
The Java™
Language Specification

Second Edition

The Java™ Series
Lisa Friendly, Series Editor
Bill Joy, Technical Advisor

The Java™ Programming Language
Ken Arnold and James Gosling
ISBN 0-201-63455-4

The Java™ Language Specification Second Edition
James Gosling, Bill Joy, Guy Steele and Gilad Bracha
ISBN 0-201-31008-2

The Java™ Virtual Machine Specification Second Edition
Tim Lindholm and Frank Yellin
ISBN 0-201-43294-3

The Java™ Application Programming Interface,
Volume 1: Core Packages
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63452-X

The Java™ Application Programming Interface,
Volume 2: Window Toolkit and Applets
James Gosling, Frank Yellin, and the Java Team
ISBN 0-201-63459-7

The Java™ Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

The Java™ Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

The Java™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

The Java™
Language Specification

Second Edition

James Gosling
Bill Joy

Guy Steele
Gilad Bracha

ADDISON-WESLEY
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts● Harlow, England● Menlo Park, California
Berkeley, California● Don Mills, Ontario● Sydney

Bonn● Amsterdam● Tokyo ● Mexico City

Copyright 1996-2000 Sun Microsystems, Inc.
901 San Antonio Road, Mountain View, California 94303 U.S.A.
All rights reserved.
Duke logo™ designed by Joe Palrang.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents,
foreign patents, or pending applications.
Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, per-
petual, worldwide limited license (without the right to sublicense) under SUN’s intellectual property
rights that are essential to practice this specification. This license allows and is limited to the cre-
ation and distribution of clean room implementations of this specification that: (i) include a com-
plete implementation of the current version of this specification without subsetting or supersetting;
(ii) implement all the interfaces and functionality of the required packages of the Java™ 2 Platform,
Standard Edition, as defined by SUN, without subsetting or supersetting; (iii) do not add any addi-
tional packages, classes, or interfaces to the java.* or javax.* packages or their subpackages; (iv)
pass all test suites relating to the most recent published version of the specification of the Java™ 2
Platform, Standard Edition, that are available from SUN six (6) months prior to any beta release of
the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or
binary materials; and (vi) do not include any SUN source code or binary materials without an appro-
priate and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun
Microsystems Computer Corporation logo, Solaris, Java, JavaSoft, JavaScript, HotJava,
JDK, and all Java-based trademarks or logos are trademarks or registered trademarks of
Sun Microsystems, Inc. UNIX® is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd. Apple and Dylan are
trademarks of Apple Computer, Inc. All other product names mentioned herein are the
trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Credits and permissions for quoted material appear in a separate section on page 503.

Text printed on recycled and acid-free paper

ISBN 0-201-31008-2
1 2 3 4 5 6 7 8 9-MA-99989796
First printing, June 2000

vii

 vii

 xix

iii

 . 1
. . . 5
 . . 5
 . . . 6
 . . . 6

. . 9

. . . 9
 . . 9
. . 10
 . 10

 13
. . 13
 . 14
 . . 14
 . 16
. . 16
. . 17
. . 18
 . 19
 . 20
. . 21
. 21
24

. 25
 . 26
. 27
. . 28
29
Table of Contents

Table of Contents .

Preface .

Preface to the Second Edition . xx

1 Introduction. .
1.1 Example Programs .
1.2 Notation .
1.3 Relationship to Predefined Classes and Interfaces
1.4 References .

2 Grammars .
2.1 Context-Free Grammars .
2.2 The Lexical Grammar. .
2.3 The Syntactic Grammar .
2.4 Grammar Notation .

3 Lexical Structure. .
3.1 Unicode.
3.2 Lexical Translations .
3.3 Unicode Escapes. .
3.4 Line Terminators .
3.5 Input Elements and Tokens.
3.6 White Space .
3.7 Comments.
3.8 Identifiers .
3.9 Keywords .
3.10 Literals .

3.10.1 Integer Literals .
3.10.2 Floating-Point Literals .
3.10.3 Boolean Literals .
3.10.4 Character Literals .
3.10.5 String Literals.
3.10.6 Escape Sequences for Character and String Literals
3.10.7 The Null Literal .

TABLE OF CONTENTS

viii

. . . 29
. . . 30

 31
. . 32
. . 32
. . 33
. . 33
 . 35
 . 37
0
. . . 41
. . 42
44
45
 . . 45
 . . 46
 . . 47
. 48
. . 48
 . 48
. 50
. 50
 . . 52

 55
. . 58
 . 58
. 58
. 59
. . 62
. . 63
. . 64
. . 64
. . 65
 . . 66
. . 71
 . . 72
 . . 72
. . 77
 . 78
. 79

 . 81
 . . 82
3.11 Separators .
3.12 Operators .

4 Types, Values, and Variables. .
4.1 The Kinds of Types and Values .
4.2 Primitive Types and Values .

4.2.1 Integral Types and Values .
4.2.2 Integer Operations .
4.2.3 Floating-Point Types, Formats, and Values.
4.2.4 Floating-Point Operations .
4.2.5 Theboolean Type andboolean Values. 4

4.3 Reference Types and Values .
4.3.1 Objects.
4.3.2 The ClassObject .
4.3.3 The ClassString .
4.3.4 When Reference Types Are the Same.

4.4 Where Types Are Used .
4.5 Variables .

4.5.1 Variables of Primitive Type .
4.5.2 Variables of Reference Type .
4.5.3 Kinds of Variables .
4.5.4 final Variables.
4.5.5 Initial Values of Variables .
4.5.6 Types, Classes, and Interfaces. .

5 Conversions and Promotions .
5.1 Kinds of Conversion .

5.1.1 Identity Conversions .
5.1.2 Widening Primitive Conversion .
5.1.3 Narrowing Primitive Conversions .
5.1.4 Widening Reference Conversions .
5.1.5 Narrowing Reference Conversions .
5.1.6 String Conversions .
5.1.7 Forbidden Conversions .
5.1.8 Value Set Conversion .

5.2 Assignment Conversion. .
5.3 Method Invocation Conversion .
5.4 String Conversion .
5.5 Casting Conversion .
5.6 Numeric Promotions .

5.6.1 Unary Numeric Promotion .
5.6.2 Binary Numeric Promotion .

6 Names .
6.1 Declarations .

TABLE OF CONTENTS

. . 83

. . 85
 . 86
 . 89
. . 89
 . 89
 . 90
. 91
. 92
 . 93
94
96

 . 98
. 98
. 98

. 99
99
00
100

101
102
104

104
04

. 104
05
5

106

108
09
0
1
111
113

. 113
114
115
115
116
116
6.2 Names and Identifiers .
6.3 Scope of a Declaration .

6.3.1 Shadowing Declarations. .
6.3.2 Obscured Declarations .

6.4 Members and Inheritance .
6.4.1 The Members of a Package .
6.4.2 The Members of a Class Type .
6.4.3 The Members of an Interface Type .
6.4.4 The Members of an Array Type .

6.5 Determining the Meaning of a Name .
6.5.1 Syntactic Classification of a Name According to Context.
6.5.2 Reclassification of Contextually Ambiguous Names.
6.5.3 Meaning of Package Names. .

6.5.3.1 Simple Package Names .
6.5.3.2 Qualified Package Names.

6.5.4 Meaning ofPackageOrTypeNames . 98
6.5.4.1 SimplePackageOrTypeNames 98
6.5.4.2 QualifiedPackageOrTypeNames 99

6.5.5 Meaning of Type Names .
6.5.5.1 Simple Type Names .
6.5.5.2 Qualified Type Names . 1

6.5.6 Meaning of Expression Names .
6.5.6.1 Simple Expression Names .
6.5.6.2 Qualified Expression Names

6.5.7 Meaning of Method Names .
6.5.7.1 Simple Method Names .
6.5.7.2 Qualified Method Names . 1

6.6 Access Control .
6.6.1 Determining Accessibility . 1
6.6.2 Details onprotected Access . 10

6.6.2.1 Access to aprotected Member 106
6.6.2.2 Qualified Access to aprotected Constructor. 106

6.6.3 An Example of Access Control .
6.6.4 Example: Access topublic and Non-public Classes 107
6.6.5 Example: Default-Access Fields, Methods, and Constructors. .
6.6.6 Example:public Fields, Methods, and Constructors 1
6.6.7 Example:protected Fields, Methods, and Constructors 11
6.6.8 Example:private Fields, Methods, and Constructors 11

6.7 Fully Qualified Names and Canonical Names .
6.8 Naming Conventions .

6.8.1 Package Names .
6.8.2 Class and Interface Type Names .
6.8.3 Method Names .
6.8.4 Field Names .
6.8.5 Constant Names .
6.8.6 Local Variable and Parameter Names .
ix

TABLE OF CONTENTS

x

 119
. . 119
 . 120
. 121
 . 122
. 123
. . 124
 . 124
 . 124
. 125
 . 125
. 125
126
127
128
. 128
. 128
. . 132

 135
 . 136
137
37
39
39
 . 140
. . 142
. 144
. 147
 . 148
. 149
49

151
 . 153
154
55
56
6
6
58
59
59
60
162
62
7 Packages .
7.1 Package Members .
7.2 Host Support for Packages. .

7.2.1 Storing Packages in a File System .
7.2.2 Storing Packages in a Database. .

7.3 Compilation Units .
7.4 Package Declarations.

7.4.1 Named Packages .
7.4.2 Unnamed Packages .
7.4.3 Observability of a Package .
7.4.4 Scope of a Package Declaration .

7.5 Import Declarations .
7.5.1 Single-Type-Import Declaration .
7.5.2 Type-Import-on-Demand Declaration. .
7.5.3 Automatic Imports. .
7.5.4 A Strange Example .

7.6 Top Level Type Declarations .
7.7 Unique Package Names .

8 Classes .
8.1 Class Declaration .

8.1.1 Class Modifiers .
8.1.1.1 abstract Classes . 1
8.1.1.2 final Classes . 1
8.1.1.3 strictfp Classes . 1

8.1.2 Inner Classes and Enclosing Instances
8.1.3 Superclasses and Subclasses .
8.1.4 Superinterfaces .
8.1.5 Class Body and Member Declarations

8.2 Class Members. .
8.2.1 Examples of Inheritance .

8.2.1.1 Example: Inheritance with Default Access 1
8.2.1.2 Inheritance withpublic andprotected. 150
8.2.1.3 Inheritance withprivate . 151
8.2.1.4 Accessing Members of Inaccessible Classes.

8.3 Field Declarations .
8.3.1 Field Modifiers .

8.3.1.1 static Fields . 1
8.3.1.2 final Fields . 1
8.3.1.3 transient Fields . 15
8.3.1.4 volatile Fields . 15

8.3.2 Initialization of Fields . 1
8.3.2.1 Initializers for Class Variables 1
8.3.2.2 Initializers for Instance Variables 1
8.3.2.3 Restrictions on the use of Fields during Initialization1

8.3.3 Examples of Field Declarations .
8.3.3.1 Example: Hiding of Class Variables 1

TABLE OF CONTENTS

63
5
66
167
168
169

169
0
1

72
3
3
4
175
176
177
77
78
78
79
180
180
80
1

81
82
84
85
86
187

188
188
188
189

. 190
191
191

191
192
192
93
195
195
197

199
. 200
200
8.3.3.2 Example: Hiding of Instance Variables 1
8.3.3.3 Example: Multiply Inherited Fields 16
8.3.3.4 Example: Re-inheritance of Fields 1

8.4 Method Declarations .
8.4.1 Formal Parameters .
8.4.2 Method Signature. .
8.4.3 Method Modifiers. .

8.4.3.1 abstract Methods. 17
8.4.3.2 static Methods. 17
8.4.3.3 final Methods. 1
8.4.3.4 native Methods. 17
8.4.3.5 strictfp Methods. 17
8.4.3.6 synchronized Methods. 17

8.4.4 Method Throws .
8.4.5 Method Body .
8.4.6 Inheritance, Overriding, and Hiding .

8.4.6.1 Overriding (by Instance Methods) 1
8.4.6.2 Hiding (by Class Methods). 1
8.4.6.3 Requirements in Overriding and Hiding 1
8.4.6.4 Inheriting Methods with the Same Signature 1

8.4.7 Overloading .
8.4.8 Examples of Method Declarations. .

8.4.8.1 Example: Overriding . 1
8.4.8.2 Example: Overloading, Overriding, and Hiding . . . 18
8.4.8.3 Example: Incorrect Overriding. 1
8.4.8.4 Example: Overriding versus Hiding 1
8.4.8.5 Example: Invocation of Hidden Class Methods 1
8.4.8.6 Large Example of Overriding. 1
8.4.8.7 Example: Incorrect Overriding because of Throws . 1

8.5 Member Type Declarations .
8.5.1 Access Modifiers .
8.5.2 Static Member Type Declarations .

8.6 Instance Initializers. .
8.7 Static Initializers. .
8.8 Constructor Declarations .

8.8.1 Formal Parameters .
8.8.2 Constructor Signature .
8.8.3 Constructor Modifiers .
8.8.4 Constructor Throws .
8.8.5 Constructor Body .

8.8.5.1 Explicit Constructor Invocations 1
8.8.6 Constructor Overloading .
8.8.7 Default Constructor .
8.8.8 Preventing Instantiation of a Class. .

9 Interfaces .
9.1 Interface Declarations.

9.1.1 Interface Modifiers .
xi

TABLE OF CONTENTS

xii

0
0

 . 201
202
. 202
 . 202
. 203
04
204
04

05
. 205
206
207
207
07
08
. 208

209
 . 210
. 210
. 211
 . 211
. 212
. 212
 . 213
215
5
 . 216

 219
. . 220
221

. 221
222
. 222
 . 223
224
. 224
. 226
227
227

229
229
9.1.1.1 abstract Interfaces . 20
9.1.1.2 strictfp Interfaces . 20

9.1.2 Superinterfaces and Subinterfaces. .
9.1.3 Interface Body and Member Declarations.
9.1.4 Access to Interface Member Names .

9.2 Interface Members .
9.3 Field (Constant) Declarations .

9.3.1 Initialization of Fields in Interfaces. 2
9.3.2 Examples of Field Declarations .

9.3.2.1 Ambiguous Inherited Fields 2
9.3.2.2 Multiply Inherited Fields . 2

9.4 Abstract Method Declarations .
9.4.1 Inheritance and Overriding .
9.4.2 Overloading. .
9.4.3 Examples of Abstract Method Declarations

9.4.3.1 Example: Overriding . 2
9.4.3.2 Example: Overloading . 2

9.5 Member Type Declarations .

10 Arrays .
10.1 Array Types .
10.2 Array Variables .
10.3 Array Creation .
10.4 Array Access .
10.5 Arrays: A Simple Example .
10.6 Array Initializers .
10.7 Array Members .
10.8 Class Objects for Arrays .
10.9 An Array of Characters is Not aString . 21
10.10 Array Store Exception .

11 Exceptions. .
11.1 The Causes of Exceptions .
11.2 Compile-Time Checking of Exceptions .

11.2.1 Why Errors are Not Checked .
11.2.2 Why Runtime Exceptions are Not Checked

11.3 Handling of an Exception .
11.3.1 Exceptions are Precise. .
11.3.2 Handling Asynchronous Exceptions .

11.4 An Example of Exceptions .
11.5 The Exception Hierarchy.

11.5.1 Loading and Linkage Errors .
11.5.2 Virtual Machine Errors .

12 Execution .
12.1 Virtual Machine Start-Up .

TABLE OF CONTENTS

0
0
1

32
. 232
233

. 233
234
234
235
236

236
239
41
. 241
. 245
246
247
. 248
. 249

1
252

256
. 257
. 257
257
258
258
 . 258
259
261
262

264
66
66
267

. 267
268
68
68
69
69

70
270
270
270
271
12.1.1 Load the ClassTest. 23
12.1.2 LinkTest: Verify, Prepare, (Optionally) Resolve 23
12.1.3 InitializeTest: Execute Initializers . 23
12.1.4 InvokeTest.main . 2

12.2 Loading of Classes and Interfaces .
12.2.1 The Loading Process .

12.3 Linking of Classes and Interfaces.
12.3.1 Verification of the Binary Representation
12.3.2 Preparation of a Class or Interface Type
12.3.3 Resolution of Symbolic References. .

12.4 Initialization of Classes and Interfaces. .
12.4.1 When Initialization Occurs .
12.4.2 Detailed Initialization Procedure .
12.4.3 Initialization: Implications for Code Generation 2

12.5 Creation of New Class Instances .
12.6 Finalization of Class Instances .

12.6.1 Implementing Finalization .
12.6.2 Finalizer Invocations are Not Ordered .

12.7 Unloading of Classes and Interfaces .
12.8 Program Exit.

13 Binary Compatibility . 25
13.1 The Form of a Binary .
13.2 What Binary Compatibility Is and Is Not. .
13.3 Evolution of Packages .
13.4 Evolution of Classes .

13.4.1 abstract Classes .
13.4.2 final Classes .
13.4.3 publicClasses. .
13.4.4 Superclasses and Superinterfaces. .
13.4.5 Class Body and Member Declarations.
13.4.6 Access to Members and Constructors .
13.4.7 Field Declarations .
13.4.8 final Fields and Constants. .
13.4.9 static Fields . 2
13.4.10 transient Fields . 2
13.4.11 Method and Constructor Declarations .
13.4.12 Method and Constructor Parameters .
13.4.13 Method Result Type .
13.4.14 abstract Methods . 2
13.4.15 final Methods . 2
13.4.16 native Methods . 2
13.4.17 static Methods . 2
13.4.18 synchronized Methods . 2
13.4.19 Method and Constructor Throws .
13.4.20 Method and Constructor Body. .
13.4.21 Method and Constructor Overloading .
13.4.22 Method Overriding. .
xiii

TABLE OF CONTENTS

xiv

271
. 271
272
 . 272
. 272
. 273
273

275
. 276
 . 277
 . 277
 . 279
. 279
280
283
283
. . 284
 . 285
. . 286
. . 286
. 287
88

88
288
292
292
. 293
294
94

. 295
95
96
7
297
299
301
302
04

. 305
7

. . 310

 317
 . 317
 . 318
13.4.23 Static Initializers .
13.5 Evolution of Interfaces.

13.5.1 public Interfaces .
13.5.2 Superinterfaces .
13.5.3 The Interface Members .
13.5.4 Field Declarations .
13.5.5 Abstract Method Declarations. .

14 Blocks and Statements.
14.1 Normal and Abrupt Completion of Statements .
14.2 Blocks .
14.3 Local Class Declarations .
14.4 Local Variable Declaration Statements .

14.4.1 Local Variable Declarators and Types.
14.4.2 Scope of Local Variable Declarations .
14.4.3 Shadowing of Names by Local Variables
14.4.4 Execution of Local Variable Declarations.

14.5 Statements .
14.6 The Empty Statement .
14.7 Labeled Statements .
14.8 Expression Statements .
14.9 Theif Statement .

14.9.1 Theif–then Statement . 2
14.9.2 Theif–then–else Statement . 2

14.10 Theswitch Statement. .
14.11 Thewhile Statement. .

14.11.1 Abrupt Completion .
14.12 Thedo Statement .

14.12.1 Abrupt Completion .
14.12.2 Example ofdo statement . 2

14.13 Thefor Statement .
14.13.1 Initialization offor statement. 2
14.13.2 Iteration offor statement . 2
14.13.3 Abrupt Completion offor statement . 29

14.14 Thebreak Statement. .
14.15 Thecontinue Statement. .
14.16 Thereturn Statement. .
14.17 Thethrow Statement. .
14.18 Thesynchronized Statement. 3
14.19 Thetry statement .

14.19.1 Execution oftry–catch . 30
14.19.2 Execution oftry–catch–finally. 308

14.20 Unreachable Statements.

15 Expressions .
15.1 Evaluation, Denotation, and Result .
15.2 Variables as Values .

TABLE OF CONTENTS

. 318

. 318

. 319
320
. 322
322
324

. . 325
326
327
. 327
328
328

328
29
. 330
 . 330
331
332
334
334
335

335
36

. 337
338
339
40

 . 341
342

. 345
346
347
47

349
50
351
52
354
356
356
357
57
58

359
360
61
15.3 Type of an Expression .
15.4 FP-strict Expressions .
15.5 Expressions and Run-Time Checks .
15.6 Normal and Abrupt Completion of Evaluation .
15.7 Evaluation Order.

15.7.1 Evaluate Left-Hand Operand First .
15.7.2 Evaluate Operands before Operation .
15.7.3 Evaluation Respects Parentheses and Precedence
15.7.4 Argument Lists are Evaluated Left-to-Right
15.7.5 Evaluation Order for Other Expressions

15.8 Primary Expressions.
15.8.1 Lexical Literals. .
15.8.2 Class Literals .
15.8.3 this .
15.8.4 Qualifiedthis . 3
15.8.5 Parenthesized Expressions .

15.9 Class Instance Creation Expressions .
15.9.1 Determining the Class being Instantiated
15.9.2 Determining Enclosing Instances. .
15.9.3 Choosing the Constructor and its Arguments
15.9.4 Run-time Evaluation of Class Instance Creation Expressions. .
15.9.5 Anonymous Class Declarations .

15.9.5.1 Anonymous Constructors .
15.9.6 Example: Evaluation Order and Out-of-Memory Detection . . . 3

15.10 Array Creation Expressions .
15.10.1 Run-time Evaluation of Array Creation Expressions.
15.10.2 Example: Array Creation Evaluation Order.
15.10.3 Example: Array Creation and Out-of-Memory Detection 3

15.11 Field Access Expressions .
15.11.1 Field Access Using a Primary .
15.11.2 Accessing Superclass Members usingsuper 344

15.12 Method Invocation Expressions .
15.12.1 Compile-Time Step 1: Determine Class or Interface to Search .
15.12.2 Compile-Time Step 2: Determine Method Signature

15.12.2.1 Find Methods that are Applicable and Accessible . . 3
15.12.2.2 Choose the Most Specific Method
15.12.2.3 Example: Overloading Ambiguity 3
15.12.2.4 Example: Return Type Not Considered
15.12.2.5 Example: Compile-Time Resolution 3

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? . . .
15.12.4 Runtime Evaluation of Method Invocation

15.12.4.1 Compute Target Reference (If Necessary)
15.12.4.2 Evaluate Arguments .
15.12.4.3 Check Accessibility of Type and Method. 3
15.12.4.4 Locate Method to Invoke . 3
15.12.4.5 Create Frame, Synchronize, Transfer Control
15.12.4.6 Example: Target Reference and Static Methods. . . .
15.12.4.7 Example: Evaluation Order 3
xv

TABLE OF CONTENTS

xvi

61
63
 . 364
364
365

. . 367
7
8
 . 368
9
9
0
0

1
1
. . 372
. 373
3

74
6

 . 377
8
378
79
379

 . 383
 . 384

 . 386

. 388

0
90
91
 . 392
3
. 398
. . 405
. . 405

07
 . 412
15.12.4.8 Example: Overriding . 3
15.12.4.9 Example: Method Invocation using super 3

15.13 Array Access Expressions .
15.13.1 Runtime Evaluation of Array Access .
15.13.2 Examples: Array Access Evaluation Order.

15.14 Postfix Expressions .
15.14.1 Postfix Increment Operator++ . 36
15.14.2 Postfix Decrement Operator-- . 36

15.15 Unary Operators. .
15.15.1 Prefix Increment Operator++ . 36
15.15.2 Prefix Decrement Operator-- . 36
15.15.3 Unary Plus Operator+. 37
15.15.4 Unary Minus Operator- . 37
15.15.5 Bitwise Complement Operator~. 37
15.15.6 Logical Complement Operator!. 37

15.16 Cast Expressions .
15.17 Multiplicative Operators .

15.17.1 Multiplication Operator* . 37
15.17.2 Division Operator/ . 3
15.17.3 Remainder Operator% . 37

15.18 Additive Operators. .
15.18.1 String Concatenation Operator+. 37

15.18.1.1 String Conversion .
15.18.1.2 Optimization of String Concatenation 3
15.18.1.3 Examples of String Concatenation

15.18.2 Additive Operators (+ and-) for Numeric Types 381
15.19 Shift Operators. .
15.20 Relational Operators .

15.20.1 Numerical Comparison Operators<, <=, >, and>=. 384
15.20.2 Type Comparison Operatorinstanceof 385

15.21 Equality Operators .
15.21.1 Numerical Equality Operators== and!= 387
15.21.2 Boolean Equality Operators== and!=. 388
15.21.3 Reference Equality Operators== and!= 388

15.22 Bitwise and Logical Operators .
15.22.1 Integer Bitwise Operators&, ^, and| . 389
15.22.2 Boolean Logical Operators&, ^, and| . 389

15.23 Conditional-And Operator&& . 39
15.24 Conditional-Or Operator||. 3
15.25 Conditional Operator? : . 3
15.26 Assignment Operators .

15.26.1 Simple Assignment Operator= . 39
15.26.2 Compound Assignment Operators .

15.27 Expression .
15.28 Constant Expression .

16 Definite Assignment . 4
16.1 Definite Assignment and Expressions .

TABLE OF CONTENTS

412
3
3
4
4
4
415
6
416

. 417
418
418
418
419

. 419

. 419
420
420
421
421
422
23
423

24
424
. 425
425
. 426

426
426
427

429
431

. 433
. 434

. 436
436
437

. 438

. 438
 . 439
443

 . 445
. 445

446
16.1.1 Boolean Constant Expressions. .
16.1.2 The Boolean Operator&& . 41
16.1.3 The Boolean Operator|| . 41
16.1.4 The Boolean Operator! . 41
16.1.5 The Boolean Operator? : . 41
16.1.6 The Conditional Operator? : . 41
16.1.7 Assignment Expressions .
16.1.8 Operators++ and-- . 41
16.1.9 Other Expressions .

16.2 Definite Assignment and Statements .
16.2.1 Empty Statements .
16.2.2 Blocks. .
16.2.3 Local Class Declaration Statements. .
16.2.4 Local Variable Declaration Statements
16.2.5 Labeled Statements .
16.2.6 Expression Statements .
16.2.7 if Statements. .
16.2.8 switch Statements. .
16.2.9 while Statements. .
16.2.10 do Statements. .
16.2.11 for Statements. .

16.2.11.1 Initialization Part . 4
16.2.11.2 Incrementation Part. .

16.2.12 break, continue, return, andthrow Statements. 423
16.2.13 synchronized Statements . 4
16.2.14 try Statements. .

16.3 Definite Assignment and Parameters .
16.4 Definite Assignment and Array Initializers .
16.5 Definite Assignment and Anonymous Classes.
16.6 Definite Assignment and Member Types .
16.7 Definite Assignment and Static Initializers .
16.8 Definite Assignment, Constructors, and Instance Initializers

17 Threads and Locks .
17.1 Terminology and Framework .
17.2 Execution Order .
17.3 Rules about Variables .
17.4 Nonatomic Treatment ofdouble andlong . 435
17.5 Rules about Locks .
17.6 Rules about the Interaction of Locks and Variables
17.7 Rules for Volatile Variables .
17.8 Prescient Store Actions.
17.9 Discussion.
17.10 Example: Possible Swap. .
17.11 Example: Out-of-Order Writes. .
17.12 Threads .
17.13 Locks and Synchronization .
17.14 Wait Sets and Notification .
xvii

TABLE OF CONTENTS

xviii

 449
 . 449

 457

503

505
18 Syntax. .
18.1 The Grammar of the Java Programming Language.

Index .

Credits .

Colophon .

ned
After
y Ed
to the
. The
ele,
il-

based
few

rs to

s of
cified

ing
cient
com-

eady
in the
tely
ew
rent
l ver-

der-
ups
ave

chni-
n is
Preface

THE Java™ programming language was originally called Oak, and was desig
for use in embedded consumer-electronic applications by James Gosling.
several years of experience with the language, and significant contributions b
Frank, Patrick Naughton, Jonathan Payne, and Chris Warth it was retargeted
Internet, renamed, and substantially revised to be the language specified here
final form of the language was defined by James Gosling, Bill Joy, Guy Ste
Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham Ham
ton, Tim Lindholm, and many other friends and colleagues.

The Java programming language is a general-purpose concurrent class-
object-oriented programming language, specifically designed to have as
implementation dependencies as possible. It allows application develope
write a program once and then be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantic
the language. We intend that the behavior of every language construct is spe
here, so that all implementations will accept the same programs. Except for tim
dependencies or other non-determinisms and given sufficient time and suffi
memory space, a program written in the Java programming language should
pute the same result on all machines and in all implementations.

We believe that the Java programming language is a mature language, r
for widespread use. Nevertheless, we expect some evolution of the language
years to come. We intend to manage this evolution in a way that is comple
compatible with existing applications. To do this, we intend to make relatively f
new versions of the language, and to distinguish each new version with a diffe
filename extension. Compilers and systems will be able to support the severa
sions simultannously, with complete compatibility.

Much research and experimentation with the Java platform is already un
way. We encourage this work, and will continue to cooperate with external gro
to explore improvements to the language and platform. For example, we h
already received several interesting proposals for parameterized types. In te
cally difficult areas, near the state of the art, this kind of research collaboratio
essential.
xix

PREFACE

xx

this

ed
en
r,
ary

from
ce,
ill,
ust,

er
ker,
off,
ffer,
rg,
Rob

ted
ted

the
We
ey

tters
for

y or
on-

opies
from
dy,
ira
nd
on
for
We acknowledge and thank the many people who have contributed to
book through their excellent feedback, assistance and encouragement:

Particularly thorough, careful, and thoughtful reviews of drafts were provid
by Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki Ida, David Moon, Stev
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wadle
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordin
volunteer efforts.

We are also grateful for reviews, questions, comments, and suggestions
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbuzov, Kim Bru
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David D
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles G
Warren Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Rog
Hoover, Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Kac
Peter Kessler, James Larus, Derek Lieber, Bill McKeeman, Steve Nar
Evi Nemeth, Robert O’Callahan, Dave Papay, Craig Partridge, Scott Pfe
Eric Raymond, Jim Roskind, Jim Russell, William Scherlis, Edith Schonbe
Anthony Scian, Matthew Self, Janice Shepherd, Kathy Stark, Barbara Steele,
Strom, William Waite, Greg Weeks, and Bob Wilson. (This list was genera
semi-automatically from our E-mail records. We apologize if we have omit
anyone.)

The feedback from all these reviewers was invaluable to us in improving
definition of the language as well as the form of the presentation in this book.
thank them for their diligence. Any remaining errors in this book—we hope th
are few—are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with ma
of typography and layout. We thank Dan Mills of Adobe Systems Incorporated
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped us in one wa
another. Lisa Friendly, our series editor, managed our relationship with Addis
Wesley. Susan Stambaugh managed the distribution of many hundreds of c
of drafts to reviewers. We received valuable assistance and technical advice
Ben Adida, Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Har
Steve Heller, David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Ak
Tanaka, Greg Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant, a
Derek White. We thank Alan Baratz, David Bowen, Mike Clary, John Doerr, J
Kannegaard, Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNealy
leadership and encouragement.

The on-line Bartleby Library of Columbia University, at URL:

http://www.cc.columbia.edu/acis/bartleby/

PREFACE

f the

s.

reat
n.
ing
ters,
, the
tes,
our
who

work

lez
ng

dex.
okes

ort

with
e.
was invaluable to us during the process of researching and verifying many o
quotations that are scattered throughout this book. Here is one example:

They lard their lean books with the fat of others’ work
—Robert Burton (1576–1640)

We are grateful to those who have toiled on Project Bartleby, for saving us a g
deal of effort and reawakening our appreciation for the works of Walt Whitma

We are thankful for the tools and services we had at our disposal in writ
this book: telephones, overnight delivery, desktop workstations, laser prin
photocopiers, text formatting and page layout software, fonts, electronic mail
World Wide Web, and, of course, the Internet. We live in three different sta
scattered across a continent, but collaboration with each other and with
reviewers has seemed almost effortless. Kudos to the thousands of people
have worked over the years to make these excellent tools and services
quickly and reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonzá
of Addison-Wesley were very helpful, encouraging, and patient during the lo
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on a very tight schedule, to create the in
We got into the act at the last minute, however; blame us and not her for any j
you may find hidden therein.

Finally, we are grateful to our families and friends for their love and supp
during this last, crazy, year.

In their bookThe C Programming Language, Brian Kernighan and Dennis
Ritchie said that they felt that the C language “wears well as one’s experience
it grows.” If you like C, we think you will like the Java programming languag
We hope that it, too, wears well for you.

James Gosling
Cupertino, California

Bill Joy
Aspen, Colorado

Guy Steele
Chelmsford, Massachusetts

July, 1996
xxi

n

d
explo-
ade
rown

uage
ere

addi-
oint
nd

ram-
ng
with
ld be
are

e,
oved

pro-

SDK
Preface to the Second Editio

OVER the past few years, the Java™ programming language has enjoye
unprecedented success. This success has brought a challenge: along with
sive growth in popularity, there has been explosive growth in the demands m
on the language and its libraries. To meet this challenge, the language has g
as well (fortunately, not explosively) and so have the libraries.

This second edition ofThe Java™ Language Specificationreflects these devel-
opments. It integrates all the changes made to the Java programming lang
since the publication of the first edition in 1996. The bulk of these changes w
made in the 1.1 release of the Java platform in 1997, and revolve around the
tion of nested type declarations. Later modifications pertained to floating-p
operations. In addition, this edition incorporates important clarifications a
amendments involving method lookup and binary compatibility.

This specification defines the language as it exists today. The Java prog
ming language is likely to continue to evolve. At this writing, there are ongoi
initiatives through the Java Community Process to extend the language
generic types and assertions, refine the memory model, etc. However, it wou
inappropriate to delay the publication of the second edition until these efforts
concluded.

The specifications of the libraries are now far too large to fit into this volum
and they continue to evolve. Consequently, API specifications have been rem
from this book. The library specifications can be found on thejava.sun.com
Web site (see below); this specification now concentrates solely on the Java
gramming language proper.

Readers may send comments on this specification to:jls@java.sun.com. To
learn the latest about the Java 2 platform, or to download the latest Java 2
xxiii

PREFACE TO THE SECOND EDITION

xxiv

s,

m
ade
ook
or,

the
ch

, has
cu-

cial
gues
sky,
ri
v,
o.
this

s of
id

ence
ical
loch,

fen
sler,

y,
gar,

and
tan-

ed
ase,
aahr,
rg,
e

release, visithttp://java.sun.com. Updated information about the Java Serie
including errata forThe Java™ Language Specification, Second Edition, and pre-
views of forthcoming books, may be found athttp://java.sun.com/Series.

Many people contributed to this book, directly and indirectly. Tim Lindhol
brought extraordinary dedication to his role as technical editor. He also m
invaluable technical contributions, especially on floating-point issues. The b
would likely not see the light of day without him. Lisa Friendly, the Series edit
provided encouragement and advice for which I am very thankful.

David Bowen first suggested that I get involved in the specifications of
Java platform. I am grateful to him for introducing me to this uncommonly ri
area.

John Rose, the father of nested types in the Java programming language
been unfailingly gracious and supportive of my attempts to specify them ac
rately.

Many people have provided valuable comments on this edition. Spe
thanks go to Roly Perera at Ergnosis and to Leonid Arbouzov and his collea
on Sun’s Java platform conformance team in Novosibirsk: Konstantin Bobrov
Natalia Golovleva, Vladimir Ivanov, Alexei Kaigorodov, Serguei Katkov, Dmit
Khukhro, Eugene Latkin, Ilya Neverov, Pavel Ozhdikhin, Igor Pyanko
Viatcheslav Rybalov, Serguei Samoilidi, Maxim Sokolnikov, and Vitaly Tchaik
Their thorough reading of earlier drafts has greatly improved the accuracy of
specification.

I am indebted to Martin Odersky and to Andrew Bennett and the member
Sun’s javac compiler team, past and present: Iris Garcia, Bill Maddox, Dav
Stoutamire, and Todd Turnidge. They all worked hard to make sure the refer
implementation conformed to the specification. For many enjoyable techn
exchanges, I thank them and my other colleagues at Sun: Lars Bak, Joshua B
Cliff Click, Robert Field, Mohammad Gharahgouzloo, Ben Gomes, Stef
Grarup, Robert Griesemer, Graham Hamilton, Gordon Hirsch, Peter Kes
Sheng Liang, James McIlree, Philip Milne, Srdjan Mitrovic, Anand Palaniswam
Mike Paleczny, Mark Reinhold, Kenneth Russell, Rene Schmidt, David Un
Chris Vick, and Hong Zhang.

Tricia Jordan, my manager, has been a model of patience, consideration
understanding. Thanks are also due to Larry Abrahams, director of Java 2 S
dard Edition, for supporting this work.

The following individuals all provided useful comments that have contribut
to this specification: Godmar Bak, Hans Boehm, Philippe Charles, David Ch
Joe Darcy, Jim des Rivieres, Sophia Drossopoulou, Susan Eisenbach, Paul H
Urs Hoelzle, Bart Jacobs, Kent Johnson, Mark Lillibridge, Norbert Lindenbe
Phillipe Mulet, Kelly O’Hair, Bill Pugh, Cameron Purdy, Anthony Scian, Janic
Shepherd, David Shields, John Spicer, Lee Worall, and David Wragg.

PREFACE TO THE SECOND EDITION

ether
ise;
ful

uy
riv-
Suzette Pelouch provided invaluable assistance with the index and, tog
with Doug Kramer and Atul Dambalkar, assisted with FrameMaker expert
Mike Hendrickson and Julie Dinicola at Addison-Wesley were gracious, help
and ultimately made this book a reality.

On a personal note, I thank my wife Weihong for her love and support.
Finally, I’d like to thank my coauthors, James Gosling, Bill Joy, and G

Steele for inviting me to participate in this work. It has been a pleasure and a p
ilege.

Gilad Bracha
Los Altos, California

April, 2000
xxv

C H A P T E R 1
sed,
ram-
ge is
ects
t is
. A. R.
voided

arly
t

s of
Run-
pro-
pro-

that
e. It
r, to

und-
lan-

ithout
ave in

ded
DRAFT
Introduction

1.0

The Java™ programming language is a general-purpose, concurrent, class-ba
object-oriented language. It is designed to be simple enough that many prog
mers can achieve fluency in the language. The Java programming langua
related to C and C++ but is organized rather differently, with a number of asp
of C and C++ omitted and a few ideas from other languages included. I
intended to be a production language, not a research language, and so, as C
Hoare suggested in his classic paper on language design, the design has a
including new and untested features.

The Java programming language is strongly typed. This specification cle
distinguishes between thecompile-time errorsthat can and must be detected a
compile time, and those that occur at run time. Compile time normally consist
translating programs into a machine-independent byte code representation.
time activities include loading and linking of the classes needed to execute a
gram, optional machine code generation and dynamic optimization of the
gram, and actual program execution.

The Java programming language is a relatively high-level language, in
details of the machine representation are not available through the languag
includes automatic storage management, typically using a garbage collecto
avoid the safety problems of explicit deallocation (as in C’sfree or C++’s
delete). High-performance garbage-collected implementations can have bo
ed pauses to support systems programming and real-time applications. The
guage does not include any unsafe constructs, such as array accesses w
index checking, since such unsafe constructs would cause a program to beh
an unspecified way.

The Java programming language is normally compiled to the byteco
instruction set and binary format defined inThe Java™ Virtual Machine Specifica-
tion, Second Edition(Addison-Wesley, 1999).
1

1 Introduction INTRODUCTION

2

l and

age,
cter
only

into

all
and

.
types.
t are
st. All

s.
s a
fer-
ss of
fer-
f an
lass

lass

ions
sion.
to a

in the
afety.
what
to be

ari-
e.
mes
s, and
nta-
con-
DRAFT
This specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexica
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming langu
which is based on C and C++. The language is written in the Unicode chara
set. It supports the writing of Unicode characters on systems that support
ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided
primitive types and reference types.

The primitive types are defined to be the same on all machines and in
implementations, and are various sizes of two’s-complement integers, single-
double-precision IEEE 754 standard floating-point numbers, aboolean type, and
a Unicode characterchar type. Values of the primitive types do not share state

Reference types are the class types, the interface types, and the array
The reference types are implemented by dynamically created objects tha
either instances of classes or arrays. Many references to each object can exi
objects (including arrays) support the methods of the classObject, which is the
(single) root of the class hierarchy. A predefinedString class supports Unicode
character strings. Classes exist for wrapping primitive values inside of object

Variables are typed storage locations. A variable of a primitive type hold
value of that exact primitive type. A variable of a class type can hold a null re
ence or a reference to an object whose type is that class type or any subcla
that class type. A variable of an interface type can hold a null reference or a re
ence to an instance of any class that implements the interface. A variable o
array type can hold a null reference or a reference to an array. A variable of c
typeObject can hold a null reference or a reference to any object, whether c
instance or array.

Chapter 5 describes conversions and numeric promotions. Convers
change the compile-time type and, sometimes, the value of an expres
Numeric promotions are used to convert the operands of a numeric operator
common type where an operation can be performed. There are no loopholes
language; casts on reference types are checked at run time to ensure type s

Chapter 6 describes declarations and names, and how to determine
names mean (denote). The language does not require types or their members
declared before they are used. Declaration order is significant only for local v
ables, local classes, and the order of initializers of fields in a class or interfac

The Java programming language provides control over the scope of na
and supports limitations on external access to members of packages, classe
interfaces. This helps in writing large programs by distinguishing the impleme
tion of a type from its users and those who extend it. Recommended naming
ventions that make for more readable programs are described here.

INTRODUCTION Introduction 1

ack-
sses,
mpi-

es to
e, and
kage

rfaces,
thods

ically
ed on

nta-
rom
lass
eth-

hich
led.

s
tate.

from

antics
e the
e type

hods,
ement
ce to
up-

rrays

.
ated
kinds
piler

ethod
DRAFT
Chapter 7 describes the structure of a program, which is organized into p

ages similar to the modules of Modula. The members of a package are cla
interfaces, and subpackages. Packages are divided into compilation units. Co
lation units contain type declarations and can import types from other packag
give them short names. Packages have names in a hierarchical name spac
the Internet domain name system can usually be used to form unique pac
names.

Chapter 8 describes classes. The members of classes are classes, inte
fields (variables) and methods. Class variables exist once per class. Class me
operate without reference to a specific object. Instance variables are dynam
created in objects that are instances of classes. Instance methods are invok
instances of classes; such instances become the current objectthis during their
execution, supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the impleme
tion of each class is derived from that of a single superclass, and ultimately f
the classObject. Variables of a class type can reference an instance of that c
or of any subclass of that class, allowing new types to be used with existing m
ods, polymorphically.

Classes support concurrent programming withsynchronized methods.
Methods declare the checked exceptions that can arise from their execution, w
allows compile-time checking to ensure that exceptional conditions are hand
Objects can declare afinalize method that will be invoked before the object
are discarded by the garbage collector, allowing the objects to clean up their s

For simplicity, the language has neither declaration “headers” separate
the implementation of a class nor separate type and class hierarchies.

Although the language does not include parameterized classes, the sem
of arrays are those of a parameterized class with some syntactic sugar. Lik
programming language Beta, the Java programming language uses a run-tim
check when storing references in arrays to ensure complete type safety.

Chapter 9 describes interface types, which declare a set of abstract met
member types, and constants. Classes that are otherwise unrelated can impl
the same interface type. A variable of an interface type can contain a referen
any object that implements the interface. Multiple interface inheritance is s
ported.

Chapter 10 describes arrays. Array accesses include bounds checking. A
are dynamically created objects and may be assigned to variables of typeObject.
The language supports arrays of arrays, rather than multidimensional arrays

Chapter 11 describes exceptions, which are nonresuming and fully integr
with the language semantics and concurrency mechanisms. There are three
of exceptions: checked exceptions, run-time exceptions, and errors. The com
ensures that checked exceptions are properly handled by requiring that a m
3

1 Introduction INTRODUCTION

4

ctor
xist,

be
irtual

. A
inter-
ther

ome
at are
object

age
the
that
y be

ges
piled.
idely
ood
code
about

C++.

rs.
par-
ility.
g the

local
cally
DRAFT
or constructor can result in a checked exception only if the method or constru
declares it. This provides compile-time checking that exception handlers e
and aids programming in the large. Most user-defined exceptions should
checked exceptions. Invalid operations in the program detected by the Java v
machine result in run-time exceptions, such asNullPointerException. Errors
result from failures detected by the virtual machine, such asOutOfMemoryError.
Most simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program
program is normally stored as binary files representing compiled classes and
faces. These binary files can be loaded into a Java virtual machine, linked to o
classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. S
classes may be instantiated to create new objects of the class type. Objects th
class instances also contain an instance of each superclass of the class, and
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garb
collector. If an object declares a finalizer, the finalizer is executed before
object is reclaimed to give the object a last chance to clean up resources
would not otherwise be released. When a class is no longer needed, it ma
unloaded.

Chapter 13 describes binary compatibility, specifying the impact of chan
to types on other types that use the changed types but have not been recom
These considerations are of interest to developers of types that are to be w
distributed, in a continuing series of versions, often through the Internet. G
program development environments automatically recompile dependent
whenever a type is changed, so most programmers need not be concerned
these details.

Chapter 14 describes blocks and statements, which are based on C and
The language has nogoto statement, but includes labeledbreak andcontinue
statements. Unlike C, the Java programming language requiresboolean expres-
sions in control-flow statements, and does not convert types toboolean implic-
itly, in the hope of catching more errors at compile time. Asynchronized
statement provides basic object-level monitor locking. Atry statement can
includecatch andfinally clauses to protect against non-local control transfe

Chapter 15 describes expressions. This document fully specifies the (ap
ent) order of evaluation of expressions, for increased determinism and portab
Overloaded methods and constructors are resolved at compile time by pickin
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
variables are definitely set before use. While all other variables are automati

INTRODUCTION Notation 1.2

ati-

ed on
ing
ared-

ok,

d are

,
-

and
d in
DRAFT

initialized to a default value, the Java programming language does not autom
cally initialize local variables in order to avoid masking programming errors.

Chapter 17 describes the semantics of threads and locks, which are bas
the monitor-based concurrency originally introduced with the Mesa programm
language. The Java programming language specifies a memory model for sh
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.
The book concludes with an index, credits for quotations used in the bo

and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed an
similar in form to:

class Test {
public static void main(String[] args) {

for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i] : " " + args[i]);

System.out.println();
}

}

On a Sun workstation using Sun’s JDK™ or Java 2 SDK software, this class
stored in the fileTest.java, can be compiled and executed by giving the com
mands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.2 Notation

Throughout this book we refer to classes and interfaces drawn from the Java
Java 2 platforms. Whenever we refer to a class or interface which is not define
an example in this book using a single identifierN, the intended reference is to the
class or interface namedN in the packagejava.lang. We use the canonical name
(§6.7) for classes or interfaces from packages other thanjava.lang.
5

1.3 Relationship to Predefined Classes and Interfaces INTRODUCTION

6

ava 2
Java

ge
he
ide a
Java

stic
t dis-

cre-
an
even

gor

tober

N

ed in
cia-

olo-
DRAFT
1.3 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java and J
platforms. In particular, some classes have a special relationship with the
programming language. Examples include classes such asObject, Class,
ClassLoader, String, Thread, and the classes and interfaces in packa
java.lang.reflect, among others. The language definition constrains t
behavior of these classes and interfaces, but this document does not prov
complete specification for them. The reader is referred to other parts of the
platform specification for such detailed API specifications.

Thus this document does not describe reflection in any detail. Many lingui
constructs have analogues in the reflection API, but these are generally no
cussed here. So, for example, when we list the ways in which an object can be
ated, we generally do not include the ways in which the reflective API c
accomplish this. Readers should be aware of these additional mechanisms
though they are not mentioned in this text.

1.4 References

Apple Computer.Dylan™ Reference Manual.Apple Computer Inc., Cupertino, California.
September 29, 1995. See alsohttp://www.cambridge.apple.com.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gre
Kiczales, and David A. Moon.Common Lisp Object System Specification, X3J13
Document 88-002R, June 1988; appears as Chapter 28 of Steele, Guy.Common Lisp:
The Language, 2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770–864.

Ellis, Margaret A., and Bjarne Stroustrup.The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1990, reprinted with corrections Oc
1992, ISBN 0-201-51459-1.

Goldberg, Adele and Robson, David.Smalltalk-80: The Language. Addison-Wesley,
Reading, Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel.Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISB
0-13-596396.

Hoare, C. A. R.Hints on Programming Language Design.Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprint
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Asso
tion for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Avail-
able from Global Engineering Documents, 15 Inverness Way East, Englewood, C
rado 80112-5704 USA; 800-854-7179.

INTRODUCTION References 1.4

,
92-6.

-6.
may

may
DRAFT
Kernighan, Brian W., and Dennis M. Ritchie.The C Programming Language,2nd ed.

Prentice Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Møller-Pedersen, and Kristen Nygaard.Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet.The Mesa Programming
Language, Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne.The C++ Progamming Language,2nd ed. Addison-Wesley, Reading
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-539

Unicode Consortium, The.The Unicode Standard: Worldwide Character Encoding, Ver-
sion 1.0, Volume 1, ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845
Updates and additions necessary to bring the Unicode Standard up to version 1.1
be found athttp://www.unicode.org.

Unicode Consortium, The.The Unicode Standard, Version 2.0, ISBN 0-201-48345-9.
Updates and additions necessary to bring the Unicode Standard up to version 2.1
be found athttp://www.unicode.org.
7

C H A P T E R 2
n to

inal,

from
of a

is
set. It

to a

dis-
pro-
s
3.12)
DRAFT
Grammars

THIS chapter describes the context-free grammars used in this specificatio
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammarconsists of a number ofproductions. Each production has
an abstract symbol called anonterminalas itsleft-hand side, and a sequence of
one or more nonterminal andterminal symbols as itsright-hand side. For each
grammar, the terminal symbols are drawn from a specifiedalphabet.

Starting from a sentence consisting of a single distinguished nonterm
called the goal symbol, a given context-free grammar specifies alanguage,
namely, the set of possible sequences of terminal symbols that can result
repeatedly replacing any nonterminal in the sequence with a right-hand side
production for which the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammarfor the Java programming language is given in (§3). Th
grammar has as its terminal symbols the characters of the Unicode character
defines a set of productions, starting from the goal symbolInput (§3.5), that
describe how sequences of Unicode characters (§3.1) are translated in
sequence of input elements (§3.5).

These input elements, with white space (§3.6) and comments (§3.7)
carded, form the terminal symbols for the syntactic grammar for the Java
gramming language and are calledtokens(§3.5). These tokens are the identifier
(§3.8), keywords (§3.9), literals (§3.10), separators (§3.11), and operators (§
of the Java programming language.
9

2.3 The Syntactic Grammar GRAMMARS

10

4,
as its
bol
cti-

xt is
ram

lon.
uc-

lt
ch

i-
l
and
DRAFT
2.3 The Syntactic Grammar

Thesyntactic grammarfor the Java programming language is given in Chapters
6–10, 14, and 15. This grammar has tokens defined by the lexical grammar
terminal symbols. It defines a set of productions, starting from the goal sym
CompilationUnit(§7.3), that describe how sequences of tokens can form synta
cally correct programs.

2.4 Grammar Notation

Terminal symbols are shown infixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the te
directly referring to such a terminal symbol. These are to appear in a prog
exactly as written.

Nonterminal symbols are shown initalic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a co
One or more alternative right-hand sides for the nonterminal then follow on s
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if (Expression) Statement

states that the nonterminalIfThenStatementrepresents the tokenif, followed by a
left parenthesis token, followed by anExpression, followed by a right parenthesis
token, followed by aStatement.

As another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList , Argument

states that anArgumentList may represent either a singleArgument or an
ArgumentList, followed by a comma, followed by anArgument. This definition of
ArgumentListis recursive, that is to say, it is defined in terms of itself. The resu
is that anArgumentListmay contain any positive number of arguments. Su
recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after a terminal or nonterm
nal, indicates anoptional symbol. The alternative containing the optional symbo
actually specifies two right-hand sides, one that omits the optional element
one that includes it.

This means that:

GRAMMARS Grammar Notation 2.4

tan-
DRAFT
BreakStatement:

break Identifieropt ;

is a convenient abbreviation for:

BreakStatement:
break ;
break Identifier ;

and that:

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt) Statement

is a convenient abbreviation for:

ForStatement:
for (; Expressionopt ; ForUpdateopt) Statement
for (ForInit ; Expressionopt ; ForUpdateopt) Statement

which in turn is an abbreviation for:

ForStatement:
for (; ; ForUpdateopt) Statement
for (; Expression ; ForUpdateopt) Statement
for (ForInit ; ; ForUpdateopt) Statement
for (ForInit ; Expression ; ForUpdateopt) Statement

which in turn is an abbreviation for:

ForStatement:
for (; ;) Statement
for (; ; ForUpdate) Statement
for (; Expression ;) Statement
for (; Expression ; ForUpdate) Statement
for (ForInit ; ;) Statement
for (ForInit ; ; ForUpdate) Statement
for (ForInit ; Expression ;) Statement
for (ForInit ; Expression ; ForUpdate) Statement

so the nonterminalForStatement actually has eight alternative right-hand sides.
A very long right-hand side may be continued on a second line by subs

tially indenting this second line, as in:

ConstructorDeclaration:
ConstructorModifiersopt ConstructorDeclarator

Throwsopt ConstructorBody
11

2.4 Grammar Notation GRAMMARS

12

g-
a-

ents
ition:

an-
the

e in
DRAFT
which defines one right-hand side for the nonterminalConstructorDeclaration.

