or unlock action is performed jointly by some thread and the ma
memory.

• Eachload action by a thread is uniquely paired with aread action by the main
memory such that theload action follows theread action.

• Eachstore action by a thread is uniquely paired with awrite action by the main
memory such that thewrite action follows thestore action.

Most of the rules in the following sections further constrain the order in wh
certain actions take place. A rule may state that one action must precede or
some other action. Note that this relationship is transitive: if actionA must precede
actionB, andB must precedeC, thenA must precedeC. The programmer must
remember that these rules are theonly constraints on the ordering of actions; if n
rule or combination of rules implies that actionA must precede actionB, then a
Java implementation is free to perform actionB before actionA, or to perform
actionB concurrently with actionA. This freedom can be the key to good perfo
mance. Conversely, an implementation is not required to take advantage of a
freedoms given it.

In the rules that follow, the phrasing “B must intervene betweenA and C”
means that actionB must follow actionA and precede actionC.

8.3 Rules About Variables

Let T be a thread andV be a variable. There are certain constraints on the op
tions performed byT with respect toV:

• A use or assign by T of V is permitted only when dictated by execution byT

of the Java program according to the standard Java execution model. For
ple, an occurrence ofV as an operand of the+ operator requires that a single
use operation occur onV; an occurrence ofV as the left-hand operand of th
assignment operator= requires that a singleassign operation occur. Alluse and

THREADS AND LOCKS 375

 pro-

se

d
n.)

-

 not

t the
assign actions by a given thread must occur in the order specified by the
gram being executed by the thread. If the following rules forbidT to perform
a requireduse as its next action, it may be necessary forT to perform aload
first in order to make progress.

• A store operation byT onV must intervene between anassign by T of V and
a subsequentload by T of V. (Less formally: a thread is not permitted to lo
the most recent assign.)

• An assign operation byT onV must intervene between aload orstore by T of
V and a subsequentstore by T of V. (Less formally: a thread is not permitte
to write data from its working memory back to main memory for no reaso

• After a thread is created, it must perform anassign or load operation on a vari-
able before performing ause or store operation on that variable. (Less for
mally: a new thread starts with an empty working memory.)

• After a variable is created, every thread must perform anassign or load oper-
ation on that variable before performing ause or store operation on that vari-
able. (Less formally: a new variable is created only in main memory and is
initially in any thread’s working memory.)

Provided that all the constraints in §8.3, §8.6, and §8.7 are obeyed, aload or
store operation may be issued at any time by any thread on any variable, a
whim of the implementation.

There are also certain constraints on theread andwrite operations performed
by main memory:

• For everyload operation performed by any threadT on its working copy of a
variableV, there must be a corresponding precedingread operation by the
main memory on the master copy ofV, and theload operation must put into
the working copy the data transmitted by the correspondingread operation.

• For everystore operation performed by any threadT on its working copy of a
variableV, there must be a corresponding followingwrite operation by the
main memory on the master copy ofV, and thewrite operation must put into
the master copy the data transmitted by the correspondingstore operation.

• Let actionA be aload or store by threadT on variableV, and let actionP be
the correspondingread or write by the main memory on variableV. Similarly,
let actionB be some otherload or store by threadT on that same variableV,
and let actionQ be the correspondingread or write by the main memory on

THE JAVATM VIRTUAL MACHINE SPECIFICATION376

rmed

of
pera-

its of
der

onse-
 non-

tain
tation-

is
e of
mic
va to
plex

e this
ys to

ions
variableV. If A precedesB, thenP must precedeQ. (Less formally: operations
on the master copy of any given variable on behalf of a thread are perfo
by the main memory in exactly the order that the thread requested.)

Note that this last rule appliesonly to actions by a thread on thesame variable.
However, there is a more stringent rule forvolatile variables (§8.7).

8.4 Nonatomic Treatment of Double and Long Variables

If a double or long variable is not declaredvolatile, then for the purposes of
load, store, read, andwrite operations it is treated as if it were two variables
32 bits each: wherever the rules require one of these operations, two such o
tions are performed, one for each 32-bit half. The manner in which the 64 b
a double or long variable are encoded into two 32-bit quantities and the or
of the operations on the halves of the variables are not defined byThe Java Lan-
guage Specification.

This matters only because aread or write of adouble or long variable may
be handled by an actual main memory as two 32-bitread or write operations that
may be separated in time, with other operations coming between them. C
quently, if two threads concurrently assign distinct values to the same shared
volatile double or long variable, a subsequent use of that variable may ob
a value that is not equal to either of the assigned values, but some implemen
dependent mixture of the two values.

An implementation is free to implementload, store, read, andwrite opera-
tions for double and long values as atomic 64-bit operations; in fact, this
strongly encouraged. The model divides them into 32-bit halves for the sak
several currently popular microprocessors that fail to provide efficient ato
memory transactions on 64-bit quantities. It would have been simpler for Ja
define all memory transactions on single variables as atomic; this more com
definition is a pragmatic concession to current hardware practice. In the futur
concession may be eliminated. Meanwhile, programmers are cautioned alwa
explicitly synchronize access to shareddouble andlong variables.

8.5 Rules About Locks

Let T be a thread andL be a lock. There are certain constraints on the operat
performed byT with respect toL :

THREADS AND LOCKS 377

-
is
 lock
ber

-
o

s
istent

ut

,

-
ain
• A lock operation byT onL may occur only if, for every threadS other thanT,
the number of precedingunlock operations byS onL equals the number of pre
cedinglock operations byS onL. (Less formally: only one thread at a time
permitted to lay claim to a lock; moreover, a thread may acquire the same
multiple times and does not relinquish ownership of it until a matching num
of unlock operations have been performed.)

• An unlock operation by threadT on lockL may occur only if the number of
precedingunlock operations byT onL is strictly less than the number of pre
cedinglock operations byT onL. (Less formally: a thread is not permitted t
unlock a lock it does not own.)

With respect to a lock, thelock andunlock operations performed by all the thread
are performed in some total sequential order. This total order must be cons
with the total order on the operations of each thread.

8.6 Rules About the Interaction of Locks and Variables

Let T be any thread, letV be any variable, and letL be any lock. There are certain
constraints on the operations performed byT with respect toV andL :

• Between anassign operation byT onV and a subsequentunlock operation by
T onL , astore operation byT onV must intervene; moreover, thewrite oper-
ation corresponding to thatstore must precede theunlock operation, as seen by
main memory. (Less formally: if a thread is to perform anunlock operation on
any lock, it must first copyall assigned values in its working memory back o
to main memory.)

• Between alock operation byT onL and a subsequentuse orstore operation by
T on a variableV, anassign or load operation onV must intervene; moreover
if it is a load operation, then theread operation corresponding to thatload must
follow the lock operation, as seen by main memory. (Less formally: alock
operation behaves as if it flushesall variables from the thread’s working mem
ory, after which it must either assign them itself or load copies anew from m
memory.)

THE JAVATM VIRTUAL MACHINE SPECIFICATION378

era-

e

-

s on
r that

re
be
s to
 prop-

ory

lue
8.7 Rules for Volatile Variables

If a variable is declared volatile, then additional constraints apply to the op
tions of each thread. LetT be a thread and letV andW be volatile variables.

• A use operation byT onV is permitted only if the previous operation byT on
V wasload, and aload operation byT onV is permitted only if the next oper-
ation byT on V is use. Theuse operation is said to be “associated” with th
read operation that corresponds to theload.

• A store operation byT on V is permitted only if the previous operation byT

on V wasassign, and anassign operation byT on V is permitted only if the
next operation byT on V is store. Theassign operation is said to be “associ
ated” with thewrite operation that corresponds to thestore.

• Let actionA be ause or assign by threadT on variableV, let actionF be the
load or store associated withA, and let actionP be theread or write of V that
corresponds toF. Similarly, let actionB be ause or assign by threadT on vari-
ableW, let actionG be theload or store associated withB, and let actionQ be
theread or write of V that corresponds toG. If A precedesB, thenP must pre-
cedeQ. (Less formally: operations on the master copies of volatile variable
behalf of a thread are performed by the main memory in exactly the orde
the thread requested.)

8.8 Prescient Store Operations

If a variable is not declaredvolatile, then the rules in the previous sections a
relaxed slightly to allowstore operations to occur earlier than would otherwise
permitted. The purpose of this relaxation is to allow optimizing Java compiler
perform certain kinds of code rearrangement that preserve the semantics of
erly synchronized programs, but might be caught in the act of performing mem
operations out of order by programs that are not properly synchronized.

Suppose that astore by T of V would follow a particularassign by T of V

according to the rules of the previous sections, with no interveningload or assign
by T of V. Then thatstore operation would send to the main memory the va
that theassign operation put into the working memory of threadT . The special
rule allows thestore operation actually to occur before theassign operation
instead, if the following restrictions are obeyed:

THREADS AND LOCKS 379

e
o. No

uch
side
, for

king
,

ticular
ppro-
s, for
n-
nize

 lock
 will

igned
l
smit-
• If the store operation occurs, theassign is bound to occur. (Remember, thes
are restrictions on what actually happens, not on what a thread plans to d
fair performing astore and then throwing an exception before theassign
occurs!)

• No lock operation intervenes between the relocatedstore and theassign.

• No load of V intervenes between the relocatedstore and theassign.

• No otherstore of V intervenes between the relocatedstore and theassign.

• Thestore operation sends to the main memory the value that theassign opera-
tion will put into the working memory of threadT.

This last property inspires us to call such an earlystore operationprescient: it has
to know ahead of time, somehow, what value will be stored by theassign that it
should have followed. In practice, optimized compiled code will compute s
values early (which is permitted if, for example, the computation has no
effects and throws no exceptions), store them early (before entering a loop
example), and keep them in working registers for later use within the loop.

8.9 Discussion

Any association between locks and variables is purely conventional. Loc
any lock conceptually flushesall variables from a thread’s working memory
and unlocking any lock forces the writing out to main memory ofall variables
that the thread has assigned. That a lock may be associated with a par
object or a class is purely a convention. In some applications, it may be a
priate always to lock an object before accessing any of its instance variable
example;synchronized methods are a convenient way to follow this conve
tion. In other applications, it may suffice to use a single lock to synchro
access to a large collection of objects.

If a thread uses a particular shared variable only after locking a particular
and before the corresponding unlocking of that same lock, then the thread
read the shared value of that variable from main memory after thelock operation,
if necessary, and will copy back to main memory the value most recently ass
to that variable before theunlock operation. This, in conjunction with the mutua
exclusion rules for locks, suffices to guarantee that values are correctly tran
ted from one thread to another through shared variables.

THE JAVATM VIRTUAL MACHINE SPECIFICATION380

be
d
ution

o

the

not
The rules for volatile variables effectively require that main memory
touched exactly once for eachuse or assign of a volatile variable by a thread, an
that main memory be touched in exactly the order dictated by the thread exec
semantics. However, such memory operations are not ordered with respect tread
andwrite operations on nonvolatile variables.

8.10 Example: Possible Swap

Consider a class that has class variablesa andb and methodshither andyon:

class Sample {

int a = 1, b = 2;

void hither() {

a = b;

}

void yon()

b = a;

}

}

Now suppose that two threads are created, and that one thread callshither while
the other thread callsyon. What is the required set of actions and what are
ordering constraints?

Let us consider the thread that callshither. According to the rules, this
thread must perform ause of b followed by anassign of a. That is the bare mini-
mum required to execute a call to the methodhither.

Now, the first operation on variableb by the thread cannot beuse. But it may
beassign or load. An assign to b cannot occur because the program text does
call for such anassign operation, so aload of b is required. Thisload operation by
the thread in turn requires a precedingread operation forb by the main memory.

The thread may optionallystore the value ofa after theassign has occurred. If
it does, then thestore operation in turn requires a followingwrite operation fora
by the main memory.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.

THREADS AND LOCKS 381

con-

a-
h is

,
tely

:

he
 that
The total set of operations may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the operations by the main memory occur? The only

straint is that it is not possible both for thewrite of a to precede theread of a and
for thewrite of b to precede theread of b, because the causality arrows in the di
gram would form a loop so that an action would have to precede itself, whic
not allowed. Assuming that the optionalstore andwrite operations are to occur
there are three possible orderings in which the main memory might legitima
perform its operations. Letha andhb be the working copies ofa andb for the
hither thread, letya andyb be the working copies for theyon thread, and letma
andmb be the master copies in main memory. Initiallyma=1 andmb=2. Then the
three possible orderings of operations and the resulting states are as follows

• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

• reada→write a, readb→write b (thenha=2, hb=2, ma=2, mb=1, ya=1, yb=1)

Thus, the net result might be that, in main memory,b is copied intoa, a is copied
into b, or the values ofa andb are swapped; moreover, the working copies of t
variables might or might not agree. It would be incorrect, of course, to assume

loadb

useb

assigna

[storea]

readb

[write a]

loada

usea

assignb

[storeb]

reada

[write b]

hither thread main memory yon thread

THE JAVATM VIRTUAL MACHINE SPECIFICATION382

hich

ults.
any one of these outcomes is more likely than another. This is one place in w
the behavior of a Java program is necessarily timing-dependent.

Of course, an implementation might also choose not to perform thestore and
write operations, or only one of the two pairs, leading to yet other possible res

Now suppose that we modify the example to usesynchronized methods:

class SynchSample {

int a = 1, b = 2;

synchronized void hither() {

a = b;

}

synchronized void yon()

b = a;

}

}

Let us again consider the thread that callshither. According to the rules, this
thread must perform alock operation (on theClass object for classSynchSample)
before the body of methodhither is executed. This is followed by ause of b and
then anassign of a. Finally, anunlock operation on theClass object must be per-
formed after the body of methodhither completes. That is the bare minimum
required to execute a call to the methodhither.

As before, aload of b is required, which in turn requires a precedingread
operation forb by the main memory. Because theload follows thelock operation,
the correspondingread must also follow thelock operation.

Because anunlock operation follows theassign of a, astore operation ona is
mandatory, which in turn requires a followingwrite operation fora by the main
memory. Thewrite must precede theunlock operation.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.

THREADS AND LOCKS 383

 of
r

reads
The total set of operations may be pictured as follows:

The lock and unlock operations provide further constraints on the order
operations by the main memory; thelock operation by one thread cannot occu
between thelock andunlock operations of the other thread. Moreover, theunlock
operations require that thestore andwrite operations occur. It follows that only
two sequences are possible:

• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

While the resulting state is timing-dependent, it can be seen that the two th
will necessarily agree on the values ofa andb.

loadb

useb

assigna

storea

readb

write a

loada

usea

assignb

storeb

reada

write b

hither thread main memory yon thread

lock classSynchSample lock classSynchSample

unlock classSynchSample unlock classSynchSample

THE JAVATM VIRTUAL MACHINE SPECIFICATION384

thod
ider a

der-

 it
8.11 Example: Out-of-Order Writes

This example is similar to that in the preceding section, except that one me
assigns to both variables and the other method reads both variables. Cons
class that has class variablesa andb and methodsto andfro:

class Simple {

int a = 1, b = 2;

void to() {

a = 3;

b = 4;

}

void fro()

System.out.println("a= " + a + ", b=" + b);

}

}

Now suppose that two threads are created, and that one thread callsto while the
other thread callsfro. What is the required set of actions and what are the or
ing constraints?

Let us consider the thread that callsto. According to the rules, this thread
must perform anassign of a followed by anassign of b. That is the bare minimum
required to execute a call to the methodto. Because there is no synchronization,
is at the option of the implementation whether or not tostore the assigned values
back to main memory! Therefore, the thread that callsfro may obtain either1 or
3 for the value ofa, and independently may obtain either2 or 4 for the value ofb.

Now suppose thatto is synchronized butfro is not:

class SynchSimple {

int a = 1, b = 2;

synchronized void to() {

a = 3;

b = 4;

}

void fro()

System.out.println("a= " + a + ", b=" + b);

}

}

THREADS AND LOCKS 385

in

t the
t

e
ere

e

In this case the methodto will be forced tostore the assigned values back to ma
memory before theunlock operation at the end of the method. The methodfro

must, of course, usea andb (in that order) and so mustload values fora andb
from main memory.

The total set of operations may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the operations by the main memory occur? Note tha

rules do not require thatwrite a occur beforewrite b; neither do they require tha
reada occur beforereadb. Also, even though methodto is synchronized, method
fro is not synchronized, so there is nothing to prevent theread operations from
occurring between thelock andunlock operations. (The point is that declaring on
methodsynchronized does not of itself make that method behave as if it w
atomic.)

As a result, the methodfro could still obtain either1 or 3 for the value ofa,
and independently could obtain either2 or 4 for the value ofb. In particular,fro
might observe the value1 for a and4 for b. Thus, even thoughto does anassign
to a and then anassign to b, the write operations to main memory may b
observed by another thread to occur as if in the opposite order.

assigna

assignb

storeb

reada

write a

loada

usea

useb

printing

readb

write b

to thread main memory fro thread

loadblock classSynchSimple

unlock classSynchSimple

storea

THE JAVATM VIRTUAL MACHINE SPECIFICATION386

s

read.

vide a

tions

hen
her

from

 the
ted,
Finally, suppose thatto andfro are bothsynchronized:

class SynchSynchSimple {

int a = 1, b = 2;

synchronized void to() {

a = 3;

b = 4;

}

synchronized void fro()

System.out.println("a= " + a + ", b=" + b);

}

}

In this case, the actions of methodfro cannot be interleaved with the action
of methodto, and sofro will print either “a=1, b=2” or “a=3, b=4”.

8.12 Threads

Threads are created and managed by the classesThread andThreadGroup. Cre-
ating aThread object creates a thread, and that is the only way to create a th
When the thread is created, it is not yet active; it begins to run when itsstart

method is called.

8.13 Locks and Synchronization

There is a lock associated with every object. The Java language does not pro
way to perform separatelock andunlock operations; instead, they are implicitly
performed by high-level constructs that arrange always to pair such opera
correctly. (The Java Virtual Machine, however, provides separatemonitorenter
andmonitorexit instructions that implement thelock andunlock operations.)

The synchronized statement computes a reference to an object; it t
attempts to perform alock operation on that object and does not proceed furt
until the lock operation has successfully completed. (Alock operation may be
delayed because the rules about locks can prevent the main memory
participating until some other thread is ready to perform one or moreunlock
operations.) After the lock operation has been performed, the body of
synchronized statement is executed. If execution of the body is ever comple

THREADS AND LOCKS 387

n

-
h the

he
ither
e

 used
sed in

it set,
.

ads.
nt

ject,

e

ead
 the
either normally or abruptly, anunlock operation is automatically performed o
that same lock.

A synchronized method automatically performs alock operation when it is
invoked; its body is not executed until thelock operation has successfully com
pleted. If the method is an instance method, it locks the lock associated wit
instance for which it was invoked (that is, the object that will be known asthis

during execution of the body of the method). If the method isstatic, it locks the
lock associated with theClass object that represents the class in which t
method is defined. If execution of the method’s body is ever completed, e
normally or abruptly, anunlock operation is automatically performed on that sam
lock.

Best practice is that if a variable is ever to be assigned by one thread and
or assigned by another, then all accesses to that variable should be enclo
synchronized methods orsynchronized statements.

8.14 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associated wa
which is a set of threads. When an object is first created, its wait set is empty

Wait sets are used by the methodswait, notify, andnotifyAll of class
Object. These methods also interact with the scheduling mechanism for thre

The methodwait should be invoked for an object only when the curre
thread (call itT) has already locked the object’s lock. Suppose that threadT has in
fact performedN lock operations that have not been matched byunlock opera-
tions. Thewait method then adds the current thread to the wait set for the ob
disables the current thread for thread scheduling purposes, and performsN unlock
operations to relinquish the lock. The threadT then lies dormant until one of three
things happens:

• Some other thread invokes thenotify method for that object, and threadT

happens to be the one arbitrarily chosen as the one to notify.

• Some other thread invokes thenotifyAll method for that object.

• If the call by threadT to thewait method specified a time-out interval, then th
specified amount of real time has elapsed.

The threadT is then removed from the wait set and re-enabled for thr
scheduling. It then locks the object again (which may involve competing in

THE JAVATM VIRTUAL MACHINE SPECIFICATION388

 per-
he
k

ent

me
read

rrent

ur-

ed
reads
ct’s
usual manner with other threads); once it has gained control of the lock, it
formsN – 1 additionallock operations and then returns from the invocation of t
wait method. Thus, on return from thewait method, the state of the object’s loc
is exactly as it was when thewait method was invoked.

Thenotify method should be invoked for an object only when the curr
thread has already locked the object’s lock, or anIllegalMonitorState-
Exception will be thrown. If the wait set for the object is not empty, then so
arbitrarily chosen thread is removed from the wait set and re-enabled for th
scheduling. (Of course, that thread will not be able to proceed until the cu
thread relinquishes the object’s lock.)

ThenotifyAll method should be invoked for an object only when the c
rent thread has already locked the object’s lock, or anIllegalMonitorState-
Exception will be thrown. Every thread in the wait set for the object is remov
from the wait set and re-enabled for thread scheduling. (Of course, those th
will not be able to proceed until the current thread relinquishes the obje
lock.)

C H A P T E R 9
 Java
di-

 are
for-
The

e of
hine

tent

 the
et.”

cur-
ernal,
king

aced
at
An Optimization

THIS chapter describes an optimization implemented in Sun’s version of the
Virtual Machine. In this optimization, compiled Java Virtual Machine code is mo
fied at run time for better performance.

The optimization takes the form of a set of pseudo-instructions. These
variants of normal Java Virtual Machine instructions that take advantage of in
mation learned at run time to do less work than the original instructions.
pseudo-instructions are distinguishable by the suffix_quick in their mnemonics.