When the words “one of ” follow the colon in a grammar definition, they si
nify that each of the terminal symbols on the following line or lines is an altern
tive definition. For example, the lexical grammar contains the production:

ZeroToThree: one of
0 1 2 3

which is merely a convenient abbreviation for:

ZeroToThree:
0
1
2
3

When an alternative in a lexical production appears to be a token, it repres
the sequence of characters that would make up such a token. Thus, the defin

BooleanLiteral: one of
true false

in a lexical grammar production is shorthand for:

BooleanLiteral:
t r u e
f a l s e

The right-hand side of a lexical production may specify that certain exp
sions are not permitted by using the phrase “but not” and then indicating
expansions to be excluded, as in the productions forInputCharacter(§3.4) and
Identifier (§3.8):

InputCharacter:
UnicodeInputCharacter but notCR or LF

Identifier:
IdentifierNamebut not aKeyword or BooleanLiteral or NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phras
roman type in cases where it would be impractical to list all the alternatives:

RawInputCharacter:
any Unicode character

C H A P T E R 3
age.
ded
arac-

t the
line

to a
ents
rals

this

sion

2.0.
will

used

and
ed

CII
ion
e the
DRAFT
Lexical Structure

THIS chapter specifies the lexical structure of the Java programming langu
Programs are written in Unicode (§3.1), but lexical translations are provi

(§3.2) so that Unicode escapes (§3.3) can be used to include any Unicode ch
ter using only ASCII characters. Line terminators are defined (§3.4) to suppor
different conventions of existing host systems while maintaining consistent
numbers.

The Unicode characters resulting from the lexical translations are reduced
sequence of input elements (§3.5), which are white space (§3.6), comm
(§3.7), and tokens. The tokens are the identifiers (§3.8), keywords (§3.9), lite
(§3.10), separators (§3.11), and operators (§3.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about
encoding may be found at:

http://www.unicode.org

Versions of the Java programming language prior to 1.1 used Unicode ver
1.1.5 (seeThe Unicode Standard: Worldwide Character Encoding(§1.4) and
updates). Later versions prior to JDK version 1.1.7 used Unicode version
Since JDK version 1.1.7, Unicode 2.1 has been in use. The Java platform
track the Unicode specification as it evolves. The precise version of Unicode
by a given release is specified in the documentation of the classCharacter.

Except for comments (§3.7), identifiers, and the contents of character
string literals (§3.10.4, §3.10.5), all input elements (§3.5) in a program are form
only from ASCII characters (or Unicode escapes (§3.3) which result in AS
characters). ASCII (ANSI X3.4) is the American Standard Code for Informat
Interchange. The first 128 characters of the Unicode character encoding ar
ASCII characters.
13

3.2 Lexical Translations LEXICAL STRUCTURE

14

g the

rac-
form
cter
e

of

lting
ace
t are

s not
hus

er
nged.
DRAFT
3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of tokens, usin
following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (§3.3) in the raw stream of Unicode cha
ters to the corresponding Unicode character. A Unicode escape of the
\uxxxx, wherexxxx is a hexadecimal value, represents the Unicode chara
whose encoding isxxxx. This translation step allows any program to b
expressed using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream
input characters and line terminators (§3.4).

3. A translation of the stream of input characters and line terminators resu
from step 2 into a sequence of input elements (§3.5) which, after white sp
(§3.6) and comments (§3.7) are discarded, comprise the tokens (§3.5) tha
the terminal symbols of the syntactic grammar (§2.3).

The longest possible translation is used at each step, even if the result doe
ultimately make a correct program while another lexical translation would. T
the input charactersa--b are tokenized (§3.5) asa, --, b, which is not part of any
grammatically correct program, even though the tokenizationa, -, -, b could be
part of a grammatically correct program.

3.3 Unicode Escapes

Implementations first recognizeUnicode escapesin their input, translating the
ASCII characters\u followed by four hexadecimal digits to the Unicode charact
with the indicated hexadecimal value, and passing all other characters uncha
This translation step results in a sequence of Unicode input characters:

UnicodeInputCharacter:
UnicodeEscape
RawInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

LEXICAL STRUCTURE Unicode Escapes 3.3

ar-

.
s

rther

ing a
hat
rting

an

pro-
ram.
ert-
e
e

-
DRAFT
RawInputCharacter:

any Unicode character

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

The\, u, and hexadecimal digits here are all ASCII characters.
In addition to the processing implied by the grammar, for each raw input ch

acter that is a backslash\, input processing must consider how many other\ char-
acters contiguously precede it, separating it from a non-\ character or the start of
the input stream. If this number is even, then the\ is eligible to begin a Unicode
escape; if the number is odd, then the\ is not eligible to begin a Unicode escape
For example, the raw input"\\u2297=\u2297" results in the eleven character
" \ \ u 2 2 9 7 = ⊗ " (\u2297 is the Unicode encoding of the character “⊗”).

If an eligible\ is not followed byu, then it is treated as aRawInputCharacter
and remains part of the escaped Unicode stream. If an eligible\ is followed byu,
or more than oneu, and the lastu is not followed by four hexadecimal digits, then
a compile-time error occurs.

The character produced by a Unicode escape does not participate in fu
Unicode escapes. For example, the raw input\u005cu005a results in the six char-
acters\ u 0 0 5 a, because005c is the Unicode value for\. It does not result in
the characterZ, which is Unicode character005a, because the\ that resulted from
the\u005c is not interpreted as the start of a further Unicode escape.

The Java programming language specifies a standard way of transform
program written in Unicode into ASCII that changes a program into a form t
can be processed by ASCII-based tools. The transformation involves conve
any Unicode escapes in the source text of the program to ASCII by adding
extrau—for example,\uxxxx becomes\uuxxxx—while simultaneously convert-
ing non-ASCII characters in the source text to a\uxxxx escape containing a sin-
gleu.

This transformed version is equally acceptable to a compiler for the Java
gramming language ("Java compiler") and represents the exact same prog
The exact Unicode source can later be restored from this ASCII form by conv
ing each escape sequence where multipleu’s are present to a sequence of Unicod
characters with one feweru, while simultaneously converting each escap
sequence with a singleu to the corresponding single Unicode character.

Implementations should use the\uxxxx notation as an output format to dis
play Unicode characters when a suitable font is not available.
15

3.4 Line Terminators LEXICAL STRUCTURE

16

lines
-
s the

t

e the

§3.3)

) are
DRAFT
3.4 Line Terminators

Implementations next divide the sequence of Unicode input characters into
by recognizingline terminators. This definition of lines determines the line num
bers produced by a Java compiler or other system component. It also specifie
termination of the// form of a comment (§3.7).

LineTerminator:
the ASCIILF character, also known as “newline”
the ASCIICR character, also known as “return”
the ASCIICR character followed by the ASCIILF character

InputCharacter:
UnicodeInputCharacter but notCR or LF

Lines are terminated by the ASCII charactersCR, or LF, or CR LF. The two
charactersCR immediately followed byLF are counted as one line terminator, no
two.

The result is a sequence of line terminators and input characters, which ar
terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (
and then input line recognition (§3.4) are reduced to a sequence ofinput elements.
Those input elements that are not white space (§3.6) or comments (§3.7
tokens. The tokens are the terminal symbols of the syntactic grammar (§2.3).

This process is specified by the following productions:

Input:
InputElementsopt Subopt

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

LEXICAL STRUCTURE White Space 3.6

hat, if
rac-

the

s

, for
e of

rac-
DRAFT
Token:

Identifier
Keyword
Literal
Separator
Operator

Sub:
the ASCIISUB character, also known as “control-Z”

White space (§3.6) and comments (§3.7) can serve to separate tokens t
adjacent, might be tokenized in another manner. For example, the ASCII cha
ters- and= in the input can form the operator token-= (§3.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems,
ASCII SUB character (\u001a, or control-Z) is ignored if it is the last character in
the escaped input stream.

Consider two tokensx andy in the resulting input stream. Ifx precedesy,
then we say thatx is to the left ofy and thaty is to the right ofx.

For example, in this simple piece of code:

class Empty {
}

we say that the} token is to the right of the{ token, even though it appears, in thi
two-dimensional representation on paper, downward and to the left of the{ token.
This convention about the use of the words left and right allows us to speak
example, of the right-hand operand of a binary operator or of the left-hand sid
an assignment.

3.6 White Space

White spaceis defined as the ASCII space, horizontal tab, and form feed cha
ters, as well as line terminators (§3.4).

WhiteSpace:
the ASCIISP character, also known as “space”
the ASCIIHT character, also known as “horizontal tab”
the ASCIIFF character, also known as “form feed”
LineTerminator
17

3.7 Comments LEXICAL STRUCTURE

18
DRAFT
3.7 Comments

There are two kinds ofcomments:

/* text */ A traditional comment: all the text from the ASCII
characters/* to the ASCII characters*/ is ignored
(as in C and C++).

// text A end-of-line comment: all the text from the ASCII
characters// to the end of the line is ignored (as in
C++).

These comments are formally specified by the following productions:

Comment:
TraditionalComment
EndOfLineComment

TraditionalComment:
/ * NotStar CommentTail

EndOfLineComment:
/ / CharactersInLineopt LineTerminator

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacter but not*
LineTerminator

NotStarNotSlash:
InputCharacterbut not* or /
LineTerminator

CharactersInLine:
InputCharacter
CharactersInLine InputCharacter

These productions imply all of the following properties:

LEXICAL STRUCTURE Identifiers 3.8

lit-

lling
), or

hich
for
rs in

ccess
DRAFT
• Comments do not nest.

• /* and*/ have no special meaning in comments that begin with//.

• // has no special meaning in comments that begin with/* or /**.

As a result, the text:

/* this comment /* // /** ends here: */

is a single complete comment.
The lexical grammar implies that comments do not occur within character

erals (§3.10.4) or string literals (§3.10.5).

3.8 Identifiers

An identifier is an unlimited-length sequence ofJava lettersandJava digits, the
first of which must be a Java letter. An identifier cannot have the same spe
(Unicode character sequence) as a keyword (§3.9), boolean literal (§3.10.3
the null literal (§3.10.7).

Identifier:
IdentifierChars but not aKeyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter
IdentifierChars JavaLetterOrDigit

JavaLetter:
any Unicode character that is a Java letter (see below)

JavaLetterOrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, w
supports most writing scripts in use in the world today, including the large sets
Chinese, Japanese, and Korean. This allows programmers to use identifie
their programs that are written in their native languages.

A “Java letter” is a character for which the methodCharacter.isJavaIden-
tifierStart returnstrue. A “Java letter-or-digit” is a character for which the
methodCharacter.isJavaIdentifierPart returnstrue.

The Java letters include uppercase and lowercase ASCII Latin lettersA–Z
(\u0041–\u005a), and a–z (\u0061–\u007a), and, for historical reasons, the
ASCII underscore (_, or \u005f) and dollar sign ($, or \u0024). The$ character
should be used only in mechanically generated source code or, rarely, to a
preexisting names on legacy systems.
19

3.9 Keywords LEXICAL STRUCTURE

20

me

. For

cters.

t
.

for

r-
es if

lly

DRAFT

The “Java digits” include the ASCII digits0-9 (\u0030–\u0039).
Two identifiers are the same only if they are identical, that is, have the sa

Unicode character for each letter or digit.
Identifiers that have the same external appearance may yet be different

example, the identifiers consisting of the single lettersLATIN CAPITAL LETTER A

(A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL LETTER ALPHA

(A, \u0391), andCYRILLIC SMALL LETTER A (a, \u0430) are all different.
Unicode composite characters are different from the decomposed chara

For example, aLATIN CAPITAL LETTER A ACUTE (Á, \u00c1) could be considered
to be the same as aLATIN CAPITAL LETTER A (A, \u0041) immediately followed
by a NON-SPACING ACUTE (´, \u0301) when sorting, but these are different in
identifiers. SeeThe Unicode Standard, Volume 1, pages 412ff for details abou
decomposition, and see pages 626–627 of that work for details about sorting

Examples of identifiers are:

String i3 αρετη MAX_VALUE isLetterOrDigit

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved
use askeywords and cannot be used as identifiers (§3.8):

Keyword: one of
abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const for new switch
continue goto package synchronized

The keywordsconst andgoto are reserved, even though they are not cu
rently used. This may allow a Java compiler to produce better error messag
these C++ keywords incorrectly appear in programs.

While true and false might appear to be keywords, they are technica
Boolean literals (§3.10.3). Similarly, whilenull might appear to be a keyword, it
is technically the null literal (§3.10.7).

LEXICAL STRUCTURE Integer Literals3.10.1

the

al

-
DRAFT
3.10 Literals

A literal is the source code representation of a value of a primitive type (§4.2),
String type (§4.3.3), or the null type (§4.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

3.10.1 Integer Literals

See §4.2.1 for a general discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecim

(base 16), or octal (base 8):

IntegerLiteral:
DecimalIntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

DecimalIntegerLiteral:
DecimalNumeral IntegerTypeSuffixopt

HexIntegerLiteral:
HexNumeral IntegerTypeSuffixopt

OctalIntegerLiteral:
OctalNumeral IntegerTypeSuffixopt

IntegerTypeSuffix: one of
l L

An integer literal is of typelong if it is suffixed with an ASCII letterL or l
(ell); otherwise it is of typeint (§4.2.1). The suffixL is preferred, because the let
terl (ell) is often hard to distinguish from the digit1 (one).

A decimal numeral is either the single ASCII character0, representing the
integer zero, or consists of an ASCII digit from1 to 9, optionally followed by one
or more ASCII digits from0 to 9, representing a positive integer:
21

3.10.1 Integer Literals LEXICAL STRUCTURE

22

tive,
pre-

r.
DRAFT
DecimalNumeral:

0
NonZeroDigit Digitsopt

Digits:
Digit
Digits Digit

Digit:
0
NonZeroDigit

NonZeroDigit: one of
1 2 3 4 5 6 7 8 9

A hexadecimal numeral consists of the leading ASCII characters0x or 0X fol-
lowed by one or more ASCII hexadecimal digits and can represent a posi
zero, or negative integer. Hexadecimal digits with values 10 through 15 are re
sented by the ASCII lettersa throughf or A throughF, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits

The following production from §3.3 is repeated here for clarity:

HexDigit: one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F

An octal numeral consists of an ASCII digit0 followed by one or more of the
ASCII digits0 through7 and can represent a positive, zero, or negative intege

OctalNumeral:
0 OctalDigits

OctalDigits:
OctalDigit
OctalDigit OctalDigits

OctalDigit: one of
0 1 2 3 4 5 6 7

LEXICAL STRUCTURE Integer Literals3.10.1

r the

ion

ci-

s

DRAFT
Note that octal numerals always consist of two or more digits;0 is always

considered to be a decimal numeral—not that it matters much in practice, fo
numerals0, 00, and0x0 all represent exactly the same integer value.

The largest decimal literal of typeint is 2147483648 (). All decimal liter-
als from0 to 2147483647 may appear anywhere anint literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negat
operator-.

The largest positive hexadecimal and octal literals of typeint are
0x7fffffff and 017777777777, respectively, which equal2147483647
(). The most negative hexadecimal and octal literals of typeint are
0x80000000 and020000000000, respectively, each of which represents the de
mal value–2147483648 (). The hexadecimal and octal literals0xffffffff
and037777777777, respectively, represent the decimal value-1.

A compile-time error occurs if a decimal literal of typeint is larger than
2147483648 (), or if the literal2147483648 appears anywhere other than a
the operand of the unary- operator, or if a hexadecimal or octalint literal does
not fit in 32 bits.

Examples ofint literals:

0 2 0372 0xDadaCafe 1996 0x00FF00FF

The largest decimal literal of typelong is 9223372036854775808L ().
All decimal literals from0L to 9223372036854775807L may appear anywhere a
long literal may appear, but the literal9223372036854775808L may appear only
as the operand of the unary negation operator-.

The largest positive hexadecimal and octal literals of typelong are
0x7fffffffffffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (). The literals0x8000000000000000L
and01000000000000000000000L are the most negativelong hexadecimal and
octal literals, respectively. Each has the decimal value–9223372036854775808L
(). The hexadecimal and octal literals0xffffffffffffffffL and
01777777777777777777777L, respectively, represent the decimal value-1L.

A compile-time error occurs if a decimal literal of typelong is larger than
9223372036854775808L (), or if the literal9223372036854775808L appears
anywhere other than as the operand of the unary- operator, or if a hexadecimal or
octallong literal does not fit in 64 bits.

Examples oflong literals:

0l 0777L 0x100000000L 2147483648L 0xC0B0L

231

231 1–

231–

231

263

263 1–

263–

263
23

3.10.2 Floating-Point Literals LEXICAL STRUCTURE

24

i-
xpo-
er

r a
are

-
sion

n of
ta-
DRAFT

3.10.2 Floating-Point Literals

See §4.2.3 for a general discussion of the floating-point types and values.
A floating-point literalhas the following parts: a whole-number part, a dec

mal point (represented by an ASCII period character), a fractional part, an e
nent, and a type suffix. The exponent, if present, is indicated by the ASCII lette
or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and eithe
decimal point, an exponent, or a float type suffix are required. All other parts
optional.

A floating-point literal is of typefloat if it is suffixed with an ASCII letterF
or f; otherwise its type isdouble and it can optionally be suffixed with an ASCII
letterD or d.

FloatingPointLiteral:
Digits . Digitsopt ExponentPartopt FloatTypeSuffixopt
. Digits ExponentPartopt FloatTypeSuffixopt
Digits ExponentPart FloatTypeSuffixopt
Digits ExponentPartopt FloatTypeSuffix

ExponentPart:
ExponentIndicator SignedInteger

ExponentIndicator: one of
e E

SignedInteger:
Signopt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
f F d D

The elements of the typesfloat anddouble are those values that can be rep
resented using the IEEE 754 32-bit single-precision and 64-bit double-preci
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representatio
a floating-point number to the internal IEEE 754 binary floating-point represen
tion are described for the methodsvalueOf of classFloat and classDouble of
the packagejava.lang.

The largest positive finitefloat literal is 3.40282347e+38f. The smallest
positive finite nonzero literal of typefloat is 1.40239846e-45f. The largest

LEXICAL STRUCTURE Boolean Literals3.10.3

so
754
e

so
o. A
all
non-

the

ci-

n

DRAFT
positive finitedouble literal is1.79769313486231570e+308. The smallest posi-
tive finite nonzero literal of typedouble is 4.94065645841246544e-324.

A compile-time error occurs if a nonzero floating-point literal is too large,
that on rounded conversion to its internal representation it becomes an IEEE
infinity. A program can represent infinities without producing a compile-tim
error by using constant expressions such as1f/0f or -1d/0d or by using the pre-
defined constantsPOSITIVE_INFINITY andNEGATIVE_INFINITY of the classes
Float andDouble.

A compile-time error occurs if a nonzero floating-point literal is too small,
that, on rounded conversion to its internal representation, it becomes a zer
compile-time error does not occur if a nonzero floating-point literal has a sm
value that, on rounded conversion to its internal representation, becomes a
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in
classesFloat andDouble asFloat.NaN andDouble.NaN.

Examples offloat literals:

1e1f 2.f .3f 0f 3.14f 6.022137e+23f

Examples ofdouble literals:

1e1 2. .3 0.0 3.14 1e-9d 1e137

There is no provision for expressing floating-point literals in other than de
mal radix. However, methodintBitsToFloat of classFloat and methodlong-
BitsToDouble of classDouble provide a way to express floating-point values i
terms of hexadecimal or octal integer literals.

For example, the value of:

Double.longBitsToDouble(0x400921FB54442D18L)

is equal to the value ofMath.PI.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literalstrue andfalse,
formed from ASCII letters.

A boolean literal is always of typeboolean.

BooleanLiteral: one of
true false
25

3.10.4 Character Literals LEXICAL STRUCTURE

26

sed in

g

write

the
is

than
ned.
actly
DRAFT
3.10.4 Character Literals

A character literalis expressed as a character or an escape sequence, enclo
ASCII single quotes. (The single-quote, or apostrophe, character is\u0027.)

A character literal is always of typechar.

CharacterLiteral:
' SingleCharacter '
' EscapeSequence '

SingleCharacter:
InputCharacter but not' or \

The escape sequences are described in §3.10.6.
As specified in §3.4, the charactersCR andLF are never anInputCharacter;

they are recognized as constituting aLineTerminator.
It is a compile-time error for the character following theSingleCharacteror

EscapeSequence to be other than a'.
It is a compile-time error for a line terminator to appear after the openin'

and before the closing'.
The following are examples ofchar literals:

'a'
'%'
'\t'
'\\'
'\''
'\u03a9'
'\uFFFF'
'\177'
'Ω'
'⊗'

Because Unicode escapes are processed very early, it is not correct to
'\u000a' for a character literal whose value is linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (§3.3) and
linefeed becomes aLineTerminatorin step 2 (§3.4), and so the character literal
not valid in step 3. Instead, one should use the escape sequence'\n' (§3.10.6).
Similarly, it is not correct to write'\u000d' for a character literal whose value is
carriage return (CR). Instead, use'\r'.

In C and C++, a character literal may contain representations of more
one character, but the value of such a character literal is implementation-defi
In the Java programming language, a character literal always represents ex
one character.

LEXICAL STRUCTURE String Literals 3.10.5

tes.

g

g the

,

write

the
t

lass
re

are
DRAFT
3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quo
Each character may be represented by an escape sequence.

A string literal is always of typeString (§4.3.3. A string literal always refers
to the same instance (§4.3.1) of classString.

StringLiteral:
" StringCharactersopt "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacter but not" or \
EscapeSequence

The escape sequences are described in §3.10.6.
As specified in §3.4, neither of the charactersCR andLF is ever considered to

be anInputCharacter; each is recognized as constituting aLineTerminator.
It is a compile-time error for a line terminator to appear after the openin"

and before the closing matching". A long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression usin
string concatenation operator+ (§15.18.1).

The following are examples of string literals:

"" // the empty string
"\"" // a string containing " alone
"This is a string" // a string containing 16 characters
"This is a " + // actually a string-valued constant expression

"two-line string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to
"\u000a" for a string literal containing a single linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (§3.3) and
linefeed becomes aLineTerminatorin step 2 (§3.4), and so the string literal is no
valid in step 3. Instead, one should write"\n" (§3.10.6). Similarly, it is not correct
to write "\u000d" for a string literal containing a single carriage return (CR).
Instead use"\r".

Each string literal is a reference (§4.3) to an instance (§4.3.1, §12.5) of c
String (§4.3.3).String objects have a constant value. String literals—or, mo
generally, strings that are the values of constant expressions (§15.28)—
“interned” so as to share unique instances, using the methodString.intern.
27

3.10.6 Escape Sequences for Character and String Literals LEXICAL STRUCTURE

28

sent

fer-

ent

pile

any

slash
DRAFT
Thus, the test program consisting of the compilation unit (§7.3):

package testPackage;

class Test {
public static void main(String[] args) {

String hello = "Hello", lo = "lo";
System.out.print((hello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"lo")) + " ");
System.out.print((hello == ("Hel"+lo)) + " ");
System.out.println(hello == ("Hel"+lo).intern());

}
}

class Other { static String hello = "Hello"; }

and the compilation unit:

package other;

public class Other { static String hello = "Hello"; }

produces the output:

true true true true false true

This example illustrates six points:

• Literal strings within the same class (§8) in the same package (§7) repre
references to the sameString object (§4.3.1).

• Literal strings within different classes in the same package represent re
ences to the sameString object.

• Literal strings within different classes in different packages likewise repres
references to the sameString object.

• Strings computed by constant expressions (§15.28) are computed at com
time and then treated as if they were literals.

• Strings computed at run time are newly created and therefore distinct.

• The result of explicitly interning a computed string is the same string as
pre-existing literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and stringescape sequencesallow for the representation of some
nongraphic characters as well as the single quote, double quote, and back
characters in character literals (§3.10.4) and string literals (§3.10.5).

LEXICAL STRUCTURE Separators 3.11

e is

, but
DRAFT
EscapeSequence:

\ b /* \u0008: backspaceBS */
\ t /* \u0009: horizontal tabHT */
\ n /* \u000a: linefeed LF */
\ f /* \u000c: form feedFF */
\ r /* \u000d: carriage returnCR */
\ " /* \u0022: double quote" */
\ ' /* \u0027: single quote' */
\ \ /* \u005c: backslash\ */
OctalEscape /* \u0000 to \u00ff: from octal value */

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
0 1 2 3 4 5 6 7

ZeroToThree: one of
0 1 2 3

It is a compile-time error if the character following a backslash in an escap
not an ASCIIb, t, n, f, r, ", ', \, 0, 1, 2, 3, 4, 5, 6, or7. The Unicode escape\u is
processed earlier (§3.3). (Octal escapes are provided for compatibility with C
can express only Unicode values\u0000 through\u00FF, so Unicode escapes are
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the literalnull,
which is formed from ASCII characters. Anull literal is always of the null type.

NullLiteral:
null

3.11 Separators

The following nine ASCII characters are theseparators(punctuators):

Separator: one of
() { } [] ; , .
29

3.12 Operators LEXICAL STRUCTURE

30
DRAFT
3.12 Operators

The following 37 tokens are theoperators, formed from ASCII characters:

Operator: one of
= > < ! ~ ? :
== <= >= != && || ++ --
+ - * / & | ^ % << >> >>>
+= -= *= /= &= |= ^= %= <<= >>= >>>=

C H A P T E R 4

s

time.
pro-

aning

ries:

also a
lass
nces

ation

ys

any

ay
DRAFT
Types, Values, and Variable

THE Java programming language is astrongly typedlanguage, which means
that every variable and every expression has a type that is known at compile
Types limit the values that a variable (§4.5) can hold or that an expression can
duce, limit the operations supported on those values, and determine the me
of the operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two catego
primitive types and reference types. The primitive types (§4.2) are theboolean
type and the numeric types. The numeric types are the integral typesbyte, short,
int, long, andchar, and the floating-point typesfloat anddouble. The refer-
ence types (§4.3) are class types, interface types, and array types. There is
special null type. An object (§4.3.1) is a dynamically created instance of a c
type or a dynamically created array. The values of a reference type are refere
to objects. All objects, including arrays, support the methods of classObject
(§4.3.2). String literals are represented byString objects (§4.3.3).

Names of types are used (§4.4) in declarations, casts, class instance cre
expressions, array creation expressions, class literals, andinstanceof operator
expressions.

A variable (§4.5) is a storage location. A variable of a primitive type alwa
holds a value of that exact type. A variable of a class typeT can hold a null refer-
ence or a reference to an instance of classT or of any class that is a subclass ofT.
A variable of an interface type can hold a null reference or a reference to
instance of any class that implements the interface. IfT is a primitive type, then a
variable of type “array ofT ” can hold a null reference or a reference to any arr
of type “array ofT ”; if T is a reference type, then a variable of type “array ofT ”
can hold a null reference or a reference to any array of type “array ofS” such that
type S is assignable (§5.2) to typeT. A variable of typeObject can hold a null
reference or a reference to any object, whether class instance or array.
31

4.1 The Kinds of Types and Values TYPES, VALUES, AND VARIABLES

32

s
data
thods,

le of
ible
any
pre-

by

ble
pe.
per-
DRAFT
4.1 The Kinds of Types and Values

There are two kinds oftypesin the Java programming language: primitive type
(§4.2) and reference types (§4.3). There are, correspondingly, two kinds of
values that can be stored in variables, passed as arguments, returned by me
and operated on: primitive values (§4.2) and reference values (§4.3).

Type:
PrimitiveType
ReferenceType

There is also a specialnull type, the type of the expressionnull, which has no
name. Because the null type has no name, it is impossible to declare a variab
the null type or to cast to the null type. The null reference is the only poss
value of an expression of null type. The null reference can always be cast to
reference type. In practice, the programmer can ignore the null type and just
tend thatnull is merely a special literal that can be of any reference type.

4.2 Primitive Types and Values

A primitive typeis predefined by the Java programming language and named
its reserved keyword (§3.9):

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

Primitive values do not share state with other primitive values. A varia
whose type is a primitive type always holds a primitive value of that same ty
The value of a variable of primitive type can be changed only by assignment o
ations on that variable.

Thenumeric types are the integral types and the floating-point types.

TYPES, VALUES, AND VARIABLES Integer Operations4.2.2

and
cters.
4
4

ive

inte-
DRAFT
The integral typesarebyte, short, int, andlong, whose values are 8-bit,

16-bit, 32-bit and 64-bit signed two’s-complement integers, respectively,
char, whose values are 16-bit unsigned integers representing Unicode chara

Thefloating-point typesarefloat, whose values include the 32-bit IEEE 75
floating-point numbers, anddouble, whose values include the 64-bit IEEE 75
floating-point numbers.

Theboolean type has exactly two values:true andfalse.

4.2.1 Integral Types and Values

The values of the integral types are integers in the following ranges:

• Forbyte, from –128 to 127, inclusive

• Forshort, from –32768 to 32767, inclusive

• Forint, from –2147483648 to 2147483647, inclusive

• Forlong, from –9223372036854775808 to 9223372036854775807, inclus

• Forchar, from'\u0000' to '\uffff' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on
gral values:

• The comparison operators, which result in a value of typeboolean:

◆ The numerical comparison operators<, <=, >, and>= (§15.20.1)

◆ The numerical equality operators== and!= (§15.21.1)

• The numerical operators, which result in a value of typeint or long:

◆ The unary plus and minus operators+ and- (§15.15.3, §15.15.4)

◆ The multiplicative operators*, /, and% (§15.17)

◆ The additive operators+ and- (§15.18.2)

◆ The increment operator++, both prefix (§15.15.1) and postfix (§15.14.1)

◆ The decrement operator--, both prefix (§15.15.2) and postfix (§15.14.2)

◆ The signed and unsigned shift operators<<, >>, and>>> (§15.19)

◆ The bitwise complement operator~ (§15.15.5)

◆ The integer bitwise operators&, |, and^ (§15.22.1)
33

4.2.2 Integer Operations TYPES, VALUES, AND VARIABLES

34

any

o a
re-

lasses

d of
sult

e
ical

ny
eger

the
DRAFT
• The conditional operator? : (§15.25)

• The cast operator, which can convert from an integral value to a value of
specified numeric type (§5.5, §15.16)

• The string concatenation operator+ (§15.18.1), which, when given aString
operand and an integral operand, will convert the integral operand t
String representing its value in decimal form, and then produce a newly c
atedString that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the c
Byte, Short, Integer, Long, andCharacter.

If an integer operator other than a shift operator has at least one operan
typelong, then the operation is carried out using 64-bit precision, and the re
of the numerical operator is of typelong. If the other operand is notlong, it is
first widened (§5.1.4) to typelong by numeric promotion (§5.6). Otherwise, th
operation is carried out using 32-bit precision, and the result of the numer
operator is of typeint. If either operand is not anint, it is first widened to type
int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in a
way. The only numeric operators that can throw an exception (§11) are the int
divide operator/ (§15.17.2) and the integer remainder operator% (§15.17.3),
which throw anArithmeticException if the right-hand operand is zero.

The example:

class Test {
public static void main(String[] args) {

int i = 1000000;
System.out.println(i * i);
long l = i;
System.out.println(l * l);
System.out.println(20296 / (l - i));

}
}

produces the output:

-727379968
1000000000000

and then encounters anArithmeticException in the division byl - i, because
l - i is zero. The first multiplication is performed in 32-bit precision, whereas
second multiplication is along multiplication. The value-727379968 is the deci-
mal value of the low 32 bits of the mathematical result,1000000000000, which is
a value too large for typeint.

TYPES, VALUES, AND VARIABLES Floating-Point Types, Formats, and Values4.2.3

ere

-
54

that
and

).
h as

up-

n-
alue

um-
ues of

sed

-
lues
that
r

me

t

s
re

ple-
ecific
DRAFT
Any value of any integral type may be cast to or from any numeric type. Th

are no casts between integral types and the typeboolean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types arefloat anddouble, which are conceptually associ
ated with the single-precision 32-bit and double-precision 64-bit format IEEE 7
values and operations as specified inIEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers
consist of a sign and magnitude, but also positive and negative zeros, positive
negativeinfinities, and specialNot-a-Numbervalues (hereafter abbreviated NaN
A NaN value is used to represent the result of certain invalid operations suc
dividing zero by zero. NaN constants of bothfloat anddouble type are pre-
defined asFloat.NaN andDouble.NaN.

Every implementation of the Java programming language is required to s
port two standard sets of floating-point values, called thefloat value setand the
double value set. In addition, an implementation of the Java programming la
guage may support either or both of two extended-exponent floating-point v
sets, called thefloat-extended-exponent value setand thedouble-extended-expo-
nent value set. These extended-exponent value sets may, under certain circ
stances, be used instead of the standard value sets to represent the val
expressions of typefloat or double (§5.1.8, §15.4).

The finite nonzero values of any floating-point value set can all be expres
in the form , wheres is +1 or –1,m is a positive integer less than

, ande is an integer between and , inclu
sive, and whereN andK are parameters that depend on the value set. Some va
can be represented in this form in more than one way; for example, supposing
a valuev in a value set might be represented in this form using certain values fos,
m, ande, then if it happened thatm were even ande were less than , one
could halvemand increaseeby 1 to produce a second representation for the sa
valuev. A representation in this form is callednormalizedif ; other-
wise the representation is said to bedenormalized. If a value in a value set canno
be represented in such a way that , then the value is said to be adenor-
malized value, because it has no normalized representation.

The constraints on the parametersN and K (and on the derived parameter
Emin andEmax) for the two required and two optional floating-point value sets a
summarized in Table 4.1.

Where one or both extended-exponent value sets are supported by an im
mentation, then for each supported extended-exponent value set there is a sp

s m 2 e N– 1+()⋅ ⋅
2N Emin 2K 1– 2–()–= Emax 2K 1– 1–=

2K 1–

m 2 N 1–()≥

m 2 N 1–()≥
35

4.2.3 Floating-Point Types, Formats, and Values TYPES, VALUES, AND VARIABLES

36

;

t are
ega-

f the
value
wise,
uble-

r range
t have

pre-
ard.
ented

ote,
nded-
e-
tively.
nent
pro-

lue of
an

set
t of

f the

neg-
DRAFTimplementation-dependent constantK, whose value is constrained by Table 4.1
this valueK in turn dictates the values forEmin andEmax.

Each of the four value sets includes not only the finite nonzero values tha
ascribed to it above, but also NaN values and the four values positive zero, n
tive zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.1 are designed so that every element o
float value set is necessarily also an element of the float-extended-exponent
set, the double value set, and the double-extended-exponent value set. Like
each element of the double value set is necessarily also an element of the do
extended-exponent value set. Each extended-exponent value set has a large
of exponent values than the corresponding standard value set, but does no
more precision.

The elements of the float value set are exactly the values that can be re
sented using the single floating-point format defined in the IEEE 754 stand
The elements of the double value set are exactly the values that can be repres
using the double floating-point format defined in the IEEE 754 standard. N
however, that the elements of the float-extended-exponent and double-exte
exponent value sets defined here donotcorrespond to the values that can be repr
sented using IEEE 754 single extended and double extended formats, respec

The float, float-extended-exponent, double, and double-extended-expo
value sets are not types. It is always correct for an implementation of the Java
gramming language to use an element of the float value set to represent a va
type float; however, it may be permissible in certain regions of code for
implementation to use an element of the float-extended-exponent value
instead. Similarly, it is always correct for an implementation to use an elemen
the double value set to represent a value of typedouble; however, it may be per-
missible in certain regions of code for an implementation to use an element o
double-extended-exponent value set instead.

Except for NaN, floating-point values areordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
ative zero, positive finite nonzero values, and positive infinity.

Parameter float float-extended-
exponent

double double-extended-
exponent

N 24 24 53 53

K 8 ≥ 11 11 ≥ 15

Emax +127 ≥ +1023 +1023 ≥ +16383

Emin −126 ≤ −1022 −1022 ≤ −16382

Table 4.1 Floating-point value set parameters

TYPES, VALUES, AND VARIABLES Floating-Point Operations4.2.4

u-
ular
reate
stic

as
nor-

sion
uish

ions

pres-

tor

e.

float-
DRAFT
IEEE 754 allows multiple distinct NaN values for each of its single and do

ble floating-point formats. While each hardware architecture returns a partic
bit pattern for NaN when a new NaN is generated, a programmer can also c
NaNs with different bit patterns to encode, for example, retrospective diagno
information.

For the most part, the Java platform treats NaN values of a given type
though collapsed into a single canonical value (and hence this specification
mally refers to an arbitrary NaN as though to a canonical value). However, ver
1.3 the Java platform introduced methods enabling the programmer to disting
between NaN values: theFloat.floatToRawIntBits and Double.double-
ToRawLongBits methods. The interested reader is referred to the specificat
for theFloat andDouble classes for more information.

Positive zero and negative zero compare equal; thus the result of the ex
sion 0.0==-0.0 is true and the result of0.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for example,1.0/0.0 has the
value positive infinity, while the value of1.0/-0.0 is negative infinity.

NaN is unordered, so the numerical comparison operators<, <=, >, and>=
returnfalse if either or both operands are NaN (§15.20.1). The equality opera
== returnsfalse if either operand is NaN, and the inequality operator!= returns
true if either operand is NaN (§15.21.1). In particular,x!=x is true if and only if
x is NaN, and(x<y) == !(x>=y) will be false if x or y is NaN.

Any value of a floating-point type may be cast to or from any numeric typ
There are no casts between floating-point types and the typeboolean.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
ing-point values:

• The comparison operators, which result in a value of typeboolean:

◆ The numerical comparison operators<, <=, >, and>= (§15.20.1)

◆ The numerical equality operators== and!= (§15.21.1)

• The numerical operators, which result in a value of typefloat or double:

◆ The unary plus and minus operators+ and- (§15.15.3, §15.15.4)

◆ The multiplicative operators*, /, and% (§15.17)

◆ The additive operators+ and- (§15.18.2)

◆ The increment operator++, both prefix (§15.15.1) and postfix (§15.14.1)
37

4.2.4 Floating-Point Operations TYPES, VALUES, AND VARIABLES

38

e of

and
),

lasses

pe,

lt of

the

with
pro-

r-
to

etic
the
rest
ually
tan-

ated,
for-

cise

ver-
nor-

ically
DRAFT
◆ The decrement operator--, both prefix (§15.15.2) and postfix (§15.14.2)

• The conditional operator? : (§15.25)

• The cast operator, which can convert from a floating-point value to a valu
any specified numeric type (§5.5, §15.16)

• The string concatenation operator+ (§15.18.1), which, when given aString
operand and a floating-point operand, will convert the floating-point oper
to aString representing its value in decimal form (without information loss
and then produce a newly createdString by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the c
Float, Double, andMath.

If at least one of the operands to a binary operator is of floating-point ty
then the operation is a floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is of typedouble, then
the operation is carried out using 64-bit floating-point arithmetic, and the resu
the numerical operator is a value of typedouble. (If the other operand is not a
double, it is first widened to typedouble by numeric promotion (§5.6).) Other-
wise, the operation is carried out using 32-bit floating-point arithmetic, and
result of the numerical operator is a value of typefloat. If the other operand is
not afloat, it is first widened to typefloat by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (
the exception of the remainder operator (§15.17.3)). In particular, the Java
gramming language requires support of IEEE 754denormalizedfloating-point
numbers andgradual underflow, which make it easier to prove desirable prope
ties of particular numerical algorithms. Floating-point operations do not “flush
zero” if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithm
behave as if every floating-point operator rounded its floating-point result to
result precision.Inexactresults must be rounded to the representable value nea
to the infinitely precise result; if the two nearest representable values are eq
near, the one with its least significant bit zero is chosen. This is the IEEE 754 s
dard’s default rounding mode known asround to nearest.

The language usesround toward zerowhen converting a floating value to an
integer (§5.1.3), which acts, in this case, as though the number were trunc
discarding the mantissa bits. Rounding toward zero chooses at its result the
mat’s value closest to and no greater in magnitude than the infinitely pre
result.

Floating-point operators produce no exceptions (§11). An operation that o
flows produces a signed infinity, an operation that underflows produces a de
malized value or a signed zero, and an operation that has no mathemat

TYPES, VALUES, AND VARIABLES Floating-Point Operations4.2.4

pro-
so a
DRAFT
definite result produces NaN. All numeric operations with NaN as an operand
duce NaN as a result. As has already been described, NaN is unordered,
numeric comparison operation involving one or two NaNs returnsfalse and any
!= comparison involving NaN returnstrue, includingx!=x whenx is NaN.

The example program:

class Test {

public static void main(String[] args) {

// An example of overflow:
double d = 1e308;
System.out.print("overflow produces infinity: ");
System.out.println(d + "*10==" + d*10);

// An example of gradual underflow:
d = 1e-305 * Math.PI;
System.out.print("gradual underflow: " + d + "\n ");
for (int i = 0; i < 4; i++)

System.out.print(" " + (d /= 100000));
System.out.println();

// An example of NaN:
System.out.print("0.0/0.0 is Not-a-Number: ");
d = 0.0/0.0;
System.out.println(d);

// An example of inexact results and rounding:
System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {

float z = 1.0f / i;
if (z * i != 1.0f)

System.out.print(" " + i);
}
System.out.println();

// Another example of inexact results and rounding:
System.out.print("inexact results with double:");
for (int i = 0; i < 100; i++) {

double z = 1.0 / i;
if (z * i != 1.0)

System.out.print(" " + i);
}
System.out.println();

// An example of cast to integer rounding:
System.out.print("cast to int rounds toward 0: ");
d = 12345.6;
System.out.println((int)d + " " + (int)(-d));

}
}

39

4.2.5 Theboolean Type andboolean Values TYPES, VALUES, AND VARIABLES

40

can

di-

ts:

the
DRAFT
produces the output:

overflow produces infinity: 1.0e+308*10==Infinity
gradual underflow: 3.141592653589793E-305

3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0
0.0/0.0 is Not-a-Number: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradual underflow
result in a gradual loss of precision.

The results wheni is 0 involve division by zero, so thatz becomes positive
infinity, andz * 0 is NaN, which is not equal to1.0.

4.2.5 Theboolean Type andboolean Values

The boolean type represents a logical quantity with two possible values, in
cated by the literalstrue andfalse (§3.10.3). The boolean operators are:

• The relational operators== and!= (§15.21.2)

• The logical-complement operator! (§15.15.6)

• The logical operators&, ^, and| (§15.22.2)

• The conditional-and and conditional-or operators&& (§15.23) and|| (§15.24)

• The conditional operator? : (§15.25)

• The string concatenation operator+ (§15.18.1), which, when given aString
operand and a boolean operand, will convert the boolean operand to aString
(either"true" or "false"), and then produce a newly createdString that is
the concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statemen

• Theif statement (§14.9)

• Thewhile statement (§14.11)

• Thedo statement (§14.12)

• Thefor statement (§14.13)

A boolean expression also determines which subexpression is evaluated in
conditional? : operator (§15.25).

TYPES, VALUES, AND VARIABLES Reference Types and Values4.3

the

d

DRAFT
Only boolean expressions can be used in control flow statements and as

first operand of the conditional operator? :. An integerx can be converted to a
boolean, following the C language convention that any nonzero value istrue, by
the expressionx!=0. An object referenceobj can be converted to aboolean,
following the C language convention that any reference other thannull is true,
by the expressionobj!=null.

A cast of aboolean value to typeboolean is allowed (§5.1.1); no other casts
on typeboolean are allowed. Aboolean can be converted to a string by string
conversion (§5.4).

4.3 Reference Types and Values

There are three kinds ofreference types: class types (§8), interface types (§9), an
array types (§10).

ReferenceType:
ClassOrInterfaceType
ArrayType

ClassOrInterfaceType:
ClassType
InterfaceType

ClassType:
TypeName

InterfaceType:
TypeName

ArrayType:
Type []

Names are described in §6; type names in §6.5 and, specifically, §6.5.5.
The sample code:

class Point { int[] metrics; }

interface Move { void move(int deltax, int deltay); }

declares a class typePoint, an interface typeMove, and uses an array typeint[]
(an array ofint) to declare the fieldmetrics of the classPoint.
41

4.3.1 Objects TYPES, VALUES, AND VARIABLES

42

sion
.
per-
ype
er
itial-
local
DRAFT
4.3.1 Objects

An object is aclass instance or an array.
The reference values (often justreferences) arepointersto these objects, and a

special null reference, which refers to no object.
A class instance is explicitly created by a class instance creation expres

(§15.9). An array is explicitly created by an array creation expression (§15.9)
A new class instance is implicitly created when the string concatenation o

ator + (§15.18.1) is used in an expression, resulting in a new object of t
String (§4.3.3). A new array object is implicitly created when an array initializ
expression (§10.6) is evaluated; this can occur when a class or interface is in
ized (§12.4), when a new instance of a class is created (§15.9), or when a
variable declaration statement is executed (§14.4).

Many of these cases are illustrated in the following example:

class Point {
int x, y;
Point() { System.out.println("default"); }
Point(int x, int y) { this.x = x; this.y = y; }

// A Point instance is explicitly created at class initialization time:
static Point origin = new Point(0,0);

// A String can be implicitly created by a+ operator:
public String toString() {

return "(" + x + "," + y + ")";
}

}

class Test {
public static void main(String[] args) {

// A Point is explicitly created usingnewInstance:
Point p = null;
try {

p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {

System.out.println(e);
}

// An array is implicitly created by an array constructor:
Point a[] = { new Point(0,0), new Point(1,1) };

// Strings are implicitly created by+ operators:
System.out.println("p: " + p);
System.out.println("a: { " + a[0] + ", "

+ a[1] + " }");

// An array is explicitly created by an array creation expression:
String sa[] = new String[2];

TYPES, VALUES, AND VARIABLES Objects4.3.1

ssion

a

state,
that
the

rence
nce in
DRAFT

sa[0] = "he"; sa[1] = "llo";
System.out.println(sa[0] + sa[1]);

}
}

which produces the output:

default
p: (0,0)
a: { (0,0), (1,1) }
hello

The operators on references to objects are:

• Field access, using either a qualified name (§6.6) or a field access expre
(§15.11)

• Method invocation (§15.12)

• The cast operator (§5.5, §15.16)

• The string concatenation operator+ (§15.18.1), which, when given aString
operand and a reference, will convert the reference to aString by invoking
thetoString method of the referenced object (using"null" if either the ref-
erence or the result oftoString is a null reference), and then will produce
newly createdString that is the concatenation of the two strings

• Theinstanceof operator (§15.20.2)

• The reference equality operators== and!= (§15.21.3)

• The conditional operator? : (§15.25).

There may be many references to the same object. Most objects have
stored in the fields of objects that are instances of classes or in the variables
are the components of an array object. If two variables contain references to
same object, the state of the object can be modified using one variable’s refe
to the object, and then the altered state can be observed through the refere
the other variable.

The example program:

class Value { int val; }

class Test {
public static void main(String[] args) {

int i1 = 3;
int i2 = i1;
i2 = 4;
System.out.print("i1==" + i1);
43

4.3.2 The ClassObject TYPES, VALUES, AND VARIABLES

44

he

l

pe
s or
DRAFT
System.out.println(" but i2==" + i2);
Value v1 = new Value();
v1.val = 5;
Value v2 = v1;
v2.val = 6;
System.out.print("v1.val==" + v1.val);
System.out.println(" and v2.val==" + v2.val);

}
}

produces the output:

i1==3 but i2==4
v1.val==6 and v2.val==6

becausev1.val andv2.val reference the same instance variable (§4.5.3) in t
oneValue object created by the onlynew expression, whilei1 andi2 are differ-
ent variables.

See §10 and §15.10 for examples of the creation and use of arrays.
Each object has an associated lock (§17.13), which is used bysynchronized

methods (§8.4.3) and thesynchronized statement (§14.18) to provide contro
over concurrent access to state by multiple threads (§17.12).

4.3.2 The ClassObject

The classObject is a superclass (§8.1) of all other classes. A variable of ty
Object can hold a reference to any object, whether it is an instance of a clas
an array (§10). All class and array types inherit the methods of classObject,
which are summarized here:

package java.lang;

public class Object {
public final Class getClass() { . . . }
public String toString() { . . . }
public boolean equals(Object obj) { . . . }
public int hashCode() { . . . }
protected Object clone()

throws CloneNotSupportedException { . . . }
public final void wait()

throws IllegalMonitorStateException,
InterruptedException { . . . }

public final void wait(long millis)
throws IllegalMonitorStateException,

InterruptedException { . . . }
public final void wait(long millis, int nanos) { . . . }

throws IllegalMonitorStateException,
InterruptedException { . . . }

TYPES, VALUES, AND VARIABLES When Reference Types Are the Same4.3.4

f
for
its

thod
ed

s

-

is

es to

aded
sent
DRAFT
public final void notify() { . . . }

throws IllegalMonitorStateException
public final void notifyAll() { . . . }

throws IllegalMonitorStateException
protected void finalize()

throws Throwable { . . . }
}

The members ofObject are as follows:

• The methodgetClass returns theClass object that represents the class o
the object. AClass object exists for each reference type. It can be used,
example, to discover the fully qualified name of a class, its members,
immediate superclass, and any interfaces that it implements. A class me
that is declaredsynchronized (§8.4.3.6) synchronizes on the lock associat
with theClass object of the class.

• The methodtoString returns aString representation of the object.

• The methodsequals and hashCode are very useful in hashtables such a
java.util.Hashtable. The methodequals defines a notion of object
equality, which is based on value, not reference, comparison.

• The methodclone is used to make a duplicate of an object.

• The methodswait, notify, andnotifyAll are used in concurrent program
ming using threads, as described in §17.

• The methodfinalize is run just before an object is destroyed and
described in §12.6.

4.3.3 The ClassString

Instances of classString represent sequences of Unicode characters. AString
object has a constant (unchanging) value. String literals (§3.10.5) are referenc
instances of classString.

The string concatenation operator+ (§15.18.1) implicitly creates a new
String object.

4.3.4 When Reference Types Are the Same

Two reference types are thesame compile-time typeif they have the same binary
name (§13.1), in which case they are sometimes said to be thesame classor the
same interface.

At run time, several reference types with the same binary name may be lo
simultaneously by different class loaders. These types may or may not repre
45

4.4 Where Types Are Used TYPES, VALUES, AND VARIABLES

46

dec-

class
ome-

-time

s of
DRAFT
the same type declaration. Even if two such types do represent the same type
laration, they are considered distinct.

Two reference types are thesame run-time type if:

• They are both class or both interface types, are loaded by the same
loader, and have the same binary name (§13.1), in which case they are s
times said to be thesame run-time class or thesame run-time interface.

• They are both array types, and their component types are the same run
type(§10).

4.4 Where Types Are Used

Types are used when they appear in declarations or in certain expressions.
The following code fragment contains one or more instances of most kind

usage of a type:

import java.util.Random;

class MiscMath {

int divisor;

MiscMath(int divisor) {
this.divisor = divisor;

}

float ratio(long l) {
try {

l /= divisor;
} catch (Exception e) {

if (e instanceof ArithmeticException)
l = Long.MAX_VALUE;

else
l = 0;

}
return (float)l;

}

double gausser() {
Random r = new Random();
double[] val = new double[2];
val[0] = r.nextGaussian();
val[1] = r.nextGaussian();
return (val[0] + val[1]) / 2;

}

}

TYPES, VALUES, AND VARIABLES Variables 4.5

8.3),

r for

eter

ed its
3).

its
x or
.1,
DRAFT
In this example, types are used in declarations of the following:

• Imported types (§7.5); here the typeRandom, imported from the type
java.util.Random of the packagejava.util, is declared

• Fields, which are the class variables and instance variables of classes (§
and constants of interfaces (§9.3); here the fielddivisor in the class
MiscMath is declared to be of typeint

• Method parameters (§8.4.1); here the parameterl of the methodratio is
declared to be of typelong

• Method results (§8.4); here the result of the methodratio is declared to be of
type float, and the result of the methodgausser is declared to be of type
double

• Constructor parameters (§8.8.1); here the parameter of the constructo
MiscMath is declared to be of typeint

• Local variables (§14.4, §14.13); the local variablesr andval of the method
gausser are declared to be of typesRandom anddouble[] (array ofdouble)

• Exception handler parameters (§14.19); here the exception handler param
e of thecatch clause is declared to be of typeException

and in expressions of the following kinds:

• Class instance creations (§15.9); here a local variabler of methodgausser is
initialized by a class instance creation expression that uses the typeRandom

• Array creations (§15.10); here the local variableval of methodgausser is
initialized by an array creation expression that creates an array ofdouble
with size 2

• Casts (§15.16); here thereturn statement of the methodratio uses the
float type in a cast

• The instanceof operator (§15.20.2); here theinstanceof operator tests
whethere is assignment compatible with the typeArithmeticException

4.5 Variables

A variable is a storage location and has an associated type, sometimes call
compile-time type, that is either a primitive type (§4.2) or a reference type (§4.
A variable always contains a value that is assignment compatible (§5.2) with
type. A variable’s value is changed by an assignment (§15.26) or by a prefi
postfix++ (increment) or-- (decrement) operator (§15.14.1, §15.14.2, §15.15
§15.15.2).
47

4.5.1 Variables of Primitive Type TYPES, VALUES, AND VARIABLES

48

he
.5.5)
5.2),
k is

.

pati-

ce is
ari-
2.7).

t

es
ny

to
ated
is no

For
ble is
DRAFT
Compatibility of the value of a variable with its type is guaranteed by t

design of the Java programming language. Default values are compatible (§4
and all assignments to a variable are checked for assignment compatibility (§
usually at compile time, but, in a single case involving arrays, a run-time chec
made (§10.10).