It is important to understand that these pseudo-instructions arenot part of the
Java Virtual Machine specification or instruction set. They are invisible outsid
a Java Virtual Machine implementation. However, inside a Java Virtual Mac
implementation they have proven to be an effective optimization.

The technique documented in this chapter is covered by U.S. Pa
5,367,685.

9.1 Dynamic Linking via Rewriting

A compiler targeting the Java Virtual Machine must only emit instructions from
instruction set documented in Chapter 6, “Java Virtual Machine Instruction S
The optimization described in this chapter works by dynamically replacing oc
rences of certain of those instructions, the first time they are executed, by int
more efficient variants. The new instructions take advantage of loading and lin
work done the first time the associated normal instruction is executed.

For instructions that are rewritten, each instance of the instruction is repl
on its first execution by a_quick pseudo-instruction. Subsequent execution of th
389

THE JAVATM VIRTUAL MACHINE SPECIFICATION390

l,
g
must
same
again.

ing

ional

inal

tant
errors.
ant
struc-

 the

ppear
eci-

ggers
instruction instance is always the_quick variant. Most instructions with_quick
variants have just a single alternative version, although some have several.

In all cases, the instructions with_quick variants reference the constant poo
a fairly costly operation. The_quick pseudo-instructions save time by exploitin
the fact that, while the first time an instruction referencing the constant pool
dynamically resolve the constant pool entry, subsequent invocations of that
instruction must reference the same object and need not resolve the entry
The rewriting process is as follows:

1. Resolve the specified item in the constant pool.

2. Throw an exception if the item in the constant pool cannot be resolved.

3. Overwrite the instruction with the_quick pseudo-instruction and any new
operands it requires. The instructionsputstatic, getstatic, putfield, andgetfield
each have two_quick versions, chosen depending on the type of the field be
operated upon.

4. Execute the new_quick pseudo-instruction.

This is the same as the definition of the original instruction, except for the addit
step in which the instruction overwrites itself with its_quick variant. The operands
of the_quick pseudo-instruction must fit within the space allocated for the orig
instruction’s operands.

The _quick variant of an instruction can assume that the item in the cons
pool has already been resolved and that this resolution did not generate any
It simply performs the intended operation on the resolved item. A signific
amount of time is thus saved on all subsequent invocations of the pseudo-in
tion.

9.2 The_quick Pseudo-instructions

The remainder of this chapter specifies the_quick pseudo-instructions used by
Sun’s Java Virtual Machine implementation. Although they are documented in
same format as the normal Java Virtual Machine instructions, the_quick pseudo-
instructions are not part of the Java Virtual Machine specification and do not a
in class files. They are normally an invisible implementation detail, so that d
sions such as opcode choices are left up to the implementor.

However, there are exceptions to this rule. Certain tools such as debu
and just-in-time (JIT) code generators may need to know details about the_quick

AN OPTIMIZATION 391

n exe-
ilar

t
un’s
.
 APIs
ools
ever,
e we

erive
will

g-
pseudo-instructions so that they can operate on code that has already bee
cuted. An implementation of the Java Virtual Machine may use techniques sim
to but different from Sun’s_quick pseudo-instructions, or may use differen
opcode numbers from Sun’s implementation. Tools assuming the details of S
_quick pseudo-instructions may not work with these differing implementations

APIs are being developed for debuggers and JIT code generators. These
may provide ways of hiding details of internal pseudo-instructions so that t
that are independent of internal implementation details can be written. How
as of this writing these APIs have not yet been established, so in the meantim
document opcode values together with other details of Sun’s_quick instructions.
Tools can assume that implementations of the Java Virtual Machine that d
from Sun’s, or that are written to be compatible with Sun’s implementation,
follow the specification given below.

Contactjvm@java.sun.com for more information about the status of debu
ger and JIT code generator APIs.

THE JAVATM VIRTUAL MACHINE SPECIFICATION392

.
 be

.6),

suc-
new
-

rray
s

n-
eate
anewarray_quick anewarray_quick

Operation Create new array ofreference

Forms anewarray_quick = 222 (0xde)

Stack …, count ⇒
…, arrayref

Description Thecount must be of typeint. It is popped off the operand stack
The count represents the number of components of the array to
created. The unsignedindexbyte1 andindexbyte2 are used to con-
struct an index into the constant pool of the current class (§3
where the value of the index is (indexbyte1 << 8) | indexbyte2. The
item at that index in the constant pool must already have been
cessfully resolved and must be a class or interface type. A
array of that type, of lengthcount, is allocated from the garbage
collected heap, and areference arrayref to this new array object
is pushed onto the operand stack. All components of the new a
are initialized to null, the default value for reference type
(§2.5.1).

Runtime
Exception

If count is less than zero, theanewarray_quick instruction throws a
NegativeArraySizeException.

Notes The opcode of this instruction was originallyanewarray. The oper-
ands of theanewarray instruction are not modified.

The anewarray_quick instruction is used to create a single dime
sion of an array of object references. It can also be used to cr
the first dimension of a multidimensional array.

Format anewarray_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 393

ool
 is
-
must

 or
 the

r

checkcast_quick checkcast_quick

Operation Check whether object is of given type

Forms checkcast_quick = 224 (0xe0)

Stack …, objectref ⇒
…, objectref

Description Theobjectref must be of typereference. The unsignedindexbyte1
andindexbyte2 are used to construct an index into the constant p
of the current class (§3.6), where the value of the index
(indexbyte1 << 8) | indexbyte2. The object at that index of the con
stant pool must already have been successfully resolved and
be a class or interface type.

If objectref is null or can be cast to the resolved class, array,
interface type, the operand stack is unchanged; otherwise,
checkcast_quick instruction throws aClassCastException.

The following rules are used to determine whether anobjectref that
is notnull can be cast to the resolved type: IfS is the class of the
object referred to byobjectref andT is the resolved class, array, o
interface type,checkcast_quick determines whetherobjectref can be
cast to typeT as follows:

• If S is an ordinary (non-array) class, then:

■ If T is a class type, thenS must be the same class (§2.8.1) asT,
or S must be a subclass ofT;

■ If T is an interface type, thenS must implement (§2.13) inter-
faceT.

Format checkcast_quick
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION394

f

es of

the

er-
checkcast_quick (cont.) checkcast_quick (cont.)

• If S is a class representing the array typeSC[], that is, an array of
components of typeSC, then:

■ If T is a class type, thenT must beObject (§2.4.6).

■ If T is an array typeTC[], that is, an array of components o
typeTC, then one of the following must be true:

• TC andSC are the same primitive type (§2.4.1).

• TC andSC are reference types (§2.4.5) and typeSC can be
cast toTC by these runtime rules.

S cannot be an interface type, because there are no instanc
interfaces, only instances of classes and arrays.

Runtime
Exception

If objectref cannot be cast to the type of the resolved class,
checkcast_quick instruction throws aClassCastException.

Notes The opcode of this instruction was originallycheckcast. The oper-
ands of thecheckcast instruction are not modified.

The checkcast_quick instruction is very similar to the
instanceof_quick instruction. It differs in its treatment ofnull, its
behavior when its test fails (checkcast_quick throws an exception,
instanceof_quick pushes a result code), and its effect on the op
and stack.

AN OPTIMIZATION 395

ass
ord.

 off-
getfield_quick getfield_quick

Operation Fetch field from object

Forms getfield_quick = 206 (0xce)

Stack …, objectref ⇒
…, value

Description The objectref, which must be of typereference, is popped from
the operand stack. Thevalue of the one-word field atoffset into the
class instance referenced byobjectref is fetched and pushed onto
the operand stack.

Runtime
Exception

If objectref is null, the getfield_quick instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallygetfield, operating on
a field determined dynamically to have an offset into the cl
instance data of 255 words or less and to have a width of one w

When the constant pool entry referenced by agetfield instruction is
resolved, the offset for the field it references is generated. That
set replaces the first operand byte of the originalgetfield instruc-
tion. The second operand byte of thegetfield is unused by
getfield_quick.

Format getfield_quick
offset

<unused>

THE JAVATM VIRTUAL MACHINE SPECIFICATION396

lass

be a
e
r-

ass
getfield_quick_w getfield_quick_w

Operation Fetch field from object

Forms getfield_quick_w = 227 (0xe3)

Stack …, objectref ⇒
…, value

OR

Stack …, objectref ⇒
…, value.word1, value.word2

Description The objectref, which must be of typereference, is popped from
the operand stack. The unsignedindexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current c
(§3.6), where the index is (indexbyte1 << 8) | indexbyte2. The con-
stant pool item at the index must be aCONSTANT_Fieldref
(§4.4.2) which must already have been resolved and must not
class (static) field. A field offset must have been stored in th
constant pool. Thevalue at that offset into the class instance refe
enced byobjectref is fetched and pushed onto the operand stack.

Runtime
Exception

If objectref is null, the getfield_quick_w instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallygetfield, operating on
a field determined dynamically to have an offset into the cl
instance data of more than 255 words.

Format getfield_quick_w
indexbyte1
indexbyte2

AN OPTIMIZATION 397

e
o-
pe

ffi-
field
m

 are
getfield_quick_w (cont.) getfield_quick_w (cont.)

The operands of thegetfield instruction are not modified. Becaus
the getfield_quick_w instruction operates on both one- and tw
word wide fields, it needs to know both the field offset and the ty
of that field. Because the originalgetfield instruction needed a 16-
bit index, the field offset may be 16 bits wide. As there is insu
cient space in the instruction to store both a 16-bit offset and a
type, getfield_quick_w retains its original operands and uses the
to index into the constant pool, where the offset and field type
available in the resolved entry.

THE JAVATM VIRTUAL MACHINE SPECIFICATION398

ass
two

 off-
getfield2_quick getfield2_quick

Operation Fetchlong or double field from object

Forms getfield2_quick = 208 (0xd0)

Stack …, objectref ⇒
…, value.word1, value.word2

Description The objectref, which must be of typereference, is popped from
the operand stack. Thevalue of the two-word field atoffset into the
class instance referenced byobjectref is fetched and pushed onto
the operand stack.

Runtime
Exception

If objectref is null, the getfield2_quick instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallygetfield, operating on
a field determined dynamically to have an offset into the cl
instance data of 255 words or less and to have a width of
words.

When the constant pool entry referenced by agetfield instruction is
resolved, the offset for the field it references is generated. That
set replaces the first operand of the originalgetfield instruction. The
second operand of thegetfield is unused bygetfield2_quick.

Format getfield2_quick
offset

<unused>

AN OPTIMIZATION 399

 the

lass

e
o
s

getstatic_quick getstatic_quick

Operation Get static field from class

Forms getstatic_quick = 210 (0xd2)

Stack …, ⇒
…, value

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at that index must be aCONSTANT_Fieldref (§4.4.2)
which must already have been resolved and must be a c
(static) field that is one word wide. Thevalue of that class field is
fetched and pushed onto the operand stack.

Notes The opcode of this instruction was originallygetstatic, operating on
a static field determined dynamically to be one word wide. Th
operands of thegetstatic instruction are not modified. There is n
equivalent to thegetfield_quick instruction, storing a class offset a
an instruction operand, for one-wordstatic fields.

Format getstatic_quick
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION400

 the

lass

ass.

he
o
t

getstatic2_quick getstatic2_quick

Operation Get static field from class

Forms getstatic2_quick = 212 (0xd4)

Stack …, ⇒
…, value.word1, value.word2

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at that index must be aCONSTANT_Fieldref (§4.4.2)
which must already have been resolved and must be a c
(static) field that is two words wide. Thevalue of that class field
is fetched and pushed onto the operand stack.

The constant pool item is a field reference to a static field of a cl
The type of the field must belong or double. The value of that
field is pushed onto the stack.

Notes The opcode of this instruction was originallygetstatic, operating on
a class field determined dynamically to be two words wide. T
operands of thegetstatic instruction are not modified. There is n
equivalent to thegetfield2_quick instruction, storing a class offse
as an instruction operand, for two-wordstatic fields.

Format getstatic2_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 401

lass

ave
y, or

s,

 an

,

instanceof_quick instanceof_quick

Operation Determine if object is of given type

Forms instanceof_quick = 225 (0xe1)

Stack …, objectref ⇒
…, result

Description The objectref, which must be of typereference, is popped from
the operand stack. The unsignedindexbyte1 and indexbyte2 are
used to construct an index into the constant pool of the current c
(§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The class at that index of the constant pool must h
already been successfully resolved and may be a class, arra
interface.

If objectref is not null and is an instance of the resolved clas
array, or interface, theinstanceof_quick instruction pushes anint
result of 1 as an int on the operand stack. Otherwise, it pushes
int result of 0.

The following rules are used to determine whether anobjectref that
is notnull is an instance of the resolved type: IfS is the class of
the object referred to byobjectref andT is the resolved class, array
or instance type,instanceof_quick determines whetherobjectref is
an instance ofT as follows:

• If S is an ordinary (non-array) class, then:

■ If T is a class type, thenS must be the same class (§2.8.1) asT,
or a subclass ofT.

■ If T is an interface type, thenS must implement (§2.13) inter-
faceT.

Format instanceof_quick
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION402

f

es of
instanceof_quick (cont.) instanceof_quick (cont.)

• If S is a class representing the array typeSC[], that is, an array of
components of typeSC, then:

■ If T is a class type, thenT must beObject (§2.4.6).

■ If T is an array typeTC[], that is, an array of components o
typeTC, then one of the following must be true:

• TC andSC are the same primitive type (§2.4.1).

• TC andSC are reference types (§2.4.5) and typeSC can be
cast toTC by these runtime rules.

S cannot be an interface type, because there are no instanc
interfaces, only instances of classes and arrays.

Notes The opcode of this instruction was originallyinstanceof. The oper-
ands of theinstanceof instruction are not modified.

AN OPTIMIZATION 403

r
here

The

le

re

, the
tical
 of

s a
the

and
invokeinterface_quick invokeinterface_quick

Operation Invoke interface method

Forms invokeinterface_quick = 218 (0xda)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedidbyte1 andidbyte2 are used to construct an identifie
for the name and descriptor (§4.3.3) of the desired method, w
the value of the identifier is (idbyte1 << 8) |idbyte2.

Thenargs operand is an unsigned byte which must not be zero.
objectref must be of typereference and must be followed on the
operands stack bynargs − 1 words of arguments. The method tab
of the class of the type ofobjectref is determined. Ifobjectref is an
array type, then the method table of classObject is used.

The unsignedguess is used to index into the method table. If the
is a method at indexguess, and if its identifier is identical to the
constructed identifier, then that method is selected. Otherwise
method table is searched for a method whose identifier is iden
to the constructed identifier. If one is found, the current value
guess is overwritten by that index.

The result of the search is a method table entry, which include
direct reference to the code for the interface method and
method’s modifier information ((see Table 4.4, “Method access
modifier flags”). The method table entry must be that of apublic

method.

Format invokeinterface_quick
idbyte1
idbyte2
nargs
guess

THE JAVATM VIRTUAL MACHINE SPECIFICATION404

e is

tual
e

ion

at
 Vir-

ple-
an-

 be
invokeinterface_quick (cont.) invokeinterface_quick (cont.)

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exceptions

If no method matching the resolved name and descriptor can
found in the class ofobjectref, invokeinterface_quick throws an
IncompatibleClassChangeError.

Otherwise, i f the selected method is a c lass (static)
method, the invokeinterface_quick instruct ion throws an
IncompatibleClassChangeError.

Otherwise, if the selected method is notpublic, the in-
vokeinterface_quick instruction throws anIllegalAccessError.

Otherwise, if the selected method isabstract, invoke-
interface_quick throws anAbstractMethodError.

Otherwise, if the selected method isnative and the code that
implements the method cannot be loaded or linked,invoke-
interface_quick throws anUnsatisfiedLinkError.

AN OPTIMIZATION 405

y
he
d

The
 of

 be
e of
invokeinterface_quick (cont.) invokeinterface_quick (cont.)

Runtime
Exception

Otherwise, ifobjectref is null, the invokeinterface_quick instruc-
tion throws aNullPointerException.

Notes The opcode of this instruction was originallyinvokeinterface. The
initial value of guess is 0, the operand value supplied b
invokeinterface. The identifiers being compared and stored in t
invokeinterface_quick instruction encode a method name an
descriptor as a 16-bit quantity that can be compared quickly.
details of the encoding are implementation-specific. The bytes
the identifier for the method being invoked,idbyte1 and idbyte2,
replace the original constant pool index bytes. The identifier can
calculated when each method is loaded, or at run time. The valu
thenargs operand is not modified.

THE JAVATM VIRTUAL MACHINE SPECIFICATION406

is-

 the

stant
fer-

tion

e is

tual
e

ion

ple-
an-
invokenonvirtual_quick invokenonvirtual_quick

Operation Invoke an instance initialization method or a private method, d
patching based on compile-time type

Forms invokenonvirtual_quick = 215 (0xd7)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at the index must be aCONSTANT_Methodref (§4.4.2)
which must already have been resolved successfully. The con
pool entry representing the resolved method includes a direct re
ence to the code for the method, an unsigned bytenargs which
must be greater than zero, and the method’s modifier informa
(see Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated withobjec-
tref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative, the nargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Format invokenonvirtual_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 407

an

ject.
-
e

invokenonvirtual_quick (cont.) invokenonvirtual_quick (cont.)

Runtime
Exception

If objectref is null, theinvokenonvirtual_quick instruction throws
aNullPointerException.

Notes The opcode of this instruction was originallyinvokespecial, and the
method it invoked was determined dynamically to be either
instance initialization method<init> or aprivate method. The
operands of theinvokespecial instruction are not modified.

The difference between theinvokenonvirtual_quick and thein-
vokevirtual_quick_w instructions is thatinvokevirtual_quick_w
invokes a method based on the actual (runtime) type of the ob
The invokenonvirtual_quick instruction invokes an instance initial
ization method orprivate method based on the compile-time typ
of the object.

THE JAVATM VIRTUAL MACHINE SPECIFICATION408

time

lass

ef-

tion

e is

tual
e

ion

ple-
an-
invokesuper_quick invokesuper_quick

Operation Invoke a superclass method, dispatching based on compile-
type

Forms invokesuper_quick = 216 (0xd8)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the method table of the superclass of the current c
(§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The specified method table entry includes a direct r
erence to the code for the method, an unsigned bytenargs which
must be greater than zero, and the method’s modifier informa
(see Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated with
objectref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative, the nargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Format invokesuper_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 409

in a

The
r-

ual
invokesuper_quick (cont.) invokesuper_quick (cont.)

Runtime
Exception

If objectref is null, the invokesuper_quick instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallyinvokespecial, and the
method it invoked was determined dynamically to be a method
superclass of the current object. The operands of theinvokespecial
instruction are not modified.

The difference between theinvokesuper_quick and the
invokevirtual_quick_w instructions is thatinvokevirtual_quick_w
invokes a method based on the class of the object.
invokesuper_quick instruction is used to invoke methods in a supe
class of the current class.

The invokesuper_quick instruction was introduced in Sun’s JDK
1.0.2 release to fix a bug in earlier versions of the Java Virt
Machine. Prior to that release, theinvokespecial instruction (then
named invokenonvirtual) would always be converted to the
invokenonvirtual_quick instruction.

THE JAVATM VIRTUAL MACHINE SPECIFICATION410

 the

des
byte
on

 for
ade

is

cu-

d
d is
invokestatic_quick invokestatic_quick

Operation Invoke a class (static) method

Forms invokestatic_quick = 217 (0xd9)

Stack …, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item at the index must be aCONSTANT_Methodref (§4.4.2)
which must already have been resolved successfully.

The constant pool entry representing the resolved method inclu
a direct reference to the code for the method, an unsigned
nargs which may be zero, and the method’s modifier informati
(see Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated with the
current class is acquired.

If the method is notnative, the nargs words of arguments are
popped from the operand stack. A new stack frame is created
the method being invoked, and the words of arguments are m
the values of its firstnargs local variables, witharg1 in local vari-
able0, arg2 in local variable1, and so on. The new stack frame
then made current, and the Java Virtual Machinepc is set to the
opcode of the first instruction of the method to be invoked. Exe
tion continues with the first instruction of the method.

If the method isnative, thenargs words of arguments are poppe
from the operand stack; the code that implements the metho
invoked in an implementation-dependent manner.

Notes The opcode of this instruction was originallyinvokestatic. The
operands of theinvokestatic instruction are not modified.

Format invokestatic_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 411

e
The
 of
de

and

e is

tual
e

ion
invokevirtual_quick invokevirtual_quick

Operation Invoke instance method; dispatch based on class

Forms invokevirtual_quick = 214 (0xd6)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The objectref must be of typereference and must reference a
class instance. Theindex operand is an unsigned byte, and th
nargs operand is an unsigned byte, which must not be zero.
index is an index into the method table of the class of the type
objectref. The table entry at that index includes the method’s co
and its modifier information (see Table 4.4, “Method access
modifier flags”).

If the method issynchronized, the monitor associated withobjec-
tref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

Format invokevirtual_quick
index
nargs

THE JAVATM VIRTUAL MACHINE SPECIFICATION412

at
 Vir-

ple-
an-

s

ith
ntry

aces

f
nt
an

than
invokevirtual_quick (cont.) invokevirtual_quick (cont.)

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exception

If the specified method isnative and the code that implement
the method cannot be loaded or linked, theinvokevirtual_quick
instruction throws anUnsatisfiedLinkError.

Runtime
Exception

Otherwise, ifobjectref is null, theinvokevirtual_quick instruction
throws aNullPointerException.

Notes The opcode of this instruction was originallyinvokevirtual, with
objectref not referring to an instance ofjava.lang.Object and
with operands determined dynamically to represent a method w
a method table index of 255 or less. When the constant pool e
referenced by aninvokevirtual instruction is resolved, a one-byte
index for the method it references is generated. That index repl
the first operand byte of the originalinvokevirtual instruction. The
second operand byte of theinvokevirtual instruction is replaced by
nargs, the number of argument words expected by the method.

An invokevirtual instruction referring to an instance o
java.lang.Object and with operands representing a consta
pool index of 255 or less will instead be converted into
invokevirtualobject_quick instruction. Any invokevirtual instruc-
tion with operands representing a constant pool index greater
255 will be converted into aninvokevirtual_quick_w instruction.

AN OPTIMIZATION 413

 the

ntry

ode
and
invokevirtual_quick_w invokevirtual_quick_w

Operation Invoke instance method, dispatching on class (wide index)

Forms invokevirtual_quick_w = 226 (0xe2)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
index is (indexbyte1 << 8) | indexbyte2. The constant pool item at
the index must be aCONSTANT_Methodref (§4.4.2) which must
already have been resolved successfully. The constant pool e
representing the resolved method includes an unsignedindex into
the method table of the resolved class and an unsigned bytenargs
which must not be zero.

The objectref must be of typereference. Theindex is used as an
index into the method table of the class of the type ofobjectref. If
theobjectref is an array type, then the method table of classObject

is used. The table entry at that index includes the method’s c
and its modifier information (see Table 4.4, “Method access
modifier flags”).

If the method issynchronized, the monitor associated withobjec-
tref is acquired.

Format invokevirtual_quick_w
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION414

e is

tual
e

ion

at
 Vir-

ple-
an-

e

h a
the

of
invokevirtual_quick_w (cont.) invokevirtual_quick_w (cont.)

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exception

If the specified method isnative and the code that implements th
method cannot be loaded or linked, theinvokevirtual_quick_w
instruction throws anUnsatisfiedLinkError.

Runtime
Exception

Otherwise, ifobjectref is null, theinvokevirtual_quick_w instruc-
tion throws aNullPointerException.

Notes The opcode of this instruction was originallyinvokevirtual, with
operands determined dynamically to represent a method wit
method table index greater than 255. The operands of
invokevirtual instruction are not modified.

Theinvokevirtual_quick andinvokevirtualobject_quick instructions
only support a one-byte offset into the method table ofobjectref. The
invokevirtual_quick_w instruction can be used to for invocations
methods that cannot be represented usinginvokevirtual_quick.

AN OPTIMIZATION 415

h
e

t
see

e is

tual
e

ion
invokevirtualobject_quick invokevirtualobject_quick

Operation Invoke instance method of classjava.lang.Object

Forms invokevirtualobject_quick = 219 (0xdb)

Stack …, objectref, [arg1, [arg2 …]] ⇒
…

Description Theobjectref must be of typereference. Theindex operand is an
unsigned byte, and thenargs operand is an unsigned byte whic
must not be zero. Theindex is an index into the method table of th
class of the type ofobjectref. If the objectref is an array type, then
the method table of classObject is used. The table entry at tha
index includes the method’s code and its modifier information (
Table 4.4, “Method access and modifier flags”).

If the method issynchronized, the monitor associated withobjec-
tref is acquired.

If the method is notnative, thenargs − 1 words of arguments and
objectref are popped from the operand stack. A new stack fram
created for the method being invoked, andobjectref and the words
of arguments are made the values of its firstnargs local variables,
with objectref in local variable0, arg1 in local variable1, and so on.
The new stack frame is then made current, and the Java Vir
Machine pc is set to the opcode of the first instruction of th
method to be invoked. Execution continues with the first instruct
of the method.

Format invokevirtualobject_quick
index
nargs

THE JAVATM VIRTUAL MACHINE SPECIFICATION416

at
 Vir-

ple-
an-

e

he
t

er-
f the
e

e

ced
-

f
nt
an

 will
invokevirtualobject_quick (cont.) invokevirtualobject_quick (cont.)

If the method isnative and the platform-dependent code th
implements it has not yet been loaded and linked into the Java
tual Machine, that is done. Thenargs − 1 words of arguments and
objectref are popped from the operand stack; the code that im
ments the method is invoked in an implementation-dependent m
ner.

Linking
Exception

If the specified method isnative and the code that implements th
method cannot be loaded or linked,invokevirtual_quick throws an
UnsatisfiedLinkError.

Runtime
Exception

Otherwise, if objectref is null, the invokevirtualobject_quick
instruction throws aNullPointerException.

Notes The opcode of this instruction was originallyinvokevirtual, and it
referred to a method of the classjava.lang.Object determined
dynamically to have a method table index of 255 or less. T
invokevirtualobject_quick instruction is specifically for the benefi
of arrays.

When the constant pool entry referenced by aninvokevirtual
instruction is resolved, a one-byte index for the method it ref
ences is generated. That index replaces the first operand byte o
original invokevirtual instruction. The second operand byte of th
invokevirtual instruction is replaced bynargs, the number of argu-
ment words expected by the method.

The invokevirtualobject_quick instruction only supports a one-byt
index into the method table ofobjectref. Objects with large numbers
of methods may not be able to have all their methods referen
with _quick variants. It is always correct, if less efficient, to re
fuse to convert an instance of aninvokevirtual instruction to
invokevirtualobject_quick.

An invokevirtual instruction not referring to an instance o
java.lang.Object and with operands representing a consta
pool index of 255 or less will instead be converted into
invokevirtual_quick instruction. Anyinvokevirtual instruction with
operands representing a constant pool index greater than 255
be converted into aninvokevirtual_quick_w instruction.

AN OPTIMIZATION 417

the

ide.
the
ldc_quick ldc_quick

Operation Push item from constant pool

Forms ldc_quick = 203 (0xcb)

Stack … ⇒
…, item

Description The index is an unsigned byte that must be a valid index into
constant pool of the current class (§3.6). The constant poolitem at
index must have already been resolved and must be one word w
The item is fetched from the constant pool and pushed onto
operand stack.

Notes The opcode of this instruction was originallyldc. The operand of
theldc instruction is not modified.

Format ldc_quick
index

THE JAVATM VIRTUAL MACHINE SPECIFICATION418

ass

ss.
n

ldc_w_quick lcd_w_quick

Operation Push item from constant pool (wide index)

Forms ldc_w_quick = 204 (0xcc)

Stack … ⇒
…, item

Description The unsignedindexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current cl
(§3.6), where index is (indexbyte1 << 8) | indexbyte2. The index
must be a valid index into the constant pool of the current cla
The constant poolitem at the index must have already bee
resolved and must be one word wide. Theitem is fetched from the
constant pool and pushed onto the operand stack.

Notes The opcode of this instruction was originallyldc_w. The operands
of theldc_w instruction are not modified.

The ldc_w_quick instruction is identical to theldc_quick instruc-
tion, except for its wider constant pool index.

Format ldc_w_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 419

ass

ol

no
 a
ldc2_w_quick ldc2_w_quick

Operation Pushlong or double from constant pool (wide index)

Forms ldc2_w_quick = 205 (0xcd)

Stack … ⇒
…, item.word1, item.word2

Description The unsignedindexbyte1 and indexbyte2 are assembled into an
unsigned 16-bit index into the constant pool of the current cl
(§3.6), where the value of the index is (indexbyte1 << 8) |
indexbyte2. The index must be a valid index into the constant po
of the current class. The (64-bit) constant poolconstant at the index
must have already been resolved and must be two words wide.

Notes The opcode of this instruction was originallyldc2_w. The operands
of the originalldc2_w instruction are not modified.

Only a wide index version of this instruction exists; there is
ldc2_quick instruction that pushes a two-word constant with
single-byte index.

Format ldc2_w_quick
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION420

 or
o be

ber
The

he
x
e of

en-

m
sion
en-
sion
A
nd
multianewarray_quick multianewarray_quick

Operation Create new multidimensional array

Forms multianewarray_quick = 223 (0xdf)

Stack …, count1, [count2, …] ⇒
…, arrayref

Description Thedimensions is an unsigned byte which must be greater than
equal to 1. It represents the number of dimensions of the array t
created. The operand stack must containdimensions words, which
must be of typeint and nonnegative, each representing the num
of components in a dimension of the array to be created.
count1 is the desired length in the first dimension,count2 in the
second, etc.

All of the count values are popped off the operand stack. T
unsignedindexbyte1 andindexbyte2 are used to construct an inde
into the constant pool of the current class (§3.6), where the valu
the index is (indexbyte1 << 8) | indexbyte2. The resulting entry
must have already been resolved to an array class type of dim
sionality greater than or equal todimensions.

A new multidimensional array of the array type is allocated fro
the garbage-collected heap. The components of the first dimen
of the array are initialized to subarrays of the type of second dim
sion, and so on. The components of the array in the final dimen
are initialized to the default initial value for its type (§2.5.1).
reference arrayref to the new array is pushed onto the opera
stack.

Format multianewarray_quick
indexbyte1
indexbyte2
dimensions

AN OPTIMIZATION 421

s

multianewarray_quick (cont.) multianewarray_quick (cont.)

Runtime
Exception

If any of thedimensions values on the operand stack is les
than zero,multianewarray_quick throws aNegativeArraySize-
Exception.

Notes The opcode of this instruction was originallymultianewarray. The
operands of themultianewarray instruction are not modified.

THE JAVATM VIRTUAL MACHINE SPECIFICATION422

 the

 new
f the
he
nd
new_quick new_quick

Operation Create new object

Forms new_quick = 221 (0xdd)

Stack … ⇒
…, objectref

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The item at
that index must have already been resolved to a class type. A
instance of that class is created, and the instance variables o
new object are initialized to their default initial values (§2.5.1). T
objectref, areference to the instance, is pushed onto the opera
stack.

Notes The opcode of this instruction was originallynew. The operands of
the originalnew instruction are not modified.

Format new_quick
indexbyte1
indexbyte2

AN OPTIMIZATION 423

are

ass
ord.

 off-
putfield_quick putfield_quick

Operation Set field in object

Forms putfield_quick = 207 (0xcf)

Stack …, objectref, value ⇒
…

Description Theobjectref, which must be of typereference, andvalue, which
must be a value of a type appropriate for the specified field,
popped from the operand stack. Thevalue is written atoffset into
the class instance referenced byobjectref.

Runtime
Exception

If objectref is null, the putfield_quick instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallyputfield, operating on
a field determined dynamically to have an offset into the cl
instance data of 255 words or less and to have a width of one w

When the constant pool entry referenced by aputfield instruction is
resolved, the offset for the field it references is generated. That
set replaces the first operand byte of the originalputfield instruc-
tion. The second operand byte of theputfield is unused in
putfield_quick.

Format putfield_quick
offset

unused

THE JAVATM VIRTUAL MACHINE SPECIFICATION424

are

l of

 a
n

ass
putfield_quick_w putfield_quick_w

Operation Set field in object (wide index)

Forms putfield_quick_w = 228 (0xe4)

Stack …, objectref, value ⇒
…

OR

Stack …, objectref, value.word1, value.word2 ⇒
…

Description Theobjectref, which must be of typereference, andvalue, which
must be a value of a type appropriate for the specified field,
popped from the operand stack. The unsignedindexbyte1 and
indexbyte2 are used to construct an index into the constant poo
the current class (§3.6), where the index is (indexbyte1 << 8) |
indexbyte2. The constant pool item at the index must be
CONSTANT_Fieldref (§4.4.2) which must already have bee
resolved and must not be a class (static) field. Thevalue is writ-
ten atoffset into the class instance referenced byobjectref.

Runtime
Exception

If objectref is null, the putfield_quick_w instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallyputfield, operating on
a field determined dynamically to have an offset into the cl
instance data of more than 255 words.

Format putfield_quick_w
indexbyte1
indexbyte2

AN OPTIMIZATION 425

e
o-
pe

ffi-
field
m

 are
putfield_quick_w (cont.) putfield_quick_w (cont.)

The operands of theputfield instruction are not modified. Becaus
the putfield_quick_w instruction operates on both one- and tw
word wide fields, it needs to know both the field offset and the ty
of that field. Because the originalputfield instruction needed a 16-
bit index, the field offset may be 16 bits wide. As there is insu
cient space in the instruction to store both a 16-bit offset and a
type,putfield_quick_w retains its original operands and uses the
to index into the constant pool, where the offset and field type
available in the resolved entry.

THE JAVATM VIRTUAL MACHINE SPECIFICATION426

are

ass
two

 off-
putfield2_quick putfield2_quick

Operation Setlong or double field in object

Forms putfield2_quick = 209 (0xd1)

Stack …, objectref, value.word1, value.word2 ⇒
…

Description Theobjectref, which must be of typereference, andvalue, which
must be a value of a type appropriate for the specified field,
popped from the operand stack. Thevalue is written atoffset into
the class instance referenced byobjectref.

Runtime
Exception

If objectref is null, the putfield2_quick instruction throws a
NullPointerException.

Notes The opcode of this instruction was originallyputfield, operating on
a field determined dynamically to have an offset into the cl
instance data of 255 words or less and to have a width of
words.

When the constant pool entry referenced by aputfield instruction is
resolved, the offset for the field it references is generated. That
set replaces the first operand of the originalputfield instruction.
The second operand of theputfield is unused byputfield2_quick.

Format putfield2_quick
offset

unused

AN OPTIMIZATION 427

 the

 one
ss
ss

e.
s
t

putstatic_quick putstatic_quick

Operation Setstatic field in class

Forms putstatic_quick = 211 (0xd3)

Stack …, value ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6) where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item must be a field reference to a class (static) field that
must have already been successfully resolved to a type that is
word wide. Thevalue must be of a type appropriate to that cla
field. Thevalue is popped from the operand stack, and that cla
field is set tovalue.

Notes The opcode of this instruction was originallyputstatic, operating
on astatic field determined dynamically to be one word wid
The operands of theputstatic instruction are not modified. There i
no equivalent to theputfield_quick instruction, storing a class offse
as an instruction operand, for one-wordstatic fields.

Format putstatic_quick
indexbyte1
indexbyte2

THE JAVATM VIRTUAL MACHINE SPECIFICATION428

 the

 two
ss
ss

e.
s

putstatic2_quick putstatic2_quick

Operation Setstatic field in class

Forms putstatic2_quick = 213 (0xd5)

Stack …, value.word1, value.word2 ⇒
…

Description The unsignedindexbyte1 and indexbyte2 are used to construct an
index into the constant pool of the current class (§3.6), where
value of the index is (indexbyte1 << 8) | indexbyte2. The constant
pool item must be a field reference to a class (static) field that
must have already been successfully resolved to a type that is
words wide. Thevalue must be of a type appropriate to that cla
field. Thevalue is popped from the operand stack, and that cla
field is set tovalue.

Notes The opcode of this instruction was originallyputstatic, operating
on astatic field determined dynamically to be two words wid
The operands of theputstatic instruction are not modified. There i
no equivalent to theputfield2_quick instruction, storing a class off-
set as an instruction operand, for two-wordstatic fields.

Format putstatic2_quick
indexbyte1
indexbyte2

C H A P T E R 10

Opcode Mnemonics

by Opcode
0 (0x00)...nop
1 (0x01)............................aconst_null
2 (0x02)..............................iconst_m1
3 (0x03).................................iconst_0
4 (0x04).................................iconst_1
5 (0x05).................................iconst_2
6 (0x06).................................iconst_3
7 (0x07).................................iconst_4
8 (0x08).................................iconst_5
9 (0x09).................................lconst_0
10 (0x0a)...............................lconst_1
11 (0x0b)...............................fconst_0
12 (0x0c)...............................fconst_1
13 (0x0d)...............................fconst_2
14 (0x0e)..............................dconst_0
15 (0x0f)dconst_1
16 (0x10)..................................bipush
17 (0x11)..................................sipush
18 (0x12)..ldc
19 (0x13)...................................ldc_w
20 (0x14).................................ldc2_w
21 (0x15).....................................iload
22 (0x16).....................................lload
23 (0x17).....................................fload
24 (0x18)....................................dload
25 (0x19)....................................aload
26 (0x1a).................................iload_0
27 (0x1b).................................iload_1

28 (0x1c)iload_2
29 (0x1d)iload_3
30 (0x1e)lload_0
31 (0x1f).................................lload_1
32 (0x20)lload_2
33 (0x21)lload_3
34 (0x22)fload_0
35 (0x23)fload_1
36 (0x24)fload_2
37 (0x25)fload_3
38 (0x26)dload_0
39 (0x27)dload_1
40 (0x28)dload_2
41 (0x29)dload_3
42 (0x2a)aload_0
43 (0x2b)aload_1
44 (0x2c)aload_2
45 (0x2d)aload_3
46 (0x2e)iaload
47 (0x2f)....................................laload
48 (0x30)faload
49 (0x31)daload
50 (0x32)aaload
51 (0x33)baload
52 (0x34)caload
53 (0x35)saload
54 (0x36)istore
55 (0x37)lstore
429

THE JAVATM VIRTUAL MACHINE SPECIFICATION430
56 (0x38)....................................fstore
57 (0x39)...................................dstore
58 (0x3a)astore
59 (0x3b)................................istore_0
60 (0x3c)istore_1
61 (0x3d)................................istore_2
62 (0x3e)istore_3
63 (0x3f).................................lstore_0
64 (0x40)................................lstore_1
65 (0x41)................................lstore_2
66 (0x42)................................lstore_3
67 (0x43)................................fstore_0
68 (0x44)................................fstore_1
69 (0x45)................................fstore_2
70 (0x46)................................fstore_3
71 (0x47)...............................dstore_0
72 (0x48)...............................dstore_1
73 (0x49)...............................dstore_2
74 (0x4a)dstore_3
75 (0x4b)...............................astore_0
76 (0x4c)astore_1
77 (0x4d)...............................astore_2
78 (0x4e)astore_3
79 (0x4f)...................................iastore
80 (0x50)..................................lastore
81 (0x51)..................................fastore
82 (0x52).................................dastore
83 (0x53).................................aastore
84 (0x54).................................bastore
85 (0x55).................................castore
86 (0x56).................................sastore
87 (0x57).......................................pop
88 (0x58).....................................pop2
89 (0x59)......................................dup
90 (0x5a)dup_x1
91 (0x5b)................................dup_x2
92 (0x5c)dup2
93 (0x5d)..............................dup2_x1
94 (0x5e)dup2_x2
95 (0x5f).....................................swap
96 (0x60).....................................iadd

97 (0x61)ladd
98 (0x62)fadd
99 (0x63)dadd
100 (0x64)isub
101 (0x65)lsub
102 (0x66)fsub
103 (0x67)dsub
104 (0x68)imul
105 (0x69)lmul
106 (0x6a)fmul
107 (0x6b)dmul
108 (0x6c)idiv
109 (0x6d)ldiv
100 (0x6e)fdiv
111 (0x6f)....................................ddiv
112 (0x70)irem
113 (0x71)lrem
114 (0x72)frem
115 (0x73)drem
116 (0x74)ineg
117 (0x75)lneg
118 (0x76)fneg
119 (0x77)dneg
120 (0x78)ishl
121 (0x79)lshl
122 (0x7a)ishr
123 (0x7b)lshr
124 (0x7c)iushr
125 (0x7d)lushr
126 (0x7e)iand
127 (0x7f)....................................land
128 (0x80)ior
129 (0x81)lor
130 (0x82)ixor
131 (0x83)lxor
132 (0x84)iinc
133 (0x85)i2l
134 (0x86)i2f
135 (0x87)i2d
136 (0x88)l2i
137 (0x89)l2f

OPCODE MNEMONICS BY OPCODE 431
138 (0x8a).....................................l2d
139 (0x8b)......................................f2i
140 (0x8c)......................................f2l
141 (0x8d).....................................f2d
142 (0x8e).....................................d2i
143 (0x8f)d2l
144 (0x90).....................................d2f
145 (0x91)......................................i2b
146 (0x92)......................................i2c
147 (0x93)......................................i2s
148 (0x94)...................................lcmp
149 (0x95)..................................fcmpl
150 (0x96).................................fcmpg
151 (0x97).................................dcmpl
152 (0x98)................................dcmpg
153 (0x99).....................................ifeq
154 (0x9a)....................................ifne
155 (0x9b)......................................iflt
156 (0x9c).....................................ifge
157 (0x9d).....................................ifgt
158 (0x9e)......................................ifle
159 (0x9f)if_icmpeq
160 (0xa0)...........................if_icmpne
161 (0xa1)............................if_icmplt
162 (0xa2)...........................if_icmpge
163 (0xa3)...........................if_icmpgt
164 (0xa4)............................if_icmple
165 (0xa5)..........................if_acmpeq
166 (0xa6)..........................if_acmpne
167 (0xa7)....................................goto
168 (0xa8)......................................jsr
169 (0xa9)......................................ret
170 (0xaa)tableswitch
171 (0xab).....................lookupswitch
172 (0xac)ireturn
173 (0xad)...............................lreturn
174 (0xae)freturn
175 (0xaf)...............................dreturn
176 (0xb0)..............................areturn
177 (0xb1)................................return
178 (0xb2).............................getstatic

179 (0xb3)putstatic
180 (0xb4)getfield
181 (0xb5)putfield
182 (0xb6)invokevirtual
183 (0xb7)invokespecial
184 (0xb8)invokestatic
185 (0xb9)invokeinterface
186 (0xba)xxxunusedxxx
187 (0xbb)new
188 (0xbc)newarray
189 (0xbd)anewarray
190 (0xbe)arraylength
191 (0xbf)................................athrow
192 (0xc0)checkcast
193 (0xc1)instanceof
194 (0xc2)monitorenter
195 (0xc3)monitorexit
196 (0xc4)wide
197 (0xc5)multianewarray
198 (0xc6)ifnull
199 (0xc7)ifnonnull
200 (0xc8)goto_w
201 (0xc9)jsr_w