4.5.1 Variables of Primitive Type

A variable of a primitive type always holds a value of that exact primitive type

4.5.2 Variables of Reference Type

A variable of reference type can hold either of the following:

• A null reference

• A reference to any object (§4.3) whose class (§4.5.6) is assignment com
ble (§5.2) with the type of the variable

4.5.3 Kinds of Variables

There are seven kinds of variables:

1. A class variableis a field declared using the keywordstatic within a class
declaration (§8.3.1.1), or with or without the keywordstatic within an inter-
face declaration (§9.3). A class variable is created when its class or interfa
prepared (§12.3.2) and is initialized to a default value (§4.5.5). The class v
able effectively ceases to exist when its class or interface is unloaded (§1

2. An instance variableis a field declared within a class declaration withou
using the keywordstatic (§8.3.1.1). If a classT has a fielda that is an
instance variable, then a new instance variablea is created and initialized to a
default value (§4.5.5) as part of each newly created object of classT or of any
class that is a subclass ofT (§8.1.3). The instance variable effectively ceas
to exist when the object of which it is a field is no longer referenced, after a
necessary finalization of the object (§12.6) has been completed.

3. Array componentsare unnamed variables that are created and initialized
default values (§4.5.5) whenever a new object that is an array is cre
(§15.10). The array components effectively cease to exist when the array
longer referenced. See §10 for a description of arrays.

4. Method parameters(§8.4.1) name argument values passed to a method.
every parameter declared in a method declaration, a new parameter varia

TYPES, VALUES, AND VARIABLES Kinds of Variables4.5.3

tial-
The
ody

uc-
ame-
.9) or
ew
re-
ffec-
r is

ht
d
The
f the

.4).

ocal

sion
s-
ent
t the
th-
hen

be
exe-

cal
the
by

fore it
6).
DRAFT
created each time that method is invoked (§15.12). The new variable is ini
ized with the corresponding argument value from the method invocation.
method parameter effectively ceases to exist when the execution of the b
of the method is complete.

5. Constructor parameters(§8.8.1) name argument values passed to a constr
tor. For every parameter declared in a constructor declaration, a new par
ter variable is created each time a class instance creation expression (§15
explicit constructor invocation (§8.8.5) invokes that constructor. The n
variable is initialized with the corresponding argument value from the c
ation expression or constructor invocation. The constructor parameter e
tively ceases to exist when the execution of the body of the constructo
complete.

6. An exception-handler parameteris created each time an exception is caug
by acatch clause of atry statement (§14.19). The new variable is initialize
with the actual object associated with the exception (§11.3, §14.17).
exception-handler parameter effectively ceases to exist when execution o
block associated with thecatch clause is complete.

7. Local variablesare declared by local variable declaration statements (§14
Whenever the flow of control enters a block (§14.2) orfor statement
(§14.13), a new variable is created for each local variable declared in a l
variable declaration statement immediately contained within that block orfor
statement. A local variable declaration statement may contain an expres
which initializes the variable. The local variable with an initializing expre
sion is not initialized, however, until the local variable declaration statem
that declares it is executed. (The rules of definite assignment (§16) preven
value of a local variable from being used before it has been initialized or o
erwise assigned a value.) The local variable effectively ceases to exist w
the execution of the block orfor statement is complete.

Were it not for one exceptional situation, a local variable could always
regarded as being created when its local variable declaration statement is
cuted. The exceptional situation involves theswitch statement (§14.10),
where it is possible for control to enter a block but bypass execution of a lo
variable declaration statement. Because of the restrictions imposed by
rules of definite assignment (§16), however, the local variable declared
such a bypassed local variable declaration statement cannot be used be
has been definitely assigned a value by an assignment expression (§15.2

The following example contains several different kinds of variables:
49

4.5.4 final Variables TYPES, VALUES, AND VARIABLES

50

.
ely

lue.
may
the

y be
ame

ue

s
n
ts
DRAFT

class Point {
static int numPoints; // numPoints is a class variable
int x, y; // x andy are instance variables
int[] w = new int[10]; // w[0] is an array component
int setX(int x) { // x is a method parameter

int oldx = this.x; // oldx is a local variable
this.x = x;
return oldx;

}
}

4.5.4 final Variables

A variable can be declaredfinal. A final variable may only be assigned to once
It is a compile time error if a final variable is assigned to unless it is definit
unassigned (§16) immediately prior to the assignment.

A blank final is a final variable whose declaration lacks an initializer.
Once afinal variable has been assigned, it always contains the same va

If a final variable holds a reference to an object, then the state of the object
be changed by operations on the object, but the variable will always refer to
same object. This applies also to arrays, because arrays are objects; if afinal
variable holds a reference to an array, then the components of the array ma
changed by operations on the array, but the variable will always refer to the s
array.

Declaring a variablefinal can serve as useful documentation that its val
will not change and can help avoid programming errors.

In the example:

class Point {
int x, y;
int useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

the classPoint declares afinal class variableorigin. The origin variable
holds a reference to an object that is an instance of classPoint whose coordinates
are (0, 0). The value of the variablePoint.origin can never change, so it alway
refers to the samePoint object, the one created by its initializer. However, a
operation on thisPoint object might change its state—for example, modifying i
useCount or even, misleadingly, itsx or y coordinate.

4.5.5 Initial Values of Variables

Every variable in a program must have a value before its value is used:

TYPES, VALUES, AND VARIABLES Initial Values of Variables4.5.5

ith a

ent

rgu-
plicit

ect

is
can
DRAFT
• Each class variable, instance variable, or array component is initialized w

default value when it is created (§15.9, §15.10):

◆ For typebyte, the default value is zero, that is, the value of(byte)0.

◆ For typeshort, the default value is zero, that is, the value of(short)0.

◆ For typeint, the default value is zero, that is,0.

◆ For typelong, the default value is zero, that is,0L.

◆ For typefloat, the default value is positive zero, that is,0.0f.

◆ For typedouble, the default value is positive zero, that is,0.0d.

◆ For typechar, the default value is the null character, that is,'\u0000'.

◆ For typeboolean, the default value isfalse.

◆ For all reference types (§4.3), the default value isnull.

• Each method parameter (§8.4.1) is initialized to the corresponding argum
value provided by the invoker of the method (§15.12).

• Each constructor parameter (§8.8.1) is initialized to the corresponding a
ment value provided by a class instance creation expression (§15.9) or ex
constructor invocation (§8.8.5).

• An exception-handler parameter (§14.19) is initialized to the thrown obj
representing the exception (§11.3, §14.17).

• A local variable (§14.4, §14.13) must be explicitly given a value before it
used, by either initialization (§14.4) or assignment (§15.26), in a way that
be verified by the compiler using the rules for definite assignment (§16).

The example program:

class Point {
static int npoints;
int x, y;
Point root;

}

class Test {
public static void main(String[] args) {

System.out.println("npoints=" + Point.npoints);
Point p = new Point();
System.out.println("p.x=" + p.x + ", p.y=" + p.y);
System.out.println("p.root=" + p.root);

}
}

51

4.5.6 Types, Classes, and Interfaces TYPES, VALUES, AND VARIABLES

52

ll
s a

a type
ref-
rence
8.1)

ed in

d
f all

his
res-

ime
lim-
ce at

com-

is an
hose
.1.4)

the
DRAFT
prints:

npoints=0
p.x=0, p.y=0
p.root=null

illustrating the default initialization ofnpoints, which occurs when the class
Point is prepared (§12.3.2), and the default initialization ofx, y, androot, which
occurs when a newPoint is instantiated. See §12 for a full description of a
aspects of loading, linking, and initialization of classes and interfaces, plu
description of the instantiation of classes to make new class instances.

4.5.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has
that can be determined at compile time. The type may be a primitive type or a
erence type. Reference types include class types and interface types. Refe
types are introduced by type declarations, which include class declarations (§
and interface declarations (§9.1). We often use the termtype to refer to either a
class or an interface.

Every object belongs to some particular class: the class that was mention
the creation expression that produced the object, the class whoseClass object
was used to invoke a reflective method to produce the object, or theString class
for objects implicitly created by the string concatenation operator+ (§15.18.1).
This class is called theclass of the object. (Arrays also have a class, as describe
at the end of this section.) An object is said to be an instance of its class and o
superclasses of its class.

Sometimes a variable or expression is said to have a “run-time type”. T
refers to the class of the object referred to by the value of the variable or exp
sion at run time, assuming that the value is notnull.

The compile time type of a variable is always declared, and the compile t
type of an expression can be deduced at compile time. The compile time type
its the possible values that the variable can hold or the expression can produ
run time. If a run-time value is a reference that is notnull, it refers to an object or
array that has a class, and that class will necessarily be compatible with the
pile-time type.

Even though a variable or expression may have a compile-time type that
interface type, there are no instances of interfaces. A variable or expression w
type is an interface type can reference any object whose class implements (§8
that interface.

Here is an example of creating new objects and of the distinction between
type of a variable and the class of an object:

TYPES, VALUES, AND VARIABLES Types, Classes, and Interfaces4.5.6

e

DRAFT
public interface Colorable {

void setColor(byte r, byte g, byte b);
}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {

byte r, g, b;

public void setColor(byte rv, byte gv, byte bv) {
r = rv; g = gv; b = bv;

}

}

class Test {
public static void main(String[] args) {

Point p = new Point();
ColoredPoint cp = new ColoredPoint();
p = cp;
Colorable c = cp;

}
}

In this example:

• The local variablep of the methodmain of classTest has typePoint and is
initially assigned a reference to a new instance of classPoint.

• The local variablecp similarly has as its typeColoredPoint, and is initially
assigned a reference to a new instance of classColoredPoint.

• The assignment of the value ofcp to the variablep causesp to hold a refer-
ence to aColoredPoint object. This is permitted becauseColoredPoint is a
subclass ofPoint, so the classColoredPoint is assignment compatible
(§5.2) with the typePoint. A ColoredPoint object includes support for all
the methods of aPoint. In addition to its particular fieldsr, g, andb, it has
the fields of classPoint, namelyx andy.

• The local variablec has as its type the interface typeColorable, so it can
hold a reference to any object whose class implementsColorable; specifi-
cally, it can hold a reference to aColoredPoint.

• Note that an expression such as “new Colorable()” is not valid because it is
not possible to create an instance of an interface, only of a class.

Every array also has a class; the methodgetClass, when invoked for an array
object, will return a class object (of classClass) that represents the class of th
array.
53

4.5.6 Types, Classes, and Interfaces TYPES, VALUES, AND VARIABLES

54

; for
DRAFT
The classes for arrays have strange names that are not valid identifiers

example, the class for an array ofint components has the name “[I” and so the
value of the expression:

new int[10].getClass().getName()

is the string"[I"; see the specification ofClass.getName for details.

C H A P T E R 5

s

that
rals,
r, to

opri-
the

e that
g the
an

ur-

l
ion
the

on

f

ing
DRAFT
Conversions and Promotion

EVERY expression written in the Java programming language has a type
can be deduced from the structure of the expression and the types of the lite
variables, and methods mentioned in the expression. It is possible, howeve
write an expression in a context where the type of the expression is not appr
ate. In some cases, this leads to an error at compile time; for example, if
expression in anif statement (§14.9) has any type other thanboolean, a com-
pile-time error occurs. In other cases, the context may be able to accept a typ
is related to the type of the expression; as a convenience, rather than requirin
programmer to indicate a type conversion explicitly, the language performs
implicit conversionfrom the type of the expression to a type acceptable for its s
rounding context.

A specific conversion from typeS to typeT allows an expression of typeS to
be treated at compile time as if it had typeT instead. In some cases this wil
require a corresponding action at run time to check the validity of the convers
or to translate the run-time value of the expression into a form appropriate for
new typeT. For example:

• A conversion from typeObject to typeThread requires a run-time check to
make sure that the run-time value is actually an instance of classThread or
one of its subclasses; if it is not, an exception is thrown.

• A conversion from typeThread to typeObject requires no run-time action;
Thread is a subclass ofObject, so any reference produced by an expressi
of typeThread is a valid reference value of typeObject.

• A conversion from typeint to typelong requires run-time sign-extension o
a 32-bit integer value to the 64-bitlong representation. No information is
lost.

A conversion from typedouble to typelong requires a nontrivial translation
from a 64-bit floating-point value to the 64-bit integer representation. Depend
on the actual run-time value, information may be lost.
55

5 Conversions and Promotions CONVERSIONS AND PROMOTIONS

56

ted.
the

y
e but
sing

ssion
tion

hat
t.

one

clud-
-

n to
t are
tion.

rgu-
rms

ation

plic-
ent

han
xcep-
DRAFT
In every conversion context, only certain specific conversions are permit

For convenience of description, the specific conversions that are possible in
Java programming language are grouped into several broad categories:

• Identity conversions

• Widening primitive conversions

• Narrowing primitive conversions

• Widening reference conversions

• Narrowing reference conversions

• String conversions

• Value set conversions

There are fiveconversion contextsin which conversion of expressions ma
occur. Each context allows conversions in some of the categories named abov
not others. The term “conversion” is also used to describe the process of choo
a specific conversion for such a context. For example, we say that an expre
that is an actual argument in a method invocation is subject to “method invoca
conversion,” meaning that a specific conversion will be implicitly chosen for t
expression according to the rules for the method invocation argument contex

One conversion context is the operand of a numeric operator such as+ or *.
The conversion process for such operands is callednumeric promotion. Promotion
is special in that, in the case of binary operators, the conversion chosen for
operand may depend in part on the type of the other operand expression.

This chapter first describes the seven categories of conversions (§5.1), in
ing the special conversions toString allowed for the string concatenation opera
tor +. Then the five conversion contexts are described:

• Assignment conversion (§5.2, §15.26) converts the type of an expressio
the type of a specified variable. The conversions permitted for assignmen
limited in such a way that assignment conversion never causes an excep

• Method invocation conversion (§5.3, §15.9, §15.12) is applied to each a
ment in a method or constructor invocation and, except in one case, perfo
the same conversions that assignment conversion does. Method invoc
conversion never causes an exception.

• Casting conversion (§5.5) converts the type of an expression to a type ex
itly specified by a cast operator (§15.16). It is more inclusive than assignm
or method invocation conversion, allowing any specific conversion other t
a string conversion, but certain casts to a reference type may cause an e
tion at run time.

CONVERSIONS AND PROMOTIONS Conversions and Promotions 5

ype

o a
DRAFT
• String conversion (§5.4, §15.18.1) allows any type to be converted to t
String.

• Numeric promotion (§5.6) brings the operands of a numeric operator t
common type so that an operation can be performed.

Here are some examples of the various contexts for conversion:

class Test {

public static void main(String[] args) {

// Casting conversion (§5.4) of afloat literal to
// typeint. Without the cast operator, this would
// be a compile-time error, because this is a
// narrowing conversion (§5.1.3):
int i = (int)12.5f;

// String conversion (§5.4) ofi’s int value:
System.out.println("(int)12.5f==" + i);

// Assignment conversion (§5.2) ofi’s value to type
// float. This is a widening conversion (§5.1.2):
float f = i;

// String conversion off 'sfloat value:
System.out.println("after float widening: " + f);

// Numeric promotion (§5.6) ofi’s value to type
// float. This is a binary numeric promotion.
// After promotion, the operation isfloat*float:
System.out.print(f);
f = f * i;

// Two string conversions ofi andf:
System.out.println("*" + i + "==" + f);

// Method invocation conversion (§5.3) off ’s value
// to typedouble, needed because the methodMath.sin
// accepts only adouble argument:
double d = Math.sin(f);

// Two string conversions off andd:
System.out.println("Math.sin(" + f + ")==" + d);

}

}

which produces the output:

(int)12.5f==12
after float widening: 12.0
57

5.1 Kinds of Conversion CONVERSIONS AND PROMOTIONS

58

into

ays
ing

triv-
to

all
type

w-
DRAFT
12.0*12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kinds of Conversion

Specific type conversions in the Java programming language are divided
seven categories.

5.1.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.
This may seem trivial, but it has two practical consequences. First, it is alw

permitted for an expression to have the desired type to begin with, thus allow
the simply stated rule that every expression is subject to conversion, if only a
ial identity conversion. Second, it implies that it is permitted for a program
include redundant cast operators for the sake of clarity.

The only permitted conversion that involves the typeboolean is the identity
conversion fromboolean to boolean.

5.1.2 Widening Primitive Conversion

The following 19 specific conversions on primitive types are called thewidening
primitive conversions:

• byte to short, int, long, float, or double

• short to int, long, float, or double

• char to int, long, float, or double

• int to long, float, or double

• long to float or double

• float to double

Widening primitive conversions do not lose information about the over
magnitude of a numeric value. Indeed, conversions widening from an integral
to another integral type and fromfloat to double do not lose any information at
all; the numeric value is preserved exactly. Conversions widening fromfloat to
double in strictfp expressions also preserve the numeric value exactly; ho
ever, such conversions that are notstrictfp may lose information about the
overall magnitude of the converted value.

CONVERSIONS AND PROMOTIONS Narrowing Primitive Conversions5.1.3

g-
e a
rest

the

ons

.

of a
DRAFT
Conversion of anint or along value tofloat, or of along value todouble,

may result inloss of precision—that is, the result may lose some of the least si
nificant bits of the value. In this case, the resulting floating-point value will b
correctly rounded version of the integer value, using IEEE 754 round-to-nea
mode (§4.2.4).

A widening conversion of a signed integer value to an integral typeT simply
sign-extends the two’s-complement representation of the integer value to fill
wider format. A widening conversion of a character to an integral typeT zero-
extends the representation of the character value to fill the wider format.

Despite the fact that loss of precision may occur, widening conversi
among primitive types never result in a run-time exception (§11).

Here is an example of a widening conversion that loses precision:

class Test {
public static void main(String[] args) {

int big = 1234567890;
float approx = big;
System.out.println(big - (int)approx);

}
}

which prints:

-46

thus indicating that information was lost during the conversion from typeint to
typefloat because values of typefloat are not precise to nine significant digits

5.1.3 Narrowing Primitive Conversions

The following 23 specific conversions on primitive types are called thenarrowing
primitive conversions:

• byte to char

• short to byte or char

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

Narrowing conversions may lose information about the overall magnitude
numeric value and may also lose precision.
59

5.1.3 Narrowing Primitive Conversions CONVERSIONS AND PROMOTIONS

60

-
of
the

-
of
ber,

he

nt

ega-
ble

osi-
ble

p.

a

DRAFT
A narrowing conversion of a signed integer to an integral typeT simply dis-

cards all but then lowest order bits, wheren is the number of bits used to repre
sent typeT. In addition to a possible loss of information about the magnitude
the numeric value, this may cause the sign of the resulting value to differ from
sign of the input value.

A narrowing conversion of a character to an integral typeT likewise simply
discards all but then lowest order bits, wheren is the number of bits used to rep
resent typeT. In addition to a possible loss of information about the magnitude
the numeric value, this may cause the resulting value to be a negative num
even though characters represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral typeT takes
two steps:

1. In the first step, the floating-point number is converted either to along, if T is
long, or to anint, if T is byte, short, char, orint, as follows:

◆ If the floating-point number is NaN (§4.2.3), the result of the first step of t
conversion is anint or long 0.

◆ Otherwise, if the floating-point number is not an infinity, the floating-poi
value is rounded to an integer valueV, rounding toward zero using IEEE
754 round-toward-zero mode (§4.2.3). Then there are two cases:

❖ If T is long, and this integer value can be represented as along, then the
result of the first step is thelong valueV.

❖ Otherwise, if this integer value can be represented as anint, then the
result of the first step is theint valueV.

◆ Otherwise, one of the following two cases must be true:

❖ The value must be too small (a negative value of large magnitude or n
tive infinity), and the result of the first step is the smallest representa
value of typeint or long.

❖ The value must be too large (a positive value of large magnitude or p
tive infinity), and the result of the first step is the largest representa
value of typeint or long.

2. In the second step:

◆ If T is int or long, the result of the conversion is the result of the first ste

◆ If T is byte, char, or short, the result of the conversion is the result of
narrowing conversion to typeT (§5.1.3) of the result of the first step.

The example:

CONVERSIONS AND PROMOTIONS Narrowing Primitive Conversions5.1.3

i-
stood

ly,
f

ay
ime

ver-
DRAFT
class Test {

public static void main(String[] args) {
float fmin = Float.NEGATIVE_INFINITY;
float fmax = Float.POSITIVE_INFINITY;
System.out.println("long: " + (long)fmin +

".." + (long)fmax);
System.out.println("int: " + (int)fmin +

".." + (int)fmax);
System.out.println("short: " + (short)fmin +

".." + (short)fmax);
System.out.println("char: " + (int)(char)fmin +

".." + (int)(char)fmax);
System.out.println("byte: " + (byte)fmin +

".." + (byte)fmax);
}

}

produces the output:

long: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647
short: 0..-1
char: 0..65535
byte: 0..-1

The results forchar, int, andlong are unsurprising, producing the minimum
and maximum representable values of the type.

The results forbyte andshort lose information about the sign and magn
tude of the numeric values and also lose precision. The results can be under
by examining the low order bits of the minimum and maximumint. The mini-
mumint is, in hexadecimal,0x80000000, and the maximumint is 0x7fffffff.
This explains theshort results, which are the low 16 bits of these values, name
0x0000 and0xffff; it explains thechar results, which also are the low 16 bits o
these values, namely,'\u0000' and'\uffff'; and it explains thebyte results,
which are the low 8 bits of these values, namely,0x00 and0xff.

Despite the fact that overflow, underflow, or other loss of information m
occur, narrowing conversions among primitive types never result in a run-t
exception (§11).

Here is a small test program that demonstrates a number of narrowing con
sions that lose information:

class Test {

public static void main(String[] args) {

// A narrowing ofint to short loses high bits:
System.out.println("(short)0x12345678==0x" +

Integer.toHexString((short)0x12345678));
61

5.1.4 Widening Reference Conversions CONVERSIONS AND PROMOTIONS

62

lass
DRAFT
// A int value not fitting inbyte changes sign and magnitude:
System.out.println("(byte)255==" + (byte)255);

// A float value too big to fit gives largestint value:
System.out.println("(int)1e20f==" + (int)1e20f);

// A NaN converted toint yields zero:
System.out.println("(int)NaN==" + (int)Float.NaN);

// A double value too large forfloat yields infinity:
System.out.println("(float)-1e100==" + (float)-1e100);

// A double value too small forfloat underflows to zero:
System.out.println("(float)1e-50==" + (float)1e-50);

}

}

This test program produces the following output:

(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1e100==-Infinity
(float)1e-50==0.0

5.1.4 Widening Reference Conversions

The following conversions are called thewidening reference conversions:

• From any class typeS to any class typeT, provided thatS is a subclass ofT.
(An important special case is that there is a widening conversion to the c
typeObject from any other class type.)

• From any class typeS to any interface typeK , provided thatS implementsK.

• From the null type to any class type, interface type, or array type.

• From any interface typeJ to any interface typeK, provided thatJ is a sub-
interface ofK.

• From any interface type to typeObject.

• From any array type to typeObject.

• From any array type to typeCloneable.

• From any array type to typejava.io.Serializable

CONVERSIONS AND PROMOTIONS String Conversions5.1.6

ever
e as

e.
0 for

the

g

ence
DRAFT
• From any array typeSC[] to any array typeTC[], provided thatSC andTC

are reference types and there is a widening conversion fromSC to TC .

Such conversions never require a special action at run time and therefore n
throw an exception at run time. They consist simply in regarding a referenc
having some other type in a manner that can be proved correct at compile tim

See §8 for the detailed specifications for classes, §9 for interfaces, and §1
arrays.

5.1.5 Narrowing Reference Conversions

The following conversions are called thenarrowing reference conversions:

• From any class typeS to any class typeT, provided thatS is a superclass ofT.
(An important special case is that there is a narrowing conversion from
class typeObject to any other class type.)

• From any class typeS to any interface typeK, provided thatS is not final and
does not implementK. (An important special case is that there is a narrowin
conversion from the class typeObject to any interface type.)

• From typeObject to any array type.

• From typeObject to any interface type.

• From any interface typeJ to any class typeT that is notfinal.

• From any interface typeJ to any class typeT that isfinal, provided thatT
implementsJ.

• From any interface typeJ to any interface typeK, provided thatJ is not a sub-
interface ofK and there is no method namem such thatJ andK both contain a
method namedm with the same signature but different return types.

• From any array typeSC[] to any array typeTC[], provided thatSC andTC
are reference types and there is a narrowing conversion fromSC to TC.

Such conversions require a test at run time to find out whether the actual refer
value is a legitimate value of the new type. If not, then aClassCastException is
thrown.

5.1.6 String Conversions

There is a string conversion to typeString from every other type, including the
null type.
63

5.1.7 Forbidden Conversions CONVERSIONS AND PROMOTIONS

64

tive

any

on-

type

ace

ther

pe,
DRAFT
5.1.7 Forbidden Conversions

• There is no permitted conversion from any reference type to any primi
type.

• Except for the string conversions, there is no permitted conversion from
primitive type to any reference type.

• There is no permitted conversion from the null type to any primitive type.

• There is no permitted conversion to the null type other than the identity c
version.

• There is no permitted conversion to the typeboolean other than the identity
conversion.

• There is no permitted conversion from the typeboolean other than the iden-
tity conversion and string conversion.

• There is no permitted conversion other than string conversion from class
S to a different class typeT if S is not a subclass ofT andT is not a subclass
of S.

• There is no permitted conversion from class typeS to interface typeK if S is
final and does not implementK.

• There is no permitted conversion from class typeS to any array type ifS is not
Object.

• There is no permitted conversion other than string conversion from interf
typeJ to class typeT if T is final and does not implementJ .

• There is no permitted conversion from interface typeJ to interface typeK if J
andK contain methods with the same signature but different return types.

• There is no permitted conversion from any array type to any class type o
thanObject or String.

• There is no permitted conversion from any array type to any interface ty
except to the interface typesjava.io.Serializable andCloneable, which
are implemented by all arrays.

• There is no permitted conversion from array typeSC[] to array typeTC[] if
there is no permitted conversion other than a string conversion fromSC to TC.

CONVERSIONS AND PROMOTIONS Value Set Conversion5.1.8

e

ro-

the
f the
the
se

mber

n the
f the
the
se

mber

vide

n
float

t,
dou-

nent
ethod
osen
ded-

sion
DRAFT
5.1.8 Value Set Conversion

Value set conversionis the process of mapping a floating-point value from on
value set to another without changing its type.

Within an expression that is not FP-strict (§15.4), value set conversion p
vides choices to an implementation of the Java programming language:

• If the value is an element of the float-extended-exponent value set, then
implementation may, at its option, map the value to the nearest element o
float value set. This conversion may result in overflow (in which case
value is replaced by an infinity of the same sign) or underflow (in which ca
the value may lose precision because it is replaced by a denormalized nu
or zero of the same sign).

• If the value is an element of the double-extended-exponent value set, the
implementation may, at its option, map the value to the nearest element o
double value set. This conversion may result in overflow (in which case
value is replaced by an infinity of the same sign) or underflow (in which ca
the value may lose precision because it is replaced by a denormalized nu
or zero of the same sign).

Within an FP-strict expression (§15.4), value set conversion does not pro
any choices; every implementation must behave in the same way:

• If the value is of typefloat and is not an element of the float value set, the
the implementation must map the value to the nearest element of the
value set. This conversion may result in overflow or underflow.

• If the value is of typedouble and is not an element of the double value se
then the implementation must map the value to the nearest element of the
ble value set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-expo
value set or double-extended-exponent value set is necessary only when a m
is invoked whose declaration is not FP-strict and the implementation has ch
to represent the result of the method invocation as an element of an exten
exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conver
always leaves unchanged any value whose type is neitherfloat nordouble.
65

5.2 Assignment Conversion CONVERSIONS AND PROMOTIONS

66

ed
e of
.1),
ion
he

is a

by a
urs.

nt
ment
.

o-
t ele-
or

by

at an
ents
DRAFT

5.2 Assignment Conversion

Assignment conversionoccurs when the value of an expression is assign
(§15.26) to a variable: the type of the expression must be converted to the typ
the variable. Assignment contexts allow the use of an identity conversion (§5.1
a widening primitive conversion (§5.1.2), or a widening reference convers
(§5.1.4). In addition, a narrowing primitive conversion may be used if all of t
following conditions are satisfied:

• The expression is a constant expression of typebyte, short, char or int.

• The type of the variable isbyte, short, orchar.

• The value of the expression (which is known at compile time, because it
constant expression) is representable in the type of the variable.

If the type of the expression cannot be converted to the type of the variable
conversion permitted in an assignment context, then a compile-time error occ

If the type of the variable isfloat or double, then value set conversion is
applied after the type conversion:

• If the value is of typefloat and is an element of the float-extended-expone
value set, then the implementation must map the value to the nearest ele
of the float value set. This conversion may result in overflow or underflow

• If the value is of typedouble and is an element of the double-extended-exp
nent value set, then the implementation must map the value to the neares
ment of the double value set. This conversion may result in overflow
underflow.

If the type of an expression can be converted to the type of a variable
assignment conversion, we say the expression (or its value) isassignable tothe
variable or, equivalently, that the type of the expression isassignment compatible
with the type of the variable.

An assignment conversion never causes an exception. (Note, however, th
assignment may result in an exception in a special case involving array elem
—see §10.10 and §15.26.1.)

The compile-time narrowing of constants means that code such as:

byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal42 has typeint
would mean that a cast tobyte would be required:

byte theAnswer = (byte)42; // cast is permitted but not required

CONVERSIONS AND PROMOTIONS Assignment Conversion 5.2

pe;

n of

be
DRAFT
A value of primitive type must not be assigned to a variable of reference ty

an attempt to do so will result in a compile-time error. A value of typeboolean
can be assigned only to a variable of typeboolean.

The following test program contains examples of assignment conversio
primitive values:

class Test {
public static void main(String[] args) {

short s = 12; // narrow12 to short
float f = s; // widenshort to float
System.out.println("f=" + f);

char c = '\u0123';
long l = c; // widenchar to long
System.out.println("l=0x" + Long.toString(l,16));

f = 1.23f;
double d = f; // widenfloat to double
System.out.println("d=" + d);

}
}

It produces the following output:

f=12.0
l=0x123
d=1.2300000190734863

The following test, however, produces compile-time errors:

class Test {
public static void main(String[] args) {

short s = 123;
char c = s; // error: would require cast
s = c; // error: would require cast

}
}

because not allshort values arechar values, and neither are allchar values
short values.

A value of the null type (the null reference is the only such value) may
assigned to any reference type, resulting in a null reference of that type.

Here is a sample program illustrating assignments of references:

public class Point { int x, y; }

public class Point3D extends Point { int z; }

public interface Colorable {
void setColor(int color);

}

67

5.2 Assignment Conversion CONVERSIONS AND PROMOTIONS

68
DRAFT
public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {

// Assignments to variables of class type:
Point p = new Point();
p = new Point3D(); // ok: becausePoint3D is a

// subclass ofPoint

Point3D p3d = p; // error: will require a cast because a
// Point might not be aPoint3D
// (even though it is, dynamically,
// in this example.)

// Assignments to variables of typeObject:
Object o = p; // ok: any object toObject
int[] a = new int[3];
Object o2 = a; // ok: an array toObject

// Assignments to variables of interface type:
ColoredPoint cp = new ColoredPoint();
Colorable c = cp; // ok: ColoredPoint implements

// Colorable

// Assignments to variables of array type:
byte[] b = new byte[4];
a = b; // error: these are not arrays

// of the same primitive type
Point3D[] p3da = new Point3D[3];
Point[] pa = p3da; // ok: since we can assign a

// Point3D to aPoint
p3da = pa; // error: (cast needed) since aPoint

// can't be assigned to aPoint3D

}

}

Assignment of a value of compile-time reference typeS (source) to a variable
of compile-time reference typeT (target) is checked as follows:

• If S is a class type:

◆ If T is a class type, thenS must either be the same class asT, or S must be a
subclass ofT, or a compile-time error occurs.

◆ If T is an interface type, thenS must implement interfaceT, or a compile-
time error occurs.

CONVERSIONS AND PROMOTIONS Assignment Conversion 5.2

for

nce
ed in
DRAFT
◆ If T is an array type, then a compile-time error occurs.

• If S is an interface type:

◆ If T is a class type, thenT must beObject, or a compile-time error occurs.

◆ If T is an interface type, thenT must be either the same interface asS or a
superinterface ofS, or a compile-time error occurs.

◆ If T is an array type, then a compile-time error occurs.

• If S is an array typeSC[], that is, an array of components of typeSC:

◆ If T is a class type, thenT must beObject, or a compile-time error occurs.

◆ If T is an interface type, then a compile-time error occurs unlessT is the
type java.io.Serializable or the typeCloneable, the only interfaces
implemented by arrays.

◆ If T is an array typeTC[], that is, an array of components of typeTC, then a
compile-time error occurs unless one of the following is true:

❖ TC andSC are the same primitive type.

❖ TC andSC are both reference types and typeSC is assignable toTC, as
determined by a recursive application of these compile-time rules
assignability.

See §8 for the specification of classes, §9 for interfaces, and §10 for arrays.
The following test program illustrates assignment conversions on refere

values, but fails to compile because it violates the preceding rules, as describ
its comments. This example should be compared to the preceding one.

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

// Okay becauseColoredPoint is a subclass ofPoint:
p = cp;
69

5.2 Assignment Conversion CONVERSIONS AND PROMOTIONS

70

le

.

t

e a
DRAFT
// Okay becauseColoredPoint implements Colorable:
Colorable c = cp;

// The following cause compile-time errors because
// we cannot be sure they will succeed, depending on
// the run-time type ofp; a run-time check will be
// necessary for the needed narrowing conversion and
// must be indicated by including a cast:
cp = p; // p might be neither aColoredPoint

// nor a subclass ofColoredPoint
c = p; // p might not implementColorable

}

}

Here is another example involving assignment of array objects:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {
public static void main(String[] args) {

long[] veclong = new long[100];
Object o = veclong; // okay
Long l = veclong; // compile-time error
short[] vecshort = veclong; // compile-time error
Point[] pvec = new Point[100];
ColoredPoint[] cpvec = new ColoredPoint[100];
pvec = cpvec; // okay
pvec[0] = new Point(); // okay at compile time,

// but would throw an
// exception at run time

cpvec = pvec; // compile-time error
}

}

In this example:

• The value ofveclong cannot be assigned to aLong variable, becauseLong
is a class type other thanObject. An array can be assigned only to a variab
of a compatible array type, or to a variable of typeObject.

• The value ofveclong cannot be assigned tovecshort, because they are
arrays of primitive type, andshort andlong are not the same primitive type

• The value ofcpvec can be assigned topvec, because any reference tha
could be the value of an expression of typeColoredPoint can be the value of
a variable of typePoint. The subsequent assignment of the newPoint to a
component ofpvec then would throw anArrayStoreException (if the pro-
gram were otherwise corrected so that it could be compiled), becaus

CONVERSIONS AND PROMOTIONS Method Invocation Conversion 5.3

e

sed

or
must
con-
er-

-
t ele-
or

-
arest
or

r-
The
nar-
hod
DRAFT
ColoredPoint array can’t have an instance ofPoint as the value of a com-
ponent.

• The value ofpvec cannot be assigned tocpvec, because not every referenc
that could be the value of an expression of typeColoredPoint can correctly
be the value of a variable of typePoint. If the value ofpvec at run time were
a reference to an instance ofPoint[], and the assignment tocpvec were
allowed, a simple reference to a component ofcpvec, say,cpvec[0], could
return aPoint, and aPoint is not aColoredPoint. Thus to allow such an
assignment would allow a violation of the type system. A cast may be u
(§5.5, §15.16) to ensure thatpvec references aColoredPoint[]:

cpvec = (ColoredPoint[])pvec; // okay, but may throw an
// exception at run time

5.3 Method Invocation Conversion

Method invocation conversionis applied to each argument value in a method
constructor invocation (§15.9, §15.12): the type of the argument expression
be converted to the type of the corresponding parameter. Method invocation
texts allow the use of an identity conversion (§5.1.1), a widening primitive conv
sion (§5.1.2), or a widening reference conversion (§5.1.4).

If the type of an argument expression is eitherfloat or double, then value
set conversion (§5.1.8) is applied after the type conversion:

• If an argument value of typefloat is an element of the float-extended-expo
nent value set, then the implementation must map the value to the neares
ment of the float value set. This conversion may result in overflow
underflow.

• If an argument value of typedouble is an element of the double-extended
exponent value set, then the implementation must map the value to the ne
element of the double value set. This conversion may result in overflow
underflow.

Method invocation conversions specifically do not include the implicit na
rowing of integer constants which is part of assignment conversion (§5.2).
designers of the Java programming language felt that including these implicit
rowing conversions would add additional complexity to the overloaded met
matching resolution process (§15.12.2). Thus, the example:

class Test {

static int m(byte a, int b) { return a+b; }
71

5.4 String Conversion CONVERSIONS AND PROMOTIONS

72

ed
lve

he

e

pe
the

1), a
n

con-
nt or
than

in a

ity
or a

on-

The
of a
DRAFT
static int m(short a, short b) { return a-b; }

public static void main(String[] args) {
System.out.println(m(12, 2)); // compile-time error

}

}

causes a compile-time error because the integer literals12 and2 have typeint, so
neither methodm matches under the rules of (§15.12.2). A language that includ
implicit narrowing of integer constants would need additional rules to reso
cases like this example.

5.4 String Conversion

String conversion applies only to the operands of the binary+ operator when one
of the arguments is aString. In this single special case, the other argument to t
+ is converted to aString, and a newString which is the concatenation of the
two strings is the result of the+. String conversion is specified in detail within th
description of the string concatenation+ operator (§15.18.1).

5.5 Casting Conversion

Casting conversionis applied to the operand of a cast operator (§15.16): the ty
of the operand expression must be converted to the type explicitly named by
cast operator. Casting contexts allow the use of an identity conversion (§5.1.
widening primitive conversion (§5.1.2), a narrowing primitive conversio
(§5.1.3), a widening reference conversion (§5.1.4), or a narrowing reference
version (§5.1.5). Thus casting conversions are more inclusive than assignme
method invocation conversions: a cast can do any permitted conversion other
a string conversion.

Value set conversion (§5.1.8) is applied after the type conversion.
Some casts can be proven incorrect at compile time; such casts result

compile-time error.
A value of a primitive type can be cast to another primitive type by ident

conversion, if the types are the same, or by a widening primitive conversion
narrowing primitive conversion.

A value of a primitive type cannot be cast to a reference type by casting c
version, nor can a value of a reference type be cast to a primitive type.

The remaining cases involve conversion between reference types.
detailed rules for compile-time correctness checking of a casting conversion

CONVERSIONS AND PROMOTIONS Casting Conversion 5.5

e

m-

t

-
.

.

DRAFT
value of compile-time reference typeS (source) to a compile-time reference typ
T (target) are as follows:

• If S is a class type:

◆ If T is a class type, thenS andT must be related classes—that is,S andT
must be the same class, orS a subclass ofT, or T a subclass ofS; otherwise
a compile-time error occurs.

◆ If T is an interface type:

❖ If S is not afinal class (§8.1.1), then the cast is always correct at co
pile time (because even ifS does not implementT, a subclass ofS might).

❖ If S is a final class (§8.1.1), thenS must implementT, or a compile-
time error occurs.

◆ If T is an array type, thenS must be the classObject, or a compile-time
error occurs.

• If S is an interface type:

◆ If T is an array type, thenT must implementS, or a compile-time error
occurs.

◆ If T is a class type that is notfinal (§8.1.1), then the cast is always correc
at compile time (because even ifT does not implementS, a subclass ofT
might).

◆ If T is an interface type and ifT andS contain methods with the same signa
ture (§8.4.2) but different return types, then a compile-time error occurs

• If S is an array typeSC[], that is, an array of components of typeSC :

◆ If T is a class type, then ifT is notObject, then a compile-time error occurs
(becauseObject is the only class type to which arrays can be assigned)

◆ If T is an interface type, then a compile-time error occurs unlessT is the
type java.io.Serializable or the typeCloneable, the only interfaces
implemented by arrays.

◆ If T is an array typeTC[], that is, an array of components of typeTC, then a
compile-time error occurs unless one of the following is true:

❖ TC andSC are the same primitive type.

❖ TC andSC are reference types and typeSC can be cast toTC by a recursive
application of these compile-time rules for casting.

See §8 for the specification of classes, §9 for interfaces, and §10 for arrays.
73

5.5 Casting Conversion CONVERSIONS AND PROMOTIONS

74

es:

the

o
-

e

ut
time
ype.)

ime
ble
DRAFT
If a cast to a reference type is not a compile-time error, there are two cas

• The cast can be determined to be correct at compile time. A cast from
compile-time typeS to compile-time typeT is correct at compile time if and
only if S can be converted toT by assignment conversion (§5.2).

• The cast requires a run-time validity check. If the value at run time isnull,
then the cast is allowed. Otherwise, letR be the class of the object referred t
by the run-time reference value, and letT be the type named in the cast opera
tor. A cast conversion must check, at run time, that the classR is assignment
compatible with the typeT, using the algorithm specified in §5.2 but using th
classR instead of the compile-time typeS as specified there. (Note thatR can-
not be an interface when these rules are first applied for any given cast, bR
may be an interface if the rules are applied recursively because the run-
reference value may refer to an array whose element type is an interface t
The modified algorithm is shown here:

◆ If R is an ordinary class (not an array class):

❖ If T is a class type, thenR must be either the same class (§4.3.4) asT or a
subclass ofT, or a run-time exception is thrown.

❖ If T is an interface type, thenR must implement (§8.1.4) interfaceT, or a
run-time exception is thrown.

❖ If T is an array type, then a run-time exception is thrown.

◆ If R is an interface:

❖ If T is a class type, thenT must beObject (§4.3.2), or a run-time excep-
tion is thrown.

❖ If T is an interface type, thenR must be either the same interface asT or a
subinterface ofT, or a run-time exception is thrown.

❖ If T is an array type, then a run-time exception is thrown.

◆ If R is a class representing an array typeRC[]—that is, an array of compo-
nents of typeRC:

❖ If T is a class type, thenT must beObject (§4.3.2), or a run-time excep-
tion is thrown.

❖ If T is an interface type, then a run-time exception is thrown unlessT is
the typejava.io.Serializable or the typeCloneable, the only inter-
faces implemented by arrays (this case could slip past the compile-t
checking if, for example, a reference to an array were stored in a varia
of typeObject).

CONVERSIONS AND PROMOTIONS Casting Conversion 5.5

75

lar to

ther),
DRAFT
❖ If T is an array typeTC[], that is, an array of components of typeTC, then

a run-time exception is thrown unless one of the following is true:

✣ TC andRC are the same primitive type.

✣ TC andRC are reference types and typeRC can be cast toTC by a recur-
sive application of these run-time rules for casting.

If a run-time exception is thrown, it is aClassCastException.
Here are some examples of casting conversions of reference types, simi

the example in §5.2:

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoint extends Point { }

class Test {

public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
Colorable c;

// The following may cause errors at run time because
// we cannot be sure they will succeed; this possibility
// is suggested by the casts:
cp = (ColoredPoint)p; // p might not reference an

// object which is aColoredPoint
// or a subclass ofColoredPoint

c = (Colorable)p; // p might not beColorable

// The following are incorrect at compile time because
// they can never succeed as explained in the text:
Long l = (Long)p; // compile-time error #1
EndPoint e = new EndPoint();
c = (Colorable)e; // compile-time error #2

}

}

Here the first compile-time error occurs because the class typesLong andPoint
are unrelated (that is, they are not the same, and neither is a subclass of the o
so a cast between them will always fail.

The second compile-time error occurs because a variable of typeEndPoint
can never reference a value that implements the interfaceColorable. This is

5.5 Casting Conversion CONVERSIONS AND PROMOTIONS

76

time
DRAFT
becauseEndPoint is afinal type, and a variable of afinal type always holds a
value of the same run-time type as its compile-time type. Therefore, the run-
type of variablee must be exactly the typeEndPoint, and typeEndPoint does
not implementColorable.

Here is an example involving arrays (§10):

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

public String toString() { return "("+x+","+y+")"; }
}

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;

ColoredPoint(int x, int y, int color) {
super(x, y); setColor(color);

}

public void setColor(int color) { this.color = color; }

public String toString() {
return super.toString() + "@" + color;

}

}

class Test {

public static void main(String[] args) {
Point[] pa = new ColoredPoint[4];
pa[0] = new ColoredPoint(2, 2, 12);
pa[1] = new ColoredPoint(4, 5, 24);
ColoredPoint[] cpa = (ColoredPoint[])pa;
System.out.print("cpa: {");
for (int i = 0; i < cpa.length; i++)

System.out.print((i == 0 ? " " : ", ") + cpa[i]);
System.out.println(" }");

}

}

This example compiles without errors and produces the output:

cpa: { (2,2)@12, (4,5)@24, null, null }

CONVERSIONS AND PROMOTIONS Numeric Promotions 5.6

run

ric
ing

or to
eric

tion
ions”

lan-
s.
DRAFT
The following example uses casts to compile, but it throws exceptions at

time, because the types are incompatible:

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable
{

int color;

public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {

Point[] pa = new Point[100];

// The following line will throw aClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.println(cpa[0]);

int[] shortvec = new int[2];

Object o = shortvec;

// The following line will throw aClassCastException:
Colorable c = (Colorable)o;

c.setColor(0);

}

}

5.6 Numeric Promotions

Numeric promotionis applied to the operands of an arithmetic operator. Nume
promotion contexts allow the use of an identity conversion (§5.1.1) or a widen
primitive conversion (§5.1.2).

Numeric promotions are used to convert the operands of a numeric operat
a common type so that an operation can be performed. The two kinds of num
promotion are unary numeric promotion (§5.6.1) and binary numeric promo
(§5.6.2). The analogous conversions in C are called “the usual unary convers
and “the usual binary conversions.”

Numeric promotion is not a general feature of the Java programming
guage, but rather a property of the specific definitions of the built-in operation
77

5.6.1 Unary Numeric Promotion CONVERSIONS AND PROMOTIONS

78

t

ua-

fted

n:
DRAFT
5.6.1 Unary Numeric Promotion

Some operators applyunary numeric promotionto a single operand, which mus
produce a value of a numeric type:

• If the operand is of compile-time typebyte, short, or char, unary numeric
promotion promotes it to a value of typeint by a widening conversion
(§5.1.2).

• Otherwise, a unary numeric operand remains as is and is not converted.

In either case, value set conversion (§5.1.8) is then applied.
Unary numeric promotion is performed on expressions in the following sit

tions:

• Each dimension expression in an array creation expression (§15.10)

• The index expression in an array access expression (§15.13)

• The operand of a unary plus operator+ (§15.15.3)

• The operand of a unary minus operator- (§15.15.4)

• The operand of a bitwise complement operator~ (§15.15.5)

• Each operand, separately, of a shift operator>>, >>>, or<< (§15.19); therefore
along shift distance (right operand) does not promote the value being shi
(left operand) tolong

Here is a test program that includes examples of unary numeric promotio

class Test {
public static void main(String[] args) {

byte b = 2;
int a[] = new int[b]; // dimension expression promotion
char c = '\u0001';
a[c] = 1; // index expression promotion
a[0] = -c; // unary- promotion
System.out.println("a: " + a[0] + "," + a[1]);

b = -1;
int i = ~b; // bitwise complement promotion
System.out.println("~0x" + Integer.toHexString(b)

+ "==0x" + Integer.toHexString(i));

i = b << 4L; // shift promotion (left operand)
System.out.println("0x" + Integer.toHexString(b)

 + "<<4L==0x" + Integer.toHexString(i));
}

}

CONVERSIONS AND PROMOTIONS Binary Numeric Promotion5.6.2

f
er,

ach

tors:

is
DRAFT
This test program produces the output:

a: -1,1
~0xffffffff==0x0
0xfffffff f<<4L==0xfffffff0

5.6.2 Binary Numeric Promotion

When an operator appliesbinary numeric promotionto a pair of operands, each o
which must denote a value of a numeric type, the following rules apply, in ord
using widening conversion (§5.1.2) to convert operands as necessary:

• If either operand is of typedouble, the other is converted todouble.

• Otherwise, if either operand is of typefloat, the other is converted tofloat.

• Otherwise, if either operand is of typelong, the other is converted tolong.

• Otherwise, both operands are converted to typeint.

After the type conversion, if any, value set conversion (§5.1.8) is applied to e
operand.

Binary numeric promotion is performed on the operands of certain opera

• The multiplicative operators*, / and% (§15.17)

• The addition and subtraction operators for numeric types+ and- (§15.18.2)

• The numerical comparison operators<, <=, >, and>= (§15.20.1)

• The numerical equality operators== and!= (§15.21.1)

• The integer bitwise operators&, ^, and| (§15.22.1)

• In certain cases, the conditional operator? : (§15.25)

An example of binary numeric promotion appears above in §5.1. Here
another:

class Test {
public static void main(String[] args) {

int i = 0;
float f = 1.0f;
double d = 2.0;

// Firstint*float is promoted tofloat*float, then
// float==double is promoted todouble==double:
if (i * f == d)

System.out.println("oops");
79

5.6.2 Binary Numeric Promotion CONVERSIONS AND PROMOTIONS

80
DRAFT
// A char&byte is promoted toint&int:
byte b = 0x1f;
char c = 'G';
int control = c & b;
System.out.println(Integer.toHexString(control));

// Hereint:float is promoted tofloat:float:
f = (b==0) ? i : 4.0f;
System.out.println(1.0/f);

}

}

which produces the output:

7
0.25

The example converts the ASCII characterG to the ASCII control-G (BEL), by
masking off all but the low 5 bits of the character. The7 is the numeric value of
this control character.

C H A P T E R 6
tity
ld, or
ption

, or

ple

array
ame

ace
pe,
d, or

e is
th the

field
t

h the
ssion
not
essed
are

) are

ssion
t of a
DRAFT
Names

NAMES are used to refer to entities declared in a program. A declared en
(§6.1) is a package, class type, interface type, member (class, interface, fie
method) of a reference type, parameter (to a method, constructor, or exce
handler), or local variable.

Names in programs are either simple, consisting of a single identifier
qualified, consisting of a sequence of identifiers separated by “.” tokens (§6.2).

Every declaration that introduces a name has ascope(§6.3), which is the part
of the program text within which the declared entity can be referred to by a sim
name.

Packages and reference types (that is, class types, interface types, and
types) have members (§6.4). A member can be referred to using a qualified n
N.x, whereN is a simple or qualified name andx is an identifier. IfN names a
package, thenx is a member of that package, which is either a class or interf
type or a subpackage. IfN names a reference type or a variable of a reference ty
thenx names a member of that type, which is either a class, an interface, a fiel
a method.

In determining the meaning of a name (§6.5), the context of the occurrenc
used to disambiguate among packages, types, variables, and methods wi
same name.

Access control (§6.6) can be specified in a class, interface, method, or
declaration to control whenaccessto a member is allowed. Access is a differen
concept from scope; access specifies the part of the program text within whic
declared entity can be referred to by a qualified name, a field access expre
(§15.11), or a method invocation expression (§15.12) in which the method is
specified by a simple name. The default access is that a member can be acc
anywhere within the package that contains its declaration; other possibilities
public, protected, andprivate.

Fully qualified and canonical names (§6.7) and naming conventions (§6.8
also discussed in this chapter.