_quick opcodes:
203 (0xcb)ldc_quick
204 (0xcc)ldc_w_quick
205 (0xcd)ldc2_w_quick
206 (0xce)getfield_quick
207 (0xcf)....................putfield_quick
208 (0xd0)getfield2_quick
209 (0xd1)putfield2_quick
210 (0xd2)getstatic_quick
211 (0xd3)putstatic_quick
212 (0xd4)getstatic2_quick
213 (0xd5)putstatic2_quick
214 (0xd6)invokevirtual_quick
215 (0xd7)invokenonvirtual_quick
216 (0xd8)invokesuper_quick
217 (0xd9)invokestatic_quick
218 (0xda)invokeinterface_quick

THE JAVATM VIRTUAL MACHINE SPECIFICATION432
219 (0xdb).invokevirtualobject_quick
221 (0xdd).........................new_quick
222 (0xde)anewarray_quick
223 (0xdf).......multianewarray_quick
224 (0xe0)checkcast_quick
225 (0xe1)instanceof_quick
226 (0xe2)invokevirtual_quick_w
227 (0xe3)getfield_quick_w
228 (0xe4)putfield_quick_w

Reserved opcodes:
202 (0xca)breakpoint
254 (0xfe)..............................impdep1
255 (0xff)impdep2

433

 Index
A
aaload instruction, 156
aastore instruction, 157

constraints, structural, 123
in Java Virtual Machine assembly language

examples, arrays, 358
abnormal completion

term definition, 68
abstract keyword

See alsoAbstractMethodError;
ACC_ABSTRACT modifier

class, term definition, 24
methods, 28

as interface members, 32
AbstractMethodError, 44

anewarray, 162
checkcast, 175
as class preparation error, 39
constant pool resolution generation of, 143
getfield, 226
getstatic, 228
instanceof, 257
invokeinterface, 260
invokeinterface_quick, 403
invokespecial, 263
invokestatic, 266
invokevirtual, 268
multianewarray, 316
new, 318
putfield, 325
putstatic, 327

ACC_ABSTRACT modifier
See alsoabstract keyword
(access_flags item ofClassFile

structure), 86
(access_flags item ofmethod_info

structure), 104
ACC_FINAL modifier

See alsofinal keyword
(access_flags item ofClassFile

structure), 86
(access_flags item offield_info

structure), 102
(access_flags item ofmethod_info

structure), 104

ACC_INTERFACE modifier
See also interfaces
(access_flags item ofClassFile

structure), 86

ACC_NATIVE modifier
See alsonative keyword
(access_flags item ofmethod_info

structure), 104

ACC_PRIVATE modifier
See alsoprivate keyword
(access_flags item offield_info

structure), 102
(access_flags item ofmethod_info

structure), 104

ACC_PROTECTED modifier
See alsoprotected keyword
(access_flags item offield_info

structure), 102
(access_flags item ofmethod_info

structure), 104

ACC_PUBLIC modifier
See alsopublic keyword
(access_flags item ofClassFile

structure), 86
(access_flags item offield_info

structure), 102
(access_flags item ofmethod_info

structure), 104

ACC_STATIC modifier
See alsostatic keyword

434 ACC_STATIC modifier • aload_<n> instructions
ACC_STATIC modifier (cont.)
(access_flags item offield_info

structure), 102
(access_flags item ofmethod_info

structure), 104
ACC_SUPER modifier

See also superclasses
(access_flags item ofClassFile

structure), 86
ACC_SYNCHRONIZED modifier

See also synchronization
(access_flags item ofmethod_info

structure), 104
ACC_TRANSIENT modifier

See alsotransient keyword
(access_flags item offield_info

structure), 102
ACC_VOLATILE modifier

See alsovolatile keyword
(access_flags item offield_info

structure), 102
access control

See alsoaccess_flags item,
IllegalAccessError

instance initialization methods, access
permissions, 69

qualified names and, 22
access_flags item

See also access control; security
(ClassFile structure), 86
(field_info structure), 102
(method_info structure), 104

accessing
See also loading
arrays, 34
hidden fields, 26
jump table

by index and jump,tableswitch, 335
by key match and jump,lookupswitch, 300

local variables, structural constraints on
instructions, 122

aconst_null instruction, 159
actions

main memory subsystem
lock, 373
read, 373
unlock, 373
write, 373

prescient store, with threads, 378
thread

assign, 372
constraints on relationships among, 373
load, 373
lock, 373
store, 373
unlock, 373
use, 372

active use
term definition, 46

adding
double, dadd, 179
float, fadd, 207
int, iadd, 238
long, ladd, 285

algorithms
class file verification, 125
constant pool resolution of

arrays, 141
classes, 141
classes and interfaces loaded by a class

loader, 144
classes and interfaces not loaded by a

class loader, 141
interfaces, 141

conversion ofbytes item,
CONSTANT_Float_info structure, 97

conversion ofhigh_bytes andlow_bytes
items,CONSTANT_Double_info
structure, 98

finally clause, data-flow analysis during
class file verification, 135

string literals, constant pool resolution, 149

alignment
code array, 111
Java Virtual Machine instructions,

implementation implications, 71

aload instruction, 160
See also astore instruction,wide instruction
constraints, static, 121

aload_<n> instructions, 161
See also astore_<n>instructions
constraints, static, 121
in Java Virtual Machine assembly language

examples
arrays, 357, 358
catching exceptions, 363, 364, 365
compilingfinally, 367, 368, 369
invoking methods, 352, 354
operand stack operations, 361

ANDing • arrays 435
synchronization, 370
throwing exceptions, 362, 363
working with class instances, 355, 356

ANDing
int, bitwise,iand, 240
long, bitwise,land, 287

anewarray instruction, 162
constraints, static, 120
in Java Virtual Machine assembly language

examples, arrays, 357
anewarray_quick instruction, 392
API (Application Programmer Interface)

Java Virtual Machine andClassLoader
class contract, possible future changes,
144

areturn instruction, 163
constraints, structural, 123
in Java Virtual Machine assembly language

examples
arrays, 358
working with class instances, 355, 356

arithmetic
adding
double, dadd, 179
float, fadd, 207
int, iadd, 238
long, ladd, 285

ArithmeticException, 38
dividing
double, ddiv, 185
float, fdiv, 213
int, idiv, 243
long, ldiv, 295

exceptions
ArithmeticException, idiv, 243
ArithmeticException, irem, 271
ArithmeticException, ldiv, 295
ArithmeticException, lrem, 303

instruction set, summary, 75
Java Virtual Machine assembly language

examples, 345
multiplying
double, dmul, 189
float, fmul, 217
int, imul, 254
long, lmul, 298

negating
double, dneg, 191
float, fneg, 219
int, ineg, 255

long, lneg, 299
remainder
double, drem, 192
float, frem, 220
int, irem, 271
long, lrem, 303

subtracting
double, dsub, 197
float, fsub, 225
int, isub, 277
long, lsub, 309

ArithmeticException, 38
idiv, 243
irem, 271
ldiv, 295
lrem, 303

ArrayIndexOutOfBoundsException

See alsoIndexOutOfBoundsException
aaload, 156
aastore, 158
baload, 169
bastore, 170
caload, 172
castore, 173
daload, 181
dastore, 182
faload, 209
fastore, 210
iaload, 239
iastore, 241
laload, 286
lastore, 288
saload, 331
sastore, 332

arraylength instruction, 164
arrays

See also class(es); interfaces; reference(s);
types

accessing, 34
ArrayStoreException, 38
C-like syntax, use inClassFile

specification, 83
classes of, 13
components, 33

as kind of variable, 11
constant pool resolution of, 141, 146
creating, 34

creation expression, 9
instruction summary, 79
multidimensional,multianewarray, 316

436 arrays • arrays
arrays (cont.)
multidimensional,multianewarray_quick,

421
with components of primitive type,

newarray, 320
with components of reference type,

anewarray, 162
with components of reference type,

anewarray_quick, 392
dimensions, number limitation, 136
errors
AbstractMethodError, anewarray,

143
AbstractMethodError, multianewarray,

316
AbstractMethodError, new, 318
ClassFormatError, anewarray, 142
ClassFormatError, multianewarray, 316
ClassFormatError, new, 318
ExceptionInInitializerError,

anewarray, 143
ExceptionInInitializerError,

multianewarray, 316
ExceptionInInitializerError, new,

318
IllegalAccessError, anewarray, 143,

146
IllegalAccessError, multianewarray,

316
IllegalAccessError, new, 318
InstantiationError, new, 318
NoClassDefFoundError, anewarray, 142
NoClassDefFoundError,

multianewarray, 316
NoClassDefFoundError, new, 318
VerifyError, anewarray, 142
VerifyError, multianewarray, 316
VerifyError, new, 318

exceptions
ArrayIndexOutOfBoundsException, 34
ArrayIndexOutOfBoundsException,

aaload, 156
ArrayIndexOutOfBoundsException,

aastore, 158
ArrayIndexOutOfBoundsException,

baload, 169
ArrayIndexOutOfBoundsException,

bastore, 170

ArrayIndexOutOfBoundsException,
caload, 172

ArrayIndexOutOfBoundsException,
castore, 173

ArrayIndexOutOfBoundsException,
daload, 181

ArrayIndexOutOfBoundsException,
dastore, 182

ArrayIndexOutOfBoundsException,
faload, 209

ArrayIndexOutOfBoundsException,
fastore, 210

ArrayIndexOutOfBoundsException,
iaload, 239

ArrayIndexOutOfBoundsException,
iastore, 241

ArrayIndexOutOfBoundsException,
laload, 286

ArrayIndexOutOfBoundsException,
lastore, 288

ArrayIndexOutOfBoundsException,
saload, 331

ArrayIndexOutOfBoundsException,
sastore, 332

ArrayStoreException, aastore, 158
NegativeArraySizeException,

anewarray, 162
NegativeArraySizeException,

multianewarray, 316
NegativeArraySizeException, new,

318
NegativeArraySizeException,

newarray, 320
NegativeArraySizeException,

anewarray_quick, 392
NegativeArraySizeException,

multianewarray_quick, 421
NullPointerException, aaload, 156
NullPointerException, aastore, 158
NullPointerException, arraylength,

164
NullPointerException, baload, 169
NullPointerException, bastore, 170
NullPointerException, caload, 172
NullPointerException, castore, 173
NullPointerException, daload, 181
NullPointerException, dastore, 182
NullPointerException, faload, 209

ArrayStoreException • attribute_length item 437
NullPointerException, fastore, 210
NullPointerException, iaload, 239
NullPointerException, iastore, 241
NullPointerException, laload, 286
NullPointerException, lastore, 288
NullPointerException, saload, 331
NullPointerException, sastore, 332

field descriptor
dimension limits on, 94
name_index item

(CONSTANT_Class_info) reference, 93
specification, 91

initializing, 34
Java Virtual Machine assembly language

examples, 356
length, 33

fetching,arraylength, 164
loading
byte or boolean from,baload, 169
char from,caload, 172
double from,daload, 181
float from, faload, 209
int from, iaload, 239
long from, laload, 286
reference from,aaload, 156
short from,saload, 331

manipulating, instruction summary, 79
as reference type, 61
runtime exceptions
ArrayStoreException, 38
IndexOutOfBoundsException, 38
NegativeArraySizeException, 38

storing
byte or boolean into,bastore, 170
char into, castore, 173
double into, dastore, 182
float into, fastore, 210
int into, iastore, 241
long into, lastore, 288
reference into,aastore, 157
short into,sastore, 332

term definition, 32
types, 9, 33

Java Virtual Machine mapping, 74
variables, 33

ArrayStoreException, 38
aastore, 158

ASCII
term definition, 5

assembly language
Java Virtual Machine, format, 340

assignable
term definition, 18

assignment
compatible, 10

failure,ArrayStoreException thrown
when, 38

term definition, 18
conversion, 17

context, 14
variable

by threads, 54
variable initializers role in, 27

assumptions
meaning of ‘must’ in instruction

descriptions, 151
asterisk (*)

descriptor grammar notation use, 90
astore instruction, 165

See also aload instruction;ret instruction;
wide instruction

constraints, static, 121
astore_<n>instructions, 166

See also aload_<n> instructions,ret
instruction

constraints, static, 121
in Java Virtual Machine assembly language

examples
arrays, 357, 358
catching exceptions, 363, 364, 365
compilingfinally, 367, 368, 369
synchronization, 370
throwing exceptions, 363
working with class instances, 355

athrow instruction, 167
constraints, structural, 123
in Java Virtual Machine assembly language

examples
compilingfinally, 367, 369
synchronization, 370
throwing exceptions, 362

attribute_info structure
(generic structure of items inattributes

tables), 106
attribute_length item

(attribute_info generic structure), 107
(Code_attribute structure), 111
(ConstantValue_attribute structure), 109

438 attribute_length item • branch

t

,

attribute_length item (cont.)
(Exceptions_attribute structure), 114
(LineNumberTable_attribute structure),

115
(LocalVariableTable_attribute

structure), 117
(SourceFile_attribute structure), 108

attribute_name_index item
(attribute_info generic structure), 107
(Code_attribute structure), 111
(ConstantValue_attribute structure),

109
(Exceptions_attribute structure), 114
(LineNumberTable_attribute structure),

115
(LocalVariableTable_attribute

structure), 117
(SourceFile_attribute structure), 108

attributes
See alsoClassFile structure:
attribute_length item
attribute_name_index item
attributes_count item
attributes table

See also predefined attributes:
Code_attribute

ConstantValue_attribute

Exceptions_attribute

LineNumberTable_attribute

LocalVariableTable_attribute

SourceFile_attribute

defining and naming new, 107
attributes_count item

(ClassFile structure), 88
(Code_attribute structure), 113
(field_info structure), 103
(method_info structure), 106

attributes table
(ClassFile structure), 89
(Code_attribute structure), 113
(field_info structure), 103
(method_info structure), 106

B
B character

field descriptor meaning, 91
backwards branches

structural constraints on instructions, 122
baload instruction, 169
bastore instruction, 170
big-endian order

bytes item
CONSTANT_Float_info structure, 97
CONSTANT_Integer_info structure, 97

class file data storage order, methods that
can read, 83

high_bytes andlow_bytes items
CONSTANT_Double_info structure, 98
CONSTANT_Long_info structure, 98

multibyte characters,CONSTANT_Utf8_info
structure representation of, 100

term definition, 71
binding

See also linking; loading
late, frame constant pool reference suppor

of, 68
bipush instruction, 171

in Java Virtual Machine assembly language
examples

accessing the constant pool, 347
arrays, 357
constants and local variables in afor

loop, 341, 342, 345
invoking methods, 352, 353
while loop, 348

bitwise
ANDing
int, iand, 240
long, land, 287

ORing
int exclusive,ixor, 279
int inclusive,ior, 270
long exclusive,lxor, 311
long inclusive,lor, 302

boolean type
loading from arrays,baload, 169
storing into arrays,bastore, 170
type, 6, 7

field descriptor specification, 91
instruction set handling of, 72
truth values of, 7

values
Java Virtual Machine support for in the

absence ofboolean type support, 60
operators on, 9

branch
code verification, Pass 3 - bytecode verifier

128
instruction summary, 80
instructions, constraints, static, 119
int comparison

if_icmp<cond>, 245

breakpointreserved opcode •) character 439

r

with zero,if<cond>, 247
reference comparison

if_acmp<cond>, 244
with null, ifnull, 249
with null, ifnonnull, 249

unconditionally
goto, 230
wide index,goto_w, 231

breakpoint reserved opcode, 152
bugs

JDK 1.0.2 implementation
exclusiveend_pc workaround, 112
native method stacks, stack overflow not

detected, 65
string literal resolution, 148

byte type
boolean array values represented as, 60
convertingint to, i2b, 232
field descriptor specification, 91
instruction set handling of, 72
integer arithmetic not directly supported, 75
term definition, 58
value range, 59

bytes
bytecodes

optimization, not specified by Java Virtual
Machine specification, 57

verification process, 128
loading from arrays,baload, 169
pushing,bipush, 171
storing into arrays,bastore, 170

bytes array
(CONSTANT_Utf8_info structure), 101

bytes item
(CONSTANT_Float_info structure), 97
(CONSTANT_Integer_info structure), 97

C
C character

field descriptor meaning, 91
caching
ACC_VOLATILE modifier,field_info

structure prevention of, 102
caller

term definition, 36
caload instruction, 172
casting

See also numeric

checkcast instruction, constraints, static,
120

checking types
checkcast, 174
checkcast_quick, 393

errors
AbstractMethodError, checkcast, 143
ClassFormatError, checkcast, 142
ExceptionInInitializerError,

checkcast, 143
IllegalAccessError, checkcast, 143,

146
NoClassDefFoundError, checkcast, 142
VerifyError, checkcast, 142

exceptions
ClassCastException, checkcast, 175
ClassCastException, checkcast_quick,

393
invocation conversion, context, 14
not permitted between,boolean types and

other types, 9
castore instruction, 173
catch clause(s)

See also exceptions
exception handling role, 36, 69
Java Virtual Machine characteristics, 70
ordering of, 70
try statement, exception handler paramete

variables created by, 11
catch_type item

(Code_attribute structure), 112
“changed” bit

data-flow analysis handling, Pass 3 -
bytecode verifier, 129

char type
convertingint to, i2c, 233
field descriptor specification, 91
instruction set handling of, 72
arithmetic not directly supported, 75
loading from arrays,caload, 172
storing into arrays,castore, 173
term definition, 58
value range, 59

[character
field descriptor meaning, 91

(character
method descriptor meaning, 91

) character
method descriptor meaning, 91

440 checkcast instruction • ClassCircularityError

e

7

checkcast instruction, 174
See also instanceof instruction
constraints, static, 120

checkcast_quick instruction, 393
checking

types
checkcast, 174
checkcast_quick, 393
instanceof, 256
instanceof_quick, 401

class(es)
See also arrays;ClassFile structure; fields;

interfaces; methods; subclasses;
superclasses

Class object, initialization role, 47
ClassCastException, 38
classFinalize method, invoking during

class finalization, 52
ClassLoader

API contract between Java Virtual
Machine and, possible future changes,
144

loading performed by, 43
<clinit> special method, as class or

interface initialization method name, 69
constant pool entry resolution, 140
creation and manipulation, instruction

summary, 79
declaration, term definition, 24
errors
ClassFormatError, as loading process

error, 39
ClassFormatError, meaning of, 43
ClassFormatError, constant pool

resolution generation of, 142
NoClassDefFoundError, 48

final, term definition, 24
finalization of, 52
getstatic fields from

getstatic, 228
getstatic_quick, 399
getstatic2_quick, 400

initial, specifying to Java Virtual Machine,
41

initialization, process, unrecoverable
runtime exceptions associated with, 39

instances
creation expression, 9
uninitialized, structural constraints on

instructions, 122

loader
constant pool resolution of classes and

interfaces loaded by, algorithm, 144
constant pool resolution of classes and

interfaces not loaded by, algorithm,
141

members of, 25
modifiers, term definition, 24
names,name_index item

(CONSTANT_Class_info structure) as
reference to, 93

preparation process, unrecoverable runtim
exceptions associated with, 39

put intostatic fields
putstatic, 327
putstatic_quick, 427
putstatic2_quick, 428

static methods
invocation instruction summary, 81
invoking, invokestatic, 265
invoking, invokestatic_quick, 410

term definition, 24
types, 9

as reference type, 61
compared with, 13
members of, 21

variable, as kind of variable, 11
verification process, unrecoverable runtime

exceptions associated with, 39

class_index item
(CONSTANT_Fieldref_info structure), 95
(CONSTANT_InterfaceMethodref_info

structure), 95
(CONSTANT_Methodref_info structure), 95

ClassCastException, 38
casting conversion cause of, 19
checkcast, 175
checkcast_quick, 393
narrowing reference conversion cause of, 1

ClassCircularityError, 39, 43
anewarray, 162
checkcast, 175
getfield, 226
getstatic, 228
instanceof, 257
invokespecial, 263
invokestatic, 266
invokevirtual, 268
multianewarray, 316
new, 318

ClassFile structure • colon (:) 441

5

,

putfield, 325
putstatic, 327

ClassFile structure
See alsoClassFile substructures:
access_flags item

See also general concepts: access
control; security

attributes_count item
attributes table

See also general concepts: data types
constant_pool_count item;
constant_pool table;

See also general concepts: constants;
data types

field_info structure
fields_count item
fields table

See also general concepts: constants;
data types; fields; methods; variables

interfaces array
See also general concepts: class(es);

inheritance; interfaces; superclasses;
subclasses

interfaces_count item
magic item
major_version item
method_info structure
methods_count item
methods table

See also general concepts: methods;
access control; threads;
synchronization

minor_version item
super_class item

See also general concepts: class(es);
inheritance; interfaces; superclasses;
subclasses

this_class item
See also general concept: class(es)
End of See also cross references
CONSTANT_Class_info structure

representation, 94
constant_pool table, Java Virtual Machine

representation, 64
data storage order and types, methods that

can read, 83
data types, methods that can read, 83
field_info structure access flags, 102
format

ability to read as Java Virtual Machine
implementation requirement, 57

as overview, 70

(chapter), 83
integrity verification, 125

initialization methods,field_info
structure access flags ignored, 104

method_info structure access flags, 104
syntax and item descriptions, 84
verification, 124

compiler and language independence, 12
operand stack manipulation constraints

enforced during, 67
procedures, 125

ClassFormatError, 43
anewarray, 162
checkcast, 175
getfield, 226
getstatic, 228
instanceof, 257
invokespecial, 263
invokestatic, 266
invokevirtual, 268
multianewarray, 316
new, 318
putfield, 325
putstatic, 327

<clinit> special method
as class or interface initialization method

name, 69
constant_pool table, reference to, 95
invocation of, static constraints, 120
method_info structure access flags ignored

104
name_index item (method_info structure)

reference, 105
code

blocks, synchronization, instruction
summary, 81

code array, data flow analysis, 126
Code_attribute structure

constraints on, structural, 121
support required for, 107

code array
(Code_attribute structure), size and

location, 111
(method_info structure)

constraints, static, 118
constraints, structural, 121

Code_attribute structure
(method_info structure), 110

code_length item
(Code_attribute structure), 111

colon (:)
descriptor grammar notation use, 90

442 comparing • CONSTANT_Utf8_info structure
comparing
double

dcmpg, 183
dcmpl, 183

float

fcmpg, 211
fcmpl, 211

int

if_icmp<cond>, 245
with zero,if<cond>, 247

long, lcmp, 289
reference

if_acmp<cond>, 244
with null, ifnull, ifnonnull, 249

comparisons
numerical

floating-point positive and negative zero,
59

implications of unordered NaN values, 60
compilation

code, Java Virtual Machine assembly
language examples, format, 340

for the Java Virtual Machine, (chapter), 339
types, term definition, 10

completion
abnormal, term definition, 68
normal, term definition, 68

concurrency
See also threads

conditional
See also control flow
branch, instruction summary, 80
operator (?:),boolean expressions use

with, 9
CONSTANT_Class_info structure

class names referenced from, 89
components and meaning, 93
super_class item, asClassFile structure

reference to a, 87
this_class item, asClassFile structure

reference to a, 87
CONSTANT_Class tag

(CONSTANT_Class_info structure), 93
CONSTANT_Double_info structure

(constant_pool table), 97
CONSTANT_Double tag

(CONSTANT_Double_info structure), 98
CONSTANT_Fieldref_info structure

(constant_pool table), 94, 95

CONSTANT_Fieldref tag
(CONSTANT_Fieldref_info structure), 95

CONSTANT_Float_info structure
(constant_pool table), 96

CONSTANT_Float tag
(CONSTANT_Float_info structure), 96

CONSTANT_Integer_info structure
(constant_pool table), 96

CONSTANT_Integer tag
(CONSTANT_Integer_info structure), 96

CONSTANT_InterfaceMethodref_info

structure
(constant_pool table), 94

CONSTANT_InterfaceMethodref tag
(CONSTANT_InterfaceMethodref_info

structure), 95
CONSTANT_Long_info structure

(constant_pool table), 97
CONSTANT_Long tag

(CONSTANT_Long_info structure), 98
CONSTANT_Methodref_info structure

(constant_pool table), syntax and item
descriptions, 94

CONSTANT_Methodref tag
(CONSTANT_Methodref_info structure), 95

CONSTANT_NameAndType_info structure
class names referenced from, 89
(constant_pool table), 99

CONSTANT_NameAndType tag
(CONSTANT_NameAndType_info structure), 99

constant_pool_count item
(ClassFile structure), 85

constant_pool table
(ClassFile structure)

detailed description, 85
overview, 92

constantvalue_index item values (table),
110

tag values table, 93
CONSTANT_String_info structure

(constant_pool table), 96
CONSTANT_String tag

(CONSTANT_String_info structure), 96
CONSTANT_Utf8_info structure
attribute_name_index item

(Code_attribute structure), 111
(ConstantValue_attribute structure),

109
(Exceptions_attribute structure), 114

CONSTANT_Utf8 tag • constraints 443
(LineNumberTable_attribute
structure), 115

(LocalVariableTable_attribute
structure), 117

(SourceFile_attribute structure), 107,
108

class names represented as, 89
(constant_pool table), 100
(name_index item),

(CONSTANT_Class_info structure) as
reference to a, 93

(string_index item),
(CONSTANT_String_info structure) as
reference to, 96

CONSTANT_Utf8 tag
(CONSTANT_Utf8_info structure), 101

constants
See alsoconstant_pool table; literals;

variables
attribute type values (table), 110
compilation of, Java Virtual Machine

assembly language examples, 341
CONSTANT_Class_info structure, constant

pool resolution of, 140
CONSTANT_Double_info structure

components and meaning, 98
constant pool resolution of, 149

CONSTANT_Fieldref_info structure,
constant pool resolution of, 147

CONSTANT_Float_info structure, constant
pool resolution of, 149

CONSTANT_Integer_info structure,
constant pool resolution of, 149

CONSTANT_InterfaceMethodref_info

structure, constant pool resolution of,
147, 148

CONSTANT_Long_info structure
components and meaning, 98
constant pool resolution of, 149

CONSTANT_Methodref_info structure,
constant pool resolution of, 147

CONSTANT_NameAndType_info structure,
constant pool resolution of, 149

constant pool, 64
frame reference, dynamic linking

supported by, 67
resolution, (chapter), 139
size limitation, 136
static constraint checking, 126

CONSTANT_String_info structure,
constant pool resolution of, 148

CONSTANT_Utf8_info structure
bibliographic reference, 101
constant pool resolution of, 149
CONSTANT_String_info reference, 148
descriptor_index item,

CONSTANT_NameAndType_info

reference, 100
name_index item,

CONSTANT_NameAndType_info

reference, 100
name_index item,field_info reference,

103
ConstantValue_attribute structure
field_info structure value, 103
support required for, 107

fields, 31
as interface members, 30
final, 26

floating-point
double CONSTANT_Double_info structure

representation, 97
float CONSTANT_Float_info structure

representation, 97
increment local variable by,iinc, 251
integer
int CONSTANT_Integer_info structure

representation, 97
long CONSTANT_Long_info structure

representation, 97
load and store instructions, summary, 74
pushing
double, dconst_<d>, 184
float, fconst_<f>, 212
int, iconst_<i>, 242
ldc, 291
ldc_quick, 417
long, lconst_<l>, 290
wide index,ldc_w, 292
wide index,ldc_w_quick, 418

ConstantValue_attribute structure
(field_info structure), 103, 109

constantvalue_index item
(ConstantValue_attribute structure),

109

constraints
enforcement of, byclass file verifier,

151
Java Virtual Machine, component limits,

136
Java Virtual Machine code

444 constraints • creating
constraints (cont.)
static, 118
structural, specification of, 121
structural, theorem prover use in checking,

124
meaning of the term ‘must’, in instruction

descriptions, 151
operand stack manipulation, 67

constructors
default, 30
instance creation procedures, 50
as instance initialization method, 69
as not members of a class, 25
parameters, as kind of variable, 11
term definition, 29

context
switching, frame use for, 66

control flow
See also threads
branch onreference comparison,

if_acmp<cond>, 244
branch onint comparison,if_icmp<cond>,

245
branch onint comparison with zero,

if<cond>, 247
branch onreference comparison, with

null, ifnull, ifnonnull, 249
compilation of constructs

Java Virtual Machine assembly language
examples,for keyword, 341

virtual machine assembly language
examples,while keyword, 348

instruction summary, 80
instructions, code verification, Pass 3 -

bytecode verifier, 128
unconditional goto

goto, 230
wide index,goto_w, 231

conversions
See also numeric; primitive types;
assignment, 17
bytes item,CONSTANT_Float_info

structure, algorithm, 97
casting, term definition, 19
contexts, 14
method invocation, term definition, 18
narrowing

numeric, support for, 77

numeric, impact on precision, 78
reference, term definition, 15

narrowing primitive
double to float, d2f, 176
double to int, d2i, 177
double to long, d2l, 178
float to int, f2i, 205
float to long, f2l, 206
int to byte, i2b, 232
int to char, i2c, 233
int to short, i2s, 237
long to int, l2i, 284
support for, 77
term definition, 16

numeric promotion
binary, term definition, 19
unary, term definition, 19

types, 14
instructions, 77

widening
numeric, impact on precision, 77
reference, term definition, 16

widening primitive
float to double, f2d, 204
int to double, i2d, 234
int to float, i2f, 235
int to long, i2l, 236
long to double, l2d, 282
long to float, l2f, 283
support for, 77
term definition, 16

cp_info structure
(generic form of items in the

constant_pool table), 92
cp_info tags values (table), 93
creating

arrays
multidimensional,multianewarray, 316
multidimensional,multianewarray_quick,

421
primitive type,newarray, 320
reference type,anewarray, 162
reference type,anewarray_quick, 392

class instances
instruction summary, 79
new, 318
new_quick, 422

threads, 386

D character • descriptors 445
D
D character

field descriptor meaning, 91
d2f instruction, 176
d2i instruction, 177
d2l instruction, 178
dadd instruction, 179

in Java Virtual Machine assembly language
examples

constants and local variables in afor

loop, 343, 344
while loop, 349

daemon threads
term definition, 53

daload instruction, 181
dastore instruction, 182
data

areas
runtime,pc register, 61
runtime, Java stacks, 62
runtime, heap, 63
runtime, method area, 63
runtime, constant pool, 64
runtime, native method stacks, 65

structures,class files, (chapter), 83
types, Java Virtual Machine, 57

data types, 6
See alsoattributes table;boolean type;

byte type;char type;constant_pool
table;double type;fields table;float
type;int type; integral;long type;null
type;reference type;returnAddress
type;short type;String type

arguments, structural constraints on
instructions, 122

arrays, Java Virtual Machine mapping, 74
categories, 7
checking

checkcast, 174
checkcast_quick, 393
instanceof, 256
instanceof_quick, 401

class file data, methods that can read, 83
classes compared with, 13
conversion

and numeric promotion impact on, 13
instructions, 77

Java storage, mapping between Java Virtual
Machine computational types and
(table), 74

Java Virtual Machine instruction set
encoding of, 72
mapping between Java storage types and

computational types (table), 74
support for (table), 73

primitive, 7
two-word, structural constraints on

instructions, 122
data-flow analysis
code array, 126
initialization, Pass 3 - bytecode verifier, 129
running, Pass 3 - bytecode verifier, 129

dcmpg instruction, 183
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 343
while loop, 349, 350

dcmpl instruction, 183
in Java Virtual Machine assembly language

examples,while loop, 350
dconst_<d> instructions, 184

in Java Virtual Machine assembly language
examples

constants and local variables in afor

loop, 343
while loop, 349

ddiv instruction, 185
debugging

Java Virtual Machine implementation
issues, 82

defineClass method
ClassLoader class, constant pool

resolution of classes and interfaces
loaded by, 145

defining
new attributes, 107

denormalized
term definition, 8

descriptor_index item
(CONSTANT_NameAndType_info structure),

100
(field_info structure), 103
(LocalVariableTable_attribute

structure), 117
(method_info structure), 106

descriptors
characteristics and use, 89
field

446 descriptors • dstore instruction
descriptors (cont.)
as value ofCONSTANT_Utf8_info

structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info

structure, 100
as value ofCONSTANT_Utf8_info

structure referenced by
descriptor_index item,
field_info structure, 103

structural constraints on instructions, 123
syntax and item descriptions, 90
syntax and meaning, 90

grammar for specification of, 90
method

argument number limitation, 136
as value ofCONSTANT_Utf8_info

structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info

structure, 100
syntax and item descriptions, 91

dimensions
arrays, field descriptor specification, 91

direct
directly implement, term definition, 30
extension, term definition, 30
subclass, term definition, 25
superclass, term definition, 25

dividing
double, ddiv, 185
float, fdiv, 213
int, idiv, 243
long, ldiv, 295

dload instruction, 187
constraints, static, 121

dload_<n> instructions, 188
constraints, static, 121
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 343, 344
while loop, 349, 350

dmul instruction, 189
dneg instruction, 191
do nothing

nop, 322
double type

See also floating-point
adding,dadd, 179

characteristics and values, 59
comparing

dcmpg, 183
dcmpl, 183

compilation of, Java Virtual Machine
assembly language examples, 343

converting
float to, f2d, 204
int to, i2d, 234
long to, l2d, 282
to float, d2f, 176
to int, d2i, 177
to long, d2l, 178

data-flow analysis handling, 131
dividing, ddiv, 185
double-precision floating-point constant,

representation, syntax and item
descriptions, 97

field descriptor specification, 91
fields

getting from class instances,
getfield2_quick, 398

putting into class instances,
putfield2_quick, 426

loading from
arrays,daload, 181
local variables,dload, 187
local variables,dload_<n>, 188

multiplying, dmul, 189
negating,dneg, 191
pushing

wide index,ldc2_w, 294
wide index,ldc2_w_quick, 419

pushing constants,dconst_<d>, 184
remainder,drem, 192
storing into

arrays,dastore, 182
local variables,dstore, 195
local variables,dstore_<n>, 196

subtracting,dsub, 197
term definition, 58
values, 7

return from method,dreturn, 194
drem instruction, 192
dreturn instruction, 194

constraints, structural, 123
in Java Virtual Machine assembly language

examples, constants and local variables
in afor loop, 344

dstore instruction, 195

dstore_<n> instructions • exceptions 447

,

constraints, static, 121
in Java Virtual Machine assembly language

examples, accessing the constant pool,
347

dstore_<n> instructions, 196
constraints, static, 121
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 343
while loop, 349

dsub instruction, 197
dup instruction, 198
dup instructions

in Java Virtual Machine assembly language
examples

arrays, 358
operand stack operations, 361
throwing exceptions, 362
working with class instances, 355

operand stack manipulation constraints, 67
dup_x1 instruction, 199
dup_x2 instruction, 200
dup2 instruction, 201
dup2_x1 instruction, 202

in Java Virtual Machine assembly language
examples, operand stack operations, 361

dup2_x2 instruction, 203
duplicating

See also dup instructions
top operand stack word

dup, 198
dup_x1, 199
dup_x2, 200

top two operand stack words
dup2, 201
dup2_x1, 202
dup2_x2, 203

E
encapsulation

frames, locality of, 66
end_pc item

(Code_attribute structure), 112
entering

monitor for object,monitorenter, 312
Error

asThrowable class direct subclass, 38
as unrecoverable runtime exception class,

39

errors
See also exceptions
handling, exceptions use for, 34
heap-related,OutOfMemoryError, 63
Java stack-related
OutOfMemoryError, 62
StackOverflowError, 62

loading, 43
method area-related,OutOfMemoryError,

64
native method stack-related
OutOfMemoryError, 65
StackOverflowError, 65

preparation, 44
throwing,athrow, 167
verification, 44

events
execution order of, constraints on

relationships among, 373
Exception

asThrowable class direct subclass, 38
exception_index_table array

(Exceptions_attribute structure), 114
exception_table array

(Code_attribute structure), 112
exception_table_length item

(Code_attribute structure), 112
ExceptionInInitializerError, 39

anewarray, 162
checkcast, 175
constant pool resolution generation of, 143
getfield, 226
getstatic, 228
instanceof, 257
invokespecial, 263
invokestatic, 266
invokevirtual, 268
multianewarray, 316
new, 318
putfield, 325
putstatic, 327
when thrown during initialization, 39

exceptions
See alsocatch clause(s); errors;try-

catch-finally statement;try-
finally statement

abnormal completion, 68
asynchronous, reasons for and handling of

37
causes of, 35

448 exceptions • fields
exceptions(cont.)
conversions

narrowing primitive, 16
widening primitive, not possible, 15

dispatching, frame use for, 66
(Exceptions_attribute structure),

support required for, 107
handler parameters, as kind of variable, 11
handlers

code verification, Pass 3 - bytecode
verifier, 128

Sun’s Java compiled code characteristics,
133

handling, 36
instruction summary, 81
structural constraints on instructions, 122

Java Virtual Machine handling procedures,
69

normal completion, characterized by lack
of, 68

requirements for throwing, 114
standard unchecked runtime, list of

unrecoverable, 39
term definition, 34
throwing,athrow, 167

Exceptions_attribute structure
(method_info structure), 113

execution
Java program, life cycle, 40
order, thread rules, 373
paths, structural constraints on instructions,

122
exit

Java Virtual Machine, conditions for, 52
monitor for object,monitorexit, 314

exit method
Java Virtual Machine exit activated by, 52

expressions
interface type, implications, 13

extend
local variable index by additional bytes,

wide, 337
extends clause

term definition, 25

F
F character

field descriptor meaning, 91

f2d instruction, 204
f2i instruction, 205
f2l instruction, 206
fadd instruction, 207
faload instruction, 209
fastore instruction, 210
fcmpg instruction, 211
fcmpl instruction, 211
fconst_<f> instructions, 212
fdiv instruction, 213
field_info structure, 88

(fields table ofClassFile structure), 101
fields

See also constants; data types;fields
table; methods; variables

access expressions, access control and, 22
class,field_info structure access flags,

102
constant, 46
constant pool

references, verification process, 126
resolution of, 147

constants, as interface members, 30
creation and manipulation, instruction

summary, 79
data flow analysis, 126
descriptor

as value ofCONSTANT_Utf8_info
structure referred by
descriptor_index item,
CONSTANT_NameAndType_info

structure, 100
syntax and meaning, 90

get from class instances
getfield, 226
getfield_quick, 395
long or double, getfield2_quick, 398
wide index,getfield_quick_w, 396

initialization of, 27
interfaces, 31
field_info structure access flags, 102

length as array type member, 22
modifiers, 26
number limitation, 136
protected structural constraints, 123
put into class instances

putfield, 325
putfield_quick, 423

fields_count item • forward slashes (/) 449
long or double, putfield2_quick, 426
wide index,putfield_quick_w, 424

references, constant pool resolution, 147
static

get from classes,getstatic, 228
get from classes,getstatic_quick, 399
get from classes,getstatic2_quick, 400
put into classes,putstatic_quick, 427
put into classes,putstatic2_quick, 428
put into classes,putstatic, 327

term definition, 26
types, 91
volatile term definition, 27

fields_count item
(ClassFile structure), 88

fields table
(ClassFile structure), 88

final keyword
See alsoACC_FINAL modifier
class

and method constraint checking, 126
term definition, 24

methods, 28
term definition, 24

finalization
of class instances,finalize method, 51
finalizer term definition, 51

finally clause
data-flow analysis duringclass file

verification, 134
exception handling role, 36
implementation of

in catch_type item (Code_attribute
structure), 113

instruction summary, 81
try-finally clause, Sun’s Java compiled

code characteristics, 133
uninitialized object restrictions, Pass 3 -

bytecode verifier, 133
findSystemClass method
ClassLoader class, constant pool

resolution of classes and interfaces
loaded by, 145

finite nonzero floating-point values
IEEE 754 standard, Java Virtual Machine

specification conformance to, 59
fload instruction, 215

See also wide instruction
constraints, static, 121

fload_<n> instructions, 216
constraints, static, 121

float type
See also floating-point
adding,fadd, 207
comparing

fcmpg, 211
fcmpl, 211

converting
double to, d2f, 176
int to, i2f, 235
long to, l2f, 283
to double, f2d, 204
to int, f2i, 205
to long, f2l, 206

dividing, fdiv, 213
loading from

arrays,faload, 209
local variables,fload, 215
local variables,fload_<n>, 216

multiplying, fmul, 217
negating,fneg, 219
pushing constants,fconst_<f>, 212
remainder,frem, 220
storing into

arrays,fastore, 210
local variables,fstore, 223
local variables,fstore_<n>, 224

subtracting,fsub, 225
value, return from method,freturn, 222

floating-point
comparison, IEEE 754 conformance, 80
types

casting not permitted betweenboolean
type and, 9

characteristics and values, 59
components, and values, 7, 58
field descriptor specification, 91
underflow and overflow, Java Virtual

Machine handling, 76
values, operators on, 8

fmul instruction, 217
fneg instruction, 219
for keyword

compilation of, Java Virtual Machine
assembly language examples, 341

forward slashes (/)
class name use, 89

450 frames • i2s instruction
frames
See also stacks
exception handling impact on, 70
local variables, 66
term definition, 66

frem instruction, 220
freturn instruction, 222

constraints, structural, 123
fstore instruction, 223

constraints, static, 121
fstore_<n> instructions, 224

constraints, static, 121
fsub instruction, 225

G
garbage collection

algorithm, not specified by Java Virtual
Machine specification, 57

as implementation of automatic storage
management system, 63

method area relationship to, 64
getfield instruction, 226

constraints
static, 120
structural, 123

in Java Virtual Machine assembly language
examples

operand stack operations, 361
working with class instances, 356

getfield_quick instruction, 395
getfield_quick_w instruction, 396
getfield2_quick instruction, 398
getstatic instruction, 228

constraints, static, 120
getstatic_quick instruction, 399
getstatic2_quick instruction, 400
goto instruction, 230

constraints, static, 119
in Java Virtual Machine assembly language

examples
compilingfinally, 368
constants and local variables in afor

loop, 341, 343, 345
while loop, 348, 349

goto_w instruction, 231
constraints, static, 119

gradual underflow
conformance

adddouble, dadd, 180

addfloat, fadd, 208
dividing
double conformance,ddiv, 186
float conformance,fdiv, 214

multiplying
double conformance,dmul, 190
float conformance,fmul, 218

subtracting
double conformance,dsub, 197
float conformance,fsub, 225

term definition, 8
grammar

descriptor specification, 90

H
handler_pc item

(element ofexception_table array of
Code_attribute structure), 112

handles
term definition, 36, 69

hash sign (#)
use in Java Virtual Machine assembly

language examples, 340
heap

See also memory
errors,OutOfMemoryError, 63
term definition, 9

hiding
term definition, 26

hierarchy
exception, 38
reference types, 10

high_bytes item
(CONSTANT_Double_info structure), 98
(CONSTANT_Long_info structure), 98