The name of a field, parameter, or local variable may be used as an expre
(§15.14.1). The name of a method may appear in an expression only as par
81

6.1 Declarations NAMES

82

may

y cre-

of a
class

.8)
fol-

r a
DRAFT
method invocation expression (§15.12). The name of a class or interface type
appear in an expression only as part of a class literal (§15.8.2), a qualifiedthis
expression (§15.8.4), a class instance creation expression (§15.9), an arra
ation expression (§15.10), a cast expression (§15.16), or aninstanceof expres-
sion (§15.20.2), or as part of a qualified name for a field or method. The name
package may appear in an expression only as part of a qualified name for a
or interface type.

6.1 Declarations

A declarationintroduces an entity into a program and includes an identifier (§3
that can be used in a name to refer to this entity. A declared entity is one of the
lowing:

• A package, declared in apackage declaration (§7.4)

• An imported type, declared in a single-type-import declaration (§7.5.1) o
type-import-on-demand declaration (§7.5.2)

• A class, declared in a class type declaration (§8.1)

• An interface, declared in an interface type declaration (§9.1)

• A member of a reference type (§8.2, §9.2, §10.7), one of the following:

◆ A member class (§8.5, §9.5).

◆ A member interface (§8.5, §9.5).

◆ A field, one of the following:

❖ A field declared in a class type (§8.3)

❖ A constant field declared in an interface type (§9.3)

❖ The field length, which is implicitly a member of every array type
(§10.7)

◆ A method, one of the following:

❖ A method (abstract or otherwise) declared in a class type (§8.4)

❖ A method (alwaysabstract) declared in an interface type (§9.4)

• A parameter, one of the following:

◆ A parameter of a method or constructor of a class (§8.4.1, §8.8.1)

◆ A parameter of anabstract method of an interface (§9.4)

NAMES Names and Identifiers 6.2

f the

me
here
le or

d in

by

“
n or

ay

tifier

ion
DRAFT
◆ A parameter of an exception handler declared in acatch clause of atry

statement (§14.19)

• A local variable, one of the following:

◆ A local variable declared in a block (§14.4)

◆ A local variable declared in afor statement (§14.13)

Constructors (§8.8) are also introduced by declarations, but use the name o
class in which they are declared rather than introducing a new name.

6.2 Names and Identifiers

A name is used to refer to an entity declared in a program.
There are two forms of names: simple names and qualified names. Asimple

nameis a single identifier. Aqualified nameconsists of a name, a “.” token, and
an identifier.

In determining the meaning of a name (§6.5), the context in which the na
appears is taken into account. The rules of §6.5 distinguish among contexts w
a name must denote (refer to) a package (§6.5.3), a type (§6.5.5), a variab
value in an expression (§6.5.6), or a method (§6.5.7).

Not all identifiers in programs are a part of a name. Identifiers are also use
the following situations:

• In declarations (§6.1), where an identifier may occur to specify the name
which the declared entity will be known

• In field access expressions (§15.11), where an identifier occurs after a.”
token to indicate a member of an object that is the value of an expressio
the keywordsuper that appears before the “.” token

• In some method invocation expressions (§15.12), where an identifier m
occur after a “.” token and before a “(” token to indicate a method to be
invoked for an object that is the value of an expression or the keywordsuper
that appears before the “.” token

• In qualified class instance creation expressions (§15.9), where an iden
occurs immediately to the right of the leftmostnew token to indicate a type
that must be a member of the compile-time type of the primary express
preceding the “.” preceding the leftmostnew token.

• As labels in labeled statements (§14.7) and inbreak (§14.14) andcontinue
(§14.15) statements that refer to statement labels.
83

6.2 Names and Identifiers NAMES

84

tities.

-
vo-

ions.

e
he
DRAFT
In the example:

class Test {
public static void main(String[] args) {

Class c = System.out.getClass();
System.out.println(c.toString().length() +

args[0].length() + args.length);
}

}

the identifiersTest, main, and the first occurrences ofargs andc are not names;
rather, they are used in declarations to specify the names of the declared en
The namesString, Class, System.out.getClass, System.out.println,
c.toString, args, andargs.length appear in the example. The first occur
rence oflength is not a name, but rather an identifier appearing in a method in
cation expression (§15.12). The second occurrence oflength is not a name, but
rather an identifier appearing in a method invocation expression (§15.12).

The identifiers used in labeled statements and their associatedbreak and
continue statements are completely separate from those used in declarat
Thus, the following code is valid:

class TestString {

char[] value;

int offset, count;
int indexOf(TestString str, int fromIndex) {

char[] v1 = value, v2 = str.value;
int max = offset + (count - str.count);
int start = offset + ((fromIndex < 0) ? 0 : fromIndex);

i:
for (int i = start; i <= max; i++)
{

int n = str.count, j = i, k = str.offset;
while (n-- != 0) {

if (v1[j++] != v2[k++])
continue i;

}
return i - offset;

}
return -1;

}

}

This code was taken from a version of the classString and its methodindexOf,
where the label was originally calledtest. Changing the label to have the sam
name as the local variablei does not obscure (§6.3.2) the label in the scope of t

NAMES Scope of a Declaration 6.3

ent

ity
it is

cribe

is all
not

) or
dec-
s.
ich

edi-

ntire

the
nd

ate-

tely
DRAFT
declaration ofi. The identifiermax could also have been used as the statem
label; the label would not obscure the local variablemax within the labeled state-
ment.

6.3 Scope of a Declaration

The scopeof a declaration is the region of the program within which the ent
declared by the declaration can be referred to using a simple name (provided
visible (§6.3.1)). A declaration is said to bein scopeat a particular point in a pro-
gram if and only if the declaration’s scope includes that point.

The scoping rules for various constructs are given in the sections that des
those constructs. For convenience, the rules are repeated here:
The scope of the declaration of an observable (§7.4.3) top level package

observable compilation units (§7.3). The declaration of a package that is
observable is never in scope. Subpackage declarations are never in scope.

The scope of a type imported by a single-type-import declaration (§7.5.1
type-import-on-demand declaration (§7.5.2) is all the class and interface type
larations (§7.6) in the compilation unit in which the import declaration appear

The scope of a top level type is all type declarations in the package in wh
the top level type is declared.

The scope of a label declared by a labeled statement is the statement imm
ately enclosed by the labeled statement.

The scope of a declaration of a memberm declared in or inherited by a class
typeC is the entire body ofC, including any nested type declarations.

The scope of the declaration of a memberm declared in or inherited by an
interface typeI is the entire body ofI, including any nested type declarations.
The scope of a parameter of a method (§8.4.1) or constructor (§8.8.1) is the e
body of the method or constructor.

The scope of a local variable declaration in a block (§14.4.2) is the rest of
block in which the declaration appears, starting with its own initializer (§14.4) a
including any further declarators to the right in the local variable declaration st
ment.

The scope of a local class declared in a block is the rest of the immedia
enclosing block, including its own class declaration.

The scope of a local variable declared in theForInit part of afor statement
(§14.13) includes all of the following:

• Its own initializer

• Any further declarators to the right in theForInit part of thefor statement
85

6.3.1 Shadowing Declarations NAMES

86

pear

ec-

n
o the

s

or
f
rs or

r

r

DRAFT
• TheExpression andForUpdate parts of thefor statement

• The containedStatement

The scope of a parameter of an exception handler that is declared in acatch
clause of atry statement (§14.19) is the entire block associated with thecatch.
These rules imply that declarations of class and interface types need not ap
before uses of the types.

In the example:

package points;

class Point {
int x, y;
PointList list;
Point next;

}

class PointList {
Point first;

}

the use ofPointList in classPoint is correct, because the scope of the class d
larationPointList includes both classPoint and classPointList, as well as
any other type declarations in other compilation units of packagepoints.

6.3.1 Shadowing Declarations

Some declarations may beshadowedin part of their scope by another declaratio
of the same name, in which case a simple name cannot be used to refer t
declared entity.

A declarationd of a type namedn shadows the declarations of any other type
namedn that are in scope at the point whered occurs throughout the scope ofd.

A declarationd of a field, local variable, method parameter, construct
parameter or exception handler parameter namedn shadows the declarations o
any other fields, local variables, method parameters, constructor paramete
exception handler parameters namedn that are in scope at the point whered
occurs throughout the scope ofd.

A declarationd of a label namedn shadows the declarations of any othe
labels namedn that are in scope at the point whered occurs throughout the scope
of d.

A declarationd of a method namedn shadows the declarations of any othe
methods namedn that are in an enclosing scope at the point whered occurs
throughout the scope ofd.

NAMES Shadowing Declarations 6.3.1

n to

at a

.5).
em-
in a

ec-
DRAFT
A package declaration never shadows any other declaration.
A single-type-import declarationd in a compilation unitc of packagep that

imports a type namedn shadows the declarations of:

• any top level type namedn declared in another compilation unit ofp.

• any type namedn imported by a type-import-on-demand declaration inc.

throughoutc.
A type-import-on-demand declaration never causes any other declaratio

be shadowed.
A declarationd is said to bevisible at pointp in a programif the scope ofd

includesp, andd is not shadowed by any other declaration atp. When the pro-
gram point we are discussing is clear from context, we will often simply say th
declaration isvisible.

Note that shadowing is distinct from hiding (§8.3, §8.4.6.2, §8.5, §9.3, §9
Hiding, in the technical sense defined in this specification, applies only to m
bers which would otherwise be inherited but are not because of a declaration
subclass. Shadowing is also distinct from obscuring (§6.3.2).

Here is an example of shadowing of a field declaration by a local variable d
laration:

class Test {
static int x = 1;
public static void main(String[] args) {

int x = 0;
System.out.print("x=" + x);
System.out.println(", Test.x=" + Test.x);

}

}

produces the output:

x=0, Test.x=1

This example declares:

• a classTest

• a class (static) variablex that is a member of the classTest

• a class methodmain that is a member of the classTest

• a parameterargs of themain method

• a local variablex of themain method
87

6.3.2 Obscured Declarations NAMES

88

§8.2)
e

red

f

-
im-

by

as
§6.5
will
ble to
DRAFT
Since the scope of a class variable includes the entire body of the class (

the class variablex would normally be available throughout the entire body of th
methodmain. In this example, however, the class variablex is shadowed within
the body of the methodmain by the declaration of the local variablex.

A local variable has as its scope the rest of the block in which it is decla
(§14.4.2); in this case this is the rest of the body of themain method, namely its
initializer “0” and the invocations ofprint andprintln.

This means that:

• The expression “x” in the invocation ofprint refers to (denotes) the value o
the local variablex.

• The invocation ofprintln uses a qualified name (§6.6)Test.x, which uses
the class type nameTest to access the class variablex, because the declara
tion of Test.x is shadowed at this point and cannot be referred to by its s
ple name.

The following example illustrates the shadowing of one type declaration
another:

import java.util.*;

class Vector {
int val[] = { 1 , 2 };

}

class Test {
public static void main(String[] args) {

Vector v = new Vector();
System.out.println(v.val[0]);

}

}

compiles and prints:

1

using the classVector declared here in preference to classjava.util.Vector
that might be imported on demand.

6.3.2 Obscured Declarations

A simple name may occur in contexts where it may potentially be interpreted
the name of a variable, a type or a package. In these situations, the rules of
specify that a variable will be chosen in preference to a type, and that a type
be chosen in preference to a package. Thus, it is may sometimes be impossi

NAMES The Members of a Package 6.4.1

such

.2,

ence
ermi-
, see

epeat

class
.3)

ystem

ack-
ages

-
The
DRAFT

refer to a visible type or package declaration via its simple name. We say that
a declaration isobscured.

Obscuring is distinct from shadowing (§6.3.1) and hiding (§8.3, §8.4.6
§8.5, §9.3, §9.5). The naming conventions of §6.8 help reduce obscuring.

6.4 Members and Inheritance

Packages and reference types havemembers.
This section provides an overview of the members of packages and refer

types here, as background for the discussion of qualified names and the det
nation of the meaning of names. For a complete description of membership
§7.1, §8.2, §9.2, and §10.7.

6.4.1 The Members of a Package

The members of a package (§7) are specified in §7.1. For convenience, we r
that specification here:

The members of a package are subpackages and all the top level (§7.6)
(§8) and top level interface (§9) types declared in all the compilation units (§7
of the package.

In general, the subpackages of a package are determined by the host s
(§7.2). However, the packagejava always includes the subpackageslang andio
and may include other subpackages. No two distinct members of the same p
age may have the same simple name (§7.1), but members of different pack
may have the same simple name.

For example, it is possible to declare a package:

package vector;

public class Vector { Object[] vec; }

that has as a member apublic class namedVector, even though the package
java.util also declares a class namedVector. These two class types are differ
ent, reflected by the fact that they have different fully qualified names (§6.7).
fully qualified name of this exampleVector is vector.Vector, whereas
java.util.Vector is the fully qualified name of the standardVector class.
Because the packagevector contains a class namedVector, it cannot also have a
subpackage namedVector.
89

6.4.2 The Members of a Class Type NAMES

90

§9.5),
lared
s or

lass

the
ss or
ld or

are
the

f the
bers
Such
DRAFT
6.4.2 The Members of a Class Type

The members of a class type (§8.2) are classes (§8.5, §9.5), interfaces (§8.5,
fields (§8.3, §9.3, §10.7), and methods (§8.4, §9.4). Members are either dec
in the type, orinheritedbecause they are accessible members of a superclas
superinterface which are neither private nor hidden nor overridden (§8.4.6).

The members of a class type are all of the following:

• Members inherited from its direct superclass (§8.1.3), if it has one (the c
Object has no direct superclass)

• Members inherited from any direct superinterfaces (§8.1.4)

• Members declared in the body of the class (§8.1.5)

Constructors (§8.8) are not members.
There is no restriction against a field and a method of a class type having

same simple name. Likewise, there is no restriction against a member cla
member interface of a class type having the same simple name as a fie
method of that class type.

A class may have two or more fields with the same simple name if they
declared in different interfaces and inherited. An attempt to refer to any of
fields by its simple name results in a compile-time error (§6.5.7.2, §8.2).

In the example:

interface Colors {
int WHITE = 0, BLACK = 1;

}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;

}

class Test implements Colors, Separates {
public static void main(String[] args) {

System.out.println(BLACK); // compile-time error: ambiguous
}

}

the nameBLACK in the methodmain is ambiguous, because classTest has two
members namedBLACK, one inherited fromColors and one fromSeparates.

A class type may have two or more methods with the same simple name i
methods have different signatures (§8.4.2), that is, if they have different num
of parameters or different parameter types in at least one parameter position.
a method member name is said to beoverloaded.

NAMES The Members of an Interface Type6.4.3

and
uper-
erface

ure

-

faces
rs of

itly
DRAFT
A class type may contain a declaration for a method with the same name

the same signature as a method that would otherwise be inherited from a s
class or superinterface. In this case, the method of the superclass or superint
is not inherited. If the method not inherited isabstract, then the new declaration
is said toimplementit; if the method not inherited is notabstract, then the new
declaration is said tooverride it.

In the example:

class Point {
float x, y;
void move(int dx, int dy) { x += dx; y += dy; }
void move(float dx, float dy) { x += dx; y += dy; }
public String toString() { return "("+x+","+y+")"; }

}

the classPoint has two members that are methods with the same name,move.
The overloadedmove method of classPoint chosen for any particular method
invocation is determined at compile time by the overloading resolution proced
given in §15.12.

In this example, the members of the classPoint are thefloat instance vari-
ablesx andy declared inPoint, the two declaredmove methods, the declared
toString method, and the members thatPoint inherits from its implicit direct
superclassObject (§4.3.2), such as the methodhashCode. Note thatPoint does
not inherit thetoString method of classObject because that method is overrid
den by the declaration of thetoString method in classPoint.

6.4.3 The Members of an Interface Type

The members of an interface type (§9.2) may be classes (§8.5, §9.5), inter
(§8.5, §9.5), fields (§8.3, §9.3, §10.7), and methods (§8.4, §9.4).The membe
an interface are:

• Those members declared in the interface.

• Those members inherited from direct superinterfaces.

• If an interface has no direct superinterfaces, then the interface implic
declares a public abstract member methodm with signatures, return typer,
and throws clauset corresponding to each public instance methodm with
signatures, return typer, andthrows clauset declared inObject, unless a
method with the same signature, same return type, and a compatiblethrows
clause is explicitly declared by the interface.
91

6.4.4 The Members of an Array Type NAMES

92

are
field

epeat

ts

in
DRAFT
An interface may have two or more fields with the same simple name if they
declared in different interfaces and inherited. An attempt to refer to any such
by its simple name results in a compile-time error (§6.5.6.1, §9.2).

In the example:

interface Colors {
int WHITE = 0, BLACK = 1;

}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;

}

interface ColorsAndSeparates extends Colors, Separates {
int DEFAULT = BLACK; // compile-time error: ambiguous

}

the members of the interfaceColorsAndSeparates include those members
inherited from Colors and those inherited fromSeparates, namely WHITE,
BLACK (first of two), CYAN, MAGENTA, YELLOW, andBLACK (second of two). The
member nameBLACK is ambiguous in the interfaceColorsAndSeparates.

6.4.4 The Members of an Array Type

The members of an array type are specified in §10.7. For convenience, we r
that specification here.

The members of an array type are all of the following:

• Thepublic final field length, which contains the number of componen
of the array (length may be positive or zero)

• Thepublic methodclone, which overrides the method of the same name
classObject and throws no checked exceptions

• All the members inherited from classObject; the only method ofObject that
is not inherited is itsclone method

The example:

class Test {
public static void main(String[] args) {

int[] ia = new int[3];
int[] ib = new int[6];
System.out.println(ia.getClass() == ib.getClass());

NAMES Determining the Meaning of a Name 6.5

ina-
name

of
).
DRAFT
System.out.println("ia has length=" + ia.length);

}

}

produces the output:

true

ia has length=3

This example uses the methodgetClass inherited from classObject and the
field length. The result of the comparison of theClass objects in the first
println demonstrates that all arrays whose components are of typeint are
instances of the same array type, which isint[].

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The determ
tion of the meaning of a name requires three steps. First, context causes a
syntactically to fall into one of six categories:PackageName, TypeName, Expres-
sionName, MethodName, PackageOrTypeName,or AmbiguousName. Second, a
name that is initially classified by its context as anAmbiguousNameor as aPack-
ageOrTypeNameis then reclassified to be aPackageName, TypeName, or Expres-
sionName. Third, the resulting category then dictates the final determination
the meaning of the name (or a compilation error if the name has no meaning

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier
AmbiguousName . Identifier

PackageOrTypeName:
Identifier
PackageOrTypeName . Identifier
93

6.5.1 Syntactic Classification of a Name According to Context NAMES

94

dif-
in

pes
am-
ble to
ext of

in

.1,

ctor
DRAFT
AmbiguousName:

Identifier
AmbiguousName . Identifier

The use of context helps to minimize name conflicts between entities of
ferent kinds. Such conflicts will be rare if the naming conventions described
§6.8 are followed. Nevertheless, conflicts may arise unintentionally as ty
developed by different programmers or different organizations evolve. For ex
ple, types, methods, and fields may have the same name. It is always possi
distinguish between a method and a field with the same name, since the cont
a use always tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as aPackageName in these contexts:

• In a package declaration (§7.4)

• To the left of the “.” in a qualifiedPackageName

A name is syntactically classified as aTypeName in these contexts:

• In a single-type-import declaration (§7.5.1)

• In anextends clause in a class declaration (§8.1.3)

• In animplements clause in a class declaration (§8.1.4)

• In anextends clause in an interface declaration (§9.1.2)

• As aType(or the part of aTypethat remains after all brackets are deleted)
any of the following contexts:

◆ In a field declaration (§8.3, §9.3)

◆ As the result type of a method (§8.4, §9.4)

◆ As the type of a formal parameter of a method or constructor (§8.4
§8.8.1, §9.4)

◆ As the type of an exception that can be thrown by a method or constru
(§8.4.4, §8.8.4, §9.4)

◆ As the type of a local variable (§14.4)

◆ As the type of an exception parameter in acatch clause of atry statement
(§14.19)

◆ As the type in a class literal (§15.8.2)

NAMES Syntactic Classification of a Name According to Context6.5.1

nce

lass
tion

sion

)

tion

sion

)

DRAFT
◆ As the qualifying type of a qualifiedthis expression (§15.8.4).

◆ As the class type which is to be instantiated in an unqualified class insta
creation expression (§15.9)

◆ As the direct superclass or direct superinterface of an anonymous c
(§15.9.5) which is to be instantiated in an unqualified class instance crea
expression (§15.9)

◆ As the element type of an array to be created in an array creation expres
(§15.10)

◆ As the qualifying type of field access using the keywordsuper (§15.11.2)

◆ As the qualifying type of a method invocation using the keywordsuper
(§15.12)

◆ As the type mentioned in the cast operator of a cast expression (§15.16

◆ As the type that follows theinstanceof relational operator (§15.20.2)

A name is syntactically classified as anExpressionName in these contexts:

• As the qualifying expression in a qualified superclass constructor invoca
(§8.8.5.1)

• As the qualifying expression in a qualified class instance creation expres
(§15.9)

• As the array reference expression in an array access expression (§15.13

• As aPostfixExpression (§15.14)

• As the left-hand operand of an assignment operator (§15.26)

A name is syntactically classified as aMethodName in this context:

• Before the “(” in a method invocation expression (§15.12)

A name is syntactically classified as aPackageOrTypeName in these contexts:

• To the left of the “.” in a qualifiedTypeName

• In a type-import-on-demand declaration (§7.5.2)

A name is syntactically classified as anAmbiguousName in these contexts:

• To the left of the “.” in a qualifiedExpressionName

• To the left of the “.” in a qualifiedMethodName

• To the left of the “.” in a qualifiedAmbiguousName
95

6.5.2 Reclassification of Contextually Ambiguous Names NAMES

96

ra-
cla-

ss
me,

.3)
)
the

nit
he

on-
he

ort-

s the
DRAFT
6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows:

• If the AmbiguousName is a simple name, consisting of a singleIdentifier:

◆ If the Identifierappears within the scope (§6.3) of a local variable decla
tion (§14.4) or parameter declaration (§8.4.1, §8.8.1, §14.19) or field de
ration (§8.3) with that name, then theAmbiguousNameis reclassified as an
ExpressionName.

◆ Otherwise, if theIdentifier appears within the scope (§6.3) of a local cla
declaration (§14.3) or member type declaration (§8.5, §9.5) with that na
then theAmbiguousName is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared in the compilation unit (§7
containing theIdentifier, either by a single-type-import declaration (§7.5.1
or by a top level class (§8) or interface type declaration (§9), then
AmbiguousName is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared in another compilation u
(§7.3) of the package (§7.1) of the compilation unit containing t
Identifier, then theAmbiguousName is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared by exactly one type-import-
demand declaration (§7.5.2) of the compilation unit containing t
Identifier, then theAmbiguousName is reclassified as aTypeName.

◆ Otherwise, if a type of that name is declared by more than one type-imp
on-demand declaration of the compilation unit containing theIdentifier,
then a compile-time error results.

◆ Otherwise, theAmbiguousNameis reclassified as aPackageName. A later
step determines whether or not a package of that name actually exists.

• If the AmbiguousNameis a qualified name, consisting of a name, a “.”, and an
Identifier, then the name to the left of the “.” is first reclassified, for it is itself
anAmbiguousName. There is then a choice:

◆ If the name to the left of the “.” is reclassified as aPackageName, then if
there is a package whose name is the name to the left of the “.” and that
package contains a declaration of a type whose name is the same a
Identifier, then thisAmbiguousNameis reclassified as aTypeName. Other-
wise, thisAmbiguousNameis reclassified as aPackageName. A later step
determines whether or not a package of that name actually exists.

NAMES Reclassification of Contextually Ambiguous Names6.5.2

ted

or

y

er-

r-
DRAFT
◆ If the name to the left of the “.” is reclassified as aTypeName, then if the

Identifier is the name of a method or field of the class or interface deno
by TypeName, this AmbiguousNameis reclassified as anExpressionName.
Otherwise, if theIdentifier is the name of a member type of the class
interface denoted byTypeName, this AmbiguousNameis reclassified as a
TypeName.Otherwise, a compile-time error results.

◆ If the name to the left of the “.” is reclassified as anExpressionName, then
let T be the type of the expression denoted byExpressionName. If the Iden-
tifier is the name of a method or field of the class or interface denoted bT,
this AmbiguousNameis reclassified as anExpressionName. Otherwise, if
theIdentifier is the name of a member type (§8.5, §9.5) of the class or int
face denoted byT, then thisAmbiguousNameis reclassified as aTypeName.
Otherwise, a compile-time error results.

As an example, consider the following contrived “library code”:

package org.rpgpoet;

import java.util.Random;

interface Music { Random[] wizards = new Random[4]; }

and then consider this example code in another package:

package bazola;

class Gabriel {
static int n = org.rpgpoet.Music.wizards.length;

}

First of all, the nameorg.rpgpoet.Music.wizards.length is classified as an
ExpressionNamebecause it functions as aPostfixExpression. Therefore, each of
the names:

org.rpgpoet.Music.wizards
org.rpgpoet.Music
org.rpgpoet
org

is initially classified as anAmbiguousName. These are then reclassified:

• The simple nameorg is reclassified as aPackageName(since there is no vari-
able or type namedorg in scope).

• Next, assuming that there is no class or interface namedrpgpoet in any com-
pilation unit of packageorg (and we know that there is no such class or inte
97

6.5.3 Meaning of Package Names NAMES

98

is in

e

pile-
DRAFT
face because packageorg has a subpackage namedrpgpoet), the qualified
nameorg.rpgpoet is reclassified as aPackageName.

• Next, because packageorg.rpgpoet has an interface type namedMusic, the
qualified nameorg.rpgpoet.Music is reclassified as aTypeName.

• Finally, because the nameorg.rpgpoet.Music is aTypeName, the qualified
nameorg.rpgpoet.Music.wizards is reclassified as anExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as aPackageName is determined as follows.

6.5.3.1 Simple Package Names

If a package name consists of a singleIdentifier, then this identifier denotes a top
level package named by that identifier. If no top level package of that name
scope (§7.4.4), then a compile-time error occurs.

6.5.3.2 Qualified Package Names

If a package name is of the formQ.Id, thenQ must also be a package name. Th
package nameQ.Id names a package that is the member namedId within the
package named byQ. If Q does not name an observable package (§7.4.3), orId is
not the simple name an observable subpackage of that package, then a com
time error occurs.

6.5.4 Meaning ofPackageOrTypeNames

6.5.4.1 Simple PackageOrTypeNames

If the PackageOrTypeName, Q, occurs in the scope of a type namedQ, then the
PackageOrTypeName is reclassified as aTypeName.

Otherwise, thePackageOrTypeNameis reclassified as aPackageName. The
meaning of thePackageOrTypeNameis the meaning of the reclassified name.

6.5.4.2 Qualified PackageOrTypeNames

Given a qualifiedPackageOrTypeNameof the formQ.Id, if the type or package
denoted byQ has a member type namedId, then the qualifiedPackageOrType-
Namename is reclassified as aTypeName.

Otherwise, it is reclassified as aPackageName. The meaning of the qualified
PackageOrTypeNameis the meaning of the reclassified name.

NAMES Meaning of Type Names 6.5.5

s.
ype
s fol-

cla-
ocal

vis-
em-

one
pile-

nit
tion
that

nit
fier

on-
er,

ort-
s as

curs.

ost
DRAFT
6.5.5 Meaning of Type Names

The meaning of a name classified as aTypeName is determined as follows.

6.5.5.1 Simple Type Names

If a type name consists of a singleIdentifier, then the identifier must occur in the
scope of a declaration of a type with this name, or a compile-time error occur

It is possible that the identifier occurs within the scope of more than one t
with that name, in which case the type denoted by the name is determined a
lows:

• If the simple type name occurs within the scope of a visible local class de
ration (§14.3) with that name, then the simple type name denotes that l
class type.

• Otherwise, if the simple type name occurs within the scope of exactly one
ible member type (§8.5, §9.5), then the simple type name denotes that m
ber type.

• Otherwise, if the simple type name occurs within the scope of more than
visible member type, then the name is ambiguous as a type name; a com
time error occurs.

• Otherwise, if a type with that name is declared in the current compilation u
(§7.3), either by a single-type-import declaration (§7.5.1) or by a declara
of a class or interface type (§7.6), then the simple type name denotes
type.

• Otherwise, if a type with that name is declared in another compilation u
(§7.3) of the package (§7.1) containing the identifier, then the identi
denotes that type.

• Otherwise, if a type of that name is declared by exactly one type-import-
demand declaration (§7.5.2) of the compilation unit containing the identifi
then the simple type name denotes that type.

• Otherwise, if a type of that name is declared by more than one type-imp
on-demand declaration of the compilation unit, then the name is ambiguou
a type name; a compile-time error occurs.

• Otherwise, the name is undefined as a type name; a compile-time error oc

This order for considering type declarations is designed to choose the m
explicit of two or more applicable type declarations.
99

6.5.6 Meaning of Expression Names NAMES

100

-
age

e
-
.

c-
ith

l vari-
le or
local

on
n of
DRAFT
6.5.5.2 Qualified Type Names

If a type name is of the formQ.Id, thenQ must be either a type name or a pack
age name. IfId names exactly one type that is a member of the type or pack
denoted byQ, then the qualified type name denotes that type. IfId does not name
a member type (§8.5, §9.5) withinQ, or the member type namedId within Q is not
accessible (§6.6), orId names more than one member type withinQ, then a com-
pile-time error occurs.

The example:

package wnj.test;

class Test {
public static void main(String[] args) {

java.util.Date date =
new java.util.Date(System.currentTimeMillis());

System.out.println(date.toLocaleString());
}

}

produced the following output the first time it was run:

Sun Jan 21 22:56:29 1996

In this example the namejava.util.Date must denote a type, so we first use th
procedure recursively to determine ifjava.util is an accessible type or a pack
age, which it is, and then look to see if the typeDate is accessible in this package

6.5.6 Meaning of Expression Names

The meaning of a name classified as anExpressionNameis determined as follows.

6.5.6.1 Simple Expression Names

If an expression name consists of a singleIdentifier, then:

• If the Identifierappears within the scope (§6.3) of a visible local variable de
laration (§14.4) or visible parameter declaration (§8.4.1, §8.8.1, §14.19) w
that name, then the expression name denotes a variable, that is, that loca
able or parameter. There is necessarily at most one such local variab
parameter. The type of the expression name is the declared type of the
variable or parameter.

• Otherwise, if theIdentifier appears within a class declaration (§8):

◆ If the Identifierappears within the scope (§6.3) of a visible field declarati
with that name, then there must be a lexically enclosing type declaratio

NAMES Meaning of Expression Names 6.5.6

f

type

pile-

field
ype.

pear
, or

on

mber
e of
ot
DRAFT
which that field is a member. LetT be the innermost such declaration. I
there is not exactly one member ofT that is a field with that name, then a
compile-time error results.

◆ Otherwise, if the single member field with that name is declaredfinal
(§8.3.1.2), then the expression name denotes the value of the field. The
of the expression name is the declared type of the field. If theIdentifier
appears in a context that requires a variable and not a value, then a com
time error occurs.

◆ Otherwise, the expression name denotes a variable, the single member
with that name. The type of the expression name is the field’s declared t

If the field is an instance variable (§8.3.1.1), the expression name must ap
within the declaration of an instance method (§8.4), constructor (§8.8)
instance variable initializer (§8.3.2.2). If it appears within astatic method
(§8.4.3.2), static initializer (§8.7), or initializer for astatic variable
(§8.3.1.1, §12.4.2), then a compile-time error occurs.

• Otherwise, the identifier appears within an interface declaration (§9):

◆ If the Identifierappears within the scope (§6.3) of a visible field declarati
with that name, then there must be an enclosing type declarationT of which
that field is a member. If there is not exactly one member ofT that is a field
with that name, then a compile-time error results.

◆ Otherwise, the expression name denotes the value of the single me
field of that name. The type of the expression name is the declared typ
the field. If theIdentifierappears in a context that requires a variable and n
a value, then a compile-time error occurs.

In the example:

class Test {

static int v;

static final int f = 3;

public static void main(String[] args) {
int i;
i = 1;
v = 2;
f = 33; // compile-time error
System.out.println(i + " " + v + " " + f);

}

}

101

6.5.6 Meaning of Expression Names NAMES

102

ime
If the
t will

a

at is

that

i-

ion

ype

ion
DRAFT
the names used as the left-hand-sides in the assignments toi, v, andf denote the
local variablei, the fieldv, and the value off (not the variablef, becausef is a
final variable). The example therefore produces an error at compile t
because the last assignment does not have a variable as its left-hand side.
erroneous assignment is removed, the modified code can be compiled and i
produce the output:

1 2 3

6.5.6.2 Qualified Expression Names

If an expression name is of the formQ.Id, thenQ has already been classified as
package name, a type name, or an expression name:

• If Q is a package name, then a compile-time error occurs.

• If Q is a type name that names a class type (§8), then:

◆ If there is not exactly one accessible (§6.6) member of the class type th
a field namedId, then a compile-time error occurs.

◆ Otherwise, if the single accessible member field is not a class variable (
is, it is not declaredstatic), then a compile-time error occurs.

◆ Otherwise, if the class variable is declaredfinal, thenQ.Id denotes the
value of the class variable. The type of the expressionQ.Id is the declared
type of the class variable. IfQ.Id appears in a context that requires a var
able and not a value, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes the class variable. The type of the express
Q.Id is the declared type of the class variable.

• If Q is a type name that names an interface type (§9), then:

◆ If there is not exactly one accessible (§6.6) member of the interface t
that is a field namedId, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes the value of the field. The type of the express
Q.Id is the declared type of the field. IfQ.Id appears in a context that
requires a variable and not a value, then a compile-time error occurs.

• If Q is an expression name, letT be the type of the expressionQ :

◆ If T is not a reference type, a compile-time error occurs.

◆ If there is not exactly one accessible (§6.6) member of the typeT that is a
field namedId, then a compile-time error occurs.

◆ Otherwise, if this field is any of the following:

NAMES Meaning of Method Names 6.5.7

an

a

sion

he

f
r
oca-
DRAFT
❖ A field of an interface type

❖ A final field of a class type (which may be either a class variable or
instance variable)

❖ Thefinal field length of an array type

thenQ.Id denotes the value of the field. The type of the expressionQ.Id is
the declared type of the field. IfQ.Id appears in a context that requires
variable and not a value, then a compile-time error occurs.

◆ Otherwise,Q.Id denotes a variable, the fieldId of classT, which may be
either a class variable or an instance variable. The type of the expres
Q.Id is the declared type of the field

The example:

class Point {
int x, y;
static int nPoints;

}

class Test {
public static void main(String[] args) {

int i = 0;
i.x++; // compile-time error
Point p = new Point();
p.nPoints(); // compile-time error

}

}

encounters two compile-time errors, because theint variablei has no members,
and becausenPoints is not a method of classPoint.

6.5.7 Meaning of Method Names

A MethodNamecan appear only in a method invocation expression (§15.12). T
meaning of a name classified as aMethodName is determined as follows.

6.5.7.1 Simple Method Names

If a method name consists of a singleIdentifier, thenIdentifieris the method name
to be used for method invocation. TheIdentifiermust name at least one method o
a class or interface within whose declaration theIdentifierappears. See §15.12 fo
further discussion of the interpretation of simple method names in method inv
tion expressions.
103

6.6 Access Control NAMES

104

a

r

oca-

of the
essed

pile
re a
ans of
pres-

and
are

ruc-
oca-
.2),

y
is
DRAFT

6.5.7.2 Qualified Method Names

If a method name is of the formQ.Id, thenQ has already been classified as
package name, a type name, or an expression name. IfQ is a package name, then a
compile-time error occurs. Otherwise,Id is the method name to be used fo
method invocation. IfQ is a type name, thenId must name at least onestatic
method of the typeQ. If Q is an expression name, then letT be the type of the
expressionQ ; Id must name at least one method of the typeT. See §15.12 for fur-
ther discussion of the interpretation of qualified method names in method inv
tion expressions.

6.6 Access Control

The Java programming language provides mechanisms foraccess control, to pre-
vent the users of a package or class from depending on unnecessary details
implementation of that package or class. If access is permitted, then the acc
entity is said to beaccessible.

Note that accessibility is a static property that can be determined at com
time; it depends only on types and declaration modifiers. Qualified names a
means of access to members of packages and reference types; related me
access include field access expressions (§15.11) and method invocation ex
sions (§15.12). All three are syntactically similar in that a “.” token appears, pre-
ceded by some indication of a package, type, or expression having a type
followed by anIdentifier that names a member of the package or type. These
collectively known as constructs forqualified access.

Access control applies to qualified access and to the invocation of const
tors by class instance creation expressions (§15.9) and explicit constructor inv
tions (§8.8.5). Accessibility also effects inheritance of class members (§8
including hiding and method overriding (§8.4.6.1).

6.6.1 Determining Accessibility

• A package is always accessible.

• If a class or interface type is declaredpublic, then it may be accessed by an
code, provided that the compilation unit (§7.3) in which it is declared
observable. If a top level class or interface type is not declaredpublic, then it
may be accessed only from within the package in which it is declared.

• An array type is accessible if and only if its element type is accessible.

NAMES Details on protected Access 6.6.2

ace,
e is

.

age

6)

the

side
ple-

t-
DRAFT
• A member (class, interface, field, or method) of a reference (class, interf

or array) type or a constructor of a class type is accessible only if the typ
accessible and the member or constructor is declared to permit access:

◆ If the member or constructor is declaredpublic, then access is permitted
All members of interfaces are implicitlypublic.

◆ Otherwise, if the member or constructor is declaredprotected, then access
is permitted only when one of the following is true:

✣ Access to the member or constructor occurs from within the pack
containing the class in which theprotected member or constructor is
declared.

✣ Access is correct as described in §6.6.2.

◆ Otherwise, if the member or constructor is declaredprivate, then access is
permitted if and only if it occurs within the body of the top level class (§7.
that encloses the declaration of the member.

◆ Otherwise, we say there is default access, which is permitted only when
access occurs from within the package in which the type is declared.

6.6.2 Details onprotected Access

A protected member or constructor of an object may be accessed from out
the package in which it is declared only by code that is responsible for the im
mentation of that object.

6.6.2.1 Access to aprotected Member

Let C be the class in which aprotected member m is declared. Access is permi
ted only within the body of a subclassS of C. In addition, if Id denotes an
instance field or instance method, then:

• If the access is by a qualified nameQ.Id, whereQ is an ExpressionName,
then the access is permitted if and only if the type of the expressionQ is S or a
subclass ofS.

• If the access is by a field access expressionE.Id, whereE is a Primary
expression, or by a method invocation expressionE.Id(. . .), whereE is a
Primary expression, then the access is permitted if and only if the type ofE is
S or a subclass ofS.
105

6.6.3 An Example of Access Control NAMES

106

f the
of

on of
the
ot
cre-
ithin

he

It
DRAFT
6.6.2.2 Qualified Access to aprotected Constructor

Let C be the class in which aprotected constructor is declared and letS be the
innermost class in whose declaration the use of theprotected constructor
occurs. Then:

• If the access is by a superclass constructor invocationsuper(. . .) or by a
qualified superclass constructor invocation of the formE.super(. . .), where
E is aPrimary expression, then the access is permitted.

• If the access is by an anonymous class instance creation expression o
form new C(. . .){...} or by a qualified class instance creation expression
the form E.new C(. . .){...}, whereE is a Primary expression, then the
access is permitted.

• Otherwise, if the access is by a simple class instance creation expressi
the formnew C(. . .) or by a qualified class instance creation expression of
form E.new C(. . .), whereE is a Primary expression, then the access is n
permitted. Aprotected constructor can be accessed by a class instance
ation expression (that does not declare an anonymous class) only from w
the package in which it is defined.

6.6.3 An Example of Access Control

For examples of access control, consider the two compilation units:

package points;

class PointVec { Point[] vec; }

and:

package points;

public class Point {
protected int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { return y; }

}

which declare two class types in the packagepoints:

• The class typePointVec is notpublic and not part of thepublic interface
of the packagepoints, but rather can be used only by other classes in t
package.

• The class typePoint is declaredpublic and is available to other packages.
is part of thepublic interface of the packagepoints.

NAMES Example: Access to public and Non-public Classes6.6.4

e

sing

to

ali-
DRAFT
• The methodsmove, getX, andgetY of the classPoint are declaredpublic

and so are available to any code that uses an object of typePoint.

• The fieldsx and y are declaredprotected and are accessible outside th
packagepoints only in subclasses of classPoint, and only when they are
fields of objects that are being implemented by the code that is acces
them.

See §6.6.7 for an example of how theprotected access modifier limits access.

6.6.4 Example: Access topublic and Non-public Classes

If a class lacks thepublic modifier, access to the class declaration is limited
the package in which it is declared (§6.6). In the example:

package points;

public class Point {
public int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

}

class PointList {
Point next, prev;

}

two classes are declared in the compilation unit. The classPoint is available out-
side the packagepoints, while the classPointList is available for access only
within the package.

Thus a compilation unit in another package can accesspoints.Point, either
by using its fully qualified name:

package pointsUser;

class Test {
public static void main(String[] args) {

points.Point p = new points.Point();
System.out.println(p.x + " " + p.y);

}

}

or by using a single-type-import declaration (§7.5.1) that mentions the fully qu
fied name, so that the simple name may be used thereafter:
107

6.6.5 Example: Default-Access Fields, Methods, and Constructors NAMES

108

ns the
em-

this
out-
DRAFT
package pointsUser;

import points.Point;

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println(p.x + " " + p.y);

}

}

However, this compilation unit cannot use or importpoints.PointList, which
is not declaredpublic and is therefore inaccessible outside packagepoints.

6.6.5 Example: Default-Access Fields, Methods, and Constructors

If none of the access modifierspublic, protected, or private are specified, a
class member or constructor is accessible throughout the package that contai
declaration of the class in which the class member is declared, but the class m
ber or constructor is not accessible in any other package.

If a public class has a method or constructor with default access, then
method or constructor is not accessible to or inherited by a subclass declared
side this package.

For example, if we have:

package points;

public class Point {
public int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
public void moveAlso(int dx, int dy) { move(dx, dy); }

}

then a subclass in another package may declare an unrelatedmove method, with
the same signature (§8.3.2) and return type. Because the originalmove method is
not accessible from packagemorepoints, super may not be used:

package morepoints;

public class PlusPoint extends points.Point {
public void move(int dx, int dy) {

super.move(dx, dy); // compile-time error
moveAlso(dx, dy);

}

}

Because move ofPoint is not overridden bymove in PlusPoint, the method
moveAlso in Point never calls the method move inPlusPoint.

NAMES Example: protected Fields, Methods, and Constructors6.6.7

109

age
ich it

cess
e
DRAFT

Thus if you delete thesuper.move call fromPlusPoint and execute the test
program:

import points.Point;

import morepoints.PlusPoint;

class Test {

 public static void main(String[] args) {
 PlusPoint pp = new PlusPoint();
 pp.move(1, 1);
 }

}

it terminates normally. If move ofPoint were overridden bymove in PlusPoint,
then this program would recurse infinitely, until aStackoverflowError
occurred.

6.6.6 Example:public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the pack
where it is declared and from any other package, provided the package in wh
is declared is observable (§7.4.3). For example, in the compilation unit:

package points;

public class Point {

int x, y;

public void move(int dx, int dy) {
x += dx; y += dy;
moves++;

}

public static int moves = 0;

}

thepublic classPoint has aspublic members themove method and themoves
field. Thesepublic members are accessible to any other package that has ac
to packagepoints. The fieldsx andy are notpublic and therefore are accessibl
only from within the packagepoints.

6.6.7 Example:protected Fields, Methods, and Constructors

Consider this example, where thepoints package declares:

6.6.7 Example: protected Fields, Methods, and Constructors NAMES

110

a

pro-

DRAFT
package points;

public class Point {

protected int x, y;

void warp(threePoint.Point3d a) {
if (a.z > 0) // compile-time error: cannot accessa.z

a.delta(this);
}

}

and thethreePoint package declares:

package threePoint;

import points.Point;

public class Point3d extends Point {

protected int z;

public void delta(Point p) {
p.x += this.x; // compile-time error: cannot accessp.x
p.y += this.y; // compile-time error: cannot accessp.y

}

public void delta3d(Point3d q) {
q.x += this.x;
q.y += this.y;
q.z += this.z;

}

}

which defines a classPoint3d. A compile-time error occurs in the methoddelta
here: it cannot access the protected membersx andy of its parameterp, because
while Point3d (the class in which the references to fieldsx andy occur) is a sub-
class ofPoint (the class in whichx andy are declared), it is not involved in the
implementation of aPoint (the type of the parameterp). The methoddelta3d
can access the protected members of its parameterq, because the classPoint3d is
a subclass ofPoint and is involved in the implementation of aPoint3d.

The methoddelta could try to cast (§5.5, §15.16) its parameter to be
Point3d, but this cast would fail, causing an exception, if the class ofp at run
time were notPoint3d.

A compile-time error also occurs in the method warp: it cannot access the
tected memberz of its parametera, because while the classPoint (the class in
which the reference to fieldz occurs) is involved in the implementation of a
Point3d (the type of the parametera), it is not a subclass ofPoint3d (the class in
whichz is declared).

NAMES Fully Qualified Names and Canonical Names 6.7

y in
ple:

s,
of the

nt

e

of a

ther
age,
.

is
face.

is
ack-

i-
DRAFT
6.6.8 Example:private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the class bod
which the member is declared and is not inherited by subclasses. In the exam

class Point {

Point() { setMasterID(); }

int x, y;
private int ID;
private static int masterID = 0;

private void setMasterID() { ID = masterID++; }

}

the private membersID, masterID, and setMasterID may be used only
within the body of classPoint. They may not be accessed by qualified name
field access expressions, or method invocation expressions outside the body
declaration ofPoint.

See §8.8.8 for an example that uses aprivate constructor.

6.7 Fully Qualified Names and Canonical Names

Every package, top level class, top level interface, and primitive type has afully
qualified name. An array type has a fully qualified name if and only if its eleme
type has a fully qualified name.

• The fully qualified name of a primitive type is the keyword for that primitiv
type, namelyboolean, char, byte, short, int, long, float, ordouble.

• The fully qualified name of a named package that is not a subpackage
named package is its simple name.

• The fully qualified name of a named package that is a subpackage of ano
named package consists of the fully qualified name of the containing pack
followed by “.”, followed by the simple (member) name of the subpackage

• The fully qualified name of a top level class or top level interface that
declared in an unnamed package is the simple name of the class or inter

• The fully qualified name of a top level class or top level interface that
declared in a named package consists of the fully qualified name of the p
age, followed by “.”, followed by the simple name of the class or interface.

• A member class or member interfaceM of another classC has a fully qualified
name if and only ifC has a fully qualified name. In that case, the fully qual
111

6.7 Fully Qualified Names and Canonical Names NAMES

112

e

of

s a
nt

t

p
fully

the
nical
e of
DRAFT
fied name ofM consists of the fully qualified name ofC, followed by “.”, fol-
lowed by the simple name ofM.

• The fully qualified name of an array type consists of the fully qualified nam
of the component type of the array type followed by “[]”.

Examples:

• The fully qualified name of the typelong is “long”.

• The fully qualified name of the packagejava.lang is “java.lang” because
it is subpackagelang of packagejava.

• The fully qualified name of the classObject, which is defined in the package
java.lang, is “java.lang.Object”.

• The fully qualified name of the interfaceEnumeration, which is defined in
the packagejava.util, is “java.util.Enumeration”.

• The fully qualified name of the type “array ofdouble” is “double[]”.

• The fully qualified name of the type “array of array of array of array
String” is “java.lang.String[][][][]”.

In the example:

package points;

class Point { int x, y; }

class PointVec {
Point[] vec;

}

the fully qualified name of the typePoint is “points.Point”; the fully qualified
name of the typePointVec is “points.PointVec”; and the fully qualified name
of the type of the fieldvec of classPointVec is “points.Point[]”.

Every package, top level class, top level interface, and primitive type ha
canonical name. An array type has a canonical name if and only if its eleme
type has a canonical name. A member class or member interfaceM declared in
another classC has a canonical name if and only ifC has a canonical name. In tha
case, the canonical name ofM consists of the canonical name ofC, followed by
“.”, followed by the simple name ofM. For every package, top level class, to
level interface and primitive type, the canonical name is the same as the
qualified name. The canonical name of an array type is defined only when
component type of the array has a canonical name. In that case, the cano
name of the array type consists of the canonical name of the component typ
the array type followed by “[]”.

NAMES Package Names 6.8.1

n be

e

ames
elp to

ava
slav-

l
here

d as
tifier

ch as

r this

ifier
not
DRAFT

The difference between a fully qualified name and a canonical name ca
seen in examples such as:

package p;
class O1 { class I{}}
class O2 extends O1{};

In this example bothp.O1.I andp.O2.I are fully qualified names that denote th
same class, but onlyp.O1.I is its canonical name.

6.8 Naming Conventions

The class libraries of the Java platform attempt to use, whenever possible, n
chosen according to the conventions presented here. These conventions h
make code more readable and avoid certain kinds of name conflicts.

We recommend these conventions for use in all programs written in the J
programming language. However, these conventions should not be followed
ishly if long-held conventional usage dictates otherwise. So, for example, thesin
andcos methods of the classjava.lang.Math have mathematically conventiona
names, even though these method names flout the convention suggested
because they are short and are not verbs.

6.8.1 Package Names

Names of packages that are to be made widely available should be forme
described in §7.7. Such names are always qualified names whose first iden
consists of two or three lowercase letters that name an Internet domain, su
com, edu, gov, mil, net, org, or a two-letter ISO country code such asuk or jp.
Here are examples of hypothetical unique names that might be formed unde
convention:

com.JavaSoft.jag.Oak
org.npr.pledge.driver
uk.ac.city.rugby.game

Names of packages intended only for local use should have a first ident
that begins with a lowercase letter, but that first identifier specifically should
be the identifierjava; package names that start with the identifierjava are
reserved by Sun for naming Java platform packages.

When package names occur in expressions:
113

6.8.2 Class and Interface Type Names NAMES

114

that

vari-
thout

or a
(The
eter-

verly
:

erly
y be
used

he

lds,
e they
ally

letter
some
DRAFT

• If a package name is obscured by a field declaration, thenimport declarations
(§7.5) can usually be used to make available the type names declared in
package.

• If a package name is obscured by a declaration of a parameter or local
able, then the name of the parameter or local variable can be changed wi
affecting other code.

The first component of a package name is normally not easily mistaken f
type name, as a type name normally begins with a single uppercase letter.
Java programming language does not actually rely on case distinctions to d
mine whether a name is a package name or a type name.)

6.8.2 Class and Interface Type Names

Names of class types should be descriptive nouns or noun phrases, not o
long, in mixed case with the first letter of each word capitalized. For example

ClassLoader
SecurityManager
Thread
Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not ov
long, in mixed case with the first letter of each word capitalized. The name ma
a descriptive noun or noun phrase, which is appropriate when an interface is
as if it were an abstract superclass, such as interfacesjava.io.DataInput and
java.io.DataOutput; or it may be an adjective describing a behavior, as for t
interfacesRunnable andCloneable.

Obscuring involving class and interface type names is rare. Names of fie
parameters, and local variables normally do not obscure type names becaus
conventionally begin with a lowercase letter whereas type names convention
begin with an uppercase letter.

6.8.3 Method Names

Method names should be verbs or verb phrases, in mixed case, with the first
lowercase and the first letter of any subsequent words capitalized. Here are
additional specific conventions for method names:

NAMES Field Names 6.8.4

d

class
Java

st
gned
-

ns for

ack-

ype

ble,
hout
DRAFT
• Methods toget andset an attribute that might be thought of as a variableV

should be namedgetV andsetV. An example is the methodsgetPriority
andsetPriority of classThread.

• A method that returns the length of something should be namedlength, as in
classString.

• A method that tests aboolean conditionV about an object should be name
isV. An example is the methodisInterrupted of classThread.

• A method that converts its object to a particular formatF should be named
toF. Examples are the methodtoString of classObject and the methods
toLocaleString andtoGMTString of classjava.util.Date.

Whenever possible and appropriate, basing the names of methods in a new
on names in an existing class that is similar, especially a class from the
Application Programming Interface classes, will make it easier to use.

Method names cannot obscure or be obscured by other names (§6.5.7).

6.8.4 Field Names

Names of fields that are notfinal should be in mixed case with a lowercase fir
letter and the first letters of subsequent words capitalized. Note that well-desi
classes have very fewpublic or protected fields, except for fields that are con
stants (final static fields) (§6.8.5).

Fields should have names that are nouns, noun phrases, or abbreviatio
nouns. Examples of this convention are the fieldsbuf, pos, andcount of the class
java.io.ByteArrayInputStream and the fieldbytesTransferred of the class
java.io.InterruptedIOException.

Obscuring involving field names is rare.

• If a field name obscures a package name, then animport declaration (§7.5)
can usually be used to make available the type names declared in that p
age.

• If a field name obscures a type name, then a fully qualified name for the t
can be used unless the type name denotes a local class (§14.3).

• Field names cannot obscure method names.

• If a field name is shadowed by a declaration of a parameter or local varia
then the name of the parameter or local variable can be changed wit
affecting other code.
115

6.8.5 Constant Names NAMES

116

s, or

iated.
mes

fre-
ith a

ally
lds,

distin-

y are

ing,
ned

ed

DRAFT

6.8.5 Constant Names

The names of constants in interface types should be, andfinal variables of class
types may conventionally be, a sequence of one or more words, acronym
abbreviations, all uppercase, with components separated by underscore “_” char-
acters. Constant names should be descriptive and not unnecessarily abbrev
Conventionally they may be any appropriate part of speech. Examples of na
for constants includeMIN_VALUE, MAX_VALUE, MIN_RADIX, andMAX_RADIX of the
classCharacter.

A group of constants that represent alternative values of a set, or, less
quently, masking bits in an integer value, are sometimes usefully specified w
common acronym as a name prefix, as in:

interface ProcessStates {
int PS_RUNNING = 0;
int PS_SUSPENDED = 1;

}

Obscuring involving constant names is rare:

• Constant names normally have no lowercase letters, so they will not norm
obscure names of packages or types, nor will they normally shadow fie
whose names typically contain at least one lowercase letter.

• Constant names cannot obscure method names, because they are
guished syntactically.

6.8.6 Local Variable and Parameter Names

Local variable and parameter names should be short, yet meaningful. The
often short sequences of lowercase letters that are not words. For example:

• Acronyms, that is the first letter of a series of words, as incp for a variable
holding a reference to aColoredPoint

• Abbreviations, as inbuf holding a pointer to abuffer of some kind

• Mnemonic terms, organized in some way to aid memory and understand
typically by using a set of local variables with conventional names patter
after the names of parameters to widely used classes. For example:

◆ in andout, whenever some kind of input and output are involved, pattern
after the fields ofSystem

NAMES Local Variable and Parameter Names 6.8.6

the

xcept
hed

ase
t are
DRAFT
◆ off andlen, whenever an offset and length are involved, patterned after

parameters to theread and write methods of the interfacesDataInput
andDataOutput of java.io

One-character local variable or parameter names should be avoided, e
for temporary and looping variables, or where a variable holds an undistinguis
value of a type. Conventional one-character names are:

• b for abyte

• c for achar

• d for adouble

• e for anException

• f for afloat

• i, j, andk for integers

• l for along

• o for anObject

• s for aString

• v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three lowerc
letters should not conflict with the initial country codes and domain names tha
the first component of unique package names (§7.7).
117

6.8.6 Local Variable and Parameter Names NAMES

118
DRAFT

C H A P T E R 7
119

set of
ces-

of a
ation
and

2.2).
aniza-
es

ion
omat-
ge

amed
que

ould
kage

class
.3)
DRAFT
Packages

PROGRAMSare organized as sets of packages. Each package has its own
names for types, which helps to prevent name conflicts. A top level type is ac
sible (§6.6) outside the package that declares it only if the type is declaredpub-
lic.

The naming structure for packages is hierarchical (§7.1). The members
package are class and interface types (§7.6), which are declared in compil
units of the package, and subpackages, which may contain compilation units
subpackages of their own.

A package can be stored in a file system (§7.2.1) or in a database (§7.
Packages that are stored in a file system have certain constraints on the org
tion of their compilation units to allow a simple implementation to find class
easily.

A package consists of a number of compilation units (§7.3). A compilat
unit automatically has access to all types declared in its package and also aut
ically imports all of the public types declared in the predefined packa
java.lang.

For small programs and casual development, a package can be unn
(§7.4.2) or have a simple name, but if code is to be widely distributed, uni
package names should be chosen (§7.7). This can prevent the conflicts that w
otherwise occur if two development groups happened to pick the same pac
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are subpackages and all the top level (§7.6)
(§8) and top level interface (§9) types declared in all the compilation units (§7
of the package.

For example, in the Java Application Programming Interface:

7.2 Host Support for Packages PACKAGES

120

pile-

ot

ient
ance
h the
is no

e cre-
ular

are

DRAFT

• The packagejava has subpackagesawt, applet, io, lang, net, andutil,
but no compilation units.

• The packagejava.awt has a subpackage namedimage, as well as a number
of compilation units containing declarations of class and interface types.

If the fully qualified name (§6.7) of a package isP, andQ is a subpackage ofP,
thenP.Q is the fully qualified name of the subpackage.

A package may not contain two members of the same name, or a com
time error results.

Here are some examples:

• Because the packagejava.awt has a subpackageimage, it cannot (and does
not) contain a declaration of a class or interface type namedimage.

• If there is a package namedmouse and a member typeButton in that package
(which then might be referred to asmouse.Button), then there cannot be any
package with the fully qualified namemouse.Button or mouse.But-
ton.Click.

• If com.sun.java.jag is the fully qualified name of a type, then there cann
be any package whose fully qualified name is eithercom.sun.java.jag or
com.sun.java.jag.scrabble.

The hierarchical naming structure for packages is intended to be conven
for organizing related packages in a conventional manner, but has no signific
in itself other than the prohibition against a package having a subpackage wit
same simple name as a top level type (§7.6) declared in that package. There
special access relationship between a package namedoliver and another pack-
age namedoliver.twist, or between packages namedevelyn.wood andeve-
lyn.waugh. For example, the code in a package namedoliver.twist has no
better access to the types declared within packageoliver than code in any other
package.

7.2 Host Support for Packages

Each host determines how packages, compilation units, and subpackages ar
ated and stored, and which compilation units are observable (§7.3) in a partic
compilation.

The observability of compilation units in turn determines which packages
observable, and which packages are in scope.

PACKAGES Storing Packages in a File System7.2.1

ions
or

de on
edi-
one

ight

e
f
with

erate

o-
DRAFT
The packages may be stored in a local file system in simple implementat

of the Java platform. Other implementations may use a distributed file system
some form of database to store source and/or binary code.

7.2.1 Storing Packages in a File System

As an extremely simple example, all the packages and source and binary co
a system might be stored in a single directory and its subdirectories. Each imm
ate subdirectory of this directory would represent a top level package, that is,
whose fully qualified name consists of a single simple name. The directory m
contain the following immediate subdirectories:

com
gls
jag
java
wnj

where directoryjava would contain the Java Application Programming Interfac
packages; the directoriesjag, gls, andwnj might contain packages that three o
the authors of this specification created for their personal use and to share
each other within this small group; and the directorycom would contain packages
procured from companies that used the conventions described in §7.7 to gen
unique names for their packages.

Continuing the example, the directoryjava would contain, among others, the
following subdirectories:

applet
awt
io
lang
net
util

corresponding to the packagesjava.applet, java.awt, java.io, java.lang,
java.net, andjava.util that are defined as part of the Java Application Pr
gramming Interface.

Still continuing the example, if we were to look inside the directoryutil, we
might see the following files:

BitSet.java Observable.java
BitSet.class Observable.class
Date.java Observer.java
Date.class Observer.class
...
121

7.2.2 Storing Packages in a Database PACKAGES

122

)
is

ava
g the
dica-

ere

t can-
Uni-
As a

the

file
used

es in
DRAFT
where each of the.java files contains the source for a compilation unit (§7.3
that contains the definition of a class or interface whose binary compiled form
contained in the corresponding.class file.

Under this simple organization of packages, an implementation of the J
platform would transform a package name into a pathname by concatenatin
components of the package name, placing a file name separator (directory in
tor) between adjacent components.

For example, if this simple organization were used on a UNIX system, wh
the file name separator is/, the package name:

jag.scrabble.board

would be transformed into the directory name:

jag/scrabble/board

and:

com.sun.sunsoft.DOE

would be transformed to the directory name:

com/sun/sunsoft/DOE

A package name component or class name might contain a character tha
not correctly appear in a host file system’s ordinary directory name, such as a
code character on a system that allows only ASCII characters in file names.
convention, the character can be escaped by using, say, the@ character followed
by four hexadecimal digits giving the numeric value of the character, as in
\uxxxx escape (§3.3), so that the package name:

children.activities.crafts.papierM\u00e2ch\u00e9

which can also be written using full Unicode as:

children.activities.crafts.papierMâché

might be mapped to the directory name:

children/activities/crafts/papierM@00e2ch@00e9

If the @ character is not a valid character in a file name for some given host
system, then some other character that is not valid in a identifier could be
instead.

7.2.2 Storing Packages in a Database

A host system may store packages and their compilation units and subpackag
a database.

PACKAGES Compilation Units 7.3

pila-
data-

ert a
sed

of

arly.

e
no

be

.

u-

DRAFT

Such a database must not impose the optional restrictions (§7.6) on com
tion units in file-based implementations. For example, a system that uses a
base to store packages may not enforce a maximum of onepublic class or
interface per compilation unit.

Systems that use a database must, however, provide an option to conv
program to a form that obeys the restrictions, for purposes of export to file-ba
implementations.

7.3 Compilation Units

CompilationUnit is the goal symbol (§2.1) for the syntactic grammar (§2.3)
Java programs. It is defined by the following productions:

CompilationUnit:
PackageDeclarationopt ImportDeclarationsopt TypeDeclarationsopt

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

Types declared in different compilation units can depend on each other, circul
A Java compiler must arrange to compile all such types at the same time.

A compilation unit consists of three parts, each of which is optional:

• A package declaration (§7.4), giving the fully qualified name (§6.7) of th
package to which the compilation unit belongs. A compilation unit that has
package declaration is part of an unnamed package (§7.4.2).

• import declarations (§7.5) that allow types from other packages to
referred to using their simple names

• Top level type declarations (§7.6) of class and interface types

Which compilation units areobservableis determined by the host system
However, all the compilation units of the packagejava and its subpackageslang
andio must always be observable. The observability of a compilation unit infl
ences the observability of its package (§7.4.3).

Every compilation unit automatically and implicitly imports everypublic
type name declared by the predefined packagejava.lang, so that the names of
all those types are available as simple names, as described in §7.5.3.
123

7.4 Package Declarations PACKAGES

124

age

k-

lified

age.
ax of a
ge.

med
to do

y the

for
with

e one
of

ve-
ing
DRAFT
7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the pack
to which the compilation unit belongs.

7.4.1 Named Packages

A package declarationin a compilation unit specifies the name (§6.2) of the pac
age to which the compilation unit belongs.

PackageDeclaration:
package PackageName ;

The package name mentioned in a package declaration must be the fully qua
name (§6.7) of the package.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed pack
Note that an unnamed package cannot have subpackages, since the synt

package declaration always includes a reference to a named top level packa
As an example, the compilation unit:

class FirstCall {
public static void main(String[] args) {

System.out.println("Mr. Watson, come here. "
+ "I want you.");

}
}

defines a very simple compilation unit as part of an unnamed package.
An implementation of the Java platform must support at least one unna

package; it may support more than one unnamed package but is not required
so. Which compilation units are in each unnamed package is determined b
host system.

In implementations of the Java platform that use a hierarchical file system
storing packages, one typical strategy is to associate an unnamed package
each directory; only one unnamed package is observable at a time, namely th
that is associated with the “current working directory.” The precise meaning
“current working directory” depends on the host system.

Unnamed packages are provided by the Java platform principally for con
nience when developing small or temporary applications or when just beginn
development.

PACKAGES Import Declarations 7.5

erv-

is all
not

e

se a

by
5.2)

) or
dec-
s.
nly

r
.

DRAFT
7.4.3 Observability of a Package

A package isobservable if and only if either:

• A compilation unit containing a declaration of the package is observable.

• A subpackage of the package is observable.

One can conclude from the rule above and from the requirements on obs
able compilation units, that the packagesjava, java.lang, and java.io are
always observable.

7.4.4 Scope of a Package Declaration

The scope of the declaration of an observable (§7.4.3) top level package
observable compilation units (§7.3). The declaration of a package that is
observable is never in scope. Subpackage declarations are never in scope.

It follows that the packagejava is always in scope (§6.3).
Package declarations never shadow other declarations.

7.5 Import Declarations

An import declarationallows a named type to be referred to by a simple nam
(§6.2) that consists of a single identifier. Without the use of an appropriateimport
declaration, the only way to refer to a type declared in another package is to u
fully qualified name (§6.7).

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration

A single-type-import declaration (§7.5.1) imports a single named type,
mentioning its canonical name. A type-import-on-demand declaration (§7.
imports all the accessible types of a named type or package as needed.

The scope of a type imported by a single-type-import declaration (§7.5.1
type-import-on-demand declaration (§7.5.2) is all the class and interface type
larations (§7.6) in the compilation unit in which the import declaration appear

An import declaration makes types available by their simple names o
within the compilation unit that actually contains theimport declaration. The
scope of the entities(s) it introduces specifically does not include thepackage
statement, otherimport declarations in the current compilation unit, or othe
compilation units in the same package. See §7.5.4 for an illustrative example
125

7.5.1 Single-Type-Import Declaration PACKAGES

126

l
lara-
rs.

ile-
cces-

c-

)
sted

t to
less

ored.
the
.2),
DRAFT
7.5.1 Single-Type-Import Declaration

A single-type-import declarationimports a single type by giving its canonica
name, making it available under a simple name in the class and interface dec
tions of the compilation unit in which the single-type import declaration appea

SingleTypeImportDeclaration:
import TypeName ;

TheTypeNamemust be the canonical name of a class or interface type; a comp
time error occurs if the named type does not exist. The named type must be a
sible (§6.6) or a compile-time error occurs.

A single-type-import declarationd in a compilation unitc of packagep that
imports a type namedn shadows the declarations of:

• any top level type namedn declared in another compilation unit ofp.

• any type namedn imported by a type-import-on-demand declaration inc.

throughoutc.
The example:

import java.util.Vector;

causes the simple nameVector to be available within the class and interface de
larations in a compilation unit. Thus, the simple nameVector refers to the type
Vector in the packagejava.util in all places where it is not shadowed (§6.3.1
or obscured (§6.3.2) by a declaration of a field, parameter, local variable, or ne
type declaration with the same name.

If two single-type-import declarations in the same compilation unit attemp
import types with the same simple name, then a compile-time error occurs, un
the two types are the same type, in which case the duplicate declaration is ign
If another top level type with the same simple name is otherwise declared in
current compilation unit except by a type-import-on-demand declaration (§7.5
then a compile-time error occurs.

So the sample program:

import java.util.Vector;

class Vector { Object[] vec; }

causes a compile-time error because of the duplicate declaration ofVector, as
does:

import java.util.Vector;

import myVector.Vector;

PACKAGES Type-Import-on-Demand Declaration 7.5.2

. For

d
d.

e a
ecla-
; the
ime

n to

nit.

ot
by a

gs;
decla-
DRAFT
wheremyVector is a package containing the compilation unit:

package myVector;

public class Vector { Object[] vec; }

The compiler keeps track of types by their binary names (§13.1).
Note that an import statement cannot import a subpackage, only a type

example, it does not work to try to importjava.util and then use the name
util.Random to refer to the typejava.util.Random:

import java.util; // incorrect: compile-time error

class Test { util.Random generator; }

7.5.2 Type-Import-on-Demand Declaration

A type-import-on-demand declarationallows all accessible (§6.6) types declare
in the type or package named by a canonical name to be imported as neede

TypeImportOnDemandDeclaration:
import PackageOrTypeName . * ;

It is a compile-time error for a type-import-on-demand declaration to nam
type or package that is not accessible. Two or more type-import-on-demand d
rations in the same compilation unit may name the same type or package
effect is as if there were exactly one such declaration. It is not a compile-t
error to name the current package orjava.lang in a type-import-on-demand dec-
laration. The type-import-on-demand declaration is ignored in such cases

A type-import-on-demand declaration never causes any other declaratio
be shadowed.

The example:

import java.util.*;

causes the simple names of allpublic types declared in the packagejava.util
to be available within the class and interface declarations of the compilation u
Thus, the simple nameVector refers to the typeVector in the package
java.util in all places in the compilation unit where that type declaration is n
shadowed (§6.3.1) or obscured (§6.3.2). The declaration might be shadowed
single-type-import declaration of a type whose simple name isVector; by a type
namedVector and declared in the package to which the compilation unit belon
or any nested classes or interfaces. The declaration might be obscured by a
ration of a field, parameter, or local variable namedVector (It would be unusual
for any of these conditions to occur.)
127

7.5.3 Automatic Imports PACKAGES

128

ny

nven-
is an

s

r-
DRAFT
7.5.3 Automatic Imports

Each compilation unit automatically imports all of thepublic type names
declared in the predefined packagejava.lang, as if the declaration:

import java.lang.*;

appeared at the beginning of each compilation unit, immediately following a
package statement.

7.5.4 A Strange Example

Package names and type names are usually different under the naming co
tions described in §6.8. Nevertheless, in a contrived example where there
unconventionally-named packageVector, which declares apublic class named
Mosquito:

package Vector;

public class Mosquito { int capacity; }

and then the compilation unit:

package strange.example;

import java.util.Vector;

import Vector.Mosquito;

class Test {
public static void main(String[] args) {

System.out.println(new Vector().getClass());
System.out.println(new Mosquito().getClass());

}
}

the single-type-import declaration (§7.5.1) importing classVector from package
java.util does not prevent the package nameVector from appearing and being
correctly recognized in subsequentimport declarations. The example compile
and produces the output:

class java.util.Vector
class Vector.Mosquito

7.6 Top Level Type Declarations

A top level type declarationdeclares a top level class type (§8) or a top level inte
face type (§9):

PACKAGES Top Level Type Declarations 7.6

only
be

.1.1,

ich

e

fully

ck-
be
refer-

ion

may
not
such

in

tion
lan-
DRAFT
TypeDeclaration:

ClassDeclaration
InterfaceDeclaration
;

By default, the top level types declared in a package are accessible
within the compilation units of that package, but a type may be declared to
public to grant access to the type from code in other packages (§6.6, §8
§9.1.1).

The scope of a top level type is all type declarations in the package in wh
the top level type is declared.

If a top level type namedT is declared in a compilation unit of a packag
whose fully qualified name isP, then the fully qualified name of the type isP.T.
If the type is declared in an unnamed package (§7.4.2), then the type has the
qualified nameT.

Thus in the example:

package wnj.points;

class Point { int x, y; }

the fully qualified name of classPoint is wnj.points.Point.
An implementation of the Java platform must keep track of types within pa

ages by their binary names (§13.1). Multiple ways of naming a type must
expanded to binary names to make sure that such names are understood as
ring to the same type.

For example, if a compilation unit contains the single-type-import declarat
(§7.5.1):

import java.util.Vector;

then within that compilation unit the simple nameVector and the fully qualified
namejava.util.Vector refer to the same type.

When packages are stored in a file system (§7.2.1), the host system
choose to enforce the restriction that it is a compile-time error if a type is
found in a file under a name composed of the type name plus an extension (
as.java or .jav) if either of the following is true:

• The type is referred to by code in other compilation units of the package
which the type is declared.

• The type is declaredpublic (and therefore is potentially accessible from
code in other packages).

This restriction implies that there must be at most one such type per compila
unit. This restriction makes it easy for a compiler for the Java programming
129

7.6 Top Level Type Declarations PACKAGES

130

lass

le

st not

in its

the
kage

as
.3)

be
.)
DRAFT
guage or an implementation of the Java virtual machine to find a named c
within a package; for example, the source code for apublic type
wet.sprocket.Toad would be found in a fileToad.java in the directorywet/
sprocket, and the corresponding object code would be found in the fi
Toad.class in the same directory.

When packages are stored in a database (§7.2.2), the host system mu
impose such restrictions.

In practice, many programmers choose to put each class or interface type
own compilation unit, whether or not it ispublic or is referred to by code in other
compilation units.

A compile-time error occurs if the name of a top level type appears as
name of any other top level class or interface type declared in the same pac
(§7.6).

A compile-time error occurs if the name of a top level type is also declared
a type by a single-type-import declaration (§7.5.1) in the compilation unit (§7
containing the type declaration.

In the example:

class Point { int x, y; }

the classPoint is declared in a compilation unit with nopackage statement, and
thusPoint is its fully qualified name, whereas in the example:

package vista;

class Point { int x, y; }

the fully qualified name of the classPoint is vista.Point. (The package name
vista is suitable for local or personal use; if the package were intended to
widely distributed, it would be better to give it a unique package name (§7.7)

In the example:

package test;

import java.util.Vector;

class Point {
int x, y;

}

interface Point { // compile-time error #1
int getR();
int getTheta();

}

class Vector { Point[] pts; } // compile-time error #2

PACKAGES Top Level Type Declarations 7.6

me
r

e a
tion
the

ss

bers.

ir
rob-

the

DRAFT

the first compile-time error is caused by the duplicate declaration of the na
Point as both aclass and aninterface in the same package. A second erro
detected at compile time is the attempt to declare the nameVector both by a class
type declaration and by a single-type-import declaration.

Note, however, that it is not an error for the name of a class to also to nam
type that otherwise might be imported by a type-import-on-demand declara
(§7.5.2) in the compilation unit (§7.3) containing the class declaration. In
example:

package test;

import java.util.*;

class Vector { Point[] pts; } // not a compile-time error

the declaration of the classVector is permitted even though there is also a cla
java.util.Vector. Within this compilation unit, the simple nameVector refers
to the classtest.Vector, not tojava.util.Vector (which can still be referred
to by code within the compilation unit, but only by its fully qualified name).

As another example, the compilation unit:

package points;

class Point {
int x, y; // coordinates
PointColor color; // color of this point
Point next; // next point with this color
static int nPoints;

}

class PointColor {
Point first; // first point with this color
PointColor(int color) {

this.color = color;
}
private int color; // color components

}

defines two classes that use each other in the declarations of their class mem
Because the class typesPoint andPointColor have all the type declarations in
packagepoints, including all those in the current compilation unit, as the
scope, this example compiles correctly—that is, forward reference is not a p
lem.

It is a compile-time error if a top level type declaration contains any one of
following access modifiers:protected, private or static.
131

7.7 Unique Package Names PACKAGES

132

ges

lled
such

ed to
sual

arise
ay

r to
e

ained

iza-

your

ame.

not

then

any
ave

s be
ples:

ase

-

DRAFT
7.7 Unique Package Names

Developers should take steps to avoid the possibility of two published packa
having the same name by choosingunique package namesfor packages that are
widely distributed. This allows packages to be easily and automatically insta
and catalogued. This section specifies a suggested convention for generating
unique package names. Implementations of the Java platform are encourag
provide automatic support for converting a set of packages from local and ca
package names to the unique name format described here.

If unique package names are not used, then package name conflicts may
far from the point of creation of either of the conflicting packages. This m
create a situation that is difficult or impossible for the user or programme
resolve. The classClassLoader can be used to isolate packages with the sam
name from each other in those cases where the packages will have constr
interactions, but not in a way that is transparent to a naïve program.

You form a unique package name by first having (or belonging to an organ
tion that has) an Internet domain name, such assun.com. You then reverse this
name, component by component, to obtain, in this example,com.sun, and use this
as a prefix for your package names, using a convention developed within
organization to further administer package names.

In some cases, the internet domain name may not be a valid package n
Here are some suggested conventions for dealing with these situations:

• If the domain name contains a hyphen, or any other special character
allowed in an identifier (§3.8), convert it into an underscore.

• If any of the resulting package name components are keywords (§3.9)
append underscore to them.

• If any of the resulting package name components start with a digit, or
other character that is not allowed as an initial character of an identifier, h
an underscore prefixed to the component.

Such a convention might specify that certain directory name component
division, department, project, machine, or login names. Some possible exam

com.sun.sunsoft.DOE
com.sun.java.jag.scrabble
com.apple.quicktime.v2
edu.cmu.cs.bovik.cheese
gov.whitehouse.socks.mousefinder

The first component of a unique package name is always written in all-lowerc
ASCII letters and should be one of the top level domain names, currentlycom,
edu, gov, mil, net, org, or one of the English two-letter codes identifying coun

PACKAGES Unique Package Names 7.7

the

ored

ue
n top
te a
DRAFT
tries as specified in ISO Standard 3166, 1981. For more information, refer to
documents stored atftp://rs.internic.net/rfc, for example,rfc920.txt
andrfc1032.txt.

The name of a package is not meant to imply where the package is st
within the Internet; for example, a package namededu.cmu.cs.bovik.cheese
is not necessarily obtainable from Internet addresscmu.edu or fromcs.cmu.edu
or from bovik.cs.cmu.edu. The suggested convention for generating uniq
package names is merely a way to piggyback a package naming convention o
of an existing, widely known unique name registry instead of having to crea
separate registry for package names.
133

C H A P T E R 8
are

of

§7.6)
anon-
s are

d
ed,

le

lasses
The
the

ructor

bers
inter-
ss or
lared
ss or
DRAFT
Classes

CLASS declarations define new reference types and describe how they
implemented (§8.1).

A nested classis any class whose declaration occurs within the body
another class or interface. Atop level class is a class that is not a nested class.

This chapter discusses the common semantics of all classes—top level (
and nested (including member classes (§8.5, §9.5), local classes (§14.3) and
ymous classes (§15.9.5)). Details that are specific to particular kinds of classe
discussed in the sections dedicated to these constructs.

A named class may be declaredabstract (§8.1.1.1) and must be declare
abstract if it is incompletely implemented; such a class cannot be instantiat
but can be extended by subclasses. A class may be declaredfinal (§8.1.1.2), in
which case it cannot have subclasses. If a class is declaredpublic, then it can be
referred to from other packages.

Each class exceptObject is an extension of (that is, a subclass of) a sing
existing class (§8.1.3) and may implement interfaces (§8.1.4).

The body of a class declares members (fields and methods and nested c
and interfaces), instance and static initializers, and constructors (§8.1.5).
scope (§6.3) of a member (§8.2) is the entire declaration of the class to which
member belongs. Field, method, member class, member interface, and const
declarations may include the access modifiers (§6.6)public, protected, or
private. The members of a class include both declared and inherited mem
(§8.2). Newly declared fields can hide fields declared in a superclass or super
face. Newly declared class members and interface members can hide cla
interface members declared in a superclass or superinterface. Newly dec
methods can hide, implement, or override methods declared in a supercla
superinterface.
135

8.1 Class Declaration CLASSES

136

nce,
class.
ly

ers of

inner

em-

thod
lass
at is
ow it

be

and

her

d to

d to

by
they

m-
sing
DRAFT
Field declarations (§8.3) describe class variables, which are incarnated o

and instance variables, which are freshly incarnated for each instance of the
A field may be declaredfinal (§8.3.1.2), in which case it can be assigned to on
once. Any field declaration may include an initializer.

Member class declarations (§8.5) describe nested classes that are memb
the surrounding class. Member classes may bestatic, in which case they have
no access to the instance variables of the surrounding class; or they may be
classes (§8.1.2).

Member interface declarations (§8.5) describe nested interfaces that are m
bers of the surrounding class.

Method declarations (§8.4) describe code that may be invoked by me
invocation expressions (§15.12). A class method is invoked relative to the c
type; an instance method is invoked with respect to some particular object th
an instance of the class type. A method whose declaration does not indicate h
is implemented must be declaredabstract. A method may be declaredfinal
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may
implemented by platform-dependentnative code (§8.4.3.4). Asynchronized
method (§8.4.3.6) automatically locks an object before executing its body
automatically unlocks the object on return, as if by use of asynchronized state-
ment (§14.18), thus allowing its activities to be synchronized with those of ot
threads (§17).

Method names may be overloaded (§8.4.7).
Instance initializers (§8.6) are blocks of executable code that may be use

help initialize an instance when it is created (§15.9).
Static initializers (§8.7) are blocks of executable code that may be use

help initialize a class when it is first loaded (§12.4).
Constructors (§8.8) are similar to methods, but cannot be invoked directly

a method call; they are used to initialize new class instances. Like methods,
may be overloaded (§8.8.6).

8.1 Class Declaration

A class declaration specifies a new named reference type:

ClassDeclaration:
ClassModifiersopt class Identifier Superopt Interfacesopt ClassBody

The Identifier in a class declaration specifies the name of the class. A co
pile-time error occurs if a class has the same simple name as any of its enclo
classes or interfaces.

CLASSES Class Modifiers 8.1.1

137

ess
ses
ifiers
s-
difier
urs

om-
own

ete.
,

as

h is
d
DRAFT

8.1.1 Class Modifiers

A class declaration may includeclass modifiers.

ClassModifiers:
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
public protected private
abstract static final strictfp

Not all modifiers are applicable to all kinds of class declarations. The acc
modifier public pertains only to top level classes (§7.6) and to member clas
(§8.5, §9.5), and is discussed in §6.6, §8.5 and §9.5. The access mod
protected andprivate pertain only to member classes within a directly enclo
ing class declaration (§8.5) and are discussed in §8.5.1. The access mo
static pertains only to member classes (§8.5, §9.5). A compile-time error occ
if the same modifier appears more than once in a class declaration.

If two or more class modifiers appear in a class declaration, then it is cust
ary, though not required, that they appear in the order consistent with that sh
above in the production forClassModifier.

8.1.1.1 abstract Classes

An abstract class is a class that is incomplete, or to be considered incompl
Only abstract classes may haveabstract methods (§8.4.3.1, §9.4), that is
methods that are declared but not yet implemented. If a class that is notabstract
contains anabstract method, then a compile-time error occurs. A class C h
abstract methods if any of the following is true:

• C explicitly contains a declaration of anabstract method (§8.4.3).

• Any of C’s superclasses declares anabstract method that has not been
implemented (§8.4.6.1) in C or any of its superclasses.

• A direct superinterface (§8.1.4) of C declares or inherits a method (whic
therefore necessarilyabstract) and C neither declares nor inherits a metho
that implements it.

In the example:

abstract class Point {
int x = 1, y = 1;
void move(int dx, int dy) {

x += dx;
y += dy;
alert();

8.1.1 Class Modifiers CLASSES

138

f an

us,
DRAFT
}
abstract void alert();

}

abstract class ColoredPoint extends Point {
int color;

}

class SimplePoint extends Point {
void alert() { }

}

a classPoint is declared that must be declaredabstract, because it contains a
declaration of anabstract method namedalert. The subclass ofPoint named
ColoredPoint inherits theabstract methodalert, so it must also be declared
abstract. On the other hand, the subclass ofPoint namedSimplePoint pro-
vides an implementation ofalert, so it need not beabstract.

A compile-time error occurs if an attempt is made to create an instance o
abstract class using a class instance creation expression (§15.9).

Thus, continuing the example just shown, the statement:

Point p = new Point();

would result in a compile-time error; the classPoint cannot be instantiated
because it isabstract. However, aPoint variable could correctly be initialized
with a reference to any subclass ofPoint, and the classSimplePoint is not
abstract, so the statement:

Point p = new SimplePoint();

would be correct.
A subclass of anabstract class that is not itselfabstract may be instanti-

ated, resulting in the execution of a constructor for theabstract class and, there-
fore, the execution of the field initializers for instance variables of that class. Th
in the example just given, instantiation of aSimplePoint causes the default con-
structor and field initializers forx andy of Point to be executed.

It is a compile-time error to declare anabstract class type such that it is not
possible to create a subclass that implements all of itsabstract methods. This
situation can occur if the class would have as members twoabstract methods
that have the same method signature (§8.4.2) but different return types.

As an example, the declarations:

interface Colorable { void setColor(int color); }

abstract class Colored implements Colorable {
abstract int setColor(int color);

}

CLASSES Class Modifiers 8.1.1

ass

o
e

vent
uctor
r
bles.
tion

re

if a
a

all
s, are

o be

DRAFT

result in a compile-time error: it would be impossible for any subclass of cl
Colored to provide an implementation of a method namedsetColor, taking one
argument of typeint, that can satisfy bothabstract method specifications,
because the one in interfaceColorable requires the same method to return n
value, while the one in classColored requires the same method to return a valu
of typeint (§8.4).

A class type should be declaredabstract only if the intent is that subclasses
can be created to complete the implementation. If the intent is simply to pre
instantiation of a class, the proper way to express this is to declare a constr
(§8.8.8) of no arguments, make itprivate, never invoke it, and declare no othe
constructors. A class of this form usually contains class methods and varia
The classMath is an example of a class that cannot be instantiated; its declara
looks like this:

public final class Math {

private Math() { } // never instantiate this class

. . . declarations of class variables and methods . . .
}

8.1.1.2 final Classes

A class can be declaredfinal if its definition is complete and no subclasses a
desired or required. A compile-time error occurs if the name of afinal class
appears in theextends clause (§8.1.3) of anotherclass declaration; this implies
that afinal class cannot have any subclasses. A compile-time error occurs
class is declared bothfinal andabstract, because the implementation of such
class could never be completed (§8.1.1.1).

Because afinal class never has any subclasses, the methods of afinal class
are never overridden (§8.4.6.1).

8.1.1.3 strictfp Classes

The effect of thestrictfp modifier is to make allfloat or double expressions
within the class declaration be explicitly FP-strict (§15.4). This implies that
methods declared in the class, and all nested types declared in the clas
implicitly strictfp.

Note also that allfloat or double expressions within all variable initializ-
ers, instance initializers, static initializers and constructors of the class will als
explicitly FP-strict.
139

8.1.2 Inner Classes and Enclosing Instances CLASSES

140

d
ter-
-time

even
s may
pro-

they

or
tatic

icit

ated
DRAFT
8.1.2 Inner Classes and Enclosing Instances

An inner class is a nested class that is not explicitly or implicitly declare
static. Inner classes may not declare static initializers (§8.7) or member in
faces. Inner classes may not declare static members, unless they are compile
constant fields (§15.28).

To illustrate these rules, consider the example below:

class HasStatic{
static int j = 100;

}

class Outer{
class Inner extends HasStatic{

static final x = 3;// ok - compile-time constant
static int y = 4; // compile-time error, an inner class

}

static class NestedButNotInner{
static int z = 5; // ok, not an inner class

}

interface NeverInner{} // interfaces are never inner
}

Inner classes may inherit static members that are not compile-time constants
though they may not declare them. Nested classes that are not inner classe
declare static members freely, in accordance with the usual rules of the Java
gramming language. Member interfaces (§8.5) are always implicitly static so
are never considered to be inner classes.

A statement or expressionoccurs in a static contextif and only if the inner-
most method, constructor, instance initializer, static initializer, field initializer,
explicit constructor statement enclosing the statement or expression is a s
method, a static initializer, the variable initializer of a static variable, or an expl
constructor invocation statement (§8.8.5).

An inner classC is adirect inner class of a classO if O is the immediately lex-
ically enclosing class ofC and the declaration ofC does not occur in a static con-
text. A classC is aninner class of classO if it is either a direct inner class ofO or
an inner class of an inner class ofO.

A classO is thezeroth lexically enclosing class of itself. A classO is thenth
lexically enclosing class of a classC if it is the immediately enclosing class of the

st lexically enclosing class ofC.
An instancei of a direct inner classC of a classO is associated with an

instance ofO, known as theimmediately enclosing instanceof i. The immediately
enclosing instance of an object, if any, is determined when the object is cre
(§15.9.2).

n 1–

CLASSES Inner Classes and Enclosing Instances8.1.2

lexi-
ing
not

xt

n
the
ent.

eter

em-

of
DRAFT
An objecto is thezeroth lexically enclosing instance of itself. An objecto is

the nth lexically enclosing instance of an instancei if it is the immediately
enclosing instance of the st lexically enclosing instance ofi.

When an inner class refers to an instance variable that is a member of a
cally enclosing class, the variable of the corresponding lexically enclos
instance is used. A blank final (§4.5.4) field of a lexically enclosing class may
be assigned within an inner class.

An instance of an inner classI whose declaration occurs in a static conte
has no lexically enclosing instances. However, ifI is immediately declared within
a static method or static initializer thenI does have anenclosing block, which is
the innermost block statement lexically enclosing the declaration ofI.

Furthermore, for every superclassS of C which is itself a direct inner class of a
classSO, there is an instance ofSO associated withi, known asthe immediately
enclosing instance of i with respect to S. The immediately enclosing instance of a
object with respect to its class’ direct superclass, if any, is determined when
superclass constructor is invoked via an explicit constructor invocation statem

Any local variable, formal method parameter or exception handler param
used but not declared in an inner class must be declaredfinal, and must be defi-
nitely assigned (§16) before the body of the inner class.

Inner classes include local (§14.3), anonymous (§15.9.5) and non-static m
ber classes (§8.5). Here are some examples:

class Outer {
int i = 100;

static void classMethod() {
final int l = 200;

class LocalInStaticContext{
int k = i; // compile-time error
int m = l; // ok

}
}

void foo() {
class Local { // a local class

int j = i;
}

}
}

The declaration of classLocalInStaticContext occurs in a static context—
within the static methodclassMethod. Instance variables of classOuter are not
available within the body of a static method. In particular, instance variables
Outer are not available inside the body ofLocalInStaticContext. However,

n 1–
141

8.1.3 Superclasses and Subclasses CLASSES

142

rror

eely
le is
of an
osing

ation
i-
er-
DRAFT

local variables from the surrounding method may be referred to without e
(provided they are markedfinal).

Inner classes whose declarations do not occur in a static context may fr
refer to the instance variables of their enclosing class. An instance variab
always defined with respect to an instance. In the case of instance variables
enclosing class, the instance variable must be defined with respect to an encl
instance of that class So, for example, the classLocal above has an enclosing
instance of classOuter. As a further example:

class WithDeepNesting{
boolean toBe;

WithDeepNesting(boolean b) { toBe = b;}

class Nested {
boolean theQuestion;
class DeeplyNested {

DeeplyNested(){
theQuestion = toBe || !toBe;

}
}

}
}

Here, every instance ofWithDeepNesting.Nested.DeeplyNested has an
enclosing instance of classWithDeepNesting.Nested (its immediately enclos-
ing instance) and an enclosing instance of classWithDeepNesting (its 2nd lexi-
cally enclosing instance).

8.1.3 Superclasses and Subclasses

The optionalextends clause in a class declaration specifies thedirect superclass
of the current class. A class is said to be adirect subclassof the class it extends.
The direct superclass is the class from whose implementation the implement
of the current class is derived. Theextends clause must not appear in the defin
tion of the classObject, because it is the primordial class and has no direct sup
class. If the class declaration for any other class has noextends clause, then the
class has the classObject as its implicit direct superclass.

Super:
extends ClassType

The following is repeated from §4.3 to make the presentation here clearer:

ClassType:
TypeName

CLASSES Superclasses and Subclasses8.1.3

143

ime

-

it

la-
DRAFT
The ClassTypemust name an accessible (§6.6) class type, or a compile-t

error occurs. If the specifiedClassTypenames a class that isfinal (§8.1.1.2),
then a compile-time error occurs;final classes are not allowed to have sub
classes.

In the example:

class Point { int x, y; }

final class ColoredPoint extends Point { int color; }

class Colored3DPoint extends ColoredPoint { int z; } // error

the relationships are as follows:

• The classPoint is a direct subclass ofObject.

• The classObject is the direct superclass of the classPoint.

• The classColoredPoint is a direct subclass of classPoint.

• The classPoint is the direct superclass of classColoredPoint.

The declaration of classColored3dPoint causes a compile-time error because
attempts to extend thefinal classColoredPoint.

The subclassrelationship is the transitive closure of the direct subclass re
tionship. A classA is a subclass of classC if either of the following is true:

• A is the direct subclass ofC.

• There exists a classB such thatA is a subclass ofB, andB is a subclass ofC,
applying this definition recursively.

ClassC is said to be asuperclassof classA wheneverA is a subclass ofC.
In the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

final class Colored3dPoint extends ColoredPoint { int z; }

the relationships are as follows:

• The classPoint is a superclass of classColoredPoint.

• The classPoint is a superclass of classColored3dPoint.

• The classColoredPoint is a subclass of classPoint.

• The classColoredPoint is a superclass of classColored3dPoint.

• The classColored3dPoint is a subclass of classColoredPoint.

• The classColored3dPoint is a subclass of classPoint.

8.1.4 Superinterfaces CLASSES

144

in a

aded

er-

ile-

ore

the
DRAFT
A classC directly dependson a typeT if T is mentioned in theextends or imple-
ments clause ofC either as a superclass or superinterface, or as a qualifier with
superclass or superinterface name. A classC dependson a reference typeT if any
of the following conditions hold:

• C directly depends onT.

• C directly depends on an interfaceI that depends (§9.1.2) onT.

• C directly depends on a classD that depends onT (using this definition recur-
sively).

It is a compile-time error if a class depends on itself.
For example:

class Point extends ColoredPoint { int x, y; }

class ColoredPoint extends Point { int color; }

causes a compile-time error.
If circularly declared classes are detected at run time, as classes are lo

(§12.2), then aClassCircularityError is thrown.

8.1.4 Superinterfaces

The optionalimplements clause in a class declaration lists the names of int
faces that aredirect superinterfaces of the class being declared:

Interfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType
InterfaceTypeList , InterfaceType

The following is repeated from §4.3 to make the presentation here clearer:

InterfaceType:
TypeName

EachInterfaceTypemust name an accessible (§6.6) interface type, or a comp
time error occurs.

A compile-time error occurs if the same interface is mentioned two or m
times in a singleimplements clause.

This is true even if the interface is named in different ways; for example,
code:

CLASSES Superinterfaces 8.1.4
DRAFT
class Redundant implements java.lang.Cloneable, Cloneable {

int x;
}

results in a compile-time error because the namesjava.lang.Cloneable and
Cloneable refer to the same interface.

An interface typeI is asuperinterfaceof class typeC if any of the following
is true:

• I is a direct superinterface ofC.

• C has some direct superinterfaceJ for which I is a superinterface, using the
definition of “superinterface of an interface” given in §9.1.2.

• I is a superinterface of the direct superclass ofC.

A class is said toimplement all its superinterfaces.
In the example:

public interface Colorable {
void setColor(int color);
int getColor();

}

public interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;
void setFinish(int finish);
int getFinish();

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }

}

class PaintedPoint extends ColoredPoint implements Paintable
{

int finish;
public void setFinish(int finish) {

this.finish = finish;
}
public int getFinish() { return finish; }

}

the relationships are as follows:
145

8.1.4 Superinterfaces CLASSES

146

class
er-

by a
the

ods

n

DRAFT

• The interfacePaintable is a superinterface of classPaintedPoint.

• The interfaceColorable is a superinterface of classColoredPoint and of
classPaintedPoint.

• The interfacePaintable is a subinterface of the interfaceColorable, and
Colorable is a superinterface ofPaintable, as defined in §9.1.2.

A class can have a superinterface in more than one way. In this example, the
PaintedPoint hasColorable as a superinterface both because it is a superint
face ofColoredPoint and because it is a superinterface ofPaintable.

Unless the class being declared isabstract, the declarations of all the
method members of each direct superinterface must be implemented either
declaration in this class or by an existing method declaration inherited from
direct superclass, because a class that is notabstract is not permitted to have
abstract methods (§8.1.1.1).

Thus, the example:

interface Colorable {
void setColor(int color);
int getColor();

}

class Point { int x, y; };

class ColoredPoint extends Point implements Colorable {
int color;

}

causes a compile-time error, becauseColoredPoint is not anabstract class but
it fails to provide an implementation of methodssetColor andgetColor of the
interfaceColorable.

It is permitted for a single method declaration in a class to implement meth
of more than one superinterface. For example, in the code:

interface Fish { int getNumberOfScales(); }

interface Piano { int getNumberOfScales(); }

class Tuna implements Fish, Piano {
// You can tune a piano, but can you tuna fish?
int getNumberOfScales() { return 91; }

}

the methodgetNumberOfScales in classTuna has a name, signature, and retur
type that matches the method declared in interfaceFish and also matches the
method declared in interfacePiano; it is considered to implement both.

On the other hand, in a situation such as this:

CLASSES Class Body and Member Declarations8.1.5

h a
ent

lds
also
of

ble,
s, or
DRAFT
interface Fish { int getNumberOfScales(); }

interface StringBass { double getNumberOfScales(); }

class Bass implements Fish, StringBass {
// This declaration cannot be correct, no matter what type is used.
public ??? getNumberOfScales() { return 91; }

}

It is impossible to declare a method namedgetNumberOfScales with the same
signature and return type as those of both the methods declared in interfaceFish
and in interfaceStringBass, because a class can have only one method wit
given signature (§8.4). Therefore, it is impossible for a single class to implem
both interfaceFish and interfaceStringBass (§8.4.6).

8.1.5 Class Body and Member Declarations

A class bodymay contain declarations of members of the class, that is, fie
(§8.3), classes (§8.5), interfaces (§8.5) and methods (§8.4). A class body may
contain instance initializers (§8.6), static initializers (§8.7), and declarations
constructors (§8.8) for the class.

ClassBody:
{ ClassBodyDeclarationsopt }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
InstanceInitializer
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

The scope of a declaration of a memberm declared in or inherited by a class
typeC is the entire body ofC, including any nested type declarations.

If C itself is a nested class, there may be definitions of the same kind (varia
method, or type) form in enclosing scopes. (The scopes may be blocks, classe
147

8.2 Class Members CLASSES

148

s

class

and
DRAFT
packages.) In all such cases, the memberm declared or inherited in C shadows
(§6.3.1) the other definitions ofm.

8.2 Class Members

The members of a class type are all of the following:

• Members inherited from its direct superclass (§8.1.3), except in classObject,
which has no direct superclass

• Members inherited from any direct superinterfaces (§8.1.4)

• Members declared in the body of the class (§8.1.5)

Members of a class that are declaredprivate are not inherited by subclasse
of that class. Only members of a class that are declaredprotected or public are
inherited by subclasses declared in a package other than the one in which the
is declared.

Constructors, static initializers, and instance initializers are not members
therefore are not inherited.

The example:

class Point {
int x, y;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y = y; }
private void reset() { this.x = 0; this.y = 0; }

}

class ColoredPoint extends Point {
int color;
void clear() { reset(); } // error

}

class Test {
public static void main(String[] args) {

ColoredPoint c = new ColoredPoint(0, 0); // error
c.reset(); // error

}
}

causes four compile-time errors:

CLASSES Examples of Inheritance 8.2.1

d
this

s of

es.

:

DRAFT
• An error occurs becauseColoredPoint has no constructor declared with two

integer parameters, as requested by the use inmain. This illustrates the fact
thatColoredPoint does not inherit the constructors of its superclassPoint.

• Another error occurs becauseColoredPoint declares no constructors, an
therefore a default constructor for it is automatically created (§8.8.7), and
default constructor is equivalent to:

ColoredPoint() { super(); }

which invokes the constructor, with no arguments, for the direct superclas
the classColoredPoint. The error is that the constructor forPoint that takes
no arguments isprivate, and therefore is not accessible outside the class
Point, even through a superclass constructor invocation (§8.8.5).

Two more errors occur because the methodreset of classPoint is private, and
therefore is not inherited by classColoredPoint. The method invocations in
methodclear of classColoredPoint and in methodmain of classTest are
therefore not correct.

8.2.1 Examples of Inheritance

This section illustrates inheritance of class members through several exampl

8.2.1.1 Example: Inheritance with Default Access

Consider the example where thepoints package declares two compilation units

package points;

public class Point {
int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

}

and:

package points;

public class Point3d extends Point {
int z;
public void move(int dx, int dy, int dz) {

x += dx; y += dy; z += dz;
}

}

and a third compilation unit, in another package, is:
149

8.2.1 Examples of Inheritance CLASSES

150

cess-
DRAFT
import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {

x += dx; y += dy; z += dz; w += dw; // compile-time errors
}

}

Here both classes in thepoints package compile. The classPoint3d inherits the
fields x andy of classPoint, because it is in the same package asPoint. The
classPoint4d, which is in a different package, does not inherit the fieldsx andy
of classPoint or the fieldz of classPoint3d, and so fails to compile.

A better way to write the third compilation unit would be:

import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {

super.move(dx, dy, dz); w += dw;
}

}

using themove method of the superclassPoint3d to processdx, dy, anddz. If
Point4d is written in this way it will compile without errors.

8.2.1.2 Inheritance withpublic and protected

Given the classPoint:

package points;

public class Point {

public int x, y;

protected int useCount = 0;

static protected int totalUseCount = 0;

public void move(int dx, int dy) {
x += dx; y += dy; useCount++; totalUseCount++;

}

}

thepublic andprotected fieldsx, y, useCount andtotalUseCount are inher-
ited in all subclasses ofPoint.

Therefore, this test program, in another package, can be compiled suc
fully:

CLASSES Examples of Inheritance 8.2.1

d

as a
d to a

s or
n,
s

DRAFT
class Test extends points.Point {

public void moveBack(int dx, int dy) {
x -= dx; y -= dy; useCount++; totalUseCount++;

}
}

8.2.1.3 Inheritance withprivate

In the example:

class Point {

int x, y;

void move(int dx, int dy) {
x += dx; y += dy; totalMoves++;

}

private static int totalMoves;

void printMoves() { System.out.println(totalMoves); }

}

class Point3d extends Point {

int z;

void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz; totalMoves++;

}

}

the class variabletotalMoves can be used only within the classPoint; it is not
inherited by the subclassPoint3d. A compile-time error occurs because metho
move of classPoint3d tries to incrementtotalMoves.

8.2.1.4 Accessing Members of Inaccessible Classes

Even though a class might not be declaredpublic, instances of the class might be
available at run time to code outside the package in which it is declared if it h
public superclass or superinterface. An instance of the class can be assigne
variable of such apublic type. An invocation of apublic method of the object
referred to by such a variable may invoke a method of the class if it implement
overrides a method of thepublic superclass or superinterface. (In this situatio
the method is necessarily declaredpublic, even though it is declared in a clas
that is notpublic.)

Consider the compilation unit:
151

8.2.1 Examples of Inheritance CLASSES

152

se
a

ill
m

s

e

DRAFT
package points;

public class Point {
public int x, y;
public void move(int dx, int dy) {

x += dx; y += dy;
}

}

and another compilation unit of another package:

package morePoints;

class Point3d extends points.Point {
public int z;
public void move(int dx, int dy, int dz) {

super.move(dx, dy); z += dz;
}
public void move(int dx, int dy) {

move(dx, dy, 0);
}

}

public class OnePoint {
public static points.Point getOne() {

return new Point3d();
}

}

An invocationmorePoints.OnePoint.getOne() in yet a third package would
return aPoint3d that can be used as aPoint, even though the typePoint3d is
not available outside the packagemorePoints. The two argument version of
methodmove could then be invoked for that object, which is permissible becau
methodmove of Point3d is public (as it must be, for any method that overrides
public method must itself bepublic, precisely so that situations such as this w
work out correctly). The fieldsx andy of that object could also be accessed fro
such a third package.

While the fieldz of classPoint3d is public, it is not possible to access this
field from code outside the packagemorePoints, given only a reference to an
instance of classPoint3d in a variablep of type Point. This is because the
expressionp.z is not correct, asp has typePoint and classPoint has no field
namedz; also, the expression((Point3d)p).z is not correct, because the clas
typePoint3d cannot be referred to outside packagemorePoints.

The declaration of the fieldz aspublic is not useless, however. If there wer
to be, in packagemorePoints, apublic subclassPoint4d of the classPoint3d:

package morePoints;

public class Point4d extends Point3d {
public int w;

CLASSES Field Declarations 8.3

153

§6.3)
d in

ns

wo
ame,

okup

that
me
n also
DRAFT
public void move(int dx, int dy, int dz, int dw) {

super.move(dx, dy, dz); w += dw;
}

}

then classPoint4d would inherit the fieldz, which, beingpublic, could then be
accessed by code in packages other thanmorePoints, through variables and
expressions of thepublic typePoint4d.

8.3 Field Declarations

The variables of a class type are introduced byfield declarations:

FieldDeclaration:
FieldModifiersopt Type VariableDeclarators;

VariableDeclarators:
VariableDeclarator
VariableDeclarators, VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId= VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

The FieldModifiersare described in §8.3.1. TheIdentifier in a FieldDeclarator
may be used in a name to refer to the field. Fields are members; the scope (
of a field declaration is specified in §8.1.5. More than one field may be declare
a single field declaration by using more than one declarator; theFieldModifiers
and Type apply to all the declarators in the declaration. Variable declaratio
involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to declare t
fields with the same name. Methods, types, and fields may have the same n
since they are used in different contexts and are disambiguated by different lo
procedures (§6.5).

If the class declares a field with a certain name, then the declaration of
field is said tohide any and all accessible declarations of fields with the sa
name in superclasses, and superinterfaces of the class. The field declaratio

8.3.1 Field Modifiers CLASSES

154

es or
han-

eed

the
ible to

(for
rivate

me
ver,
ple
ous.
t be
her-
y.

nt of
-
value

field
DRAFT
shadows (§6.3.1) declarations of any accessible fields in enclosing class
interfaces, and any local variables, formal method parameters, and exception
dler parameters with the same name in any enclosing blocks.

If a field declaration hides the declaration of another field, the two fields n
not have the same type.