I
I character

field descriptor meaning, 91
i2b instruction, 232
i2c instruction, 233
i2d instruction, 234
i2f instruction, 235
i2l instruction, 236
i2s instruction, 237

in Java Virtual Machine assembly language
examples, constants and local variables
in afor loop, 345

iadd instruction • ifgt instruction 451
iadd instruction, 238
in Java Virtual Machine assembly language

examples
arithmetic, 346
constants and local variables in afor

loop, 345
receiving arguments, 351

iaload instruction, 239
in Java Virtual Machine assembly language

examples, arrays, 357
iand instruction, 240

in Java Virtual Machine assembly language
examples, arithmetic, 346

iastore instruction, 241
in Java Virtual Machine assembly language

examples, arrays, 357
iconst_<i> instructions, 242

in Java Virtual Machine assembly language
examples

arithmetic, 346
arrays, 358
compiling switches, 359, 360
constants and local variables in afor

loop, 341, 345
while loop, 348, 350

identifiers
See also names; strings
non-name use in Java programs, 20
term definition, 6
as value ofCONSTANT_Utf8_info structure

referenced byname_index item
(CONSTANT_NameAndType_info
structure), 100

referenced byname_index item
(field_info structure), 103

referenced byname_index item
(method_info structure), 105

identity
conversions, 14

idiv instruction, 243
IEEE 754 standard

comparing
double conformance,dcmpg, 183
double conformance,dcmpl, 183
float conformance,fcmpg, 211
float conformance,fcmpl, 211

conformance
adddouble, dadd, 179
addfloat, fadd, 208

dividing
double conformance,ddiv, 185
float conformance,fdiv, 214

float anddouble type conformance, 59
floating-point

comparison, conformance, 80
double bit layout,high_bytes and

low_bytes items,
CONSTANT_Double_info structure, 98

operation conformance to, 76
multiplying
double conformance,dmul, 189
float conformance,fmul, 218

remainder
drem not the same as the,drem, 192
frem not the same as the,frem, 221

subtracting
double conformance,dsub, 197
float conformance,fsub, 225

if_acmpeq instruction, 244
constraints, static, 119

if_acmpne instruction, 244
constraints, static, 119

if_icmpeq instruction, 245
constraints, static, 119

if_icmpge instruction, 245
constraints, static, 119

if_icmpgt instruction, 245
constraints, static, 119

if_icmple instruction, 245
constraints, static, 119

if_icmplt instruction, 245
constraints, static, 119
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 341, 342, 345
while loop, 348

if_icmpne instruction, 245
constraints, static, 119

ifeq instruction, 247
constraints, static, 119

ifge instruction, 247
constraints, static, 119
in Java Virtual Machine assembly language

examples,while loop, 350
ifgt instruction, 247

constraints, static, 119

452 ifle instruction • implementation

e

ifle instruction
constraints, static, 119
in Java Virtual Machine assembly language

examples,while loop, 350
iflt instruction, 247

constraints, static, 119
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 343
while loop, 349

ifne instruction, 247
constraints, static, 119
in Java Virtual Machine assembly language

examples, throwing exceptions, 362
ifnonnull instruction, 249

constraints, static, 119
ifnull instruction, 250

constraints, static, 119
in Java Virtual Machine assembly language

examples, working with class instances,
355

iinc instruction, 251
constraints, static, 121
in Java Virtual Machine assembly language

examples
constants and local variables in afor

loop, 341, 342
while loop, 348

IllegalAccessError, 45
anewarray, 162
checkcast, 175
constant pool resolution generation of, 143,

146
during field reference resolution, 147
during method reference resolution, 148

getfield, 226
getstatic, 228
instanceof, 257
invokeinterface, 260
invokeinterface_quick, 403
invokespecial, 263
invokestatic, 266
invokevirtual, 268
as linking error, 39
multianewarray, 316
new, 318
putfield, 325

putstatic, 327
IllegalMonitorStateException, 38

monitorexit, 314
iload instruction, 252

See also istore instruction;wide instruction;
constraints, static, 121

iload_<n> instructions, 253
See also istore_<n>instructions
constraints, static, 121
in Java Virtual Machine assembly language

examples
arithmetic, 346
arrays, 357
compiling switches, 359, 360
constants and local variables in afor

loop, 341, 342, 345
receiving arguments, 351
throwing exceptions, 362
while loop, 348
working with class instances, 356

impdep1 reserved opcode, 152
impdep2 reserved opcode, 152
implementation

attributes
optional, handling, 107
predefined, support requirements, 107

bugs
exclusiveend_pc workaround, 112
native method stacks, stack overflow not

detected, 65
string literal resolution, 148

class files verification issues, 124
considerations

constant pool, 64
exception handling, 114
frames, extensions permitted, 68
heap, 63
Java stacks, 62
JDK 1.0.2 release, boolean arrays as byt

arrays, 60
JDK 1.0.2 release, Java stacks, 62
JDK 1.0.2 release, Java stacks, size limit

use, 63
JDK 1.0.2 release, heap, 63
JDK 1.0.2 release, method area, 64
JDK 1.0.2 release, constant pool, 64
JDK 1.0.2 release, native method stacks,

65

import declaration • instances 453
local variables, 66
method area, 64
native method stacks, 65
operand stacks, 67
word specification, 61

constraint enforcement strategies, 151
constraints

Java Virtual Machine code, 118
Java Virtual Machine code, static, 118
Java Virtual Machine code, structural, 121

decisions, constant pool entries for eight-
byte constants, 98

exception handlers
Sun’s Java compiled code characteristics,

133
try-finally clause, Sun’s Java compiled

code characteristics, 133
future possibilities, API changes in contract

between Java Virtual Machine and
ClassLoader class, 144

implications, opcode design and alignment,
71

integer data type underflow and overflow,
not detected by Java Virtual Machine, 76

Java Virtual Machine, strategies and
requirements, 81

JDK 1.0.2
line number - source code mapping issues,

115
major_version andminor_version

numbers, 85
verification ofclass files restricted to

those with class loaders, 142
object representation, 69
optimization, alternative instruction use,

127
requirements and non-requirements, 57

import declaration
type declaration effects, 21

imul instruction, 254
IncompatibleClassChangeError, 45

getfield, 226
getstatic, 228
invokeinterface, 259
invokeinterface_quick, 403
invokespecial, 263
invokestatic, 266
invokevirtual, 269
as linking error, 39
putfield, 325

putstatic, 327
increment

local variable by constant,iinc, 251
index item

(LocalVariableTable_attribute
structure), 118

IndexOutOfBoundsException, 38
ineg instruction, 255
inexact

term definition, 8
infinities

IEEE 754 standard, Java Virtual Machine
specification conformance to, 59

info array
(attribute_info generic structure), 106

inheritance
class hierarchy, 25
in interfaces, 32
methods, 27
term definition, 25

<init> special method
as instance initialization method name, 69
constant_pool reference to, 95
invocation of

static constraints, 120
structural constraints, 122

method_info structure access flags, 104
name_index item (method_info) reference,

105
initialization

detailed procedure description, 47
instance, structural constraints on

instructions, 122
instances, data-flow analysis duringclass

file verification, 131
methods, 69
overview, 42
static initializers, 29
term definition, 46

instanceof instruction, 256
instanceof_quick instruction, 401
instances

See also arrays
creating

new, 318
new_quick, 422

creation, 49
instruction summary, 79
situations that cause the, 49

determining if an object is a particular type

454 instances • int type
instances(cont.)
instanceof, 256
instanceof_quick, 401

entering monitor for,monitorenter, 312
exiting monitor for,monitorexit, 314
field descriptor specification, 91
getting values of fields from

getfield, 226
getfield_quick, 395
getfield_quick_w, 396
long or double, getfield2_quick, 398

initialization
data-flow analysis duringclass file

verification, 131
field_info structure access flags, 104
structural constraints on instructions, 122

instanceof instruction, constraints, static,
120

Java Virtual Machine support for, 58
manipulation, instruction summary, 79
methods, 28

accessing, structural constraints on
instructions, 122

data-flow analysis duringclass file
verification, 132

initialization, invoking,
invokenonvirtual_quick, 406

invoking, instruction summary, 80
invoking, invokespecial, 261
invoking, invokevirtual, 267
invoking, invokevirtual_quick, 411
invoking, invokevirtual_quick_w, 413
invoking, forjava.lang.Object class,

invokevirtualobject_quick, 415
method_info structure access flags, 104

operators on, 10
putting values into fields into

putfield, 325
putfield_quick, 423
putfield2_quick, 426
wide index,putfield_quick_w, 424

reference type relationship to, 58
representation of, in Java Virtual Machine,

69
term definition, 9
this object role in creation of, 50
uninitialized, restrictions, Pass 3 - bytecode

verifier, 133
unreachable, finalization of, 51

variables, 11
accessing, structural constraints on

instructions, 122
getting fields from,getfield, 226
getting fields from,getfield_quick, 395
getting fields from,getfield_quick_w, 396
getting fields from,getfield2_quick, 398
putting fields into,putfield, 325
putting fields into,putfield_quick, 423
putting fields into,putfield2_quick, 426

InstantiationError, 45
as linking error, 39
new, 318

instructions
alternative forms, optimization use of, 127
constraints, static, 118
Java Virtual Machine instruction set

execution loop, 71
format, 71

load, summary, 74
opcodes

data flow analysis, 126
verification process, 128

operands, verification process, 128
set

arithmetic, summary, 75
notation for families of, 75
summary, 71
type encoding limitations of, 72

store, summary, 74
untyped, handling oflong anddouble

values, data-flow analysis duringclass
file verification, 131

int type
adding,iadd, 238
ANDing, bitwise,iand, 240
branchint comparison

if_icmp<cond>, 245
with zero,if<cond>, 247

converting
double to,d2i, 177
float to, f2i, 205
long to, l2i, 284
to byte, i2b, 232
to char, i2c, 233
to double, i2d, 234
to float, i2f, 235
to long, i2l, 236
to short, i2s, 237

integer • invokevirtual instruction 455

,

dividing, idiv, 243
field descriptor specification, 91
loading from

arrays,iaload, 239
local variables,iload, 252
local variables,iload_<n>, 253

multiplying, imul, 254
negating,ineg, 255
ORing

bitwise, exclusive,ixor, 279
bitwise, inclusive,ior, 270

pushing constants,iconst_<i>, 242
remainder,irem, 271
shift left, arithmetic,ishl, 273
shift right

arithmetic,ishr, 274
logical, iushr, 278

storing into
arrays,iastore, 241
local variables,istore, 275
local variables,istore_<n>, 276

subtracting,isub, 277
value, return from method,ireturn, 272

integer
See alsobyte type;char type;int type;

long type;short type
data types, underflow and overflow, not

detected by Java Virtual Machine, 76
int type
boolean values represented as, 60
compilation of, Java Virtual Machine

assembly language examples, 341
instruction set handling of, 72
term definition, 58
value range, 59

integral
types

components, 7, 58
values, 58

values, operators on, 8
interfaces, 30

See alsoACC_INTERFACE modifier; arrays;
class(es);interfaces array,
(ClassFile structure)

constant pool entry resolution, 140
extends clause use, 31
fields, 31
finalization of, 52
implements clause use, 31
members, 31

methods
constant pool resolution of, 148
invocation instruction summary, 80
invoking, invokeinterface, 258
invoking, invokeinterface_quick, 403
method_info structure access flags, 104

modifiers, 31
term definition, 30
types, 9

as reference type, 61
implications for variables and expressions

13
members of, 22

interfaces array
(ClassFile structure), 87

interfaces_count item
(ClassFile structure), 87

InternalError

as asynchronous exception cause, 37
as Java Virtual Machine error, 40

invokeinterface instruction, 258
constraints, static, 120

invokeinterface_quick instruction, 403

invokenonvirtual_quick instruction, 406

invokespecial instruction, 261
See alsoACC_SUPER modifier
access flag use to select alternative

semantics, 86
constraints

static, 120
structural, 122

instance initialization by, 69
in Java Virtual Machine assembly language

examples
arrays, 358
invoking methods, 354
throwing exceptions, 362
working with class instances, 355

invokestatic instruction, 265
constraints, static, 120
in Java Virtual Machine assembly language

examples, invoking methods, 353
invokestatic_quick instruction, 410
invokesuper_quick instruction, 408
invokevirtual instruction, 267

constraints, static, 120
in Java Virtual Machine assembly language

examples
catching exceptions, 363, 364, 365

456 invokevirtual instruction • Java Virtual Machine
invokevirtual instruction (cont.)
compilingfinally, 367, 368, 369
invoking methods, 352
synchronization, 370
throwing exceptions, 362, 363
working with class instances, 355

invokevirtual_quick instruction, 411
invokevirtual_quick_w instruction, 413
invokevirtualobject_quick instruction, 415
invoking

methods
class,invokestatic, 265
class,invokestatic_quick, 410
instance,invokespecial, 261
instance,invokevirtual, 267
instance,invokevirtual_quick, 411
instance,invokevirtual_quick_w, 413
instance, forjava.lang.Object class,

invokevirtualobject_quick, 415
instance initialization,

invokenonvirtual_quick, 406
interface,invokeinterface, 258
interface,invokeinterface_quick, 403
private,invokenonvirtual_quick, 406
superclasses,invokesuper_quick, 408

ior instruction, 270
irem instruction, 271
ireturn instruction, 272

constraints, structural, 123
in Java Virtual Machine assembly language

examples
arithmetic, 346
compiling switches, 359, 360, 361
invoking methods, 352, 353, 354
receiving arguments, 351
while loop, 350

ishl instruction, 273
ishr instruction, 274
istore instruction, 275

See also iload instruction
constraints, static, 121

istore_<n> instructions, 276
See also iload_<n>instructions
constraints, static, 121
in Java Virtual Machine assembly language

examples
accessing the constant pool, 347
arrays, 357
constants and local variables in afor

loop, 341, 345

while loop, 348
isub instruction, 277

in Java Virtual Machine assembly language
examples, arithmetic, 346

items
class file items, 83

iushr instruction, 278
ixor instruction, 279

in Java Virtual Machine assembly language
examples, arithmetic, 346

J
J character

field descriptor meaning, 91
Java

concepts, (chapter), 5
digits, 6
letters, 6
Virtual Machine, See Java Virtual Machine;

java.io package
java.io.DataInput interface
class file data format support by, 83
readInt method,class file data type

support by, 83
readUnsignedByte method,class file

data type support by, 83
readUnsignedShort method,class file

data type support by, 83
java.io.DataInputStream class,class

file data format support by, 83
java.io.DataOutput interface,class file

data format support by, 83
java.io.DataOutputStream class,class

file data format support by, 83
java.lang package
java.lang.Object class, as interpretation

of zero value forsuper_class item
(ClassFile structure), 87

java.lang.String

CONSTANT_String_info structure
representation, syntax and item
descriptions, 96

string literals, constant pool resolution of,
148

Java Virtual Machine
assembly language, format, 340
compiling for, (chapter), 339
life cycle, 40
startup, 40
structure of, (chapter), 57

 JIT (Just-In-Time) code generation • LineNumberTable_attribute structure 457
unrecoverable runtime exceptions
associated with, 39

JIT (Just-In-Time) code generation
Java Virtual Machine implementation

issues, 82, 339
jsr instruction, 280

constraints
static, 119
structural, 124

in Java Virtual Machine assembly language
examples, compilingfinally, 367, 368

returnAddress type used by, 60
try-finally clause implementation use,

Sun’s Java compiled code
characteristics, 134

jsr_w instruction, 281
constraints

static, 119
structural, 124

returnAddress type used by, 60
jump table

access
by index and jump,tableswitch, 335
by key match and jump,lookupswitch, 300

alignment concerns, 111
jump to subroutine instructions

constraints, static, 119
jsr, 280
wide index,jsr_w, 281

L
L<classname>;

field descriptor meaning, 91
l2d instruction, 282
l2f instruction, 283
l2i instruction, 284
ladd instruction, 285

in Java Virtual Machine assembly language
examples, operand stack operations, 361

laload instruction, 286
land instruction, 287
lastore instruction, 288
late binding

frame constant pool reference support of, 68
lcmp instruction, 289
lconst_<l> instructions, 290

in Java Virtual Machine assembly language
examples

accessing the constant pool, 347

operand stack operations, 361
ldc instruction, 291

constraints, static, 120
in Java Virtual Machine assembly language

examples, accessing the constant pool,
347

ldc_quick instruction, 417
ldc_w instruction, 292

constraints, static, 120
ldc_w_quick instruction, 418
ldc2_w instruction, 294

constraints, static, 120
in Java Virtual Machine assembly language

examples
accessing the constant pool, 347
constants and local variables in afor

loop, 343
while loop, 349, 350

ldc2_w_quick instruction, 419
ldiv instruction, 295
left angle bracket (<)

in CONSTANT_Methodref_info and
CONSTANT_InterfaceMethodref_info

names, significance of, 95
left parentheses (

method descriptor meaning, 91
left square bracket [

field descriptor specification, 91
length

arrays, fetching,arraylength, 164
length item

(CONSTANT_Utf8_info structure), 101
(LocalVariableTable_attribute

structure), 117
limitations

Java Virtual Machine components, 136
line_number item

(element ofline_number_table array of
LineNumberTable_attribute

structure), 116
line_number_table array

(LineNumberTable_attribute structure),
116

line_number_table_length item
(LineNumberTable_attribute structure),

115
LineNumberTable_attribute structure

(element ofattributes table of
Code_attribute structure), 115

458 LinkageError • local variables

,

LinkageError, 43, 44
as unrecoverable runtime exception class,

39
verification pass 4 occurrence of, 127

linking
See also verification
class files verification issues, 124
dynamic

frame use for, 66
support, frame constant pool reference, 67

errors
IllegalAccessError, 39
IncompatibleClassChangeError, 39
InstantiationError, 39
LinkageError as unrecoverable runtime

exception class, 39
LinkageError loading errors thrown by,

43
LinkageError verification errors thrown

by, 44
LinkageError verification pass 4

occurrence of, 127
NoSuchFieldError, 39
NoSuchMethodError, 39

overview, 41
term definition, 43
unrecoverable runtime exceptions

associated with, 39
literals

See also constants; strings; variables
false term definition, 6
null term definition, 6
strings

constant pool resolution of, 148
constant pool resolution of, JDK 1.0.2

implementation bug, 148
term definition, 6
true term definition, 6

lload instruction, 296
lload_<n> instructions, 297
lmul instruction, 298
lneg instruction, 299
loading

See also accessing; linking; retrieving;
verification

errors,NoClassDefFoundError, 39
from arrays
byte or boolean, baload, 169
char, caload, 172

double, daload, 181
float, faload, 209
int, iaload, 239
long, laload, 286
reference, aaload, 156
short, saload, 331

from local variables
double, dload, 187
double, dload_<n>, 188
float, fload, 215
float, fload_<n>, 216
int, iload, 252
int, iload_<n>, 253
long, lload, 296
long, lload_<n>, 297
reference, aload, 160
reference, aload_<n>, 161

lload instruction, constraints, static, 121
lload_<n> instructions, constraints, static,

121
load instructions, summary, 74
loadClass method, constant pool

resolution of classes and interfaces
loaded by, algorithm, 145

overview, 41
term definition, 43
unrecoverable runtime exceptions

associated with, 39
local_variable_table array

(LocalVariableTable_attribute
structure), 117

local_variable_table_length item
(LocalVariableTable_attribute

structure), 117
local variables

See also parameters; variables
accessing, structural constraints on

instructions, 122
code verification, Pass 3 - bytecode verifier

128
compilation of, Java Virtual Machine

assembly language examples, 341
data flow analysis, 126
exception handling impact on, 70
extend index by additional bytes,wide, 337
frames used to hold, 66
instructions

for accessing more, summary, 75
load and store, summary, 74

LocalVariableTable_attribute structure • lookupswitch instruction 459
specialized to handle, advantages of, 342
loading
double from,dload, 187
double from,dload_<n>, 188
float from,fload, 215
float from,fload_<n>, 216
int from, iload, 252
int from, iload_<n>, 253
long from, lload, 296
long from, lload_<n>, 297
reference from,aload, 160
reference from,aload_<n>, 161

location of, 118
maximum number, 111
number limitation, 136
reuse, advantages of, 342
states, merging, during data-flow analysis,