A class inherits from its direct superclass and direct superinterfaces all
non-private fields of the superclass and superinterfaces that are both access
code in the class and not hidden by a declaration in the class.

Note that a private field of a superclass might be accessible to a subclass
example, if both classes are members of the same class). Nevertheless, a p
field is never inherited by a subclass.

It is possible for a class to inherit more than one field with the same na
(§8.3.3.3). Such a situation does not in itself cause a compile-time error. Howe
any attempt within the body of the class to refer to any such field by its sim
name will result in a compile-time error, because such a reference is ambigu

There might be several paths by which the same field declaration migh
inherited from an interface. In such a situation, the field is considered to be in
ited only once, and it may be referred to by its simple name without ambiguit

A hidden field can be accessed by using a qualified name (if it isstatic) or
by using a field access expression (§15.11) that contains the keywordsuper or a
cast to a superclass type. See §15.11.2 for discussion and an example.

A value stored in a field of typefloat is always an element of the float value
set (§4.2.3); similarly, a value stored in a field of typedouble is always an ele-
ment of the double value set. It is not permitted for a field of typefloat to contain
an element of the float-extended-exponent value set that is not also an eleme
the float value set, nor for a field of typedouble to contain an element of the dou
ble-extended-exponent value set that is not also an element of the double
set.

8.3.1 Field Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
public protected private
static final transient volatile

The access modifierspublic, protected, andprivate are discussed in §6.6. A
compile-time error occurs if the same modifier appears more than once in a

CLASSES Field Modifiers 8.3.1

ifiers

s-
that

o
ated.
s

ew
iable

mple,
s
n

DRAFT
declaration, or if a field declaration has more than one of the access mod
public, protected, andprivate.

If two or more (distinct) field modifiers appear in a field declaration, it is cu
tomary, though not required, that they appear in the order consistent with
shown above in the production forFieldModifier.

8.3.1.1 static Fields

If a field is declaredstatic, there exists exactly one incarnation of the field, n
matter how many instances (possibly zero) of the class may eventually be cre
A static field, sometimes called aclass variable, is incarnated when the class i
initialized (§12.4).

A field that is not declaredstatic (sometimes called a non-static field) is
called aninstance variable. Whenever a new instance of a class is created, a n
variable associated with that instance is created for every instance var
declared in that class or any of its superclasses. The example program:

class Point {
int x, y, useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

class Test {
public static void main(String[] args) {

Point p = new Point(1,1);
Point q = new Point(2,2);
p.x = 3; p.y = 3; p.useCount++; p.origin.useCount++;
System.out.println("(" + q.x + "," + q.y + ")");
System.out.println(q.useCount);
System.out.println(q.origin == Point.origin);
System.out.println(q.origin.useCount);

}
}

prints:

(2,2)
0
true
1

showing that changing the fieldsx, y, anduseCount of p does not affect the fields
of q, because these fields are instance variables in distinct objects. In this exa
the class variableorigin of the classPoint is referenced both using the clas
name as a qualifier, inPoint.origin, and using variables of the class type i
field access expressions (§15.11), as inp.origin andq.origin. These two ways
155

8.3.1 Field Modifiers CLASSES

156

the

is

end
om-

-

; see

ccess
s a

d be
ibed
e, to
hould
DRAFT
of accessing theorigin class variable access the same object, evidenced by
fact that the value of the reference equality expression (§15.21.3):

q.origin==Point.origin

is true. Further evidence is that the incrementation:

p.origin.useCount++;

causes the value ofq.origin.useCount to be1; this is so becausep.origin and
q.origin refer to the same variable.

8.3.1.2 final Fields

A field can be declaredfinal (§4.5.4). Both class and instance variables (static
and non-static fields) may be declaredfinal.

It is a compile-time error if a blankfinal (§4.5.4) class variable is not defi-
nitely assigned (§16.7) by a static initializer (§8.7) of the class in which it
declared.

A blankfinal instance variable must be definitely assigned (§16.8) at the
of every constructor (§8.8) of the class in which it is declared; otherwise a c
pile-time error occurs.

8.3.1.3 transient Fields

Variables may be markedtransient to indicate that they are not part of the per
sistent state of an object.

If an instance of the classPoint:

class Point {
int x, y;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only the fieldsx andy
would be saved. This specification does not specify details of such services
the specification ofjava.io.Serializable for an example of such a service.

8.3.1.4 volatile Fields

As described in §17, the Java programming language allows threads that a
shared variables to keep private working copies of the variables; this allow
more efficient implementation of multiple threads. These working copies nee
reconciled with the master copies in the shared main memory only at prescr
synchronization points, namely when objects are locked or unlocked. As a rul
ensure that shared variables are consistently and reliably updated, a thread s

CLASSES Field Modifiers 8.3.1

ven-

latile

s
ble.
s on
t the

ly

rules

ods

d
DRAFT
ensure that it has exclusive use of such variables by obtaining a lock that, con
tionally, enforces mutual exclusion for those shared variables.

The Java programming language provides a second mechanism, vo
fields, that is more convenient for some purposes.

A field may be declaredvolatile, in which case a thread must reconcile it
working copy of the field with the master copy every time it accesses the varia
Moreover, operations on the master copies of one or more volatile variable
behalf of a thread are performed by the main memory in exactly the order tha
thread requested.

If, in the following example, one thread repeatedly calls the methodone (but
no more thanInteger.MAX_VALUE times in all), and another thread repeated
calls the methodtwo:

class Test {

static int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

then methodtwo could occasionally print a value forj that is greater than the
value ofi, because the example includes no synchronization and, under the
explained in §17, the shared values ofi andj might be updated out of order.

One way to prevent this out-or-order behavior would be to declare meth
one andtwo to besynchronized (§8.4.3.6):

class Test {

static int i = 0, j = 0;

static synchronized void one() { i++; j++; }

static synchronized void two() {
System.out.println("i=" + i + " j=" + j);

}

}

This prevents methodone and methodtwo from being executed concurrently, an
furthermore guarantees that the shared values ofi andj are both updated before
methodone returns. Therefore methodtwo never observes a value forj greater
than that fori; indeed, it always observes the same value fori andj.

Another approach would be to declarei andj to bevolatile:
157

8.3.2 Initialization of Fields CLASSES

158

t

on of

r
n

e
e

hen

ach
DRAFT
class Test {

static volatile int i = 0, j = 0;

static void one() { i++; j++; }

static void two() {
System.out.println("i=" + i + " j=" + j);

}

}

This allows methodone and methodtwo to be executed concurrently, bu
guarantees that accesses to the shared values fori andj occur exactly as many
times, and in exactly the same order, as they appear to occur during executi
the program text by each thread. Therefore, the shared value forj is never greater
than that fori, because each update toi must be reflected in the shared value fo
i before the update toj occurs. It is possible, however, that any given invocatio
of methodtwo might observe a value forj that is much greater than the valu
observed fori, because methodone might be executed many times between th
moment when methodtwo fetches the value ofi and the moment when method
two fetches the value ofj.

See §17 for more discussion and examples.
A compile-time error occurs if afinal variable is also declaredvolatile.

8.3.2 Initialization of Fields

If a field declarator contains avariable initializer, then it has the semantics of an
assignment (§15.26) to the declared variable, and:

• If the declarator is for a class variable (that is, astatic field), then the vari-
able initializer is evaluated and the assignment performed exactly once, w
the class is initialized (§12.4).

• If the declarator is for an instance variable (that is, a field that is notstatic),
then the variable initializer is evaluated and the assignment performed e
time an instance of the class is created (§12.5).

The example:

class Point {
int x = 1, y = 5;

}

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println(p.x + ", " + p.y);

CLASSES Initialization of Fields 8.3.2

159

nts
time

lete

tion

ime

lso
that

ious

se is
8.3.2.3

any
tion
DRAFT

}
}

produces the output:

1, 5

because the assignments tox andy occur whenever a newPoint is created.
Variable initializers are also used in local variable declaration stateme

(§14.4), where the initializer is evaluated and the assignment performed each
the local variable declaration statement is executed.

It is a compile-time error if the evaluation of a variable initializer for astatic
field or for a instance variable of a named class (or of an interface) can comp
abruptly with a checked exception (§11.2).

8.3.2.1 Initializers for Class Variables

If a reference by simple name to any instance variable occurs in an initializa
expression for a class variable, then a compile-time error occurs.

If the keyword this (§15.8.3) or the keywordsuper (§15.11.2, §15.12)
occurs in an initialization expression for a class variable, then a compile-t
error occurs.

One subtlety here is that, at run time,static variables that arefinal and that
are initialized with compile-time constant values are initialized first. This a
applies to such fields in interfaces (§9.3.1). These variables are “constants”
will never be observed to have their default initial values (§4.5.5), even by dev
programs. See §12.4.2 and §13.4.8 for more discussion.

Use of class variables whose declarations appear textually after the u
sometimes restricted, even though these class variables are in scope. See §
for the precise rules governing forward reference to class variables.

8.3.2.2 Initializers for Instance Variables

Initialization expressions for instance variables may use the simple name of
static variable declared in or inherited by the class, even one whose declara
occurs textually later.

Thus the example:

class Test {
float f = j;
static int j = 1;

}

compiles without error; it initializesj to 1 when classTest is initialized, and ini-
tializesf to the current value ofj every time an instance of classTest is created.

8.3.2 Initialization of Fields CLASSES

160

the

se is
. See
es.

the

not

wise
DRAFT
Initialization expressions for instance variables are permitted to refer to

current objectthis (§15.8.3) and to use the keywordsuper (§15.11.2, §15.12).
Use of instance variables whose declarations appear textually after the u

sometimes restricted, even though these instance variables are in scope
§8.3.2.3 for the precise rules governing forward reference to instance variabl

8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of a member needs to appear before it is used only if
member is an instance (respectivelystatic) field of a class or interfaceC and all
of the following conditions hold:

• The usage occurs in an instance (respectivelystatic) variable initializer ofC
or in an instance (respectivelystatic) initializer ofC.

• The usage is not on the left hand side of an assignment.

• C is the innermost class or interface enclosing the usage.

A compile-time error occurs if any of the three requirements above are
met.

This means that a compile-time error results from the test program:

class Test {
int i = j; // compile-time error: incorrect forward reference
int j = 1;

}

whereas the following example compiles without error:

class Test {
Test() { k = 2; }
int j = 1;
int i = j;
int k;

}

even though the constructor (§8.8) forTest refers to the fieldk that is declared
three lines later.

These restrictions are designed to catch, at compile time, circular or other
malformed initializations. Thus, both:

class Z {
static int i = j + 2;
static int j = 4;

}

and:

CLASSES Initialization of Fields 8.3.2

161

way,

t

DRAFT
class Z {

static { i = j + 2; }
static int i, j;
static { j = 4; }

}

result in compile-time errors. Accesses by methods are not checked in this
so:

class Z {
static int peek() { return j; }
static int i = peek();
static int j = 1;

}

class Test {
public static void main(String[] args) {

System.out.println(Z.i);
}

}

produces the output:

0

because the variable initializer fori uses the class methodpeek to access the
value of the variablej beforej has been initialized by its variable initializer, a
which point it still has its default value (§4.5.5).

A more elaborate example is:

class UseBeforeDeclaration {

static {
x = 100; // ok - assignment
int y = x + 1; // error - read before declaration
int v = x = 3; // ok - x at left hand side of assignment
int z = UseBeforeDeclaration.x * 2;

// ok - not accessed via simple name
Object o = new Object(){

void foo(){x++;} // ok - occurs in a different class
{x++;} // ok - occurs in a different class

};
 }

{
j = 200; // ok - assignment
j = j + 1; // error - right hand side reads before declaration
int k = j = j + 1;
int n = j = 300; // ok - j at left hand side of assignment
int h = j++; // error - read before declaration
int l = this.j * 3; // ok - not accessed via simple name
Object o = new Object(){

8.3.3 Examples of Field Declarations CLASSES

162

cla-
DRAFT
void foo(){j++;} // ok - occurs in a different class
{ j = j + 1;} // ok - occurs in a different class

};
}

int w = x= 3; // ok - x at left hand side of assignment
int p = x; // ok - instance initializers may access static fields
static int u = (new Object(){int bar(){return x;}}).bar();
// ok - occurs in a different class
static int x;
int m = j = 4; // ok - j at left hand side of assignment
int o = (new Object(){int bar(){return j;}}).bar();
// ok - occurs in a different class
int j;

}

8.3.3 Examples of Field Declarations

The following examples illustrate some (possibly subtle) points about field de
rations.

8.3.3.1 Example: Hiding of Class Variables

The example:

class Point {
static int x = 2;

}

class Test extends Point {
static double x = 4.7;
public static void main(String[] args) {

new Test().printX();
}
void printX() {

System.out.println(x + " " + super.x);
}

}

produces the output:

4.7 2

because the declaration ofx in classTest hides the definition ofx in classPoint,
so classTest does not inherit the fieldx from its superclassPoint. Within the
declaration of classTest, the simple namex refers to the field declared within
classTest. Code in classTest may refer to the fieldx of classPoint assuper.x
(or, becausex is static, asPoint.x). If the declaration ofTest.x is deleted:

CLASSES Examples of Field Declarations 8.3.3

:

bles
DRAFT
class Point {

static int x = 2;
}

class Test extends Point {
public static void main(String[] args) {

new Test().printX();
}
void printX() {

System.out.println(x + " " + super.x);
}

}

then the fieldx of classPoint is no longer hidden within classTest; instead, the
simple namex now refers to the fieldPoint.x. Code in classTest may still refer
to that same field assuper.x. Therefore, the output from this variant program is

2 2

8.3.3.2 Example: Hiding of Instance Variables

This example is similar to that in the previous section, but uses instance varia
rather than static variables. The code:

class Point {
int x = 2;

}

class Test extends Point {
double x = 4.7;
void printBoth() {

System.out.println(x + " " + super.x);
}
public static void main(String[] args) {

Test sample = new Test();
sample.printBoth();
System.out.println(sample.x + " " +

((Point)sample).x);
}

}

produces the output:

4.7 2
4.7 2

because the declaration ofx in classTest hides the definition ofx in classPoint,
so classTest does not inherit the fieldx from its superclassPoint. It must be
noted, however, that while the fieldx of classPoint is not inherited by class
Test, it is neverthelessimplementedby instances of classTest. In other words,
163

8.3.3 Examples of Field Declarations CLASSES

164

the
n

n

ter-
any
ed
DRAFT
every instance of classTest contains two fields, one of typeint and one of type
float. Both fields bear the namex, but within the declaration of classTest, the
simple namex always refers to the field declared within classTest. Code in
instance methods of classTest may refer to the instance variablex of classPoint
assuper.x.

Code that uses a field access expression to access fieldx will access the field
namedx in the class indicated by the type of reference expression. Thus,
expressionsample.x accesses afloat value, the instance variable declared i
classTest, because the type of the variable sample isTest, but the expression
((Point)sample).x accesses anint value, the instance variable declared i
classPoint, because of the cast to typePoint.

If the declaration ofx is deleted from classTest, as in the program:

class Point {
static int x = 2;

}

class Test extends Point {
void printBoth() {

System.out.println(x + " " + super.x);
}
public static void main(String[] args) {

Test sample = new Test();
sample.printBoth();
System.out.println(sample.x + " " +

((Point)sample).x);
}

}

then the fieldx of classPoint is no longer hidden within classTest. Within
instance methods in the declaration of classTest, the simple namex now refers to
the field declared within classPoint. Code in classTest may still refer to that
same field assuper.x. The expressionsample.x still refers to the fieldx within
type Test, but that field is now an inherited field, and so refers to the fieldx
declared in classPoint. The output from this variant program is:

2 2
2 2

8.3.3.3 Example: Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two in
faces or from its superclass and an interface. A compile-time error occurs on
attempt to refer to any ambiguously inherited field by its simple name. A qualifi
name or a field access expression that contains the keywordsuper (§15.11.2) may
be used to access such fields unambiguously. In the example:

CLASSES Examples of Field Declarations 8.3.3

and
ig-
DRAFT

interface Frob { float v = 2.0f; }

class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {
public static void main(String[] args) {

new Test().printV();
}
void printV() { System.out.println(v); }

}

the classTest inherits two fields namedv, one from its superclassSuperTest and
one from its superinterfaceFrob. This in itself is permitted, but a compile-time
error occurs because of the use of the simple namev in methodprintV: it cannot
be determined whichv is intended.

The following variation uses the field access expressionsuper.v to refer to
the field namedv declared in classSuperTest and uses the qualified name
Frob.v to refer to the field namedv declared in interfaceFrob:

interface Frob { float v = 2.0f; }

class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {
public static void main(String[] args) {

new Test().printV();
}
void printV() {

System.out.println((super.v + Frob.v)/2);
}

}

It compiles and prints:

2.5

Even if two distinct inherited fields have the same type, the same value,
are bothfinal, any reference to either field by simple name is considered amb
uous and results in a compile-time error. In the example:

interface Color { int RED=0, GREEN=1, BLUE=2; }

interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }

class Test implements Color, TrafficLight {
public static void main(String[] args) {

System.out.println(GREEN); // compile-time error
System.out.println(RED); // compile-time error
165

8.4 Method Declarations CLASSES

166

,

two
alue

the
ple

er of
DRAFT
}

}

it is not astonishing that the reference toGREEN should be considered ambiguous
because classTest inherits two different declarations forGREEN with different
values. The point of this example is that the reference toRED is also considered
ambiguous, because two distinct declarations are inherited. The fact that the
fields namedRED happen to have the same type and the same unchanging v
does not affect this judgment.

8.3.3.4 Example: Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths,
field is considered to be inherited only once. It may be referred to by its sim
name without ambiguity. For example, in the code:

public interface Colorable {
int RED = 0xff0000, GREEN = 0x00ff00, BLUE = 0x0000ff;

}

public interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
. . .

}

class PaintedPoint extends ColoredPoint implements Paintable
{

. . . RED . . .
}

the fieldsRED, GREEN, andBLUE are inherited by the classPaintedPoint both
through its direct superclassColoredPoint and through its direct superinterface
Paintable. The simple namesRED, GREEN, andBLUE may nevertheless be used
without ambiguity within the classPaintedPoint to refer to the fields declared in
interfaceColorable.

8.4 Method Declarations

A methoddeclares executable code that can be invoked, passing a fixed numb
values as arguments.

CLASSES Formal Parameters 8.4.1

hat
t

e
field,

rm
pty
list.

two
types
y are

oce-

of
a type
DRAFT

MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
MethodModifiersopt ResultType MethodDeclarator Throwsopt

ResultType:
Type
void

MethodDeclarator:
Identifer (FormalParameterListopt)

TheMethodModifiersare described in §8.4.3, theThrowsclause in §8.4.4, and the
MethodBodyin §8.4.5. A method declaration either specifies the type of value t
the method returns or uses the keywordvoid to indicate that the method does no
return a value.

The Identifier in a MethodDeclaratormay be used in a name to refer to th
method. A class can declare a method with the same name as the class or a
member class or member interface of the class.

For compatibility with older versions of the Java platform, a declaration fo
for a method that returns an array is allowed to place (some or all of) the em
bracket pairs that form the declaration of the array type after the parameter
This is supported by the obsolescent production:

MethodDeclarator:
MethodDeclarator []

but should not be used in new code.
It is a compile-time error for the body of a class to have as members

methods with the same signature (§8.4.2) (name, number of parameters, and
of any parameters). Methods and fields may have the same name, since the
used in different contexts and are disambiguated by the different lookup pr
dures (§6.5).

8.4.1 Formal Parameters

Theformal parametersof a method or constructor, if any, are specified by a list
comma-separated parameter specifiers. Each parameter specifier consists of
(optionally preceded by thefinal modifier) and an identifier (optionally followed
by brackets) that specifies the name of the parameter:
167

8.4.1 Formal Parameters CLASSES

168

the-

d to

red

tual
f the
he
e

the

f the
f the
y be
con-
14.3)

sing

t
type

for

e set,
-
set.
DRAFT
FormalParameterList:

FormalParameter
FormalParameterList , FormalParameter

FormalParameter:
finalopt Type VariableDeclaratorId

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

If a method or constructor has no parameters, only an empty pair of paren
ses appears in the declaration of the method or constructor.

If two formal parameters of the same method or constructor are declare
have the same name (that is, their declarations mention the sameIdentifier), then a
compile-time error occurs.

It is a compile-time error if a method or constructor parameter that is decla
final is assigned to within the body of the method or constructor.

When the method or constructor is invoked (§15.12), the values of the ac
argument expressions initialize newly created parameter variables, each o
declaredType,before execution of the body of the method or constructor. T
Identifier that appears in theDeclaratorId may be used as a simple name in th
body of the method or constructor to refer to the formal parameter.

The scope of a parameter of a method (§8.4.1) or constructor (§8.8.1) is
entire body of the method or constructor.

These parameter names may not be redeclared as local variables o
method, or as exception parameters of catch clauses in a try statement o
method or constructor. However, a parameter of a method or constructor ma
shadowed anywhere inside a class declaration nested within that method or
structor. Such a nested class declaration could declare either a local class (§
or an anonymous class (§15.9).

Formal parameters are referred to only using simple names, never by u
qualified names (§6.6).

A method or constructor parameter of typefloat always contains an elemen
of the float value set (§4.2.3); similarly, a method or constructor parameter of
double always contains an element of the double value set. It is not permitted
a method or constructor parameter of typefloat to contain an element of the
float-extended-exponent value set that is not also an element of the float valu
nor for a method parameter of typedouble to contain an element of the double
extended-exponent value set that is not also an element of the double value

CLASSES Method Modifiers 8.4.3

ble is
d to
sets.

on is
ethod

and
hods

e in
ccess

ord
DRAFT
Where an actual argument expression corresponding to a parameter varia

not FP-strict (§15.4), evaluation of that actual argument expression is permitte
use intermediate values drawn from the appropriate extended-exponent value
Prior to being stored in the parameter variable the result of such an expressi
mapped to the nearest value in the corresponding standard value set by m
invocation conversion (§5.3).

8.4.2 Method Signature

Thesignatureof a method consists of the name of the method and the number
types of formal parameters to the method. A class may not declare two met
with the same signature, or a compile-time error occurs.

The example:

class Point implements Move {
int x, y;
abstract void move(int dx, int dy);
void move(int dx, int dy) { x += dx; y += dy; }

}

causes a compile-time error because it declares twomove methods with the same
signature. This is an error even though one of the declarations isabstract.

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
public protected private abstract static
final synchronized native strictfp

The access modifierspublic, protected, and private are discussed in
§6.6. A compile-time error occurs if the same modifier appears more than onc
a method declaration, or if a method declaration has more than one of the a
modifierspublic, protected, andprivate. A compile-time error occurs if a
method declaration that contains the keywordabstract also contains any one of
the keywordsprivate, static, final, native, strictfp, orsynchronized. A
compile-time error occurs if a method declaration that contains the keyw
native also containsstrictfp.
169

8.4.3 Method Modifiers CLASSES

170

m-
own

ing

f an

d

uch

that
en it
r this
DRAFT
If two or more method modifiers appear in a method declaration, it is custo

ary, though not required, that they appear in the order consistent with that sh
above in the production forMethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, provid
its signature (name and number and type of parameters), return type, andthrows
clause (if any), but does not provide an implementation. The declaration o
abstract methodm must appear directly within anabstract class (call itA);
otherwise a compile-time error results. Every subclass ofA that is notabstract
must provide an implementation form, or a compile-time error occurs as specifie
in §8.1.1.1.

It is a compile-time error for aprivate method to be declaredabstract.
It would be impossible for a subclass to implement aprivate abstract

method, becauseprivate methods are not inherited by subclasses; therefore s
a method could never be used.

It is a compile-time error for astatic method to be declaredabstract.
It is a compile-time error for afinal method to be declaredabstract.
An abstract class can override anabstract method by providing another

abstract method declaration.
This can provide a place to put a documentation comment, or to declare

the set of checked exceptions (§11.2) that can be thrown by that method, wh
is implemented by its subclasses, is to be more limited. For example, conside
code:

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(); }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public abstract class InfiniteBuffer implements Buffer {
abstract char get() throws BufferError;

}

The overriding declaration of methodget in classInfiniteBuffer states
that methodget in any subclass ofInfiniteBuffer never throws aBuffer-

CLASSES Method Modifiers 8.4.3

thus

s

nce
DRAFT
Empty exception, putatively because it generates the data in the buffer, and
can never run out of data.

An instance method that is notabstract can be overridden by anabstract
method.

For example, we can declare anabstract classPoint that requires its sub-
classes to implementtoString if they are to be complete, instantiable classes:

abstract class Point {
int x, y;
public abstract String toString();

}

This abstract declaration oftoString overrides the non-abstract toString
method of classObject. (ClassObject is the implicit direct superclass of class
Point.) Adding the code:

class ColoredPoint extends Point {
int color;
public String toString() {

return super.toString() + ": color " + color; // error
}

}

results in a compile-time error because the invocationsuper.toString() refers
to methodtoString in classPoint, which isabstract and therefore cannot be
invoked. MethodtoString of class Object can be made available to clas
ColoredPoint only if classPoint explicitly makes it available through some
other method, as in:

abstract class Point {
int x, y;
public abstract String toString();
protected String objString() { return super.toString(); }

}

class ColoredPoint extends Point {
int color;
public String toString() {

return objString() + ": color " + color; // correct
}

}

8.4.3.2 static Methods

A method that is declaredstatic is called aclass method. A class method is
always invoked without reference to a particular object. An attempt to refere
the current object using the keywordthis or the keywordsuper in the body of a
171

8.4.3 Method Modifiers CLASSES

172

r a

th
ords

g

ot

f a
dy.
n. In

-
t the
rrect
DRAFT
class method results in a compile-time error. It is a compile-time error fo
static method to be declaredabstract.

A method that is not declaredstatic is called aninstance method,and some-
times called a non-static method. An instance method is always invoked wi
respect to an object, which becomes the current object to which the keyw
this andsuper refer during execution of the method body.

8.4.3.3 final Methods

A method can be declaredfinal to prevent subclasses from overriding or hidin
it. It is a compile-time error to attempt to override or hide afinal method.

A private method and all methods declared in afinal class (§8.1.1.2) are
implicitly final, because it is impossible to override them. It is permitted but n
required for the declarations of such methods to redundantly include thefinal
keyword.

It is a compile-time error for afinal method to be declaredabstract.
At run time, a machine-code generator or optimizer can “inline” the body o

final method, replacing an invocation of the method with the code in its bo
The inlining process must preserve the semantics of the method invocatio
particular, if the target of an instance method invocation isnull, then a
NullPointerException must be thrown even if the method is inlined. The com
piler must ensure that the exception will be thrown at the correct point, so tha
actual arguments to the method will be seen to have been evaluated in the co
order prior to the method invocation.

Consider the example:

final class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }

}

class Test {
public static void main(String[] args) {

Point[] p = new Point[100];
for (int i = 0; i < p.length; i++) {

p[i] = new Point();
p[i].move(i, p.length-1-i);

}
}

}

Here, inlining the methodmove of classPoint in methodmain would transform
thefor loop to the form:

CLASSES Method Modifiers 8.4.3

that

ly

g

DRAFT
for (int i = 0; i < p.length; i++) {

p[i] = new Point();
Point pi = p[i];
int j = p.length-1-i;
pi.x += i;
pi.y += j;

}

The loop might then be subject to further optimizations.
Such inlining cannot be done at compile time unless it can be guaranteed

Test andPoint will always be recompiled together, so that wheneverPoint—
and specifically itsmove method—changes, the code forTest.main will also be
updated.

8.4.3.4 native Methods

A method that isnative is implemented in platform-dependent code, typical
written in another programming language such as C, C++,FORTRAN, or assembly
language. The body of anative method is given as a semicolon only, indicatin
that the implementation is omitted, instead of a block.

A compile-time error occurs if anative method is declaredabstract.
For example, the classRandomAccessFile of the packagejava.io might

declare the followingnative methods:

package java.io;

public class RandomAccessFile
implements DataOutput, DataInput

{ . . .
public native void open(String name, boolean writeable)

throws IOException;
public native int readBytes(byte[] b, int off, int len)

throws IOException;
public native void writeBytes(byte[] b, int off, int len)

throws IOException;
public native long getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native long length() throws IOException;
public native void close() throws IOException;

}

8.4.3.5 strictfp Methods

The effect of thestrictfp modifier is to make allfloat or double expressions
within the method body be explicitly FP-strict (§15.4).
173

8.4.3 Method Modifiers CLASSES

174

ass
DRAFT
8.4.3.6 synchronized Methods

A synchronized method acquires a lock (§17.1) before it executes. For a cl
(static) method, the lock associated with theClass object for the method’s
class is used. For an instance method, the lock associated withthis (the object
for which the method was invoked) is used.

These are the same locks that can be used by thesynchronized statement
(§14.18); thus, the code:

class Test {
int count;
synchronized void bump() { count++; }
static int classCount;
static synchronized void classBump() {

classCount++;
}

}

has exactly the same effect as:

class BumpTest {
int count;
void bump() {

synchronized (this) {
count++;

}
}
static int classCount;
static void classBump() {

try {
synchronized (Class.forName("BumpTest")) {

classCount++;
}

} catch (ClassNotFoundException e) {
...

}
}

}

The more elaborate example:

public class Box {

private Object boxContents;

public synchronized Object get() {
Object contents = boxContents;
boxContents = null;
return contents;

}

CLASSES Method Throws 8.4.4

class
t.

e-

sult

of a
or a

sure
con-
tions
ep-
es a
DRAFT
public synchronized boolean put(Object contents) {

if (boxContents != null)
return false;

boxContents = contents;
return true;

}

}

defines a class which is designed for concurrent use. Each instance of the
Box has an instance variablecontents that can hold a reference to any objec
You can put an object in aBox by invokingput, which returnsfalse if the box is
already full. You can get something out of aBox by invokingget, which returns a
null reference if thebox is empty.

If put and get were notsynchronized, and two threads were executing
methods for the same instance ofBox at the same time, then the code could misb
have. It might, for example, lose track of an object because two invocations toput
occurred at the same time.

See §17 for more discussion of threads and locks.

8.4.4 Method Throws

A throws clauseis used to declare any checked exceptions (§11.2) that can re
from the execution of a method or constructor:

Throws:
throws ClassTypeList

ClassTypeList:
ClassType
ClassTypeList , ClassType

A compile-time error occurs if anyClassTypementioned in athrows clause is not
the classThrowable or a subclass ofThrowable. It is permitted but not required
to mention other (unchecked) exceptions in athrows clause.

For each checked exception that can result from execution of the body
method or constructor, a compile-time error occurs unless that exception type
superclass of that exception type is mentioned in athrows clause in the declara-
tion of the method or constructor.

The requirement to declare checked exceptions allows the compiler to en
that code for handling such error conditions has been included. Methods or
structors that fail to handle exceptional conditions thrown as checked excep
will normally result in a compile-time error because of the lack of a proper exc
tion type in athrows clause. The Java programming language thus encourag
175

8.4.5 Method Body CLASSES

176

doc-

hich

.
able
h to

class

in
and
the
an be

ods
to

n
e
r-

a
ust
DRAFT

programming style where rare and otherwise truly exceptional conditions are
umented in this way.

The predefined exceptions that are not checked in this way are those for w
declaring every possible occurrence would be unimaginably inconvenient:

• Exceptions that are represented by the subclasses of classError, for example
OutOfMemoryError, are thrown due to a failure in or of the virtual machine
Many of these are the result of linkage failures and can occur at unpredict
points in the execution of a program. Sophisticated programs may yet wis
catch and attempt to recover from some of these conditions.

• The exceptions that are represented by the subclasses of the
RuntimeException, for exampleNullPointerException, result from run-
time integrity checks and are thrown either directly from the program or
library routines. It is beyond the scope of the Java programming language,
perhaps beyond the state of the art, to include sufficient information in
program to reduce to a manageable number the places where these c
proven not to occur.

A method that overrides or hides another method (§8.4.6), including meth
that implementabstract methods defined in interfaces, may not be declared
throw more checked exceptions than the overridden or hidden method.

More precisely, suppose thatB is a class or interface, andA is a superclass or
superinterface ofB, and a method declarationn in B overrides or hides a method
declarationm in A. If n has athrows clause that mentions any checked exceptio
types, thenm must have athrows clause, and for every checked exception typ
listed in thethrows clause ofn , that same exception class or one of its supe
classes must occur in thethrows clause ofm; otherwise, a compile-time error
occurs.

See §11 for more information about exceptions and a large example.

8.4.5 Method Body

A method bodyis either a block of code that implements the method or simply
semicolon, indicating the lack of an implementation. The body of a method m
be a semicolon if and only if the method is eitherabstract (§8.4.3.1) ornative
(§8.4.3.4).

MethodBody:
Block
;

CLASSES Inheritance, Overriding, and Hiding 8.4.6

ec-

ion
that

urn
f its

yet

on-
es
) nor
DRAFT
A compile-time error occurs if a method declaration is eitherabstract or
native and has a block for its body. A compile-time error occurs if a method d
laration is neitherabstract nornative and has a semicolon for its body.

If an implementation is to be provided for a method but the implementat
requires no executable code, the method body should be written as a block
contains no statements: “{ }”.

If a method is declaredvoid, then its body must not contain anyreturn
statement (§14.16) that has anExpression.

If a method is declared to have a return type, then everyreturn statement
(§14.16) in its body must have anExpression. A compile-time error occurs if the
body of the method can complete normally (§14.1).

In other words, a method with a return type must return only by using a ret
statement that provides a value return; it is not allowed to “drop off the end o
body.”

Note that it is possible for a method to have a declared return type and
contain no return statements. Here is one example:

class DizzyDean {
int pitch() { throw new RuntimeException("90 mph?!"); }

}

8.4.6 Inheritance, Overriding, and Hiding

A classinherits from its direct superclass and direct superinterfaces all the n
private methods (whetherabstract or not) of the superclass and superinterfac
that are accessible to code in the class and are neither overridden (§8.4.6.1
hidden (§8.4.6.2) by a declaration in the class.

8.4.6.1 Overriding (by Instance Methods)

An instance methodm1 declared in a classC overridesanother method with the
same signature,m2, declared in classA iff both:

1. C is a subclass ofA.

2. Either

◆ m2 is non-private and accessible fromC, or

◆ m1 overrides a methodm3, m3 distinct fromm1, m3 distinct fromm2, such
thatm3 overridesm2.

Moreover, ifm1 is notabstract, thenm1 is said toimplementany and all dec-
larations ofabstract methods that it overrides.
177

8.4.6 Inheritance, Overriding, and Hiding CLASSES

178

or

pres-

dden
ee

am-
rict
not

to
uper-
ss. A

is
s-

ng a

of

then
s a
a
or

.3),

e at
error
DRAFT
A compile-time error occurs if an instance method overrides astatic

method.
In this respect, overriding of methods differs from hiding of fields (§8.3), f

it is permissible for an instance variable to hide astatic variable.
An overridden method can be accessed by using a method invocation ex

sion (§15.12) that contains the keywordsuper. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overri
method; in this respect, overriding of methods differs from hiding of fields. S
§15.12.4.9 for discussion and examples of this point.

The presence or absence of thestrictfp modifier has absolutely no effect on
the rules for overriding methods and implementing abstract methods. For ex
ple, it is permitted for a method that is not FP-strict to override an FP-st
method and it is permitted for an FP-strict method to override a method that is
FP-strict.

8.4.6.2 Hiding (by Class Methods)

If a class declares astatic method, then the declaration of that method is said
hide any and all methods with the same signature in the superclasses and s
interfaces of the class that would otherwise be accessible to code in the cla
compile-time error occurs if astatic method hides an instance method.

In this respect, hiding of methods differs from hiding of fields (§8.3), for it
permissible for astatic variable to hide an instance variable. Hiding is also di
tinct from shadowing (§6.3.1) and obscuring (§6.3.2).

A hidden method can be accessed by using a qualified name or by usi
method invocation expression (§15.12) that contains the keywordsuper or a cast
to a superclass type. In this respect, hiding of methods is similar to hiding
fields.

8.4.6.3 Requirements in Overriding and Hiding

If a method declaration overrides or hides the declaration of another method,
a compile-time error occurs if they have different return types or if one ha
return type and the other isvoid. Moreover, a method declaration must not have
throws clause that conflicts (§8.4.4) with that of any method that it overrides
hides; otherwise, a compile-time error occurs.

In these respects, overriding of methods differs from hiding of fields (§8
for it is permissible for a field to hide a field of another type.

The access modifier (§6.6) of an overriding or hiding method must provid
least as much access as the overridden or hidden method, or a compile-time
occurs. In more detail:

CLASSES Inheritance, Overriding, and Hiding 8.4.6

the

al
ith the
no
-

ture.
two

:

that
ot

air,
ther
at

y

n

ey

t to
DRAFT
• If the overridden or hidden method ispublic, then the overriding or hiding

method must bepublic; otherwise, a compile-time error occurs.

• If the overridden or hidden method isprotected, then the overriding or hid-
ing method must beprotected or public; otherwise, a compile-time error
occurs.

• If the overridden or hidden method has default (package) access, then
overriding or hiding method must not beprivate; otherwise, a compile-time
error occurs.

Note that aprivate method cannot be hidden or overridden in the technic
sense of those terms. This means that a subclass can declare a method w
same signature as aprivate method in one of its superclasses, and there is
requirement that the return type orthrows clause of such a method bear any rela
tionship to those of theprivate method in the superclass.

8.4.6.4 Inheriting Methods with the Same Signature

It is possible for a class to inherit more than one method with the same signa
Such a situation does not in itself cause a compile-time error. There are then
possible cases:

• If one of the inherited methods is notabstract, then there are two subcases

◆ If the method that is notabstract is static, a compile-time error occurs.

◆ Otherwise, the method that is notabstract is considered to override, and
therefore to implement, all the other methods on behalf of the class
inherits it. A compile-time error occurs if, comparing the method that is n
abstract with each of the other of the inherited methods, for any such p
either they have different return types or one has a return type and the o
is void. Moreover, a compile-time error occurs if the inherited method th
is notabstract has athrows clause that conflicts (§8.4.4) with that of an
other of the inherited methods.

• If all the inherited methods areabstract, then the class is necessarily a
abstract class and is considered to inherit all theabstract methods. A
compile-time error occurs if, for any two such inherited methods, either th
have different return types or one has a return type and the other isvoid.
(Thethrows clauses do not cause errors in this case.)

It is not possible for two or more inherited methods with the same signature no
beabstract, because methods that are notabstract are inherited only from the
direct superclass, not from superinterfaces.
179

8.4.7 Overloading CLASSES

180

ht be
elf,

her-
iffer-

ed

,
thod.

the
the
be

ined

hod
DRAFT
There might be several paths by which the same method declaration mig

inherited from an interface. This fact causes no difficulty and never, of its
results in a compile-time error.

8.4.7 Overloading

If two methods of a class (whether both declared in the same class, or both in
ited by a class, or one declared and one inherited) have the same name but d
ent signatures, then the method name is said to beoverloaded. This fact causes no
difficulty and never of itself results in a compile-time error. There is no requir
relationship between the return types or between thethrows clauses of two meth-
ods with the same name but different signatures.

Methods are overridden on a signature-by-signature basis.
If, for example, a class declares twopublic methods with the same name

and a subclass overrides one of them, the subclass still inherits the other me
In this respect, the Java programming language differs from C++.

When a method is invoked (§15.12), the number of actual arguments and
compile-time types of the arguments are used, at compile time, to determine
signature of the method that will be invoked (§15.12.2). If the method that is to
invoked is an instance method, the actual method to be invoked will be determ
at run time, using dynamic method lookup (§15.12.4).

8.4.8 Examples of Method Declarations

The following examples illustrate some (possibly subtle) points about met
declarations.

8.4.8.1 Example: Overriding

In the example:

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

}

class SlowPoint extends Point {

int xLimit, yLimit;

void move(int dx, int dy) {
super.move(limit(dx, xLimit), limit(dy, yLimit));

}

CLASSES Examples of Method Declarations8.4.8

on

e

he
DRAFT
static int limit(int d, int limit) {

return d > limit ? limit : d < -limit ? -limit : d;
}

}

the classSlowPoint overrides the declarations of methodmove of classPoint
with its ownmove method, which limits the distance that the point can move
each invocation of the method. When themove method is invoked for an instance
of classSlowPoint, the overriding definition in classSlowPoint will always be
called, even if the reference to theSlowPoint object is taken from a variable
whose type isPoint.

8.4.8.2 Example: Overloading, Overriding, and Hiding

In the example:

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

int color;

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

}

the classRealPoint hides the declarations of theint instance variablesx andy
of classPoint with its own float instance variablesx andy, and overrides the
methodmove of classPoint with its ownmove method. It also overloads the nam
move with another method with a different signature (§8.4.2).

In this example, the members of the classRealPoint include the instance
variablecolor inherited from the classPoint, thefloat instance variablesx and
y declared inRealPoint, and the twomove methods declared inRealPoint.

Which of these overloadedmove methods of classRealPoint will be chosen
for any particular method invocation will be determined at compile time by t
overloading resolution procedure described in §15.12.

8.4.8.3 Example: Incorrect Overriding

This example is an extended variation of that in the preceding section:
181

8.4.8 Examples of Method Declarations CLASSES

182

g
e for

s

DRAFT
class Point {

int x = 0, y = 0, color;

void move(int dx, int dy) { x += dx; y += dy; }

int getX() { return x; }

int getY() { return y; }

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

float getX() { return x; }

float getY() { return y; }

}

Here the classPoint provides methodsgetX andgetY that return the values of its
fields x andy; the classRealPoint then overrides these methods by declarin
methods with the same signature. The result is two errors at compile time, on
each method, because the return types do not match; the methods in classPoint
return values of typeint, but the wanna-be overriding methods in clas
RealPoint return values of typefloat.

8.4.8.4 Example: Overriding versus Hiding

This example corrects the errors of the example in the preceding section:

class Point {

int x = 0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }

int getX() { return x; }

int getY() { return y; }

int color;

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }

void move(float dx, float dy) { x += dx; y += dy; }

CLASSES Examples of Method Declarations8.4.8

e

lass
o an

is

DRAFT

int getX() { return (int)Math.floor(x); }

int getY() { return (int)Math.floor(y); }

}

Here the overriding methodsgetX andgetY in classRealPoint have the same
return types as the methods of classPoint that they override, so this code can b
successfully compiled.

Consider, then, this test program:

class Test {

public static void main(String[] args) {
RealPoint rp = new RealPoint();
Point p = rp;
rp.move(1.71828f, 4.14159f);
p.move(1, -1);
show(p.x, p.y);
show(rp.x, rp.y);
show(p.getX(), p.getY());
show(rp.getX(), rp.getY());

}

static void show(int x, int y) {
System.out.println("(" + x + ", " + y + ")");

}

static void show(float x, float y) {
System.out.println("(" + x + ", " + y + ")");

}

}

The output from this program is:

(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

The first line of output illustrates the fact that an instance ofRealPoint actu-
ally contains the two integer fields declared in classPoint; it is just that their
names are hidden from code that occurs within the declaration of c
RealPoint (and those of any subclasses it might have). When a reference t
instance of classRealPoint in a variable of typePoint is used to access the field
x, the integer fieldx declared in classPoint is accessed. The fact that its value
zero indicates that the method invocationp.move(1, -1) did not invoke the
methodmove of classPoint; instead, it invoked the overriding methodmove of
classRealPoint.
183

8.4.8 Examples of Method Declarations CLASSES

184

tes
in

elds

pe
pect,
he

of
DRAFT
The second line of output shows that the field accessrp.x refers to the fieldx

declared in classRealPoint. This field is of typefloat, and this second line of
output accordingly displays floating-point values. Incidentally, this also illustra
the fact that the method nameshow is overloaded; the types of the arguments
the method invocation dictate which of the two definitions will be invoked.

The last two lines of output show that the method invocationsp.getX() and
rp.getX() each invoke thegetX method declared in classRealPoint. Indeed,
there is no way to invoke thegetX method of classPoint for an instance of class
RealPoint from outside the body ofRealPoint, no matter what the type of the
variable we may use to hold the reference to the object. Thus, we see that fi
and methods behave differently: hiding is different from overriding.

8.4.8.5 Example: Invocation of Hidden Class Methods

A hidden class (static) method can be invoked by using a reference whose ty
is the class that actually contains the declaration of the method. In this res
hiding of static methods is different from overriding of instance methods. T
example:

class Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }

}

class Sub extends Super {
static String greeting() { return "Hello"; }
String name() { return "Dick"; }

}

class Test {
public static void main(String[] args) {

Super s = new Sub();
System.out.println(s.greeting() + ", " + s.name());

}
}

produces the output:

Goodnight, Dick

because the invocation ofgreeting uses the type ofs, namelySuper, to figure
out, at compile time, which class method to invoke, whereas the invocation
name uses the class ofs, namelySub, to figure out, at run time, which instance
method to invoke.

CLASSES Examples of Method Declarations8.4.8

ting
DRAFT
8.4.8.6 Large Example of Overriding

Overriding makes it easy for subclasses to extend the behavior of an exis
class, as shown in this example:

import java.io.OutputStream;

import java.io.IOException;

class BufferOutput {

private OutputStream o;

BufferOutput(OutputStream o) { this.o = o; }

protected byte[] buf = new byte[512];

protected int pos = 0;

public void putchar(char c) throws IOException {
if (pos == buf.length)

flush();
buf[pos++] = (byte)c;

}

public void putstr(String s) throws IOException {
for (int i = 0; i < s.length(); i++)

putchar(s.charAt(i));
}

public void flush() throws IOException {
o.write(buf, 0, pos);
pos = 0;

}

}

class LineBufferOutput extends BufferOutput {

LineBufferOutput(OutputStream o) { super(o); }

public void putchar(char c) throws IOException {
super.putchar(c);
if (c == '\n')

flush();
}

}

class Test {
public static void main(String[] args)

throws IOException
{

LineBufferOutput lbo =
new LineBufferOutput(System.out);

lbo.putstr("lbo\nlbo");
185

8.4.8 Examples of Method Declarations CLASSES

186

n

od

d its

com-

ption
DRAFT
System.out.print("print\n");
lbo.putstr("\n");

}
}

This example produces the output:

lbo
print
lbo

The classBufferOutput implements a very simple buffered version of a
OutputStream, flushing the output when the buffer is full orflush is invoked.
The subclassLineBufferOutput declares only a constructor and a single meth
putchar, which overrides the methodputchar of BufferOutput. It inherits the
methodsputstr andflush from classBufferOutput.

In theputchar method of aLineBufferOutput object, if the character argu-
ment is a newline, then it invokes theflush method. The critical point about over-
riding in this example is that the methodputstr, which is declared in class
BufferOutput, invokes theputchar method defined by the current objectthis,
which is not necessarily theputchar method declared in classBufferOutput.

Thus, whenputstr is invoked inmain using theLineBufferOutput object
lbo, the invocation ofputchar in the body of theputstr method is an invocation
of the putchar of the objectlbo, the overriding declaration ofputchar that
checks for a newline. This allows a subclass ofBufferOutput to change the
behavior of theputstr method without redefining it.

Documentation for a class such asBufferOutput, which is designed to be
extended, should clearly indicate what is the contract between the class an
subclasses, and should clearly indicate that subclasses may override theputchar
method in this way. The implementor of theBufferOutput class would not,
therefore, want to change the implementation ofputstr in a future implementa-
tion of BufferOutput not to use the methodputchar, because this would break
the preexisting contract with subclasses. See the further discussion of binary
patibility in §13, especially §13.2.

8.4.8.7 Example: Incorrect Overriding because of Throws

This example uses the usual and conventional form for declaring a new exce
type, in its declaration of the classBadPointException:

class BadPointException extends Exception {
BadPointException() { super(); }
BadPointException(String s) { super(s); }

}

CLASSES Member Type Declarations 8.5

thod
t
an

hod

lass

ope

ation
es
DRAFT

class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }

}

class CheckedPoint extends Point {
void move(int dx, int dy) throws BadPointException {

if ((x + dx) < 0 || (y + dy) < 0)
throw new BadPointException();

x += dx; y += dy;
}

}

This example results in a compile-time error, because the override of me
move in classCheckedPoint declares that it will throw a checked exception tha
themove in classPoint has not declared. If this were not considered an error,
invoker of the methodmove on a reference of typePoint could find the contract
between it andPoint broken if this exception were thrown.

Removing thethrows clause does not help:

class CheckedPoint extends Point {
void move(int dx, int dy) {

if ((x + dx) < 0 || (y + dy) < 0)
throw new BadPointException();

x += dx; y += dy;
}

}

A different compile-time error now occurs, because the body of the met
move cannot throw a checked exception, namelyBadPointException, that does
not appear in thethrows clause formove.

8.5 Member Type Declarations

A member classis a class whose declaration is directly enclosed in another c
or interface declaration. Similarly, amember interfaceis an interface whose decla-
ration is directly enclosed in another class or interface declaration. The sc
(§6.3) of a member class or interface is specified in §8.1.5.

If the class declares a member type with a certain name, then the declar
of that type is said tohide any and all accessible declarations of member typ
with the same name in superclasses and superinterfaces of the class.

Within a classC, a declarationd of a member type namedn shadows the dec-
larations of any other types namedn that are in scope at the point whered occurs.
187

8.5.1 Access Modifiers CLASSES

188

ther
rror
e by

ths,
d to

e of

t

lass

tion

licitly
DRAFT
If a member class or interface declared with simple nameC is directly

enclosed within the declaration of a class with fully qualified nameN, then the
member class or interface has the fully qualified nameN.C.

A class may inherit two or more type declarations with the same name, ei
from two interfaces or from its superclass and an interface. A compile-time e
occurs on any attempt to refer to any ambiguously inherited class or interfac
its simple name.

If the same type declaration is inherited from an interface by multiple pa
the class or interface is considered to be inherited only once. It may be referre
by its simple name without ambiguity.

8.5.1 Access Modifiers

The access modifierspublic, protected, andprivate are discussed in §6.6.
A compile-time error occurs if a member type declaration has more than on
the access modifierspublic, protected, andprivate.

8.5.2 Static Member Type Declarations

Thestatic keyword may modify the declaration of a member typeC within the
body of a non-inner classT. Its effect is to declare thatC is not an inner class. Jus
as a static method ofT has no current instance ofT in its body,C also has no cur-
rent instance ofT, nor does it have any lexically enclosing instances.

It is a compile-time error if astatic class contains a usage of a non-static
member of an enclosing class.

Member interfaces are always implicitlystatic. It is permitted but not
required for the declaration of a member interface to explicitly list thestatic
modifier.

8.6 Instance Initializers

An instance initializerdeclared in a class is executed when an instance of the c
is created (§15.9), as specified in §8.8.5.1.

InstanceInitializer:
Block

An instance initializer of a named class may not throw a checked excep
unless that exception or one of its superclasses is explicitly declared in thethrows
clause of each constructor of its class and the class has at least one exp

CLASSES Static Initializers 8.7

can

ony-
only
rop-
lass’

other
gate

of a
a

ents

lly
ini-

se is
. See
es.

zed
d to

tly
if a

tual

se is
8.3.2.3

er,
DRAFT
declared constructor. An instance initializer in an anonymous class (§15.9.5)
throw any exceptions.

The rules above distinguish between instance initializers in named and an
mous classes. This distinction is deliberate. A given anonymous class is
instantiated at a single point in a program. It is therefore possible to directly p
agate information about what exceptions might be raised by an anonymous c
instance initializer to the surrounding expression. Named classes, on the
hand, can be instantiated in many places. Therefore the only way to propa
information about what exceptions might be raised by an instance initializer
named class is through thethrows clauses of its constructors. It follows that
more liberal rule can be used in the case of anonymous classes. Similar comm
apply to instance variable initializers.

It is a compile-time error if an instance initializer cannot complete norma
(§14.20). If areturn statement (§14.16) appears anywhere within an instance
tializer, then a compile-time error occurs.

Use of instance variables whose declarations appear textually after the u
sometimes restricted, even though these instance variables are in scope
§8.3.2.3 for the precise rules governing forward reference to instance variabl

Instance initializers are permitted to refer to the current objectthis (§15.8.3)
and to use the keywordsuper (§15.11.2, §15.12).

8.7 Static Initializers

Any static initializersdeclared in a class are executed when the class is initiali
and, together with any field initializers (§8.3.2) for class variables, may be use
initialize the class variables of the class (§12.4).

StaticInitializer:
static Block

It is a compile-time error for a static initializer to be able to complete abrup
(§14.1, §15.6) with a checked exception (§11.2). It is a compile-time error
static initializer cannot complete normally (§14.20).

The static initializers and class variable initializers are executed in tex
order.

Use of class variables whose declarations appear textually after the u
sometimes restricted, even though these class variables are in scope. See §
for the precise rules governing forward reference to class variables.

If a return statement (§14.16) appears anywhere within a static initializ
then a compile-time error occurs.
189

8.8 Constructor Declarations CLASSES

190

:

error
thod

), by
ator +
ors
ions

ac-

here-

or to
DRAFT
If the keywordthis (§15.8.3) or the keywordsuper (§15.11, §15.12) appears

anywhere within a static initializer, then a compile-time error occurs.

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of a class

ConstructorDeclaration:
ConstructorModifiersopt ConstructorDeclarator

Throwsopt ConstructorBody

ConstructorDeclarator:
SimpleTypeName (FormalParameterListopt)

The SimpleTypeNamein the ConstructorDeclaratormust be the simple name of
the class that contains the constructor declaration; otherwise a compile-time
occurs. In all other respects, the constructor declaration looks just like a me
declaration that has no result type.

Here is a simple example:

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y; }

}

Constructors are invoked by class instance creation expressions (§15.9
the conversions and concatenations caused by the string concatenation oper
(§15.18.1), and by explicit constructor invocations from other construct
(§8.8.5). Constructors are never invoked by method invocation express
(§15.12).

Access to constructors is governed by access modifiers (§6.6).
This is useful, for example, in preventing instantiation by declaring an in

cessible constructor (§8.8.8).
Constructor declarations are not members. They are never inherited and t

fore are not subject to hiding or overriding.

8.8.1 Formal Parameters

The formal parameters of a constructor are identical in structure and behavi
the formal parameters of a method (§8.4.1).

CLASSES Constructor Throws 8.8.4

e-
ame

e in
f the

to
A
for a

or-
ave
e
hine
ject

FP-

the
DRAFT
8.8.2 Constructor Signature

Thesignatureof a constructor consists of the number and types of formal param
ters to the constructor. A class may not declare two constructors with the s
signature, or a compile-time error occurs.

8.8.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
public protected private

The access modifierspublic, protected, and private are discussed in
§6.6. A compile-time error occurs if the same modifier appears more than onc
a constructor declaration, or if a constructor declaration has more than one o
access modifierspublic, protected, andprivate.

Unlike methods, a constructor cannot beabstract, static, final, native,
strictfp, orsynchronized. A constructor is not inherited, so there is no need
declare itfinal and anabstract constructor could never be implemented.
constructor is always invoked with respect to an object, so it makes no sense
constructor to bestatic. There is no practical need for a constructor to besyn-
chronized, because it would lock the object under construction, which is n
mally not made available to other threads until all constructors for the object h
completed their work. The lack ofnative constructors is an arbitrary languag
design choice that makes it easy for an implementation of the Java virtual mac
to verify that superclass constructors are always properly invoked during ob
creation.

Note that aConstructorModifiercannot be declaredstrictfp. This differ-
ence in the definitions forConstructorModifierandMethodModifier(§8.4.3) is an
intentional language design choice; it effectively ensures that a constructor is
strict (§15.4) if and only if its class is FP-strict.

8.8.4 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to
throws clause for a method (§8.4.4).
191

8.8.5 Constructor Body CLASSES

192

ther

e
ing

ion

er-

a

.

l

ces.
DRAFT
8.8.5 Constructor Body

The first statement of a constructor body may be an explicit invocation of ano
constructor of the same class or of the direct superclass (§8.8.5.1).

ConstructorBody:
{ ExplicitConstructorInvocationopt BlockStatementsopt }

It is a compile-time error for a constructor to directly or indirectly invok
itself through a series of one or more explicit constructor invocations involv
this.

If a constructor body does not begin with an explicit constructor invocat
and the constructor being declared is not part of the primordial classObject, then
the constructor body is implicitly assumed by the compiler to begin with a sup
class constructor invocation “super();”, an invocation of the constructor of its
direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body of
constructor is like the body of a method (§8.4.5). Areturn statement (§14.16)
may be used in the body of a constructor if it does not include an expression

In the example:

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }

}

class ColoredPoint extends Point {

static final int WHITE = 0, BLACK = 1;

int color;

ColoredPoint(int x, int y) {
this(x, y, WHITE);

}

ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;

}

}

the first constructor ofColoredPoint invokes the second, providing an additiona
argument; the second constructor ofColoredPoint invokes the constructor of its
superclassPoint, passing along the coordinates.

§12.5 and §15.9 describe the creation and initialization of new class instan

CLASSES Constructor Body 8.8.5

per-

re-
ect
inner

not
r any
e
DRAFT

8.8.5.1 Explicit Constructor Invocations

ExplicitConstructorInvocation:
this (ArgumentListopt) ;
super (ArgumentListopt) ;
Primary.super (ArgumentListopt) ;

Explicit constructor invocation statements can be divided into two kinds:

• Alternate constructor invocationsbegin with the keywordthis. They are
used to invoke an alternate constructor of the same class.

• Superclass constructor invocations begin with either the keywordsuper or a
Primaryexpression. They are used to invoke a constructor of the direct su
class. Superclass constructor invocations may be further subdivided:

◆ Unqualified superclass constructor invocationsbegin with the keyword
super.

◆ Qualified superclass constructor invocationsbegin with aPrimary expres-
sion. They allow a subclass constructor to explicitly specify the newly c
ated object’s immediately enclosing instance with respect to the dir
superclass (§8.1.2). This may be necessary when the superclass is an
class.

Here is an example of a qualified superclass constructor invocation:

class Outer {
class Inner{}

}

class ChildOfInner extends Outer.Inner {
ChildOfInner(){(new Outer()).super();}

}

An explicit constructor invocation statement in a constructor body may
refer to any instance variables or instance methods declared in this class o
superclass, or usethis or super in any expression; otherwise, a compile-tim
error occurs.

For example, if the first constructor ofColoredPoint in the example above
were changed to:

ColoredPoint(int x, int y) {
this(x, y, color);

}

193

8.8.5 Constructor Body CLASSES

194

ot be

plicit
any

tion

nvo-

e
fol-

ed

, the
DRAFT
then a compile-time error would occur, because an instance variable cann
used within a superclass constructor invocation.

If an anonymous class instance creation expression appears within an ex
constructor invocation statement, then the anonymous class may not refer to
of the enclosing instances of the class whose constructor is being invoked.

For example:

class Top {
int x;

class Dummy {
Dummy(Object o) {}

}

class Inside extends Dummy {
Inside() {

super(new Object() { int r = x; }); // error
}

Inside(final int y) {
super(new Object() { int r = y; }); // correct

}
}

}

Let C be the class being instantiated, letS be the direct superclass ofC, and leti be
the instance being created. The evaluation of an explicit constructor invoca
proceeds as follows:

• First, if the constructor invocation statement is a superclass constructor i
cation, then the immediately enclosing instance ofi with respect toS (if any)
must be determined. Whether or noti has an immediately enclosing instanc
with respect toS is determined by the superclass constructor invocation as
lows:

◆ If S is not an inner class, or if the declaration ofS occurs in a static context,
no immediately enclosing instance ofi with respect toS exists. A compile-
time error occurs if the superclass constructor invocation is a qualifi
superclass constructor invocation.

◆ Otherwise:

❖ If the superclass constructor invocation is qualified, then thePrimary
expressionp immediately preceding ".super" is evaluated. If the primary
expression evaluates tonull, a NullPointerException is raised, and
the superclass constructor invocation completes abruptly. Otherwise
result of this evaluation is the immediately enclosing instance ofi with
respect toS. LetO be the immediately lexically enclosing class ofS; it is a
compile-time error if the type ofp is notO or a subclass ofO.

CLASSES Default Constructor 8.8.7

195

or

in an

ctor
then

er-
oca-
tor

ds.
tion
DRAFT

❖ Otherwise:

✣ If S is a local class (§14.3), thenS must be declared in a method
declared in a lexically enclosing classO. Let n be an integer such thatO
is the nth lexically enclosing class ofC. The immediately enclosing
instance ofi with respect toS is thenth lexically enclosing instance of
this.

✣ Otherwise,S is an inner member class (§8.5). It is a compile-time err
if S is not a member of a lexically enclosing class. LetO be the inner-
most lexically enclosing class of whichS is a member, and letn be an
integer such thatO is thenth lexically enclosing class ofC. The imme-
diately enclosing instance ofi with respect toS is the nth lexically
enclosing instance ofthis.

• Second, the arguments to the constructor are evaluated, left-to-right, as
ordinary method invocation.

• Next, the constructor is invoked.

• Finally, if the constructor invocation statement is a superclass constru
invocation and the constructor invocation statement completes normally,
all instance variable initializers ofC and all instance initializers ofC are exe-
cuted. If an instance initializer or instance variable initializerI textually pre-
cedes another instance initializer or instance variable initializerJ, thenI is
executed beforeJ. This action is performed regardless of whether the sup
class constructor invocation actually appears as an explicit constructor inv
tion statement or is provided automatically. An alternate construc
invocation does not perform this additional implicit action.

8.8.6 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of metho
The overloading is resolved at compile time by each class instance crea
expression (§15.9).

8.8.7 Default Constructor

If a class contains no constructor declarations, then adefault constructorthat
takes no parameters is automatically provided:

8.8.7 Default Constructor CLASSES

196

s the

m-
argu-

ult

er as
that
DRAFT

• If the class being declared is the primordial classObject, then the default
constructor has an empty body.

• Otherwise, the default constructor takes no parameters and simply invoke
superclass constructor with no arguments.

A compile-time error occurs if a default constructor is provided by the co
piler but the superclass does not have an accessible constructor that takes no
ments.

A default constructor has nothrows clause.
It follows that if the nullary constructor of the superclass has athrows clause,

then a compile-time error will occur.
If the class is declaredpublic, then the default constructor is implicitly given

the access modifierpublic (§6.6); if the class is declaredprotected, then the
default constructor is implicitly given the access modifierprotected (§6.6); if
the class is declaredprivate, then the default constructor is implicitly given the
access modifierprivate (§6.6); otherwise, the default constructor has the defa
access implied by no access modifier.

Thus, the example:

public class Point {
int x, y;

}

is equivalent to the declaration:

public class Point {
int x, y;
public Point() { super(); }

}

where the default constructor ispublic because the classPoint is public.
The rule that the default constructor of a class has the same access modifi

the class itself is simple and intuitive. Note, however, that this does not imply
the constructor is accessible whenever the class is accessible. Consider

package p1;

public class Outer {
protected class Inner{}

}

package p2;

class SonOfOuter extends p1.Outer {
void foo() {

new Inner(); // compile-time access error
}

}

CLASSES Preventing Instantiation of a Class8.8.8

la-

creat-
cre-

e by
with
DRAFT
The constructor forInner is protected. However, the constructor is protected re
tive to Inner, while Inner is protected relative toOuter. So,Inner is accessible
in SonOfOuter, since it is a subclass ofOuter. Inner’s constructor is not accessi-
ble in SonOfOuter, because the classSonOfOuter is not a subclass ofInner!
Hence, even thoughInner is accessible, its default constructor is not.

8.8.8 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from
ing instances of the class by declaring at least one constructor, to prevent the
ation of an implicit constructor, and declaring all constructors to beprivate. A
public class can likewise prevent the creation of instances outside its packag
declaring at least one constructor, to prevent creation of a default constructor
public access, and declaring no constructor that ispublic.

Thus, in the example:

class ClassOnly {
private ClassOnly() { }
static String just = "only the lonely";

}

the classClassOnly cannot be instantiated, while in the example:

package just;

public class PackageOnly {
PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice cream" };

}

the classPackageOnly can be instantiated only within the packagejust, in
which it is declared.
197

C H A P T E R 9
s are
enta-

nta-

dy

level
ter-

share

ract
types

-
ed by
at its
erit-
any

ue a
. It is
f the

ple-
ace.
DRAFT

Interfaces

AN interface declaration introduces a new reference type whose member
classes, interfaces, constants and abstract methods. This type has no implem
tion, but otherwise unrelated classes can implement it by providing impleme
tions for its abstract methods.

A nested interfaceis any interface whose declaration occurs within the bo
of another class or interface. Atop-level interfaceis an interface that is not a
nested interface.

This chapter discusses the common semantics of all interfaces—top-
(§7.6) and nested (§8.5, §9.5). Details that are specific to particular kinds of in
faces are discussed in the sections dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to
a common abstract superclass or to add methods toObject.

An interface may be declared to be adirect extensionof one or more other
interfaces, meaning that it implicitly specifies all the member types, abst
methods and constants of the interfaces it extends, except for any member
and constants that it may hide.

A class may be declared todirectly implementone or more interfaces, mean
ing that any instance of the class implements all the abstract methods specifi
the interface or interfaces. A class necessarily implements all the interfaces th
direct superclasses and direct superinterfaces do. This (multiple) interface inh
ance allows objects to support (multiple) common behaviors without sharing
implementation.

A variable whose declared type is an interface type may have as its val
reference to any instance of a class which implements the specified interface
not sufficient that the class happen to implement all the abstract methods o
interface; the class or one of its superclasses must actually be declared to im
ment the interface, or else the class is not considered to implement the interf
199

9.1 Interface Declarations INTERFACES

200

. A
of its

i-

ec-

me

t

itly
DRAFT
9.1 Interface Declarations

An interface declaration specifies a new named reference type:

InterfaceDeclaration:
InterfaceModifiersopt interface Identifier

ExtendsInterfacesopt InterfaceBody

TheIdentifier in an interface declaration specifies the name of the interface
compile-time error occurs if an interface has the same simple name as any
enclosing classes or interfaces.

9.1.1 Interface Modifiers

An interface declaration may includeinterface modifiers:

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
public protected private
abstract static strictfp

The access modifierpublic is discussed in §6.6. Not all modifiers are appl
cable to all kinds of interface declarations. The access modifiersprotected and
private pertain only to member interfaces within a directly enclosing class d
laration (§8.5) and are discussed in §8.5.1. The access modifierstatic pertains
only to member interfaces (§8.5, §9.5). A compile-time error occurs if the sa
modifier appears more than once in an interface declaration.

9.1.1.1 abstract Interfaces

Every interface is implicitlyabstract. This modifier is obsolete and should no
be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of thestrictfp modifier is to make allfloat or double expressions
within the interface declaration be explicitly FP-strict (§15.4).

This implies that all nested types declared in the interface are implic
strictfp.

INTERFACES Superinterfaces and Subinterfaces9.1.2

ach
hods,
rfaces
at
ter-

t

me.

r-
DRAFT
9.1.2 Superinterfaces and Subinterfaces

If an extends clause is provided, then the interface being declared extends e
of the other named interfaces and therefore inherits the member types, met
and constants of each of the other named interfaces. These other named inte
are thedirect superinterfacesof the interface being declared. Any class th
implements the declared interface is also considered to implement all the in
faces that this interfaceextends.

ExtendsInterfaces:
extends InterfaceType
ExtendsInterfaces , InterfaceType

The following is repeated from §4.2 to make the presentation here clearer:

InterfaceType:
TypeName

Each InterfaceTypein the extends clause of an interface declaration mus
name an accessible interface type; otherwise a compile-time error occurs.

An interfaceI directly dependson a typeT if T is mentioned in theextends
clause ofI either as a superinterface or as a qualifier within a superinterface na
An interfaceI dependson a reference typeT if any of the following conditions
hold:

• I directly depends onT.

• I directly depends on a classC that depends (§8.1.3) onT.

• I directly depends on an interfaceJ that depends onT (using this definition
recursively).

A compile-time error occurs if an interface depends on itself.
While every class is an extension of classObject, there is no single interface

of which all interfaces are extensions.
The superinterfacerelationship is the transitive closure of the direct supe

interface relationship. An interfaceK is a superinterface of interfaceI if either of
the following is true:

• K is a direct superinterface ofI.

• There exists an interfaceJ such thatK is a superinterface ofJ, andJ is a
superinterface ofI, applying this definition recursively.

InterfaceI is said to be asubinterfaceof interfaceK wheneverK is a superinter-
face ofI.
201

9.1.3 Interface Body and Member Declarations INTERFACES

202

e

itly

ith
DRAFT
9.1.3 Interface Body and Member Declarations

The body of an interface may declare members of the interface:

InterfaceBody:
{ InterfaceMemberDeclarationsopt }

InterfaceMemberDeclarations:
InterfaceMemberDeclaration
InterfaceMemberDeclarations InterfaceMemberDeclaration

InterfaceMemberDeclaration:
ConstantDeclaration
AbstractMethodDeclaration
ClassDeclaration
InterfaceDeclaration
;

The scope of the declaration of a memberm declared in or inherited by an
interface typeI is the entire body ofI, including any nested type declarations.

9.1.4 Access to Interface Member Names

All interface members are implicitlypublic. They are accessible outside th
package where the interface is declared if the interface is also declaredpublic or
protected, in accordance with the rules of §6.6.

9.2 Interface Members

The members of an interface are:

• Those members declared in the interface.

• Those members inherited from direct superinterfaces.

• If an interface has no direct superinterfaces, then the interface implic
declares a public abstract member methodm with signatures, return typer,
and throws clauset corresponding to each public instance methodm with
signatures, return typer, andthrows clauset declared inObject, unless a
method with the same signature, same return type, and a compatiblethrows
clause is explicitly declared by the interface.

It follows that it is a compile-time error if the interface declares a method w
the same signature and different return type or incompatiblethrows clause.

INTERFACES Initialization of Fields in Interfaces 9.3.1

ose
that it

d-

n of
me

are

me
rror.
its
e is

t be
her-
y.

on,
and

.4).
DRAFT
The interface inherits, from the interfaces it extends, all members of th

interfaces, except for fields, classes, and interfaces that it hides and methods
overrides.

9.3 Field (Constant) Declarations

ConstantDeclaration:
ConstantModifiersopt Type VariableDeclarators

ConstantModifiers:
ConstantModifier
ConstantModifier ConstantModifers

ConstantModifier: one of
public static final

Every field declaration in the body of an interface is implicitlypublic,
static, andfinal. It is permitted to redundantly specify any or all of these mo
ifiers for such fields.

If the interface declares a field with a certain name, then the declaratio
that field is said tohideany and all accessible declarations of fields with the sa
name in superinterfaces of the interface.

It is a compile-time error for the body of an interface declaration to decl
two fields with the same name.

It is possible for an interface to inherit more than one field with the sa
name (§8.3.3.3). Such a situation does not in itself cause a compile-time e
However, any attempt within the body of the interface to refer to either field by
simple name will result in a compile-time error, because such a referenc
ambiguous.

There might be several paths by which the same field declaration migh
inherited from an interface. In such a situation, the field is considered to be in
ited only once, and it may be referred to by its simple name without ambiguit

9.3.1 Initialization of Fields in Interfaces

Every field in the body of an interface must have an initialization expressi
which need not be a constant expression. The variable initializer is evaluated
the assignment performed exactly once, when the interface is initialized (§12
203

9.3.2 Examples of Field Declarations INTERFACES

204

ce
field

ile-

r be
ms.

nce
urs.

cla-

am-
ngle
a

DRAFT
A compile-time error occurs if an initialization expression for an interfa

field contains a reference by simple name to the same field or to another
whose declaration occurs textually later in the same interface.

Thus:

interface Test {
float f = j;
int j = 1;
int k = k+1;

}

causes two compile-time errors, becausej is referred to in the initialization off
beforej is declared and because the initialization ofk refers tok itself.

One subtlety here is that, at run time, fields that are initialized with comp
time constant values are initialized first. This applies also tostatic final fields
in classes (§8.3.2.1). This means, in particular, that these fields will neve
observed to have their default initial values (§4.5.5), even by devious progra
See §12.4.2 and §13.4.8 for more discussion.

If the keywordthis (§15.8.3) or the keywordsuper (15.11.2, 15.12) occurs
in an initialization expression for a field of an interface, then unless the occurre
is within the body of an anonymous class (§15.9.5), a compile-time error occ

9.3.2 Examples of Field Declarations

The following example illustrates some (possibly subtle) points about field de
rations.

9.3.2.1 Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for ex
ple, two of its direct superinterfaces declare fields with that name, then a si
ambiguous memberresults. Any use of this ambiguous member will result in
compile-time error. Thus in the example:

interface BaseColors {
int RED = 1, GREEN = 2, BLUE = 4;

}

interface RainbowColors extends BaseColors {
int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;

}

interface PrintColors extends BaseColors {
int YELLOW = 8, CYAN = 16, MAGENTA = 32;

}

interface LotsOfColors extends RainbowColors, PrintColors {

INTERFACES Abstract Method Declarations 9.4

field

for
ces
This

e

ly

s
on.

ut
DRAFT
int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;

}

the interfaceLotsOfColors inherits two fields namedYELLOW. This is all right as
long as the interface does not contain any reference by simple name to the
YELLOW. (Such a reference could occur within a variable initializer for a field.)

Even if interfacePrintColors were to give the value3 to YELLOW rather than
the value8, a reference to fieldYELLOW within interfaceLotsOfColors would
still be considered ambiguous.

9.3.2.2 Multiply Inherited Fields

If a single field is inherited multiple times from the same interface because,
example, both this interface and one of this interface’s direct superinterfa
extend the interface that declares the field, then only a single member results.
situation does not in itself cause a compile-time error.

In the example in the previous section, the fieldsRED, GREEN, andBLUE are
inherited by interfaceLotsOfColors in more than one way, through interfac
RainbowColors and also through interfacePrintColors, but the reference to
field RED in interfaceLotsOfColors is not considered ambiguous because on
one actual declaration of the fieldRED is involved.

9.4 Abstract Method Declarations

AbstractMethodDeclaration:
AbstractMethodModifiersopt ResultType MethodDeclarator Throwsopt ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

AbstractMethodModifier: one of
public abstract

The access modifierpublic is discussed in §6.6. A compile-time error occur
if the same modifier appears more than once in an abstract method declarati

Every method declaration in the body of an interface is implicitlyabstract,
so its body is always represented by a semicolon, not a block.

Every method declaration in the body of an interface is implicitlypublic.
For compatibility with older versions of the Java platform, it is permitted b

discouraged, as a matter of style, to redundantly specify theabstract modifier
for methods declared in interfaces.
205

9.4.1 Inheritance and Overriding INTERFACES

206

ntly

y-
ow-
at is

or
ters,
veral

y be

id to
f the

hod
rent

y

, an
ce

er-

me
rror.
ime
ent

same
DRAFT
It is permitted, but strongly discouraged as a matter of style, to redunda

specify thepublic modifier for interface methods.
Note that a method declared in an interface must not be declaredstatic, or a

compile-time error occurs, becausestatic methods cannot beabstract.
Note that a method declared in an interface must not be declaredstrictfp

or native or synchronized, or a compile-time error occurs, because those ke
words describe implementation properties rather than interface properties. H
ever, a method declared in an interface may be implemented by a method th
declaredstrictfp or native or synchronized in a class that implements the
interface.

It is a compile-time error for the body of an interface to declare, explicitly
implicitly, two methods with the same signature (name, number of parame
and types of any parameters) (§8.4.2). However, an interface may inherit se
method with the same signature (§9.4.1).

Note that a method declared in an interface must not be declaredfinal or a
compile-time error occurs. However, a method declared in an interface ma
implemented by a method that is declaredfinal in a class that implements the
interface.

9.4.1 Inheritance and Overriding

If the interface declares a method, then the declaration of that method is sa
overrideany and all methods with the same signature in the superinterfaces o
interface.

If a method declaration in an interface overrides the declaration of a met
in another interface, a compile-time error occurs if the methods have diffe
return types or if one has a return type and the other isvoid. Moreover, a method
declaration must not have athrows clause that conflicts (§8.4.4) with that of an
method that it overrides; otherwise, a compile-time error occurs.

Methods are overridden on a signature-by-signature basis. If, for example
interface declares twopublic methods with the same name, and a subinterfa
overrides one of them, the subinterface still inherits the other method.

An interface inherits from its direct superinterfaces all methods of the sup
interfaces that are not overridden by a declaration in the interface.

It is possible for an interface to inherit more than one method with the sa
signature (§8.4.2). Such a situation does not in itself cause a compile-time e
The interface is considered to inherit all the methods. However, a compile-t
error occurs if, for any two such inherited methods, either they have differ
return types or one has a return type and the other isvoid. (Thethrows clauses
do not cause errors in this case.) There might be several paths by which the

INTERFACES Examples of Abstract Method Declarations9.4.3

ulty

, or
same

e is

ract

.
ther
own
n in
DRAFT
method declaration is inherited from an interface. This fact causes no diffic
and never of itself results in a compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface
both inherited by an interface, or one declared and one inherited) have the
name but different signatures, then the method name is said to beoverloaded. This
fact causes no difficulty and never of itself results in a compile-time error. Ther
no required relationship between the return types or between thethrows clauses
of two methods with the same name but different signatures.

9.4.3 Examples of Abstract Method Declarations

The following examples illustrate some (possibly subtle) points about abst
method declarations.

9.4.3.1 Example: Overriding

Methods declared in interfaces areabstract and thus contain no implementation
About all that can be accomplished by an overriding method declaration, o
than to affirm a method signature, is to restrict the exceptions that might be thr
by an implementation of the method. Here is a variation of the example show
§8.4.3.1:

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(); }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public interface InfiniteBuffer extends Buffer {
 char get() throws BufferError; // override

}

207

9.5 Member Type Declarations INTERFACES

208

on-

lara-

lara-
er

me.
ited
from
rited
DRAFT
9.4.3.2 Example: Overloading

In the example code:

interface PointInterface {
void move(int dx, int dy);

}

interface RealPointInterface extends PointInterface {
void move(float dx, float dy);
void move(double dx, double dy);

}

the method namemove is overloaded in interfaceRealPointInterface with
three different signatures, two of them declared and one inherited. Any n
abstract class that implements interfaceRealPointInterface must provide
implementations of all three method signatures.

9.5 Member Type Declarations

Interfaces may contain member type declarations (§8.5). A member type dec
tion in an interface is implicitlystatic andpublic.

If a member type declared with simple nameC is directly enclosed within the
declaration of an interface with fully qualified nameN, then the member type has
the fully qualified nameN.C.

If the interface declares a member type with a certain name, then the dec
tion of that field is said tohide any and all accessible declarations of memb
types with the same name in superinterfaces of the interface.

An interface may inherit two or more type declarations with the same na
A compile-time error occurs on any attempt to refer to any ambiguously inher
class or interface by its simple name. If the same type declaration is inherited
an interface by multiple paths, the class or interface is considered to be inhe
only once; it may be referred to by its simple name without ambiguity.

C H A P T E R 10
y

may

ns that

,

f an
nt
f an
o-

ents
rray
) the
nent

y: if

ned to
DRAFT
Arrays

I N the Java programming languagearraysare objects (§4.3.1), are dynamicall
created, and may be assigned to variables of typeObject (§4.3.2). All methods of
classObject may be invoked on an array.

An array object contains a number of variables. The number of variables
be zero, in which case the array is said to beempty. The variables contained in an
array have no names; instead they are referenced by array access expressio
use nonnegative integer index values. These variables are called thecomponents
of the array. If an array hasn components, we sayn is thelengthof the array; the
components of the array are referenced using integer indices from 0 to
inclusive.

All the components of an array have the same type, called thecomponent type
of the array. If the component type of an array isT, then the type of the array itself
is writtenT[].

The value of an array component of typefloat is always an element of the
float value set (§4.2.3); similarly, the value of an array component of typedouble
is always an element of the double value set. It is not permitted for the value o
array component of typefloat to be an element of the float-extended-expone
value set that is not also an element of the float value set, nor for the value o
array component of typedouble to be an element of the double-extended-exp
nent value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The compon
of such an array may contain references to subarrays. If, starting from any a
type, one considers its component type, and then (if that is also an array type
component type of that type, and so on, eventually one must reach a compo
type that is not an array type; this is called theelement typeof the original array,
and the components at this level of the data structure are called theelementsof the
original array.

There are some situations in which an element of an array can be an arra
the element type isObject or Cloneable or java.io.Serializable, then some
or all of the elements may be arrays, because any array object can be assig
any variable of these types.

n 1–
209

10.1 Array Types ARRAYS

210

ber
e

nce.

ele-
es of

he
nces

e of
mpo-
rray.

ence

type

rrays:

array
DRAFT
10.1 Array Types

An array type is written as the name of an element type followed by some num
of empty pairs of square brackets[]. The number of bracket pairs indicates th
depth of array nesting. An array’s length is not part of its type.

The element type of an array may be any type, whether primitive or refere
In particular:

• Arrays with an interface type as the component type are allowed. The
ments of such an array may have as their value a null reference or instanc
any type that implements the interface.

• Arrays with anabstract class type as the component type are allowed. T
elements of such an array may have as their value a null reference or insta
of any subclass of theabstract class that is not itselfabstract.

Array types are used in declarations and in cast expressions (§15.16).

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variabl
array type does not create an array object or allocate any space for array co
nents. It creates only the variable itself, which can contain a reference to an a
However, the initializer part of a declarator (§8.3) may create an array, a refer
to which then becomes the initial value of the variable.

Because an array’s length is not part of its type, a single variable of array
may contain references to arrays of different lengths.

Here are examples of declarations of array variables that do not create a

int[] ai; // array ofint
short[][] as; // array of array ofshort
Object[] ao, // array ofObject

otherAo; // array ofObject
short s, // scalarshort

aas[][]; // array of array ofshort

Here are some examples of declarations of array variables that create
objects:

Exception ae[] = new Exception[3];
Object aao[][] = new Exception[2][3];
int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };
char ac[] = { 'n', 'o', 't', ' ', 'a', ' ',

 'S', 't', 'r', 'i', 'n', 'g' };
String[] aas = { "array", "of", "String", };

ARRAYS Array Access 10.4

r as

vari-
t be

0 for

lizer

vels
ting.

m-

) that
dex-

otion
h a

at is
s an
DRAFT
The [] may appear as part of the type at the beginning of the declaration, o
part of the declarator for a particular variable, or both, as in this example:

byte[] rowvector, colvector, matrix[];

This declaration is equivalent to:

byte rowvector[], colvector[], matrix[][];

Once an array object is created, its length never changes. To make an array
able refer to an array of different length, a reference to a different array mus
assigned to the variable.

If an array variablev has typeA[], whereA is a reference type, thenv can
hold a reference to an instance of any array typeB[], providedB can be assigned
to A. This may result in a run-time exception on a later assignment; see §10.1
a discussion.

10.3 Array Creation

An array is created by an array creation expression (§15.10) or an array initia
(§10.6).

An array creation expression specifies the element type, the number of le
of nested arrays, and the length of the array for at least one of the levels of nes
The array’s length is available as a final instance variablelength.

An array initializer creates an array and provides initial values for all its co
ponents.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13
consists of an expression whose value is an array reference followed by an in
ing expression enclosed by[and], as inA[i]. All arrays are0-origin. An array
with lengthn can be indexed by the integers0 to n-1.

Arrays must be indexed byint values;short, byte, or char values may also
be used as index values because they are subjected to unary numeric prom
(§5.6.1) and becomeint values. An attempt to access an array component wit
long index value results in a compile-time error.

All array accesses are checked at run time; an attempt to use an index th
less than zero or greater than or equal to the length of the array cause
ArrayIndexOutOfBoundsException to be thrown.
211

10.5 Arrays: A Simple Example ARRAYS

212

ation
hould

re-
:

DRAFT
10.5 Arrays: A Simple Example

The example:

class Gauss {
public static void main(String[] args) {

int[] ia = new int[101];
for (int i = 0; i < ia.length; i++)

ia[i] = i;
int sum = 0;
for (int i = 0; i < ia.length; i++)

sum += ia[i];
System.out.println(sum);

}
}

that produces the output:

5050

declares a variableia that has type array ofint, that is,int[]. The variableia is
initialized to reference a newly created array object, created by an array cre
expression (§15.10). The array creation expression specifies that the array s
have101 components. The length of the array is available using the fieldlength,
as shown.

The example program fills the array with the integers from0 to 100, sums
these integers, and prints the result.

10.6 Array Initializers

An array initializer may be specified in a declaration, or as part of an array c
ation expression (§15.10), creating an array and providing some initial values

ArrayInitializer:
{ VariableInitializersopt ,opt }

VariableInitializers:
VariableInitializer
VariableInitializers , VariableInitializer

The following is repeated from §8.3 to make the presentation here clearer:

VariableInitializer:
Expression
ArrayInitializer

ARRAYS Array Members 10.7

ns,

the

om-
.
g a
be

zer

ts

in
DRAFT
An array initializer is written as a comma-separated list of expressio

enclosed by braces “{” and “}”.
The length of the constructed array will equal the number of expressions.
The expressions in an array initializer are executed from left to right in

textual order they occur in the source code. Thenth variable initializer specifies
the value of then-1st array component. Each expression must be assignment-c
patible (§5.2) with the array’s component type, or a compile-time error results

If the component type is itself an array type, then the expression specifyin
component may itself be an array initializer; that is, array initializers may
nested.

A trailing comma may appear after the last expression in an array initiali
and is ignored.

As an example:

class Test {
public static void main(String[] args) {

int ia[][] = { {1, 2}, null };
for (int i = 0; i < 2; i++)

for (int j = 0; j < 2; j++)
System.out.println(ia[i][j]);

}
}

prints:

1
2

before causing aNullPointerException in trying to index the second compo-
nent of the arrayia, which is a null reference.

10.7 Array Members

The members of an array type are all of the following:

• Thepublic final field length, which contains the number of componen
of the array (length may be positive or zero)

• Thepublic methodclone, which overrides the method of the same name
classObject and throws no checked exceptions

• All the members inherited from classObject; the only method ofObject that
is not inherited is itsclone method

An array thus has the same public fields and methods as the following class:
213

10.7 Array Members ARRAYS

214

this
lone

es
DRAFT
class A implements Cloneable, java.io.Serializable {

public final int length = X;
public Object clone() {

try {
return super.clone();

} catch (CloneNotSupportedException e) {
throw new InternalError(e.getMessage());

}
}

}

Every array implements the interfacesCloneable andjava.io.Serializ-
able.

That arrays are cloneable is shown by the test program:

class Test {
public static void main(String[] args) {

int ia1[] = { 1, 2 };
int ia2[] = (int[])ia1.clone();
System.out.print((ia1 == ia2) + " ");
ia1[1]++;
System.out.println(ia2[1]);

}
}

which prints:

false 2

showing that the components of the arrays referenced byia1 andia2 are different
variables. (In some early implementations of the Java programming language
example failed to compile because the compiler incorrectly believed that the c
method for an array could throw aCloneNotSupportedException.)

A clone of a multidimensional array is shallow, which is to say that it creat
only a single new array. Subarrays are shared.

This is shown by the example program:

class Test {
public static void main(String[] args) throws Throwable {

int ia[][] = { { 1 , 2}, null };
int ja[][] = (int[][])ia.clone();
System.out.print((ia == ja) + " ");
System.out.println(ia[0] == ja[0] && ia[1] == ja[1]);

}
}

which prints:

false true

ARRAYS Array Store Exception 10.10

e

y

an

as a
ys
DRAFT

showing that theint[] array that isia[0] and theint[] array that isja[0] are
the same array.

10.8 Class Objects for Arrays

Every array has an associatedClass object, shared with all other arrays with th
same component type. The direct superclass of an array type isObject. Every
array type implements the interfacesCloneable andjava.io.Serializable.

This is shown by the following example code:

class Test {
public static void main(String[] args) {

int[] ia = new int[3];
System.out.println(ia.getClass());
System.out.println(ia.getClass().getSuperclass());

}
}

which prints:

class [I
class java.lang.Object

where the string “[I” is the run-time type signature for the class object “arra
with component typeint”.

10.9 An Array of Characters is Not aString

In Java programming language, unlike C, an array ofchar is not aString, and
neither aString nor an array ofchar is terminated by'\u0000' (theNUL char-
acter).

A String object is immutable, that is, its contents never change, while
array ofchar has mutable elements. The methodtoCharArray in classString
returns an array of characters containing the same character sequence
String. The classStringBuffer implements useful methods on mutable arra
of characters.

10.10 Array Store Exception

If an array variablev has typeA[], whereA is a reference type, thenv can hold a
reference to an instance of any array typeB[], providedB can be assigned toA.
215

10.10 Array Store Exception ARRAYS

216

type

t
f
at

that

an be
type
DRAFT

Thus, the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {
public static void main(String[] args) {

ColoredPoint[] cpa = new ColoredPoint[10];
Point[] pa = cpa;
System.out.println(pa[1] == null);
try {

pa[0] = new Point();
} catch (ArrayStoreException e) {

System.out.println(e);
}

}
}

produces the output:

true
java.lang.ArrayStoreException

Here the variablepa has typePoint[] and the variablecpa has as its value a ref-
erence to an object of typeColoredPoint[]. A ColoredPoint can be assigned
to aPoint; therefore, the value ofcpa can be assigned topa.

A reference to this arraypa, for example, testing whetherpa[1] is null, will
not result in a run-time type error. This is because the element of the array of
ColoredPoint[] is aColoredPoint, and everyColoredPoint can stand in for
aPoint, sincePoint is the superclass ofColoredPoint.

On the other hand, an assignment to the arraypa can result in a run-time error.
At compile time, an assignment to an element ofpa is checked to make sure tha
the value assigned is aPoint. But sincepa holds a reference to an array o
ColoredPoint, the assignment is valid only if the type of the value assigned
run-time is, more specifically, aColoredPoint.

The Java virtual machine checks for such a situation at run-time to ensure
the assignment is valid; if not, anArrayStoreException is thrown. More for-
mally: an assignment to an element of an array whose type isA[], whereA is a
reference type, is checked at run-time to ensure that the value assigned c
assigned to the actual element type of the array, where the actual element
may be any reference type that is assignable toA.

ARRAYS Array Store Exception 10.10
DRAFT
217

C H A P T E R 11
ing

s of
such
ges
r of
pro-
cifies
will
rred

be

ed
ger

nce
llers,
.

int at
ished
an
pres-

ini-
rrent
dles
DRAFT
Exceptions

WHEN a program violates the semantic constraints of the Java programm
language, the Java virtual machine signals this error to the program as anexcep-
tion. An example of such a violation is an attempt to index outside the bound
an array. Some programming languages and their implementations react to
errors by peremptorily terminating the program; other programming langua
allow an implementation to react in an arbitrary or unpredictable way. Neithe
these approaches is compatible with the design goals of the Java platform: to
vide portability and robustness. Instead, the Java programming language spe
that an exception will be thrown when semantic constraints are violated and
cause a non-local transfer of control from the point where the exception occu
to a point that can be specified by the programmer. An exception is said to
thrown from the point where it occurred and is said to becaughtat the point to
which control is transferred.

Programs can also throw exceptions explicitly, usingthrow statements
(§14.17).

Explicit use ofthrow statements provides an alternative to the old-fashion
style of handling error conditions by returning funny values, such as the inte
value -1 where a negative value would not normally be expected. Experie
shows that too often such funny values are ignored or not checked for by ca
leading to programs that are not robust, exhibit undesirable behavior, or both

Every exception is represented by an instance of the classThrowable or one
of its subclasses; such an object can be used to carry information from the po
which an exception occurs to the handler that catches it. Handlers are establ
by catch clauses oftry statements (§14.19). During the process of throwing
exception, the Java virtual machine abruptly completes, one by one, any ex
sions, statements, method and constructor invocations, initializers, and field
tialization expressions that have begun but not completed execution in the cu
thread. This process continues until a handler is found that indicates that it han
219

11.1 The Causes of Exceptions EXCEPTIONS

220

ss of
hod

an-

hro-

e

tails
time
the

vir-

age,

mory

but
ssion
DRAFT

that particular exception by naming the class of the exception or a supercla
the class of the exception. If no such handler is found, then the met
uncaughtException is invoked for theThreadGroup that is the parent of the
current thread—thus every effort is made to avoid letting an exception go unh
dled.

The exception mechanism of the Java platform is integrated with its sync
nization model (§17), so that locks are released assynchronized statements
(§14.18) and invocations ofsynchronized methods (§8.4.3.6, §15.12) complet
abruptly.

This chapter describes the different causes of exceptions (§11.1). It de
how exceptions are checked at compile time (§11.2) and processed at run
(§11.3). A detailed example (§11.4) is then followed by an explanation of
exception hierarchy (§11.5).

11.1 The Causes of Exceptions

An exception is thrown for one of threereasons:

• An abnormal execution condition was synchronously detected by the Java
tual machine. Such conditions arise because:

◆ evaluation of an expression violates the normal semantics of the langu
such as an integer divide by zero, as summarized in §15.6

◆ an error occurs in loading or linking part of the program (§12.2, §12.3)

◆ some limitation on a resource is exceeded, such as using too much me

These exceptions are not thrown at an arbitrary point in the program,
rather at a point where they are specified as a possible result of an expre
evaluation or statement execution.

• A throw statement (§14.17) was executed.

• An asynchronous exception occurred either because:

◆ the methodstop of classThread was invoked

◆ an internal error has occurred in the virtual machine (§11.5.2)

Exceptions are represented by instances of the classThrowable and instances
of its subclasses. These classes are, collectively, theexception classes.

EXCEPTIONS Why Errors are Not Checked11.2.1

at a

cked
r
per-
ence
h are

are
es,

and
f the
Java

The
ill

per-
an
. In

or
must
. No
ers

cur at
. A
DRAFT

11.2 Compile-Time Checking of Exceptions

A compiler for the Java programming language checks, at compile time, th
program contains handlers forchecked exceptions, by analyzing which checked
exceptions can result from execution of a method or constructor. For each che
exception which is a possible result, thethrows clause for the method (§8.4.4) o
constructor (§8.8.4) must mention the class of that exception or one of the su
classes of the class of that exception. This compile-time checking for the pres
of exception handlers is designed to reduce the number of exceptions whic
not properly handled.

The unchecked exceptions classesare the classRuntimeException and its
subclasses, and the classError and its subclasses. All other exception classes
checked exception classes. The Java API defines a number of exception class
both checked and unchecked. Additional exception classes, both checked
unchecked, may be declared by programmers. See §11.5 for a description o
exception class hierarchy and some of the exception classes defined by the
API and Java virtual machine.

The checked exception classes named in thethrows clause are part of the
contract between the implementor and user of the method or constructor.
throws clause of an overriding method may not specify that this method w
result in throwing any checked exception which the overridden method is not
mitted, by itsthrows clause, to throw. When interfaces are involved, more th
one method declaration may be overridden by a single overriding declaration
this case, the overriding declaration must have athrows clause that is compatible
with all the overridden declarations (§9.4).

Static initializers (§8.7), class variable initializers, and instance initializers
instance variable initializers within named classes and interfaces (§8.3.2),
not result in a checked exception; if one does, a compile-time error occurs
such restriction applies to instance initializers or instance variable initializ
within anonymous classes (§15.9.5).

11.2.1 Why Errors are Not Checked

Those unchecked exception classes which are theerror classes(Error and its
subclasses) are exempted from compile-time checking because they can oc
many points in the program and recovery from them is difficult or impossible
program declaring such exceptions would be cluttered, pointlessly.
221

11.2.2 Why Runtime Exceptions are Not Checked EXCEPTIONS

222

ners
d not
era-
time
the

cep-
quir-

to

, by
e

lish
tion.

d the

the

ion

n
ssion

to be
DRAFT
11.2.2 Why Runtime Exceptions are Not Checked

The runtime exception classes(RuntimeException and its subclasses) are
exempted from compile-time checking because, in the judgment of the desig
of the Java programming language, having to declare such exceptions woul
aid significantly in establishing the correctness of programs. Many of the op
tions and constructs of the Java programming language can result in run
exceptions. The information available to a compiler, and the level of analysis
compiler performs, are usually not sufficient to establish that such run-time ex
tions cannot occur, even though this may be obvious to the programmer. Re
ing such exception classes to be declared would simply be an irritation
programmers.

For example, certain code might implement a circular data structure that
construction, can never involvenull references; the programmer can then b
certain that aNullPointerException cannot occur, but it would be difficult for a
compiler to prove it. The theorem-proving technology that is needed to estab
such global properties of data structures is beyond the scope of this specifica

11.3 Handling of an Exception

When an exception is thrown, control is transferred from the code that cause
exception to the nearest dynamically-enclosingcatch clause of atry statement
(§14.19) that handles the exception.

A statement or expression isdynamically enclosedby a catch clause if it
appears within thetry block of thetry statement of which thecatch clause is a
part, or if the caller of the statement or expression is dynamically enclosed by
catch clause.

Thecaller of a statement or expression depends on where it occurs:

• If within a method, then the caller is the method invocation express
(§15.12) that was executed to cause the method to be invoked.

• If within a constructor or an instance initializer or the initializer for a
instance variable, then the caller is the class instance creation expre
(§15.9) or the method invocation ofnewInstance that was executed to cause
an object to be created.

• If within a static initializer or an initializer for astatic variable, then the
caller is the expression that used the class or interface so as to cause it
initialized.

EXCEPTIONS Exceptions are Precise11.3.1

the
e
f the
n

rupt

uting
ver

ent
er all

ays

e

f the
ated

are
res-

he
h the
ents,
ay

some
tion

the
DRAFT
Whether a particularcatch clausehandlesan exception is determined by

comparing the class of the object that was thrown to the declared type of
parameter of thecatch clause. Thecatch clause handles the exception if the typ
of its parameter is the class of the exception or a superclass of the class o
exception. Equivalently, acatch clause will catch any exception object that is a
instanceof (§15.20.2) the declared parameter type.

The control transfer that occurs when an exception is thrown causes ab
completion of expressions (§15.6) and statements (§14.1) until acatch clause is
encountered that can handle the exception; execution then continues by exec
the block of thatcatch clause. The code that caused the exception is ne
resumed.

If no catch clause handling an exception can be found, then the curr
thread (the thread that encountered the exception) is terminated, but only aft
finally clauses have been executed and the methoduncaughtException has
been invoked for theThreadGroup that is the parent of the current thread.

In situations where it is desirable to ensure that one block of code is alw
executed after another, even if that other block of code completes abruptly, atry
statement with afinally clause (§14.19.2) may be used.

If a try or catch block in atry–finally or try–catch–finally statement
completes abruptly, then thefinally clause is executed during propagation of th
exception, even if no matchingcatch clause is ultimately found. If afinally
clause is executed because of abrupt completion of atry block and thefinally
clause itself completes abruptly, then the reason for the abrupt completion o
try block is discarded and the new reason for abrupt completion is propag
from there.

The exact rules for abrupt completion and for the catching of exceptions
specified in detail with the specification of each statement in §14 and for exp
sions in §15 (especially §15.6).

11.3.1 Exceptions are Precise

Exceptions areprecise: when the transfer of control takes place, all effects of t
statements executed and expressions evaluated before the point from whic
exception is thrown must appear to have taken place. No expressions, statem
or parts thereof that occur after the point from which the exception is thrown m
appear to have been evaluated. If optimized code has speculatively executed
of the expressions or statements which follow the point at which the excep
occurs, such code must be prepared to hide this speculative execution from
user-visible state of the program.
223

11.3.2 Handling Asynchronous Exceptions EXCEPTIONS

224

d in
sult
that

eces-

l the
may

An

ccur
pti-
al to
.
int
ides
asyn-
r has
per-
DRAFT
11.3.2 Handling Asynchronous Exceptions

Most exceptions occur synchronously as a result of an action by the threa
which they occur, and at a point in the program that is specified to possibly re
in such an exception. An asynchronous exception is, by contrast, an exception
can potentially occur at any point in the execution of a program.

Proper understanding of the semantics of asynchronous exceptions is n
sary if high-quality machine code is to be generated.

Asynchronous exceptions are rare. They occur only as a result of:

• An invocation of thestop methods of classThread or ThreadGroup

• An internal error (§11.5.2) in the Java virtual machine

Thestop methods may be invoked by one thread to affect another thread or al
threads in a specified thread group. They are asynchronous because they
occur at any point in the execution of the other thread or threads.
InternalError is considered asynchronous.

The Java platform permits a small but bounded amount of execution to o
before an asynchronous exception is thrown. This delay is permitted to allow o
mized code to detect and throw these exceptions at points where it is practic
handle them while obeying the semantics of the Java programming language

A simple implementation might poll for asynchronous exceptions at the po
of each control transfer instruction. Since a program has a finite size, this prov
a bound on the total delay in detecting an asynchronous exception. Since no
chronous exception will occur between control transfers, the code generato
some flexibility to reorder computation between control transfers for greater
formance.

The paperPolling Efficiently on Stock Hardwareby Marc Feeley,Proc. 1993
Conference on Functional Programming and Computer Architecture, Copen-
hagen, Denmark, pp. 179–187, is recommended as further reading.

Like all exceptions, asynchronous exceptions are precise (§11.3.1).

11.4 An Example of Exceptions

Consider the following example:

class TestException extends Exception {

TestException() { super(); }

TestException(String s) { super(s); }

}

EXCEPTIONS An Example of Exceptions 11.4
DRAFT
class Test {

public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {

try {
thrower(args[i]);
System.out.println("Test \"" + args[i] +

"\" didn't throw an exception");
} catch (Exception e) {

System.out.println("Test \"" + args[i] +
"\" threw a " + e.getClass() +
"\n with message: " + e.getMessage());

}
}

}

static int thrower(String s) throws TestException {
try {

if (s.equals("divide")) {
int i = 0;
return i/i;

}
if (s.equals("null")) {

s = null;
return s.length();

}
if (s.equals("test"))

throw new TestException("Test message");
return 0;

} finally {
System.out.println("[thrower(\"" + s +

"\") done]");
}

}

}

If we execute the test program, passing it the arguments:

divide null not test

it produces the output:

[thrower("divide") done]
Test "divide" threw a class java.lang.ArithmeticException

with message: / by zero
[thrower("null") done]
Test "null" threw a class java.lang.NullPointerException

with message: null
[thrower("not") done]
Test "not" didn't throw an exception
225

11.5 The Exception Hierarchy EXCEPTIONS

226

e

s

sses,

-time
sses

o-

ro-
for a
DRAFT

[thrower("test") done]
Test "test" threw a class TestException

with message: Test message

This example declares an exception classTestException. Themain method
of classTest invokes thethrower method four times, causing exceptions to b
thrown three of the four times. Thetry statement in methodmain catches each
exception that thethrower throws. Whether the invocation ofthrower completes
normally or abruptly, a message is printed describing what happened.

The declaration of the methodthrower must have athrows clause because
it can throw instances ofTestException, which is a checked exception clas
(§11.2). A compile-time error would occur if thethrows clause were omitted.

Notice that thefinally clause is executed on every invocation ofthrower,
whether or not an exception occurs, as shown by the “[thrower(...) done]” out-
put that occurs for each invocation.

11.5 The Exception Hierarchy

The possible exceptions in a program are organized in a hierarchy of cla
rooted at classThrowable (§11.5), a direct subclass ofObject. The classes
Exception andError are direct subclasses ofThrowable. The classRuntime-
Exception is a direct subclass ofException.

Programs can use the pre-existing exception classes inthrow statements, or
define additional exception classes, as subclasses ofThrowable or of any of its
subclasses, as appropriate. To take advantage of the Java platform’s compile
checking for exception handlers, it is typical to define most new exception cla
as checked exception classes, specifically as subclasses ofException that are not
subclasses ofRuntimeException.

The classException is the superclass of all the exceptions that ordinary pr
grams may wish to recover from. The classRuntimeException is a subclass of
classException. The subclasses ofRuntimeException are unchecked exception
classes. The subclasses ofException other thanRuntimeException are all
checked exception classes.

The classError and its subclasses are exceptions from which ordinary p
grams are not ordinarily expected to recover. See the Java API specification
detailed description of the exception hierarchy.

The classError is a separate subclass ofThrowable, distinct fromExcep-
tion in the class hierarchy, to allow programs to use the idiom:

} catch (Exception e) {

EXCEPTIONS Virtual Machine Errors 11.5.2

ing

s of
n

f the
-

. See
DRAFT
to catch all exceptions from which recovery may be possible without catch
errors from which recovery is typically not possible.

11.5.1 Loading and Linkage Errors

The Java virtual machine throws an object that is an instance of a subclas
LinkageError when a loading, linkage, preparation, verification or initializatio
error occurs:

• The loading process is described in §12.2.

• The linking process is described in §12.3.

• The class verification process is described in §12.3.1.

• The class preparation process is described in §12.3.2.

• The class initialization process is described in §12.4.

11.5.2 Virtual Machine Errors

The Java virtual machine throws an object that is an instance of a subclass o
classVirtualMachineError when an internal error or resource limitation pre
vents it from implementing the semantics of the Java programming language
The Java™ Virtual Machine Specification Second Editionfor the definitive discus-
sion of these errors.
227

C H A P T E R 12
It is
nter-

vok-
g,

2.2),

n of
con-
wed

the

5 of

e.
e is
that
as a
d as
DRAFT
Execution

THIS chapter specifies activities that occur during execution of a program.
organized around the life cycle of a Java virtual machine and of the classes, i
faces, and objects that form a program.

A Java virtual machine starts up by loading a specified class and then in
ing the methodmain in this specified class. Section §12.1 outlines the loadin
linking, and initialization steps involved in executingmain, as an introduction to
the concepts in this chapter. Further sections specify the details of loading (§1
linking (§12.3), and initialization (§12.4).