130
storing
double into, dstore, 195
double into, dstore_<n>, 196
float into, fstore, 223
float into, fstore_<n>, 224
int into, istore, 275
int into, istore_<n>, 276
long into, lstore, 307
long into, lstore_<n>, 308
reference into,astore, 165
reference into,astore_<n>, 166

term definition, 12
LocalVariableTable_attribute structure

(Code_attribute structure), 116
locks

See also threads
ACC_SYNCHRONIZED modifier,field_info

structure, 104
(chapter), 371
errors,IllegalMonitorStateException

thrown, 38
interaction with variables, rules about, 377
managing shared variables with, 27
multithreaded synchronization with, 54
rules about, 376
synchronization and, 386
synchronized method use of, 29
term definition, 10, 53

long type
adding,ladd, 285

ANDing, bitwise,land, 287
comparing,lcmp, 289
constant,CONSTANT_Long_info structure

representation, syntax and item
descriptions, 97

converting
double to, d2l, 178
float to, f2l, 206
int to, i2l, 236
to double, l2d, 282
to float, l2f, 283
to int, l2i, 284

data-flow analysis handling, 131
dividing, ldiv, 295
field descriptor specification, 91
fields

getting from class instances,
getfield2_quick, 398

putting into class instances,
putfield2_quick, 426

loading
from arrays,laload, 286
from local variables,lload, 296
from local variables,lload_<n>, 297

multiplying, lmul, 298
negating,lneg, 299
ORing

bitwise, exclusive,lxor, 311
bitwise, inclusive,lor, 302

pushing
constants,lconst_<l>, 290
wide index,ldc2_w, 294
wide index,ldc2_w_quick, 419

remainder,lrem, 303
shift left, lshl, 305
shift right

arithmetic,lshr, 306
logical, lushr, 310

storing into
arrays,lastore, 288
local variables,lstore, 307
local variables,lstore_<n>, 308

subtracting,lsub, 309
term definition, 58
value, return from method,lreturn, 304
value range, 59

lookupswitch instruction, 300
See also tableswitch instruction

460 lookupswitch instruction • methods
lookupswitch instruction (cont.)
code array alignment effect, 111
constraints, static, 119
in Java Virtual Machine assembly language

examples, compiling switches, 360
lor instruction, 302
low_bytes item

(CONSTANT_Double_info structure), 98
(CONSTANT_Long_info structure), 98

lrem instruction, 303
lreturn instruction, 304

constraints, structural, 123
in Java Virtual Machine assembly language

examples, operand stack operations, 361
lshl instruction, 305
lshr instruction, 306
lstore instruction, 307

constraints, static, 121
lstore_<n> instructions, 308

constraints, static, 121
in Java Virtual Machine assembly language

examples, accessing the constant pool,
347

lsub instruction, 309
lushr instruction, 310
lxor instruction, 311

M
magic item

(ClassFile structure), 84
magic number

See alsomagic item (ClassFile structure)
class file verification of, 125

main method
invocation of, 40

major_version item
(ClassFile structure), 84

manipulation
objects, instruction summary, 79

mapping
symbolic references to concrete values,

constant pool resolution, (chapter), 139
max_locals item

(Code_attribute structure), 111
max_stack item

(Code_attribute structure), 111
members

class, term definition, 25
term definition, 21

memory

allocation during instance creation, 49
errors,OutOfMemoryError constant pool

resolution generation of, 143
garbage collection

and finalization, 51
as memory management technique, 9

limiting use of, Java stack size limit use for,
63

main, term definition, 371
master, of variables, term definition, 371
runtime data areas

constant pool, 64
heap, 63
Java stacks, 62
layout not specified by Java Virtual

Machine specification, 57
method area, 63
native method stacks, 65
pc register, 61

term definition, 371
thread interaction with, ordering rules, 54
working, term definition, 371

method
super term definition, 30

method_info structure
(methods table ofClassFile structure),

104
methods

See also fields
abnormal completion, 68
abstract, 28
abstract, as interface members, 32
area

constant pool allocation from, 64
term definition, 63

Character.isJavaLetter method, 6
Character.isJavaLetterOrDigit

method, 6
class

invoking, invokestatic, 265
invoking, invokestatic_quick, 410

classFinalize method, invoking during
class finalization, 52

<clinit> special method
as class or interface initialization method

name, 69
constant_pool reference to, 95
invocation of, static constraints, 120
method_info structure access flags

ignored, 104

methods • methods 461

,

name_index item (method_info
structure) reference, 105

code
location, 111
size limitation, 136
verification, Pass 3 - bytecode verifier, 128

compilation of, Java Virtual Machine
assembly language examples, 341

constant pool
references, verification process, 126
resolution of, 147

data flow analysis, 126
defineClass method,ClassLoader class,

145
descriptor

argument number limitation, 136
as value ofCONSTANT_Utf8_info

structure referenced by
descriptor_index item,
CONSTANT_NameAndType_info

structure, 100
syntax and meaning, 91

errors,AbstractMethodError, 44
exit method, Java Virtual Machine exit

activated by, 52
final, 28
finalize method, 51
findSystemClass method,ClassLoader

class, 145
frames use with, 66
<init> special method

as instance initialization method name, 69
constant_pool reference to, 95
invocation of, static constraints, 120
invocation of, structural constraints, 122
method_info structure access flags, 104
name_index item (method_info)

reference, 105
initialization, 69
instance, 28

data-flow analysis duringclass file
verification, 132

invoking, invokespecial, 261
invoking, invokevirtual, 267
invoking, invokevirtual_quick, 411
invoking, invokevirtual_quick_w, 413
invoking forjava.lang.Object class,

invokevirtualobject_quick, 415
invoking initialization,

invokenonvirtual_quick, 406

interface
constant pool resolution of, 148
invoking, invokeinterface, 258
invoking, invokeinterface_quick, 403

invocation
conversion, context, 14
conversion, 18
expressions, access control and, 22
instruction summary, 80
structural constraints on instructions, 123

main method, invocation of, 40
modifiers, 28
native, 29

invoking, invokenonvirtual_quick, 406
pc register state, 62
stacks, 65

newInstance method,Class class, 9
normal completion, 68
notify method, multithreaded actions, 54
notifyAll method, multithreaded actions,

54
number and size limitation, 136
operand stack use by, 67
parameters, as kind of variable, 11
private, 28

invoking, invokenonvirtual_quick, 406
protected, structural constraints, 123
public, 28
readInt method,java.io.DataInput

interface,class file data type support
by, 83

readUnsignedByte method,
java.io.DataInput interface,class
file data type support by, 83

readUnsignedShort method,
java.io.DataInput interface,class
file data type support by, 83

references, constant pool resolution, 148
requirements for throwing exceptions, 114
resolveClass method,ClassLoader class,

145
return
double value from,dreturn, 194
float value from,freturn, 222
instruction summary, 80
int value from,ireturn, 272
long value from,lreturn, 304
reference value from,areturn, 163
type, structural constraints on instructions

123

462 methods • negating
methods(cont.)
void from, return, 330

setDaemon method, creating daemon
threads with, 53

stop method
Thread class, as exception cause, 35
Thread class, as asynchronous exception

cause, 37
String.intern, 6
superclasses, invoking,invokesuper_quick,

408
synchronization, instruction summary, 81
synchronized methods, 29
double value return from,dreturn, 194
float value return from,freturn, 222
int value return from,ireturn, 272
long value return from,lreturn, 304
reference value return from,areturn,

163
void return from,return, 330

table, preparation phase use of, 45
term definition, 27
uncaughtException method, exception

handling use, 35, 36
wait method, multithreaded actions, 54

methods_count item
(ClassFile structure), 88

methods table
(ClassFile structure), 88

minor_version item
(ClassFile structure), 84

monitor
enter for object,monitorenter, 312
exit for object,monitorexit, 314
term definition, 53

monitorenter instruction, 312
in Java Virtual Machine assembly language

examples, synchronization, 370
monitorexit instruction, 314

in Java Virtual Machine assembly language
examples, synchronization, 370

multianewarray instruction, 316
constraints, static, 120, 121
in Java Virtual Machine assembly language

examples, arrays, 358
multianewarray_quick instruction, 421
multiplying
double, dmul, 189
float, fmul, 217

int, imul, 254
long, lmul, 298

must
instruction description implications, 151

N
name_and_type item

(CONSTANT_Fieldref_info structure), 95
(CONSTANT_InterfaceMethodref_info

structure), 95
(CONSTANT_Methodref_info structure), 95

name_index item
(CONSTANT_Class_info structure), 93
(CONSTANT_NameAndType_info structure),

99
(field_info structure), 103
(LocalVariableTable_attribute

structure), 117
(method_info structure), 105

names
See also identifiers
attributes, avoiding conflicts in, 108
class, term definition, 24
classes, internal representation, 89
fully qualified, 23
new attributes, 107
qualified

access control and, 22
term definition, 20

simple, term definition, 20
NaN (Not-a-Number)

conversion of
bytes item,CONSTANT_Float_info

structure into, 97
high_bytes andlow_bytes items,

CONSTANT_Double_info structure, 99
IEEE 754 standard, Java Virtual Machine

specification changes from, 60
operations that produce, 76
term definition, 7

narrowing primitive conversions
See conversions, narrowing primitive

native keyword
See alsoACC_NATIVE modifier
methods, 29
pc register state, 62
stacks, 65

negating
double, dneg, 191

negative infinity • NullPointerException 463
float, fneg, 219
int, ineg, 255
long, lneg, 299

negative infinity
conversion of
bytes item,CONSTANT_Float_info

structure into, 97
high_bytes andlow_bytes items,

CONSTANT_Double_info structure, 99
NegativeArraySizeException, 38

anewarray, 162
anewarray_quick, 392
multianewarray, 316
multianewarray_quick, 421
newarray, 320

new instruction, 318
constraints, static, 120, 121
data-flow analysis duringclass file

verification, 132
in Java Virtual Machine assembly language

examples
arrays, 358
throwing exceptions, 362
working with class instances, 355

new_quick instruction, 422
newarray instruction, 320

constraints, static, 121
in Java Virtual Machine assembly language

examples, arrays, 357
NoClassDefFoundError, 43

anewarray, 162
checkcast, 175
constant pool resolution generation of, 142
getfield, 226
getstatic, 228
instanceof, 257
invokespecial, 263
invokestatic, 266
invokevirtual, 268
as loading process error, 39
multianewarray, 316
new, 318
putfield, 325
putstatic, 327
when thrown during initialization, 48

nonterminal symbols
descriptor grammar notation, 90

nop instruction, 322
normal completion

term definition, 68
NoSuchFieldError, 39, 45

constant pool resolution generation of,
during field reference resolution, 148

getfield, 226
getstatic, 228
as linking error, 39
putfield, 325
putstatic, 327

NoSuchMethodError, 46
constant pool resolution generation of,

during method reference resolution, 148
invokespecial, 263
invokestatic, 266
invokevirtual, 268
as linking error, 39

notation
class file format descriptions, 83
descriptor grammar, 90
instruction families, 75

notification
notify method, multithreaded actions, 54
notifyAll method, multithreaded actions,

54
wait sets and, 387

null object reference
pushing,aconst_null, 159

null reference
null type, 6
term definition, 61
testing for, 80

NullPointerException, 39
aaload, 156
aastore, 158
arraylength, 164
athrow, 167
baload, 169
bastore, 170
caload, 172
castore, 173
daload, 181
dastore, 182
faload, 209
fastore, 210
getfield, 226
getfield_quick, 395
getfield_quick_w, 396
getfield2_quick, 398
iaload, 239

464 NullPointerException • ORing
NullPointerException (cont.)
iastore, 241
invokeinterface, 260
invokeinterface_quick, 403
invokenonvirtual_quick, 406
invokespecial, 263
invokesuper_quick, 408
invokevirtual, 269
invokevirtual_quick, 411
invokevirtual_quick_w, 413
invokevirtualobject_quick, 415
laload, 286
lastore, 288
monitorenter, 312
monitorexit, 314
new, 318
putfield, 325
putfield_quick, 423
putfield_quick_w, 424
putfield2_quick, 426
saload, 331
sastore, 332

number_of_exceptions item
(Exceptions_attribute structure), 114

numeric
comparisons

floating-point positive and negative zero,
59

implications of unordered NaN values, 60
conversions

binary promotion, term definition, 19
narrowing, support for, 77
narrowing, impact on precision, 78
unary promotion, term definition, 19
widening, impact on precision, 77

promotions, 13
types

components, 7, 58
promotion conversion, context, 14

O
Object class, 10
objects

See also arrays; instances
term definition, 9

opcodes
mnemonics by opcode (table), 429
reserved, 152
term definition, 71

operand(s)
constraints, static, 119
implicit, compilation advantage of, 342
instructions, verification process, 128
Java Virtual Machine instructions, storage

order and alignment, 71
stack

code verification, Pass 3 - bytecode
verifier, 128

data flow analysis, 126
duplicating top operand on,dup, 198
duplicating top operand on, and put three

down in stack,dup_x2, 200
duplicating top operand on, and put two

down in stack,dup_x1, 199
duplicating top two operand words,dup2,

201
duplicating top two operand words, and

put four down in stack,dup2_x2, 203
duplicating top two operand words, and

put three down in stack,dup2_x1, 202
exception handling impact on, 70
frames used to hold, 67
management instruction summary, 79
maximum number of words, 111
merging, during data-flow analysis, 130
pop two words,pop2, 324
pop word,pop, 323
size limitation, 136
structural constraints on instructions, 122
swap top two words,swap, 334

term definition, 71
types, how distinguished by Java Virtual

Machine instruction set, 57
optimization

alternative instruction use, 127
order

execution, thread rules, 373
ordered values

floating point values, 60
NaN values not ordered, implications of, 60

ORing
int

bitwise, exclusive,ixor, 279
bitwise, inclusive,ior, 270

long

bitwise, exclusive,lxor, 311
bitwise, inclusive,lor, 302

OutOfMemoryError

overflow • public keyword 465
constant pool
related error, 64
resolution generation of, 143

heap-related error, 63
Java stack-related error, 62
as Java Virtual Machine error, 40
method area-related error, 64
native method stack-related error, 65
when thrown during initialization, 48

overflow
floating-point, Java Virtual Machine

handling, 76
integer data types, not detected by Java

Virtual Machine, 76
overloading

in interfaces, 32
term definition, 22

overriding
ACC_FINAL modifier,method_info

structure prevention of, 104
in interfaces, 32
methods, term definition, 27
term definition, 22

P
packages

members of, 21
term definition, 20

parameters
See also local variables
constructors, as kind of variable, 11
descriptor, syntax and meaning, 91
exception handler, as kind of variable, 11
formal, 28
methods, as kind of variable, 11

passive use
term definition, 46

pc (program counter) register
term definition, 61

performance
implications, opcode design and alignment,

71
pointers

term definition, 9
pop

stack operand
pop one words,pop, 323
pop two words,pop2, 324

pop instruction, 323
pop2 instruction, 324
positive infinity

conversion of
bytes item,CONSTANT_Float_info

structure into, 97
high_bytes andlow_bytes items,

CONSTANT_Double_info structure, 99
pound sign (#)

use in Java Virtual Machine assembly
language example, 340

precise
term definition, 37

precision
See also numeric
narrowing numeric conversion impact on,

78
widening numeric conversion impact on, 77

preparation
overview, 41
term definition, 44

prescient store
actions, with threads, 378

primitive
See alsoboolean; char type; conversions;

floating-point; integers
types

as Java Virtual Machine data type, 57
term definition, 58

values, term definition, 58
private keyword

See alsoACC_PRIVATE modifier
access implications, 23
methods, 28

invoking, invokespecial, 261
invoking, invokenonvirtual_quick, 406

program counter
Seepc (program counter) register

protected keyword
See alsoACC_PROTECTED modifier
access implications, 23
fields, structural constraints, 123
methods, structural constraints, 123

public keyword
See alsoACC_PUBLIC modifier
access implications, 23
class, term definition, 25
methods, 28

466 pushing • resolveClass method
pushing
byte, bipush, 171
constants

ldc, 291
ldc_quick, 417
wide index,ldc_w, 292
wide index,ldc_w_quick, 418

double

dconst_<d>, 184
wide index,ldc2_w, 294
wide index,ldc2_w_quick, 419

float, fconst_<f>, 212
int, iconst_<i>, 242
long

constants,lconst_<l>, 290
wide index,ldc2_w, 294
wide index,ldc2_w_quick, 419

null object references,aconst_null, 159
short, sipush, 333

putfield instruction, 325
constraints

static, 120
structural, 123

in Java Virtual Machine assembly language
examples

operand stack operations, 361
working with class instances, 356

putfield_quick instruction, 423
putfield_quick_w instruction, 424
putfield2_quick instruction, 426
putstatic instruction, 327

constraints
static, 120
structural, 123

putstatic_quick instruction, 427
putstatic2_quick instruction, 428

Q
qualified access

term definition, 22

R
readInt method
java.io.DataInput interface,class file

data type support by, 83
readUnsignedByte method
java.io.DataInput interface,class file

data type support by, 83
readUnsignedShort method

java.io.DataInput interface,class file
data type support by, 83

recursion
controlling runaway

Java stack size limit use for, 63
native method stack size limit use for, 65

reference(s)
field, constant pool resolution, 147
final fields, 26
method, constant pool resolution, 148
symbolic, mapping to concrete values,

constant pool resolution (chapter), 139
reference type

branch ifreference
comparison succeeds,if_acmpeq, 244
comparison succeeds,if_acmpne, 244
is null, ifnull, 250
notnull, ifnonnull, 249

determining if an object is a particular
instanceof, 256
instanceof_quick, 401

Java Virtual Machine
data type, 57
handling of, 58

null, testing for, 80
values, 9

components and, 61
register
pc, 61

remainder
double, drem, 192
float, frem, 220
int, irem, 271
long, lrem, 303

representation
internal, class names, 89

reserved opcodes
breakpoint, 152
impdep1, 152
impdep2, 152

resolution
constant pool, (chapter), 139
lazy, term definition, 44
overview, 41
static, term definition, 44
term definition, 45
types of, 42

resolveClass method
ClassLoader class, constant pool

resolution of classes and interfaces
loaded by, 145

ret instruction • shift 467
ret instruction, 329
See also astore instruction;astore_<n>

instructions; jsr instruction;jsr_w
instruction

constraints
static, 121
structural, 124

in Java Virtual Machine assembly language
examples, compilingfinally, 367, 369

returnAddress type used by, 60
try-finally clause implementation use,

Sun’s Java compiled code
characteristics, 134

retrieving
See accessing; loading

return
descriptor, syntax and meaning, 91
from method
double value,dreturn, 194
float value,freturn, 222
int value,ireturn, 272
long value,lreturn, 304
void, return, 330

from subroutine,ret, 329
reference value,areturn, 163
type, method, structural constraints on

instructions, 123
return instruction, 330

constraints, structural, 123
in Java Virtual Machine assembly language

examples
arrays, 357, 358
catching exceptions, 363, 364, 365, 366
compilingfinally, 367, 368
constants and local variables in afor

loop, 341, 343, 345
synchronization, 370
throwing exceptions, 362, 363
while loop, 348, 349
working with class instances, 354, 356

returnAddress type
characteristics and values, 60
instance constraints, 124
local variable constraints, 123
term definition, 58

right parentheses)
method descriptor meaning, 91

round-to-nearest
See also numeric

term definition, 8, 76
round-towards-zero

See also numeric
in narrowing numeric conversions, 78
term definition, 8, 76

runFinalizersOnExit method
Java Virtual Machine exit role, 52

runtime
class files verification issues, 124
data areas

constant pool, 64
heap, 63
Java stack, 62
method area, 63
native method stacks, 65
pc register, 61

exceptions,NullPointerException,
getfield, 226

RuntimeException asException class
direct subclass, 38

type, as incorrect terminology, 13
RuntimeException

asThrowable class direct subclass, 38

S
S character

field descriptor meaning, 91
saload instruction, 331
sastore instruction, 332
security

See alsoaccess_flags item
verification ofclass files, 124

SecurityException, 39
semantics

attributes, optional, 107
invokespecial instruction, access flag use to

select alternatives, 86
Java integer and floating-point operator

support, 76
Java types that have no direct integer

arithmetic support, 75
Java Virtual Machine, strategies for

implementing, 82
shadowing

See overriding
shift

left int, ishl, 273
left long, lshl, 305
right int

468 shift • standards
shift (cont.)
arithmetic,ishr, 274
logical, iushr, 278

right long
arithmetic,lshr, 306
logical, lushr, 310

short type
convertingint to, i2s, 237
field descriptor specification, 91
instruction set handling of, 72
integer arithmetic not directly supported, 75
loading from arrays,saload, 331
pushing,sipush, 333
storing into arrays,sastore, 332
term definition, 58
value range, 59

signature
term definition, 28

sipush instruction, 333
size

heap, setting with-ms and-mx flags, JDK
1.0.2 implementation, 63

Java stack, setting with-oss flag, JDK 1.0.2
implementation, 63

local variables, 66
method area, JDK 1.0.2 implementation

constraints, 64
native method stacks, setting with-ss flag,

JDK 1.0.2 implementation, 65
operand stacks, 67

slashes (/)
class name use, 89

source code
compiled, Java Virtual Machine assembly

language examples, format, 340
SourceFile_attribute structure

(element ofexception_table array of
ClassFile structure), 108

sourcefile_index item
(SourceFile_attribute structure), 108

StackOverflowError, 40
as Java stack-related error, 62
as native method stack-related error, 65

stacks
errors
OutOfMemoryError, 65
StackOverflowError, 62, 65

Java, 62
frames allocated from, 66

size, setting with-oss flag, JDK 1.0.2
implementation, 63

native method, 65
JDK 1.0.2 implementation bug, 65
size, setting with-oss flag, JDK 1.0.2

implementation, 63
operand

code verification, Pass 3 - bytecode
verifier, 128

data flow analysis, 126
duplicating top,dup, 198
duplicating top and put three down in,

dup_x2, 200
duplicating top and put two down in,

dup_x1, 199
duplicating top two words,dup2, 201
duplicating top two words and put four

down in,dup2_x2, 203
duplicating top two words and put three

down in,dup2_x1, 202
frames used to hold, 67
management instruction summary, 79
maximum number of words, 111
merging, during data-flow analysis, 130
pop two words,pop2, 324
pop word,pop, 323
size limitation, 136
structural constraints on instructions, 122
swap top two words,swap, 334

standards
IEEE 754, 7

addingdouble, conformance,dadd, 179
addingfloat, conformance,fadd, 208
comparingdouble, conformance,dcmpg,

183
comparingdouble, conformance,dcmpl,

183
comparingfloat, conformance,fcmpg,

211
comparingfloat, conformance,fcmpl,

211
dividing double, conformance,ddiv, 185
dividing float, conformance,fdiv, 214
float anddouble type, conformance, 59
floating-point comparison, conformance,

80
floating-point double format bit layout,

high_bytes andlow_bytes items, 98

start_pc item • strings 469
floating-point operation conformance to,
76

multiplying double, conformance,dmul,
189

multiplying float, conformance,fmul,
218

remainder,drem not the same as the,drem,
192

remainder,frem not the same as the,frem,
221

subtractingdouble, conformance,dsub,
197

subtractingfloat, conformance,fsub, 225
UTF-8 format, bibliographic reference, 101

start_pc item
(element ofexception_table array of

Code_attribute structure), 112
(element ofline_number_table array of

LineNumberTable_attribute

structure), 116
(element oflocal_variable_table array

of LocalVariableTable_attribute
structure), 117

startup
Java Virtual Machine, overview, 40

state
capture, frame use for, 66
objects, persistent,transient variables

not part of, 26
term definition, 9
of types, static initializer role in ensuring a

consistent, 46
static

See alsoACC_STATIC modifier
fields

get from classes,getstatic, 228
get from classes,getstatic_quick, 399
get from classes,getstatic2_quick, 400
put into classes,putstatic, 327
put into classes,putstatic_quick, 427
put into classes,putstatic2_quick, 428

initializers, 29
as not members of a class, 25
execution of during initialization, 46

methods
invoking, invokestatic, 265
invoking, invokestatic_quick, 410

stop method
Thread

as asynchronous exception cause, 37
as exception cause, 35

ThreadGroup as asynchronous exception
cause, 37

storage
automatic management system, garbage

collection as, 63
data, frame use for, 66
frame allocation, 66
instructions, summary, 74
requirements, Java Virtual Machine,

platform independent characterization,
61

runtime data areas
constant pool, 64
heap, 63
Java stacks, 62
method area, 63
native method stacks, 65
pc register, 61

storing into
arrays
byte or boolean, bastore, 170
char, castore, 173
double, dastore, 182
float, fastore, 210
int, iastore, 241
long, lastore, 288
reference, aastore, 157
short, sastore, 332

local variables
double, dstore, 195
double, dstore_<n>, 196
float, fstore, 223
float, fstore_<n>, 224
int, istore, 275
int, istore_<n>, 276
long, lstore, 307
long, lstore_<n>, 308
reference, astore, 165
reference, astore_<n>, 166

String class, 10

string_index item
(CONSTANT_String_info structure), 96

String type, 6

strings
See alsoString class,

CONSTANT_Utf8_info structure

470 strings • tag item
strings (cont.)
constant pool resolution of, 148

JDK 1.0.2 implementation bug, 148
conversion context, 14
String new instances creation triggered by,

49
term definition, 6

structures
class file structures, 83

subclass
term definition, 25

subpackages
term definition, 21

subroutine
jump to

jsr, 280
wide index,jsr_w, 281

return from,ret, 329
subtracting
double, dsub, 197
float, fsub, 225
int, isub, 277
long, lsub, 309

super_class item
(ClassFile structure), 87

super method
term definition, 30

superclasses
See alsoACC_SUPER modifier
checking for, 126
methods, invoking,invokesuper_quick, 408
super keyword

accessing, overridden methods with, 27
accessing hidden fields with, 26

super method as constructor invocation, 30
term definition, 25

superinterfaces
term definition, 31

swap
operand stack words,swap, 334

swap instruction, 334
swapping

swap instruction, operand stack
manipulation constraints, 67

threads example, 380
symbolic references

mapping to concrete values, constant pool
resolution, (chapter), 139

symbols

See names
synchronization

See alsoACC_SYNCHRONIZED modifier;
threads

exception handling integration with, 35
instruction summary, 81
Java Virtual Machine assembly language

examples, 369
locks, 386
synchronized method
double value return from,dreturn, 194
float value return from,freturn, 222
int value return from,ireturn, 272
long value return from,lreturn, 304
reference value return from,areturn,

163
void return from,return, 330

synchronized keyword
methods, 29
multithreaded actions, 53
operations, 386
specification, 386

thread-memory interaction, ordering rules,
54

syntax
class file, 84
class names references, 89
ClassFile structure, 84
descriptor grammar, 90

system services
transient variables potential role in, 26

T
tables
class file tables, 83

tableswitch instruction, 335
See also lookupswitch instruction
code array alignment effect, 111
constraints, static, 119
in Java Virtual Machine assembly language

examples, compiling switches, 359
tag item

(CONSTANT_Class_info structure), 93
(CONSTANT_Double_info structure), 98
(CONSTANT_Fieldref_info structure), 95
(CONSTANT_Integer_info structure), 96
(CONSTANT_InterfaceMethodref_info

structure), 95

term definition • term definitions 471

1

(CONSTANT_Long_info structure), 98
(CONSTANT_Methodref_info structure), 95
(CONSTANT_NameAndType_info structure),

99
(CONSTANT_String_info structure), 96
(CONSTANT_Utf8_info structure), 101

term definition
objects, 9

term definitions
abnormal completion, 68
abstract

class, 24
methods, 28

active use, 46
arrays, 32

access expression, 34
component types, 33
components, as kind of variable, 11
components, 33
creation expression, 9, 34
element types, 33
elements, 33
empty, 32
initializer, 34
length of, 33
types, 9
variables, 33

ASCII, 5
assign, as thread action, 372
assignable, 18
assignment

compatible, 10, 18
variable, by threads, 54

big-endian, 71
bytecodes, 2
caller, 36
catch clauses, 35
caught, 34
class
abstract, 24
class file tables, 83
current, 66
declaration, 24
final, 24
instance creation expression, 9
instances, 9
methods, 28
modifiers, 24
public, 24

types, 9
variable, 11

compile-time type, 10
complete abruptly, 34
constant fields, 46
constant pool, 64
constructors, 29

default, 30
parameters, as kind of variable, 11

conversions, 13
assignment, 17
casting, 19
contexts, 14
identity, 14
method invocation, 18
narrowing primitive, 15
narrowing reference, 16
numeric promotion, binary, 19
numeric promotion, unary, 19
widening primitive, 15
widening reference, 16

daemon threads, 53
default value, 12
denormalized, 8

floating-point numbers, 76
descriptors, 89
digits

Java, 6
Unicode, 6

direct
directly implement, 30
extension, 30
subclass, 25
superclass, 25
superinterfaces, 31

dynamic linking, 67
dynamically enclosed, 36
exceptions, 34

classes, 36
handler parameters, as kind of variable, 1

extends clause, 25
fields, 26
final, 26
private, 26
protected, 26
public, 26
static, 26
transient, 26
volatile, 27

472 term definitions • term definitions
term definitions (cont.)
final

class, 24
fields, 26
methods, 28

finalizer, 51
floating-point types, 58
formal parameters, 28
frames, 66

current, 66
garbage collection, 9, 63
gradual underflow, 8, 76
handles, 36, 69
heap, 63
hiding, 26
identifier, 6
implement, 31
inexact, 8

results, 76
infinities, 7
inheritance, 25
initialization, 46
instance

methods, 28
variable, 11

integral types, 58
interface, 30

types, 9
items, 83
Java

heap, 9
stack, 62

JIT (Just-In-Time) code generation, 82, 339
late binding, 68
lazy resolution, 44
letters

Java, 6
Unicode, 6

linking, 43
literals, 6
false, 6
null, 6
true, 6

loading, 43
action by thread, 373

local variables, 12, 66
locks, 10, 53, 371

lock action, by main memory subsystem,
373

operation, action by thread, 373

unlock action, by main memory
subsystem, 373

master copy, 371
meaning of ‘must’ in instruction

descriptions, 151
members, 21

class, 25
memory

main, 371
working, 371

methods, 27
abstract, 28
area, 63
current, 66
final, 28
native, 28
parameters, as kind of variable, 11
private, 28
protected, 28
public, 28
static, 28
synchronized, 28

monitors, 53
names

class, 24
qualified, 20
simple, 20

NaN, 7
native methods, 28, 29
native method stacks, 65
normal completion, 68
null reference, 61
numeric

promotions, 13
types, 58

objects, 9, 58
opcode, 71
operands, 71

stacks, 67
overloading, 22

in interfaces, 32
overriding, 22

in interfaces, 32
packages, 20
passive use, 46
pc register, 61
pointers, 9
precise, 37
preparation, 44
primitive

terminal symbols • transient keyword 473

5

,

types, 7, 58
values, 7, 58

private

fields, 26
methods, 28

protected methods, 28
public

class, 25
fields, 26
methods, 28

qualified access, 22
read action by thread, 373
reference

types, 9, 61
values, 9

resolution, 45
returnAddress type, 58
round-to-nearest, 8, 76
round-towards-zero, 8, 76
signature, 28
state, 9
static

fields, 26
methods, 28

static
initializers, 29
resolution, 44

store action by thread, 373
strings, 6
subclass, 25
subpackages, 21
super method, 30
superclass, 25
superinterfaces, 31
synchronized methods, 28, 29
synchronizing, 53
this object, 29
thrown, 34
transient fields, 26
try statements, 35
unlock action by thread, 373
use

action by thread, 372
of values, by threads, 54

variables, 10, 371
class, 26
instance, 26
transient, 26

verification, 44
version skew, 124
volatile fields, 27

wait set, 387
word, 61
working copy, 371
write action by thread, 373
zeroes, 7

terminal symbols
descriptor grammar notation, 90

this_class item
(ClassFile structure), 87

this object
instance creation role, 50
locks use with, 29
method descriptor inclusion, 92
term definition, 29

threads
See also synchronization
actions, term definition, 371
(chapter), 371
constraints on relationships among actions

of, 373
creation, 386
frames use with, 66
Java stacks, 62
memory interaction with, ordering rules, 54
native method stacks, 65
out-of-order writes example, 384
pc register, 61
shared

data areas, heap, 63
data areas, method area, 63
variables, mechanisms for handling, 26

swapping example, 380
synchronization issues during initialization,

47
term definition, 53
ThreadGroup exception handling use of,

35, 36
throw
Throwable exceptions as instances or

subclasses of, 35
Throwable class

exceptions as instances or subclasses of, 3
throwing

exceptions,athrow, 167
throw statement, as exception cause, 35
Throwable as exception hierarchy root, 38

timing
dependencies, in concurrent programming

54
transient keyword, 26

See alsoACC_TRANSIENT modifier

474 try-catch-finally statement • variables
try-catch-finally statement
See also exceptions
as exception handling statement, 70
exception handling use of, 37

try-finally statement
See also exceptions
as exception handling statement, 70
exception handling use of, 37
Sun’s Java compiled code characteristics,

133

U
u1

asclass file data type, 83
u2

asclass file data type, 83
u4

asclass file data type, 83
underflow

floating-point, Java Virtual Machine
handling, 76

integer data types, not detected by Java
Virtual Machine, 76

Unicode
digits, 6
letters, 6
references and characteristics, 5

UnknownError

as Java Virtual Machine error, 40
unloading

object reachability impact on, 52
UnsatisfiedLinkError

See alsoLinkageError
invokeinterface, 260
invokeinterface_quick, 403
invokespecial, 263
invokestatic, 266
invokevirtual, 269
invokevirtual_quick, 411
invokevirtual_quick_w, 413
invokevirtualobject_quick, 415

URLs
ftp://unicode.org, 5
http://java.sun.com/Series, 5

use
of values, by threads, 54

UTF-8 format
See alsoCONSTANT_Utf8_info structure
bibliographic reference, 101

standard, differences between Java Virtual
Machine UTF-8 strings and, 101

V
V character

method descriptor meaning, 91
values, 7

concrete, mapping symbolic references to,
constant pool resolution (chapter), 139

default, 12
floating-point, 7
primitive, 7
return, frame use for, 66

variables
See also constants; literals
array type, 33
of a class, fields defined as, 26
double nonatomic treatment of, memory

operations on, 376
initial values of, term definition, 12
of an instance, 26
interaction with locks, rules about, 377
interface type, implications, 13
kinds of, 11
local

accessing, structural constraints on
instructions, 122

code verification, Pass 3 - bytecode
verifier, 128

data flow analysis, 126
exception handling impact on, 70
extend index by additional bytes,wide,

337
frames used to hold, 66
instruction specialized to handle,

advantages of, 342
instructions for accessing more,

summary, 75
load and store instructions, summary, 74
loadingdouble from,dload, 187
loadingdouble from,dload_<n>, 188
loadingfloat from,fload, 215
loadingfloat from,fload_<n>, 216
loadingint from, iload, 252
loadingint from, iload_<n>, 253
loadinglong from, lload, 296
loadinglong from, lload_<n>, 297
loadingreference from,aload, 160
loadingreference from,aload_<n>, 161

verification • zeroes 475
location of, 118
maximum number, 111
number limitation, 136
reuse, advantages of, 342
states, merging, during data-flow analysis,

130
storingdouble into,dstore, 195
storingdouble into,dstore_<n>, 196
storingfloat into, fstore, 223
storingfloat into, fstore_<n>, 224
storingint into, istore, 275
storingint into, istore_<n>, 276
storinglong into, lstore, 307
storinglong into, lstore_<n>, 308
storingreference into,astore, 165
storingreference into,astore_<n>, 166
term definition, 12

long nonatomic treatment of, memory
operations on, 376

shared
mechanisms for handling, 26
multithreaded actions, 54
state among, 9

term definition, 10
thread use constraints, 374
transient, 26
volatile rules about, 378

verification
class files, 124

compiler and language independence, 125
Pass 3, 128
procedures, 125

errors
VerifyError as class verification error,

39
VerifyError meaning of, 44
VerifyError constant pool resolution

generation of, 143
overview, 41
term definition, 44

VerifyError, 44
anewarray, 162
checkcast, 175
getfield, 226
getstatic, 228
instanceof, 257
invokespecial, 263

invokestatic, 266
invokevirtual, 268
multianewarray, 316
new, 318
putfield, 325
putstatic, 327

versions
binary compatibility issues, 124
major,major_version item (ClassFile

structure) representation of, 84
minor,minor_version item (ClassFile

structure) representation of, 84
VirtualMachineError, 39

constant pool resolution generation of, 140
reasons for throwing instances of, 152

void

field descriptor specification, 91
return from method,return, 330

volatile keyword
See alsoACC_VOLATILE modifier
variables, rules about, 378

W
wait

See also locks, threads, notification
wait method, multithreaded actions, 54
wait sets, notification and, 387

while keyword
compilation of, virtual machine assembly

language examples, 348
wide instruction, 337

constraints, static, 119, 121
widening primitive conversions

See conversions, widening primitive
words

as platform-specific size specifier, term
definition, 61

term definition, 61

Z
Z character

field descriptor meaning, 91
zeroes

IEEE 754 standard, Java Virtual Machine
specification conformance to, 59

positive and negative, operations that
distinguish between, 59

	The Java™ Virtual Machine Specification
	The Java™ Virtual Machine Specification
	Contents
	Introduction
	Java Concepts
	2.1 Unicode
	2.2 Identifiers
	2.3 Literals
	2.4 Types and Values
	2.4.1 Primitive Types and Values
	2.4.2 Operators on Integral Values
	2.4.3 Operators on Floating-Point Values
	2.4.4 Operators on boolean Values
	2.4.5 Reference Types, Objects, and Reference Valu...
	2.4.6 The Class Object
	2.4.7 The Class String
	2.4.8 Operators on Objects

	2.5 Variables
	2.5.1 Initial Values of Variables
	2.5.2 Variables Have Types, Objects Have Classes

	2.6 Conversions and Promotions
	2.6.1 Identity Conversions
	2.6.2 Widening Primitive Conversions
	2.6.3 Narrowing Primitive Conversions
	2.6.4 Widening Reference Conversions
	2.6.5 Narrowing Reference Conversions
	2.6.6 Assignment Conversion
	2.6.7 Method Invocation Conversion
	2.6.8 Casting Conversions
	2.6.9 Numeric Promotion
	2.7.1 Names
	2.7.2 Packages
	2.7.3 Members
	2.7.4 Package Members
	2.7.5 The Members of a Class Type
	2.7.6 The Members of an Interface Type
	2.7.7 The Members of an Array Type
	2.7.8 Qualified Names and Access Control
	2.7.9 Fully Qualified Names

	2.8 Classes
	2.8.1 Class Names
	2.8.2 Class Modifiers
	2.8.3 Superclasses and Subclasses
	2.8.4 The Class Members

	2.9 Fields
	2.9.1 Field Modifiers
	2.9.2 Initialization of Fields

	2.10 Methods
	2.10.1 Formal Parameters
	2.10.2 Signature
	2.10.3 Method Modifiers

	2.11 Static Initializers
	2.12 Constructors
	2.13 Interfaces
	2.13.1 Interface Modifiers
	2.13.2 Superinterfaces
	2.13.3 Interface Members
	2.13.4 Interface (Constant) Fields
	2.13.5 Interface (Abstract) Methods
	2.13.6 Overriding, Inheritance, and Overloading in...

	2.14 Arrays
	2.14.1 Array Types
	2.14.2 Array Variables
	2.14.3 Array Creation
	2.14.4 Array Access

	2.15 Exceptions
	2.15.1 The Causes of Exceptions
	2.15.2 Handling an Exception
	2.15.3 The Exception Hierarchy
	2.15.4 The Classes Exception and RuntimeException

	2.16 Execution
	2.16.1 Virtual Machine Start-up
	2.16.2 Loading
	2.16.3 Linking: Verification, Preparation, and Res...
	2.16.4 Initialization
	2.16.5 Detailed Initialization Procedure
	2.16.6 Creation of New Class Instances
	2.16.7 Finalization of Class Instances
	2.16.8 Finalization and Unloading of Classes and I...
	2.16.9 Virtual Machine Exit

	2.17 Threads

	Structure of the Java Virtual Machine
	3.1 Data Types
	3.2 Primitive Types and Values
	3.2.1 Integral Types and Values
	3.2.2 Floating-Point Types and Values
	3.2.3 The returnAddress Type and Values
	3.2.4 There Is No boolean Type

	3.3 Reference Types and Values
	3.4 Words
	3.5 Runtime Data Areas
	3.5.1 The pc Register
	3.5.2 Java Stack
	3.5.3 Heap
	3.5.4 Method Area
	3.5.5 Constant Pool
	3.5.6 Native Method Stacks

	3.6 Frames
	3.6.1 Local Variables
	3.6.2 Operand Stacks
	3.6.3 Dynamic Linking
	3.6.4 Normal Method Completion
	3.6.5 Abnormal Method Completion
	3.6.6 Additional Information

	3.7 Representation of Objects
	3.8 Special Initialization Methods
	3.9 Exceptions
	3.10 The class File Format
	3.11 Instruction Set Summary
	3.11.1 Types and the Java Virtual Machine
	3.11.2 Load and Store Instructions
	3.11.3 Arithmetic Instructions
	3.11.4 Type Conversion Instructions
	3.11.5 Object Creation and Manipulation
	3.11.6 Operand Stack Management Instructions
	3.11.7 Control Transfer Instructions
	3.11.8 Method Invocation and Return Instructions
	3.11.9 Throwing and Handling Exceptions
	3.11.10 Implementing finally
	3.11.11 Synchronization

	3.12 Public Design, Private Implementation

	The class File Format
	4.1 ClassFile
	4.2 Internal Form of Fully Qualified Class Names
	4.3 Descriptors
	4.3.1 Grammar Notation
	4.3.2 Field Descriptors
	4.3.3 Method Descriptors

	4.4 Constant Pool
	4.4.1 CONSTANT_Class
	4.4.2 CONSTANT_Fieldref, CONSTANT_Methodref, and C...
	4.4.3 CONSTANT_String
	4.4.4 CONSTANT_Integer and CONSTANT_Float
	4.4.5 CONSTANT_Long and CONSTANT_Double
	4.4.6 CONSTANT_NameAndType
	4.4.7 CONSTANT_Utf8

	4.5 Fields
	4.6 Methods
	4.7 Attributes
	4.7.1 Defining and Naming New Attributes
	4.7.2 SourceFile Attribute
	4.7.3 ConstantValue Attribute
	4.7.4 Code Attribute
	4.7.5 Exceptions Attribute
	4.7.6 LineNumberTable Attribute
	4.7.7 LocalVariableTable Attribute

	4.8 Constraints on Java Virtual Machine Code
	4.8.1 Static Constraints
	4.8.2 Structural Constraints

	4.9 Verification of class Files
	4.9.1 The Verification Process
	4.9.2 The Bytecode Verifier
	4.9.3 Long Integers and Doubles
	4.9.4 Instance Initialization Methods and Newly Cr...
	4.9.5 Exception Handlers
	4.9.6 Exceptions and finally

	4.10 Limitations of the Java Virtual Machine and c...

	Constant Pool Resolution
	5.1.1 Current Class or Interface Not Loaded by a C...
	5.1.2 Current Class or Interface Loaded by a Class...
	5.1.3 Array Classes
	5.2 Field and Method Resolution
	5.3 Interface Method Resolution
	5.4 String Resolution
	5.5 Resolution of Other Constant Pool Items

	Java Virtual Machine Instruction Set
	6.1 Assumptions: The Meaning of “Must”
	6.2 Reserved Opcodes
	6.3 Virtual Machine Errors
	6.4 The Java Virtual Machine Instruction Set

	Compiling for the Java Virtual Machine
	7.1 Format of Examples
	7.2 Use of Constants, Local Variables, and Control...
	7.3 Arithmetic
	7.4 Accessing the Constant Pool
	7.5 More Control Examples
	7.6 Receiving Arguments
	7.7 Invoking Methods
	7.8 Working with Class Instances
	7.9 Arrays
	7.10 Compiling Switches
	7.11 Operations on the Operand Stack
	7.12 Throwing and Handling Exceptions
	7.13 Compiling finally
	7.14 Synchronization

	Threads and Locks
	8.1 Terminology and Framework
	8.2 Execution Order and Consistency
	8.3 Rules About Variables
	8.4 Nonatomic Treatment of Double and Long Variabl...
	8.5 Rules About Locks
	8.6 Rules About the Interaction of Locks and Varia...
	8.7 Rules for Volatile Variables
	8.8 Prescient Store Operations
	8.9 Discussion
	8.10 Example: Possible Swap
	8.11 Example: Out-of-Order Writes
	8.12 Threads
	8.13 Locks and Synchronization
	8.14 Wait Sets and Notification

	An Optimization
	9.1 Dynamic Linking via Rewriting
	9.2 The _quick Pseudo-instructions

	Opcode Mnemonics by Opcode