The chapter continues with a specification of the procedures for creatio
new class instances (§12.5); and finalization of class instances (§12.6). It
cludes by describing the unloading of classes (§12.7) and the procedure follo
when a program exits (§12.8).

12.1 Virtual Machine Start-Up

A Java virtual machine starts execution by invoking the methodmain of some
specified class, passing it a single argument, which is an array of strings. In
examples in this specification, this first class is typically calledTest.

The precise semantics of virtual machine start-up are given in chapter
The Java™ Virtual Machine Specification, Second Edition. Here we present an
overview of the process from the viewpoint of the Java programming languag

The manner in which the initial class is specified to the Java virtual machin
beyond the scope of this specification, but it is typical, in host environments
use command lines, for the fully-qualified name of the class to be specified
command-line argument and for following command-line arguments to be use
strings to be provided as the argument to the methodmain. For example, in a
UNIX implementation, the command line:
229

12.1.1 Load the Class Test EXECUTION

230

rings

fur-

on-
class
n an

g
ed

ents
d the
r is

that
ion is

men-

ta-
ked
ses

esult
ion
that
. (In
DRAFT
java Test reboot Bob Dot Enzo

will typically start a Java virtual machine by invoking methodmain of classTest
(a class in an unnamed package), passing it an array containing the four st
"reboot", "Bob", "Dot", and"Enzo".

We now outline the steps the virtual machine may take to executeTest, as an
example of the loading, linking, and initialization processes that are described
ther in later sections.

12.1.1 Load the ClassTest

The initial attempt to execute the methodmain of classTest discovers that the
classTest is not loaded—that is, that the virtual machine does not currently c
tain a binary representation for this class. The virtual machine then uses a
loader to attempt to find such a binary representation. If this process fails, the
error is thrown. This loading process is described further in §12.2.

12.1.2 LinkTest: Verify, Prepare, (Optionally) Resolve

After Test is loaded, it must be initialized beforemain can be invoked. AndTest,
like all (class or interface) types, must be linked before it is initialized. Linkin
involves verification, preparation and (optionally) resolution. Linking is describ
further in §12.3.

Verification checks that the loaded representation ofTest is well-formed,
with a proper symbol table. Verification also checks that the code that implem
Test obeys the semantic requirements of the Java programming language an
Java virtual machine. If a problem is detected during verification, then an erro
thrown. Verification is described further in §12.3.1.

Preparation involves allocation of static storage and any data structures
are used internally by the virtual machine, such as method tables. Preparat
described further in §12.3.2.

Resolution is the process of checking symbolic references fromTest to other
classes and interfaces, by loading the other classes and interfaces that are
tioned and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implemen
tion may resolve symbolic references from a class or interface that is being lin
very early, even to the point of resolving all symbolic references from the clas
and interfaces that are further referenced, recursively. (This resolution may r
in errors from these further loading and linking steps.) This implementat
choice represents one extreme and is similar to the kind of “static” linkage
has been done for many years in simple implementations of the C language

EXECUTION Initialize Test: Execute Initializers12.1.3

an
-
ese

only
ces

the
at all,

ors
ome
to

en-
the

lass
In a
own

he
d

tic

irect

t
e

also

d-
DRAFT
these implementations, a compiled program is typically represented as
“a.out” file that contains a fully-linked version of the program, including com
pletely resolved links to library routines used by the program. Copies of th
library routines are included in the “a.out” file.)

An implementation may instead choose to resolve a symbolic reference
when it is actively used; consistent use of this strategy for all symbolic referen
would represent the “laziest” form of resolution.

In this case, ifTest had several symbolic references to another class, then
references might be resolved one at a time, as they are used, or perhaps not
if these references were never used during execution of the program.

The only requirement on when resolution is performed is that any err
detected during resolution must be thrown at a point in the program where s
action is taken by the program that might, directly or indirectly, require linkage
the class or interface involved in the error. Using the “static” example implem
tation choice described above, loading and linkage errors could occur before
program is executed if they involved a class or interface mentioned in the c
Test or any of the further, recursively referenced, classes and interfaces.
system that implemented the “laziest” resolution, these errors would be thr
only when an incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 InitializeTest: Execute Initializers

In our continuing example, the virtual machine is still trying to execute t
methodmain of classTest. This is permitted only if the class has been initialize
(§12.4.1).

Initialization consists of execution of any class variable initializers and sta
initializers of the classTest, in textual order. But beforeTest can be initialized,
its direct superclass must be initialized, as well as the direct superclass of its d
superclass, and so on, recursively. In the simplest case,Test hasObject as its
implicit direct superclass; if classObject has not yet been initialized, then it mus
be initialized beforeTest is initialized. ClassObject has no superclass, so th
recursion terminates here.

If classTest has another classSuper as its superclass, thenSuper must be
initialized beforeTest. This requires loading, verifying, and preparingSuper if
this has not already been done and, depending on the implementation, may
involve resolving the symbolic references fromSuper and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, inclu
ing such errors involving other types.

The initialization process is described further in §12.4.
231

12.1.4 Invoke Test.main EXECUTION

232

hod

ype
by
y a

-

. The

class

f
d

not
hine

s
that
DRAFT
12.1.4 InvokeTest.main

Finally, after completion of the initialization for classTest (during which other
consequential loading, linking, and initializing may have occurred), the met
main of Test is invoked.

The methodmain must be declaredpublic, static, andvoid. It must accept
a single argument that is an array of strings.

12.2 Loading of Classes and Interfaces

Loadingrefers to the process of finding the binary form of a class or interface t
with a particular name, perhaps by computing it on the fly, but more typically
retrieving a binary representation previously computed from source code b
compiler, and constructing, from that binary form, aClass object to represent the
class or interface.

The precise semantics of loading are given in chapter 5 ofThe Java™ Virtual
Machine Specification, Second Edition. Here we present an overview of the pro
cess from the viewpoint of the Java programming language.

The binary format of a class or interface is normally theclass file format
described inThe Java™ Virtual Machine Specificationcited above, but other for-
mats are possible, provided they meet the requirements specified in §13.1
methoddefineClass of classClassLoader may be used to constructClass
objects from binary representations in theclass file format.

Well-behaved class loaders maintain these properties:

• Given the same name, a good class loader should always return the same
object.

• If a class loaderL1 delegates loading of a classC to another loaderL2, then for
any typeT that occurs as the direct superclass or a direct superinterface oC,
or as the type of a field inC, or as the type of a formal parameter of a metho
or constructor inC, or as a return type of a method inC, L1 andL2 should
return the same class object.

A malicious class loader could violate these properties. However, it could
undermine the security of the type system, because the Java virtual mac
guards against this.

For further discussion of these issues, seeThe Java™ Virtual Machine Specifi-
cation, Second Editionand the paperDynamic Class Loading in the Java™ Virtual
Machine, by Sheng Liang and Gilad Bracha, inProceedings of OOPSLA ’98, pub-
lished asACM SIGPLAN Notices, Volume 33, Number 10, October 1998, page
36-44. A basic principle of the design of the Java programming language is

EXECUTION Linking of Classes and Interfaces 12.3

en by

.
inter-
lasses
lica-
an

der,
ave

ow-

se

ed

e

fail

om-
xe-

nd
n in

ing
DRAFT
the type system cannot be subverted by code written in the language, not ev
implementations of such otherwise sensitive system classes asClassLoader and
SecurityManager.

12.2.1 The Loading Process

The loading process is implemented by the classClassLoader and its subclasses.
Different subclasses ofClassLoader may implement different loading policies
In particular, a class loader may cache binary representations of classes and
faces, prefetch them based on expected usage, or load a group of related c
together. These activities may not be completely transparent to a running app
tion if, for example, a newly compiled version of a class is not found because
older version is cached by a class loader. It is the responsibility of a class loa
however, to reflect loading errors only at points in the program they could h
arisen without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the foll
ing subclasses of classLinkageError will be thrown at any point in the program
that (directly or indirectly) uses the type:

• ClassCircularityError: A class or interface could not be loaded becau
it would be its own superclass or superinterface (§13.4.4).

• ClassFormatError: The binary data that purports to specify a request
compiled class or interface is malformed.

• NoClassDefFoundError: No definition for a requested class or interfac
could be found by the relevant class loader.

Because loading involves the allocation of new data structures, it may
with anOutOfMemoryError.

12.3 Linking of Classes and Interfaces

Linking is the process of taking a binary form of a class or interface type and c
bining it into the runtime state of the Java virtual machine, so that it can be e
cuted. A class or interface type is always loaded before it is linked.

Three different activities are involved in linking: verification, preparation, a
resolution of symbolic references.The precise semantics of linking are give
chapter 5 ofThe Java™ Virtual Machine Specification, Second Edition. Here we
present an overview of the process from the viewpoint of the Java programm
language.
233

12.3.1 Verification of the Binary Representation EXECUTION

234

g
man-
rified
are
that

efer-
lu-
tic
ple-

ith

truc-
tion
tion,

th a
line

e of

b-
t

set
tual
tual
s.)

r
his

data
inter-
DRAFT
This specification allows an implementation flexibility as to when linkin

activities (and, because of recursion, loading) take place, provided that the se
tics of the language are respected, that a class or interface is completely ve
and prepared before it is initialized, and that errors detected during linkage
thrown at a point in the program where some action is taken by the program
might require linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic r
ence in a class or interface individually, only when it is used (lazy or late reso
tion), or to resolve them all at once while the class is being verified (sta
resolution). This means that the resolution process may continue, in some im
mentations, after a class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail w
anOutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verificationensures that the binary representation of a class or interface is s
turally correct. For example, it checks that every instruction has a valid opera
code; that every branch instruction branches to the start of some other instruc
rather than into the middle of an instruction; that every method is provided wi
structurally correct signature; and that every instruction obeys the type discip
of the Java virtual machine language.

For the specification of the verification process, see the separate volum
this series,The Java™ Virtual Machine Specification, Second Edition.

If an error occurs during verification, then an instance of the following su
class of classLinkageError will be thrown at the point in the program tha
caused the class to be verified:

• VerifyError: The binary definition for a class or interface failed to pass a
of required checks to verify that it obeys the semantics of the Java vir
machine language and that it cannot violate the integrity of the Java vir
machine. (See §13.4.2, §13.4.4, §13.4.8, and §13.4.15 for some example

12.3.2 Preparation of a Class or Interface Type

Preparationinvolves creating thestatic fields (class variables and constants) fo
a class or interface and initializing such fields to the default values (§4.5.5). T
does not require the execution of any source code; explicit initializers forstatic
fields are executed as part of initialization (§12.4), not preparation.

Implementations of the Java virtual machine may precompute additional
structures at preparation time in order to make later operations on a class or

EXECUTION Resolution of Symbolic References12.3.3

” or
class

inter-
nary
hods,
that

self,

irect
tedly.
i-

ass
er
s
t
ly:

at
tion

s not

en

is
reated

ion

ers
oes
DRAFT
face more efficient. One particularly useful data structure is a “method table
other data structure that allows any method to be invoked on instances of a
without requiring a search of superclasses at invocation time.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
faces and their fields, methods, and constructors symbolically, using the bi
names (§13.1) of the other classes and interfaces (§13.1). For fields and met
these symbolic references include the name of the class or interface type
declares the field or method as well as the name of the field or method it
together with appropriate type information.

Before a symbolic reference can be used it must undergoresolution, wherein
a symbolic reference is checked to be correct and, typically, replaced with a d
reference that can be more efficiently processed if the reference is used repea

If an error occurs during resolution, then an error will be thrown. Most typ
cally, this will be an instance of one of the following subclasses of the cl
IncompatibleClassChangeError, but it may also be an instance of some oth
subclass ofIncompatibleClassChangeError or even an instance of the clas
IncompatibleClassChangeError itself. This error may be thrown at any poin
in the program that uses a symbolic reference to the type, directly or indirect

• IllegalAccessError: A symbolic reference has been encountered th
specifies a use or assignment of a field, or invocation of a method, or crea
of an instance of a class, to which the code containing the reference doe
have access because the field or method was declaredprivate, protected,
or default access (notpublic), or because the class was not declaredpublic.

This can occur, for example, if a field that is originally declaredpublic is
changed to beprivate after another class that refers to the field has be
compiled (§13.4.6).

• InstantiationError: A symbolic reference has been encountered that
used in class instance creation expression, but an instance cannot be c
because the reference turns out to refer to an interface or to anabstract
class.

This can occur, for example, if a class that is originally notabstract is
changed to beabstract after another class that refers to the class in quest
has been compiled (§13.4.1).

• NoSuchFieldError: A symbolic reference has been encountered that ref
to a specific field of a specific class or interface, but the class or interface d
not contain a field of that name.
235

12.4 Initialization of Classes and Interfaces EXECUTION

236

ass

ers
face

lass

on

liz-
an
here.
ces
f an

iz-

ter-
ter-

-
t be
DRAFT
This can occur, for example, if a field declaration was deleted from a cl
after another class that refers to the field was compiled (§13.4.7).

• NoSuchMethodError: A symbolic reference has been encountered that ref
to a specific method of a specific class or interface, but the class or inter
does not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a c
after another class that refers to the method was compiled (§13.4.11).

Additionally, an UnsatisfiedLinkError (a subclass ofLinkageError)
may be thrown if a class declares anative method for which no implementation
can be found. The error will occur if the method is used, or earlier, depending
what kind of resolution strategy is being used by the virtual machine (§12.3).

12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initia
ers forstatic fields (class variables) declared in the class. Initialization of
interface consists of executing the initializers for fields (constants) declared t

Before a class is initialized, its superclass must be initialized, but interfa
implemented by the class are not initialized. Similarly, the superinterfaces o
interface are not initialized before the interface is initialized.

12.4.1 When Initialization Occurs

Initialization of a class consists of executing its static initializers and the initial
ers for static fields declared in the class.Initialization of an interface consists of
executing the initializers for fields declared in the interface.

Before a class is initialized, its direct superclass must be initialized, but in
faces implemented by the class need not be initialized. Similarly, the superin
faces of an interface need not be initialized before the interface is initialized.

A class or interface typeT will be initialized immediately before the first
occurrence of any one of the following:

• T is a class and an instance ofT is created.

• T is a class and a static method declared byT is invoked.

• A static field declared byT is assigned.

• A static field declared byT is used and the reference to the field is not a com
pile-time constant (§15.28). References to compile-time constants mus

EXECUTION When Initialization Occurs 12.4.1

ses

er-

t put
other
xtual
ations
scope
r or

re-
e can
es-
an be
d of
m-

enera-
urrent

not
DRAFT
resolved at compile time to a copy of the compile-time constant value, so u
of such a field never cause initialization.

Invocation of certain reflective methods in classClass and in package
java.lang.reflect also causes class or interface initialization. A class or int
face will not be initialized under any other circumstance.

The intent here is that a class or interface type has a set of initializers tha
it in a consistent state, and that this state is the first state that is observed by
classes. The static initializers and class variable initializers are executed in te
order, and may not refer to class variables declared in the class whose declar
appear textually after the use, even though these class variables are in
(§8.3.2.3). This restriction is designed to detect, at compile time, most circula
otherwise malformed initializations.

As shown in an example in §8.3.2.3, the fact that initialization code is un
stricted allows examples to be constructed where the value of a class variabl
be observed when it still has its initial default value, before its initializing expr
sion is evaluated, but such examples are rare in practice. (Such examples c
also constructed for instance variable initialization; see the example at the en
§12.5). The full power of the language is available in these initializers; progra
mers must exercise some care. This power places an extra burden on code g
tors, but this burden would arise in any case because the language is conc
(§12.4.3).

Before a class is initialized, its superclasses are initialized, if they have
previously been initialized.

Thus, the test program:

class Super {
static { System.out.print("Super "); }

}

class One {
static { System.out.print("One "); }

}

class Two extends Super {
static { System.out.print("Two "); }

}

class Test {
public static void main(String[] args) {

One o = null;
Two t = new Two();
System.out.println((Object)o == (Object)t);

}
}

237

12.4.1 When Initialization Occurs EXECUTION

238

is

ace
of a

its
DRAFT
prints:

Super Two false

The classOne is never initialized, because it not used actively and therefore
never linked to. The classTwo is initialized only after its superclassSuper has
been initialized.

A reference to a class field causes initialization of only the class or interf
that actually declares it, even though it might be referred to through the name
subclass, a subinterface, or a class that implements an interface.

The test program:

class Super { static int taxi = 1729; }

class Sub extends Super {
static { System.out.print("Sub "); }

}

class Test {
public static void main(String[] args) {

System.out.println(Sub.taxi);
}

}

prints only:

1729

because the classSub is never initialized; the reference toSub.taxi is a reference
to a field actually declared in classSuper and does not trigger initialization of the
classSub.

Initialization of an interface does not, of itself, cause initialization of any of
superinterfaces.

Thus, the test program:

interface I {
int i = 1, ii = Test.out("ii", 2);

}

interface J extends I {
int j = Test.out("j", 3), jj = Test.out("jj", 4);

}

interface K extends J {
int k = Test.out("k", 5);

}

class Test {

public static void main(String[] args) {
System.out.println(J.i);

EXECUTION Detailed Initialization Procedure 12.4.2

it

i-

class
try-

pos-
as

al-

is
ing

-
of

n or
.

DRAFT
System.out.println(K.j);

}

static int out(String s, int i) {
System.out.println(s + "=" + i);
return i;

}

}

produces the output:

1
j=3
jj=4
3

The reference toJ.i is to a field that is a compile-time constant; therefore,
does not causeI to be initialized. The reference toK.j is a reference to a field
actually declared in interfaceJ that is not a compile-time constant; this causes in
tialization of the fields of interfaceJ, but not those of its superinterfaceI, nor
those of interfaceK. Despite the fact that the nameK is used to refer to fieldj of
interfaceJ, interfaceK is not initialized.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a
or interface requires careful synchronization, since some other thread may be
ing to initialize the same class or interface at the same time. There is also the
sibility that initialization of a class or interface may be requested recursively
part of the initialization of that class or interface; for example, a variable initi
izer in classA might invoke a method of an unrelated classB , which might in turn
invoke a method of classA. The implementation of the Java virtual machine
responsible for taking care of synchronization and recursive initialization by us
the following procedure. It assumes that theClass object has already been veri
fied and prepared, and that theClass object contains state that indicates one
four situations:

• ThisClass object is verified and prepared but not initialized.

• ThisClass object is being initialized by some particular threadT.

• ThisClass object is fully initialized and ready for use.

• ThisClass object is in an erroneous state, perhaps because the verificatio
preparation step failed, or because initialization was attempted and failed

The procedure for initializing a class or interface is then as follows:
239

12.4.2 Detailed Initialization Procedure EXECUTION

240

ce
he

ad,
n

ad,
the

n is

le.

the
form

the
ptly

ing

the
hey
s
.3.1,

d

me
te

n

DRAFT
1. Synchronize (§14.18) on theClass object that represents the class or interfa

to be initialized. This involves waiting until the current thread can obtain t
lock for that object (§17.13).

2. If initialization is in progress for the class or interface by some other thre
thenwait on thisClass object (which temporarily releases the lock). Whe
the current thread awakens from thewait, repeat this step.

3. If initialization is in progress for the class or interface by the current thre
then this must be a recursive request for initialization. Release the lock on
Class object and complete normally.

4. If the class or interface has already been initialized, then no further actio
required. Release the lock on theClass object and complete normally.

5. If theClass object is in an erroneous state, then initialization is not possib
Release the lock on theClass object and throw aNoClassDefFoundError.

6. Otherwise, record the fact that initialization of theClass object is now in
progress by the current thread and release the lock on theClass object.

7. Next, if theClass object represents a class rather than an interface, and
superclass of this class has not yet been initialized, then recursively per
this entire procedure for the superclass. If necessary, verify and prepare
superclass first. If the initialization of the superclass completes abru
because of a thrown exception, then lock thisClass object, label it erroneous,
notify all waiting threads, release the lock, and complete abruptly, throw
the same exception that resulted from initializing the superclass.

8. Next, execute either the class variable initializers and static initializers of
class, or the field initializers of the interface, in textual order, as though t
were a single block, except thatfinal class variables and fields of interface
whose values are compile-time constants are initialized first (§8.3.2.1, §9
§13.4.8).

9. If the execution of the initializers completes normally, then lock thisClass
object, label it fully initialized, notify all waiting threads, release the lock, an
complete this procedure normally.

10. Otherwise, the initializers must have completed abruptly by throwing so
exceptionE. If the class ofE is notError or one of its subclasses, then crea
a new instance of the classExceptionInInitializerError, with E as the
argument, and use this object in place ofE in the following step. But if a new
instance ofExceptionInInitializerError cannot be created because a
OutOfMemoryError occurs, then instead use anOutOfMemoryError object in
place ofE in the following step.

EXECUTION Creation of New Class Instances 12.5

se

tial-

ss or
. If

no
tch-

f the
tion

how-
re-

cre-

if

of a

pper

eci-
.
for it
the
ll the
DRAFT
11. Lock theClass object, label it erroneous, notify all waiting threads, relea

the lock, and complete this procedure abruptly with reasonE or its replace-
ment as determined in the previous step.

(Due to a flaw in some early implementations, a exception during class ini
ization was ignored, rather than causing anExceptionInInitializerError as
described here.)

12.4.3 Initialization: Implications for Code Generation

Code generators need to preserve the points of possible initialization of a cla
interface, inserting an invocation of the initialization procedure just described
this initialization procedure completes normally and theClass object is fully ini-
tialized and ready for use, then the invocation of the initialization procedure is
longer necessary and it may be eliminated from the code—for example, by pa
ing it out or otherwise regenerating the code.

Compile-time analysis may, in some cases, be able to eliminate many o
checks that a type has been initialized from the generated code, if an initializa
order for a group of related types can be determined. Such analysis must,
ever, fully account for concurrency and for the fact that initialization code is un
stricted.

12.5 Creation of New Class Instances

A new class instance is explicitly created when evaluation of a class instance
ation expression (§15.9) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

• Loading of a class or interface that contains aString literal (§3.10.5) may
create a newString object to represent that literal. (This might not occur
the sameString has previously been interned (§3.10.5).)

• Execution of a string concatenation operator (§15.18.1) that is not part
constant expression sometimes creates a newString object to represent the
result. String concatenation operators may also create temporary wra
objects for a value of a primitive type.

Each of these situations identifies a particular constructor to be called with sp
fied arguments (possibly none) as part of the class instance creation process

Whenever a new class instance is created, memory space is allocated
with room for all the instance variables declared in the class type and all
instance variables declared in each superclass of the class type, including a
241

12.5 Creation of New Class Instances EXECUTION

242

vail-
om-

s
their

lt, the
ing

bles

er
d
ps. If
letes

of

ively
ptly,
con-

this
ond-
lly
ults
dure
p 5.
to

ion

tes
ther-
DRAFT

instance variables that may be hidden (§8.3). If there is not sufficient space a
able to allocate memory for the object, then creation of the class instance c
pletes abruptly with anOutOfMemoryError. Otherwise, all the instance variable
in the new object, including those declared in superclasses, are initialized to
default values (§4.5.5).

Just before a reference to the newly created object is returned as the resu
indicated constructor is processed to initialize the new object using the follow
procedure:

1. Assign the arguments for the constructor to newly created parameter varia
for this constructor invocation.

2. If this constructor begins with an explicit constructor invocation of anoth
constructor in the same class (usingthis), then evaluate the arguments an
process that constructor invocation recursively using these same five ste
that constructor invocation completes abruptly, then this procedure comp
abruptly for the same reason; otherwise, continue with step 5.

3. This constructor does not begin with an explicit constructor invocation
another constructor in the same class (usingthis). If this constructor is for a
class other thanObject, then this constructor will begin with an explicit or
implicit invocation of a superclass constructor (usingsuper). Evaluate the
arguments and process that superclass constructor invocation recurs
using these same five steps. If that constructor invocation completes abru
then this procedure completes abruptly for the same reason. Otherwise,
tinue with step 4.

4. Execute the instance initializers and instance variable initializers for
class, assigning the values of instance variable initializers to the corresp
ing instance variables, in the left-to-right order in which they appear textua
in the source code for the class. If execution of any of these initializers res
in an exception, then no further initializers are processed and this proce
completes abruptly with that same exception. Otherwise, continue with ste
(In some early implementations, the compiler incorrectly omitted the code
initialize a field if the field initializer expression was a constant express
whose value was equal to the default initialization value for its type.)

5. Execute the rest of the body of this constructor. If that execution comple
abruptly, then this procedure completes abruptly for the same reason. O
wise, this procedure completes normally.

In the example:

class Point {
int x, y;

EXECUTION Creation of New Class Instances 12.5

w

om-
nts,

ext,

d.
,

f the

n

DRAFT
Point() { x = 1; y = 1; }

}

class ColoredPoint extends Point {
int color = 0xFF00FF;

}

class Test {
public static void main(String[] args) {

ColoredPoint cp = new ColoredPoint();
System.out.println(cp.color);

}
}

a new instance ofColoredPoint is created. First, space is allocated for the ne
ColoredPoint, to hold the fieldsx, y, andcolor. All these fields are then initial-
ized to their default values (in this case,0 for each field). Next, theColoredPoint
constructor with no arguments is first invoked. SinceColoredPoint declares no
constructors, a default constructor of the form:

ColoredPoint() { super(); }

is provided for it automatically by the Java compiler.
This constructor then invokes thePoint constructor with no arguments. The

Point constructor does not begin with an invocation of a constructor, so the c
piler provides an implicit invocation of its superclass constructor of no argume
as though it had been written:

Point() { super(); x = 1; y = 1; }

Therefore, the constructor forObject which takes no arguments is invoked.
The classObject has no superclass, so the recursion terminates here. N

any instance initializers, instance variable initializers ofObject are invoked.
Next, the body of the constructor ofObject that takes no arguments is execute
No such constructor is declared inObject, so the compiler supplies a default one
which in this special case is:

Object() { }

This constructor executes without effect and returns.
Next, all initializers for the instance variables of classPoint are executed. As

it happens, the declarations ofx andy do not provide any initialization expres-
sions, so no action is required for this step of the example. Then the body o
Point constructor is executed, settingx to 1 andy to 1.

Next, the initializers for the instance variables of classColoredPoint are
executed. This step assigns the value0xFF00FF to color. Finally, the rest of the
body of theColoredPoint constructor is executed (the part after the invocatio
243

12.5 Creation of New Class Instances EXECUTION

244

rther

s for
are

hese
zed.

t
DRAFT
of super); there happen to be no statements in the rest of the body, so no fu
action is required and initialization is complete.

Unlike C++, the Java programming language does not specify altered rule
method dispatch during the creation of a new class instance. If methods
invoked that are overridden in subclasses in the object being initialized, then t
overriding methods are used, even before the new object is completely initiali
Thus, compiling and running the example:

class Super {

Super() { printThree(); }

void printThree() { System.out.println("three"); }

}

class Test extends Super {

int three = (int)Math.PI; // That is,3

public static void main(String[] args) {
Test t = new Test();
t.printThree();

}

void printThree() { System.out.println(three); }

}

produces the output:

0
3

This shows that the invocation ofprintThree in the constructor for classSuper
does not invoke the definition ofprintThree in classSuper, but rather invokes
the overriding definition ofprintThree in classTest. This method therefore
runs before the field initializers ofTest have been executed, which is why the firs
value output is0, the default value to which the fieldthree of Test is initialized.
The later invocation ofprintThree in methodmain invokes the same definition
of printThree, but by that point the initializer for instance variablethree has
been executed, and so the value3 is printed.

See §8.8 for more details on constructor declarations.

EXECUTION Finalization of Class Instances 12.6

n
oke

mat-
the

ld be

ll be
t is
izer
the

al-
the

not
t be

ver-

that
1.

th
ons
osed
es
DRAFT

12.6 Finalization of Class Instances

The classObject has aprotected method calledfinalize; this method can be
overridden by other classes. The particular definition offinalize that can be
invoked for an object is called thefinalizerof that object. Before the storage for a
object is reclaimed by the garbage collector, the Java virtual machine will inv
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed auto
ically by an automatic storage manager. In such situations, simply reclaiming
memory used by an object would not guarantee that the resources it held wou
reclaimed.

The Java programming language does not specify how soon a finalizer wi
invoked, except to say that it will happen before the storage for the objec
reused. Also, the language does not specify which thread will invoke the final
for any given object. It is guaranteed, however, that the thread that invokes
finalizer will not be holding any user-visible synchronization locks when the fin
izer is invoked. If an uncaught exception is thrown during the finalization,
exception is ignored and finalization of that object terminates.

Thefinalize method declared in classObject takes no action.
The fact that classObject declares afinalize method means that the

finalize method for any class can always invoke thefinalize method for its
superclass, which is usually good practice. (Unlike constructors, finalizers do
automatically invoke the finalizer for the superclass; such an invocation mus
coded explicitly.)

For efficiency, an implementation may keep track of classes that do not o
ride thefinalize method of classObject, or override it in a trivial way, such as:

protected void finalize() throws Throwable {
super.finalize();

}

We encourage implementations to treat such objects as having a finalizer
is not overridden, and to finalize them more efficiently, as described in §12.6.

A finalizer may be invoked explicitly, just like any other method.
The packagejava.lang.ref describes weak references, which interact wi

garbage collection and finalization. As with any API that has special interacti
with the language, implementors must be cognizant of any requirements imp
by thejava.lang.ref API. This specification does not discuss weak referenc
in any way. Readers are referred to the API documentation for details.
245

12.6.1 Implementing Finalization EXECUTION

246

inu-
am
e less
piler
er be
ble
ct

a

may

we

bject

ly; it
DRAFT
12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may bereachable, finalizer-
reachable, or unreachable, and it may also beunfinalized, finalizable, or finalized.

A reachableobject is any object that can be accessed in any potential cont
ing computation from any live thread. Optimizing transformations of a progr
can be designed that reduce the number of objects that are reachable to b
than those which would naively be considered reachable. For example, a com
or code generator may choose to set a variable or parameter that will no long
used tonull to cause the storage for such an object to be potentially reclaima
sooner. Afinalizer-reachableobject can be reached from some finalizable obje
through some chain of references, but not from any live thread. Anunreachable
object cannot be reached by either means.

An unfinalizedobject has never had its finalizer automatically invoked;
finalizedobject has had its finalizer automatically invoked. Afinalizableobject
has never had its finalizer automatically invoked, but the Java virtual machine
eventually automatically invoke its finalizer.

The life cycle of an object obeys the following transition diagram, where
abbreviate “finalizer-reachable” as “f-reachable”:

When an object is first created (A), it is reachable and unfinalized.
As references to an object are discarded during program execution, an o

that was reachable may become finalizer-reachable (B, C, D) or unreachable (E, F).
(Note that a finalizer-reachable object never becomes unreachable direct

M

reachable

unfinalized

reachable

finalizable

reachable

finalized

f-reachable

unfinalized

f-reachable

finalizable

f-reachable

finalized

object
created

storage
reclaimed

unreachable

unfinalized

unreachable

finalized

finalize not overridden

A

E F

B C D

G

H

I

J

L N

O

K

EXECUTION Finalizer Invocations are Not Ordered12.6.2

d, as

nal-

ach-
will

l it
e
s

se its
izer
y

to-
e way

n
ade

nd
ized.

ome
sec-

cated

es.

alls.

es
able

rder,
ager
ed.
DRAFT
becomes reachable when the finalizer from which it can be reached is invoke
explained below.)

If the Java virtual machine detects that an unfinalized object has become fi
izer-reachable or unreachable, it may label the object finalizable (G, H); moreover,
if the object was unreachable, it becomes finalizer-reachable (H).

If the Java virtual machine detects that a finalized object has become unre
able, it may reclaim the storage occupied by the object because the object
never again become reachable (I).

At any time, a Java virtual machine may take any finalizable object, labe
finalized, and then invoke itsfinalize method in some thread. This causes th
object to become finalized and reachable (J, K), and it also may cause other object
that were finalizer-reachable to become reachable again (L, M, N).

A finalizable object cannot also be unreachable; it can be reached becau
finalizer may eventually be invoked, whereupon the thread running the final
will have access to the object, asthis (§15.8.3). Thus, there are actually onl
eight possible states for an object.

After an object has been finalized, no further action is taken until the au
matic storage management determines that it is unreachable. Because of th
that an object progresses from theunfinalizedstate through thefinalizablestate to
thefinalizedstate, thefinalize method is never automatically invoked more tha
once by a Java virtual machine for each object, even if the object is again m
reachable after it has been finalized.

Explicit invocation of a finalizer ignores the current state of the object a
does not change the state of the object from unfinalized or finalizable to final

If a class does not override methodfinalize of classObject (or overrides it
in only a trivial way, as described above), then if instances of such a class bec
unreachable, they may be discarded immediately rather than made to await a
ond determination that they have become unreachable. This strategy is indi
by the dashed arrow (O) in the transition diagram.

Therefore, we recommend that the design offinalize methods be kept sim-
ple and that they be programmed defensively, so that they will work in all cas

12.6.2 Finalizer Invocations are Not Ordered

The Java programming language imposes no ordering on finalize method c
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becom
unreachable (or finalizer-reachable), then all the objects may become finaliz
together. Eventually, the finalizers for these objects may be invoked, in any o
or even concurrently using multiple threads. If the automatic storage man
later finds that the objects are unreachable, then their storage can be reclaim
247

12.7 Unloading of Classes and Interfaces EXECUTION

248

ike
jects
er.

y be
rfaces

sly,
stem
wise
s or

s
his
ntly

e

.
tely

oader
par-
lass

ing
loader

can
, but
DRAFT
It is straightforward to implement a class that will cause a set of finalizer-l

methods to be invoked in a specified order for a set of objects when all the ob
become unreachable. Defining such a class is left as an exercise for the read

12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language mayunload classes. A
class or interface may be unloaded if and only if its defining class loader ma
reclaimed by the garbage collector as discussed in §12.6. Classes and inte
loaded by the bootstrap loader may not be unloaded.

Here is the rationale for the rule given in the previous paragraph:
Class unloading is an optimization that helps reduce memory use. Obviou

the semantics of a program should not depend on whether and how a sy
chooses to implement an optimization such as class unloading. To do other
would compromise the portability of programs. Consequently, whether a clas
interface has been unloaded or not should be transparent to a program.

However, if a class or interfaceC was unloaded while its defining loader wa
potentially reachable, thenC might be reloaded. One could never ensure that t
would not happen. Even if the class was not referenced by any other curre
loaded class, it might be referenced by some class or interface,D, that had not yet
been loaded. WhenD is loaded byC’s defining loader, its execution might caus
reloading ofC.

Reloading may not be transparent if, for example, the class has:

• Static variables (whose state would be lost).

• Static initializers (which may have side effects).

• Native methods (which may retain static state).

Furthermore the hash value of theClass object is dependent on its identity
Therefore it is, in general, impossible to reload a class or interface in a comple
transparent manner.

Since we can never guarantee that unloading a class or interface whose l
is potentially reachable will not cause reloading, and reloading is never trans
ent, but unloading must be transparent, it follows that one must not unload a c
or interface while its loader is potentially reachable. A similar line of reason
can be used to deduce that classes and interfaces loaded by the bootstrap
can never be unloaded.

One must also argue why it is safe to unload a classC if its defining class
loader can be reclaimed. If the defining loader can be reclaimed, then there
never be any live references to it (this includes references that are not live

EXECUTION Program Exit 12.8

can
ding

hat
some
oth-
ough
for

dis-
ow-
on.
DRAFT
might be resurrected by finalizers). This, in turn, can only be true if there are
never be any live references to any of the classes defined by that loader, inclu
C, either from their instances or from code.

Class unloading is an optimization that is only significant for applications t
load large numbers of classes and that stop using most of those classes after
time. A prime example of such an application is a web browser, but there are
ers. A characteristic of such applications is that they manage classes thr
explicit use of class loaders. As a result, the policy outlined above works well
them.

Strictly speaking, it is not essential that the issue of class unloading be
cussed by this specification, as class unloading is merely an optimization. H
ever, the issue is very subtle, and so it is mentioned here by way of clarificati

12.8 Program Exit

A program terminates all its activity andexits when one of two things happens:

• All the threads that are not daemon threads terminate.

• Some thread invokes theexit method of classRuntime or classSystem and
the exit operation is not forbidden by the security manager.

.

249

C H A P T E R 13
uto-
icular
ning
e
s of

ce a
f a
lly
that
velop-
pre-

8.
are
tify

their
Java

ove

hey
by

ce.
DRAFT
Binary Compatibility

Development tools for the Java programming language should support a
matic recompilation as necessary whenever source code is available. Part
implementations may also store the source and binary of types in a versio
database and implement aClassLoader that uses integrity mechanisms of th
database to prevent linkage errors by providing binary-compatible version
types to clients.

Developers of packages and classes that are to be widely distributed fa
different set of problems. In the Internet, which is our favorite example o
widely distributed system, it is often impractical or impossible to automatica
recompile the pre-existing binaries that directly or indirectly depend on a type
is to be changed. Instead, this specification defines a set of changes that de
ers are permitted to make to a package or to a class or interface type while
serving (not breaking) compatibility with existing binaries.

The paper quoted above appears inProceedings of OOPSLA ’95, published as
ACM SIGPLAN Notices, Volume 30, Number 10, October 1995, pages 426–43
Within the framework of that paper, Java programming language binaries
binary compatible under all relevant transformations that the authors iden
(with some caveats with respect to the addition of instance variables). Using
scheme, here is a list of some important binary compatible changes that the
programming language supports:

• Reimplementing existing methods, constructors, and initializers to impr
performance.

• Changing methods or constructors to return values on inputs for which t
previously either threw exceptions that normally should not occur or failed
going into an infinite loop or causing a deadlock.

• Adding new fields, methods, or constructors to an existing class or interfa
251

13.1 The Form of a Binary BINARY COMPATIBILITY

252

cess

tion.

eed
bility
from
atible
ases
lat-

pers

Java
ility,
t of
, spec-
and

t
ming

nsfor-
DRAFT
• Deletingprivate fields, methods, or constructors of a class.

• When an entire package is updated, deleting default (package-only) ac
fields, methods, or constructors of classes and interfaces in the package.

• Reordering the fields, methods, or constructors in an existing type declara

• Moving a method upward in the class hierarchy.

• Reordering the list of direct superinterfaces of a class or interface.

• Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guarant
by all implementations. The Java programming language guarantees compati
when binaries of classes and interfaces are mixed that are not known to be
compatible sources, but whose sources have been modified in the comp
ways described here. Note that we are discussing compatibility between rele
of an application. A discussion of compatibility among releases of the Java p
form beyond the scope of this chapter.

We encourage development systems to provide facilities that alert develo
to the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the
programming language must have (§13.1). It next defines binary compatib
explaining what it is and what it is not (§13.2). It finally enumerates a large se
possible changes to packages (§13.3), classes (§13.4) and interfaces (§13.5)
ifying which of these changes are guaranteed to preserve binary compatibility
which are not.

13.1 The Form of a Binary

Programs must be compiled either into theclass file format specified by theThe
Java™ Virtual Machine Specification, Second Edition, or into a representation tha
can be mapped into that format by a class loader written in the Java program
language. Furthermore, the resultingclass file must have certain properties. A
number of these properties are specifically chosen to support source code tra
mations that preserve binary compatibility.

The required properties are:

• The class or interface must be named by itsbinary name, which must meet the
following constraints:

◆ The binary name of a top-level type is its canonical name (§6.7).

BINARY COMPATIBILITY The Form of a Binary 13.1

me-
he

ame

the

n

y-

that
at are

at
con-
s or
t),
; the
See
DRAFT

◆ The binary name of a member type consists of the binary name of its im
diately enclosing type, followed by $ followed by the simple name of t
member.

◆ The binary name of any nested type must have, as a prefix, the binary n
of its enclosing top-level class.

• A reference to another class or interface type must be symbolic, using
binary name of the type.

• Given a legal expression denoting a field access in a classC, referencing a
field namedf declared in a (possibly distinct) class or interfaceD, we define
thequalifying type of the field reference as follows:

◆ If the expression is of the formPrimary.f then the compile-time type ofPri-
mary is the qualifying type of the reference.

◆ If the expression is of the formsuper.f then the superclass ofC is the qual-
ifying type of the reference.

◆ If the expression is of the formX.super.f then the superclass ofX is the
qualifying type of the reference.

◆ If the reference is of the formX.f, whereX denotes a class or interface, the
the class or interface denoted byX is the qualifying type of the reference

◆ If the expression is referenced by a simple name, then iff is a member of
the current class or interface,C, then letT be C. Otherwise, letT be the
innermost lexically enclosing class of whichf is a member.T is the quali-
fying type of the reference.

The reference tof must be compiled into a symbolic reference to the qualif
ing type of the reference, plus the simple name of the field,f. The reference
must also include a symbolic reference to the declared type of the field so
the verifier can check that the type is as expected. References to fields th
final and initialized with compile-time constant expressions are resolved
compile time to the constant value that is denoted. No reference to such a
stant field should be present in the code in a binary file (except in the clas
interface containing the constant field, which will have code to initialize i
and such constant fields must always appear to have been initialized
default initial value for the type of such a field must never be observed.
§13.4.8 for a discussion.

• Given a method invocation expression in a class or interfaceC referencing a
method namedm declared in a (possibly distinct) class or interfaceD, we
define thequalifying type of the method invocation as follows:
253

13.1 The Form of a Binary BINARY COMPATIBILITY

254

n

fer-
hod
fer-
oted
a

ation

ion.
DRAFT
If D is Object then the qualifying type of the expression isObject. Other-
wise:

◆ If the expression is of the formPrimary.m then the compile-time type of
Primary is the qualifying type of the method invocation.

◆ If the expression is of the formsuper.m then the superclass ofC is the qual-
ifying type of the method invocation.

◆ If the expression is of the formX.super.m then the superclass ofX is the
qualifying type of the method invocation.

◆ If the reference is of the formX.m, whereX denotes a class or interface, the
the class or interface denoted byX is the qualifying type of the method invo-
cation

◆ If the method is referenced by a simple name, then ifm is a member of the
current class or interface,C, let T be C. Otherwise, letT be the innermost
lexically enclosing class of whichm is a member.T is the qualifying type of
the method invocation.

A reference to a method must be resolved at compile time to a symbolic re
ence to the qualifying type of the invocation, plus the signature of the met
(§8.4.2). A reference to a method must also include either a symbolic re
ence to the return type of the denoted method or an indication that the den
method is declaredvoid and does not return a value. The signature of
method must include all of the following:

◆ The simple name of the method

◆ The number of parameters to the method

◆ A symbolic reference to the type of each parameter

• Given a class instance creation expression (§15.9) or a constructor invoc
statement (§8.8.5.1) in a class or interfaceC referencing a constructorm
declared in a (possibly distinct) class or interfaceD, we define thequalifying
type of the constructor invocation as follows:

◆ If the expression is of the formnew D(...) orX.new D(...), then the qualifying
type of the invocation isD.

◆ If the expression is of the formnew D(..){...} or X.new D(...){...}, then the
qualifying type of the expression is the compile-time type of the express

◆ If the expression is of the formsuper(...) or Primary.super(...) then the
qualifying type of the expression is the direct superclass ofC.

BINARY COMPATIBILITY The Form of a Binary 13.1

olic
the

om-
eter

ing
fault

ow-

t

the

turn

ers,

me

rce
DRAFT
◆ If the expression is of the formthis(...), then the qualifying type of the

expression isC.

A reference to a constructor must be resolved at compile time to a symb
reference to the qualifying type of the invocation, plus the signature of
constructor (§8.8.2). The signature of a constructor must include both:

◆ The number of parameters to the constructor

◆ A symbolic reference to the type of each parameter

In addition the constructor of a non-private inner member class must be c
piled such that it has as its first parameter, an additional implicit param
representing the immediately enclosing instance (§8.1.2).

• Any constructs introduced by the compiler that do not have a correspond
construct in the a source code must be marked as synthetic, except for de
constructors and the class initialization method.

A binary representation for a class or interface must also contain all of the foll
ing:

• If it is a class and is not classObject, then a symbolic reference to the direc
superclass of this class

• A symbolic reference to each direct superinterface, if any

• A specification of each field declared in the class or interface, given as
simple name of the field and a symbolic reference to the type of the field

• If it is a class, then the signature of each constructor, as described above

• For each method declared in the class or interface, its signature and re
type, as described above

• The code needed to implement the class or interface:

◆ For an interface, code for the field initializers

◆ For a class, code for the field initializers, the instance and static initializ
and the implementation of each method or constructor

• Every type must contain sufficient information to recover its canonical na
(§6.7).

• Every member type must have sufficient information to recover its sou
level access modifier.
255

13.2 What Binary Compatibility Is and Is Not BINARY COMPATIBILITY

256

clos-

es to
pear

inter-
es.
d its

as a
by a

anges

ly

rs of
rface
avior,

racts
y:

not
the
er-
ad
at run
ould
uity
of

the
from
ra-

ource
ode
DRAFT
• Every nested class must have a symbolic reference to its immediately en

ing class.

• Every class that contains a nested class must contain symbolic referenc
all of its member classes, and to all local and anonymous classes that ap
in its methods, constructors and static or instance initializers.

The following sections discuss changes that may be made to class and
face type declarations without breaking compatibility with pre-existing binari
Under the translation requirements given above, the Java virtual machine an
class file format support these changes. Any other valid binary format, such
compressed or encrypted representation that is mapped back into class files
class loader under the above requirements will necessarily support these ch
as well.

13.2 What Binary Compatibility Is and Is Not

A change to a type isbinary compatible with(equivalently, does notbreak binary
compatibility with) preexisting binaries if preexisting binaries that previous
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructo
other classes and interfaces. To preserve binary compatibility, a class or inte
should treat its accessible members and constructors, their existence and beh
as acontract with its users.

The Java programming language is designed to prevent additions to cont
and accidental name collisions from breaking binary compatibility; specificall

• Addition of more methods overloading a particular method name does
break compatibility with preexisting binaries. The method signature that
preexisting binary will use for method lookup is chosen by the method ov
load resolution algorithm at compile time (§15.12.2). (If the language h
been designed so that the particular method to be executed was chosen
time, then such an ambiguity might be detected at run time. Such a rule w
imply that adding an additional overloaded method so as to make ambig
possible at a call site could break compatibility with an unknown number
preexisting binaries. See §13.4.21 for more discussion.)

Binary compatibility is not the same as source compatibility. In particular,
example in §13.4.5 shows that a set of compatible binaries can be produced
sources that will not compile all together. This example is typical: a new decla
tion is added, changing the meaning of a name in an unchanged part of the s
code, while the preexisting binary for that unchanged part of the source c

BINARY COMPATIBILITY final Classes13.4.2

tent
ssion

eak-
use
revi-

both

oth-
ided

nd its

ither
n

-

is
rec-
DRAFT
retains the fully-qualified, previous meaning of the name. Producing a consis
set of source code requires providing a qualified name or field access expre
corresponding to the previous meaning.

13.3 Evolution of Packages

A new top-level class or interface type may be added to a package without br
ing compatibility with pre-existing binaries, provided the new type does not re
a name previously given to an unrelated type. If a new type reuses a name p
ously given to an unrelated type, then a conflict may result, since binaries for
types could not be loaded by the same class loader.

Changes in top-level class and interface types that are notpublic and that are
not a superclass or superinterface, respectively, of apublic type, affect only types
within the package in which they are declared. Such types may be deleted or
erwise changed, even if incompatibilities are otherwise described here, prov
that the affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class a
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was notabstract is changed to be declaredabstract, then pre-
existing binaries that attempt to create new instances of that class will throw e
an InstantiationError at link time, or (if a reflective method is used) a
InstantiationException at run time; such a change is therefore not recom
mended for widely distributed classes.

Changing a class that was declaredabstract to no longer be declared
abstract does not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declaredfinal is changed to be declaredfinal, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class
loaded, becausefinal classes can have no subclasses; such a change is not
ommended for widely distributed classes.
257

13.4.3 public Classes BINARY COMPATIBILITY

258

ecom-

r-
arity
rec-

class
tal
es no

sults
spec-
the
dis-
DRAFT
Changing a class that was declaredfinal to no longer be declaredfinal

does not break compatibility with pre-existing binaries.

13.4.3 publicClasses

Changing a class that was not declaredpublic to be declaredpublic does not
break compatibility with pre-existing binaries.

If a class that was declaredpublic is changed to not be declaredpublic,
then anIllegalAccessError is thrown if a pre-existing binary is linked that
needs but no longer has access to the class type; such a change is not r
mended for widely distributed classes.

13.4.4 Superclasses and Superinterfaces

A ClassCircularityError is thrown at load time if a class would be a supe
class of itself. Changes to the class hierarchy that could result in such a circul
when newly compiled binaries are loaded with pre-existing binaries are not
ommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a
type will not break compatibility with pre-existing binaries, provided that the to
set of superclasses or superinterfaces, respectively, of the class type los
members.

If a change to the direct superclass or the set of direct superinterfaces re
in any class or interface no longer being a superclass or superinterface, re
tively, then link-time errors may result if pre-existing binaries are loaded with
binary of the modified class. Such changes are not recommended for widely
tributed classes.

For example, suppose that the following test program:

class Hyper { char h = 'h'; }

class Super extends Hyper { char s = 's'; }

class Test extends Super {
 public static void main(String[] args) {
 Hyper h = new Super();
 System.out.println(h.h);
 }
}

is compiled and executed, producing the output:

h

Suppose that a new version of classSuper is then compiled:

BINARY COMPATIBILITY Class Body and Member Declarations13.4.5

p:

d by
Java

will

ce
ds)
s an
or
time

ary.
DRAFT
class Super { char s = 's'; }

This version of classSuper is not a subclass ofHyper. If we then run the existing
binaries ofHyper andTest with the new version ofSuper, then aVerifyError
is thrown at link time. The verifier objects because the result ofnew Super()
cannot be assigned to a variable of typeHyper, becauseSuper is not a subclass of
Hyper.

It is instructive to consider what might happen without the verification ste
the program might run and print:

s

This demonstrates that without the verifier the type system could be defeate
linking inconsistent binary files, even though each was produced by a correct
compiler.

The lesson is that an implementation that lacks a verifier or fails to use it
not maintain type safety and is, therefore, not a valid implementation.

13.4.5 Class Body and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instan
(respectivelystatic) member that has the same name, accessibility, (for fiel
or same name, accessibility, signature, and return type (for methods) a
instance (respectivelystatic) member of a superclass or subclass. No err
occurs even if the set of classes being linked would encounter a compile-
error.

Deleting a class member or constructor that is not declaredprivate may
cause a linkage error if the member or constructor is used by a pre-existing bin

If the program:

class Hyper {
void hello() { System.out.println("hello from Hyper"); }

}

class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }

}

class Test {
public static void main(String[] args) {

new Super().hello();
}

}

is compiled and executed, it produces the output:

hello from Super
259

13.4.5 Class Body and Member Declarations BINARY COMPATIBILITY

260

s

lass,

on-

rint:
DRAFT
Suppose that a new version of classSuper is produced:

class Super extends Hyper { }

then recompilingSuper and executing this new binary with the original binarie
for Test andHyper produces the output:

hello from Hyper

as expected.
Thesuper keyword can be used to access a method declared in a superc

bypassing any methods declared in the current class. The expression:

super.Identifier

is resolved, at compile time, to a methodM in the superclassS. If the methodM is
an instance method, then the methodMR invoked at run time is the method with
the same signature asM that is a member of the direct superclass of the class c
taining the expression involvingsuper. Thus, if the program:

class Hyper {
void hello() { System.out.println("hello from Hyper"); }

}

class Super extends Hyper { }

class Test extends Super {

public static void main(String[] args) {
new Test().hello();

}

void hello() {
super.hello();

}

}

is compiled and executed, it produces the output:

hello from Hyper

Suppose that a new version of classSuper is produced:

class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }

}

If Super andHyper are recompiled but notTest, then running the new binaries
with the existing binary ofTest produces the output:

hello from Super

as you might expect. (A flaw in some early implementations caused them to p

hello from Hyper

BINARY COMPATIBILITY Access to Members and Constructors13.4.6

261

ccess
be

ccess

ess

ber
sub-

ary
e,
DRAFT
incorrectly.)

13.4.6 Access to Members and Constructors

Changing the declared access of a member or constructor to permit less a
may break compatibility with pre-existing binaries, causing a linkage error to
thrown when these binaries are resolved. Less access is permitted if the a
modifier is changed from default access toprivate access; fromprotected
access to default orprivate access; or frompublic access toprotected,
default, orprivate access. Changing a member or constructor to permit l
access is therefore not recommended for widely distributed classes.

Perhaps surprisingly, the binary format is defined so that changing a mem
or constructor to be more accessible does not cause a linkage error when a
class (already) defines a method to have less access.

So, for example, if the packagepoints defines the classPoint:

package points;

public class Point {
public int x, y;
protected void print() {

System.out.println("(" + x + "," + y + ")");
}

}

used by theTest program:

class Test extends points.Point {

protected void print() { System.out.println("Test"); }

public static void main(String[] args) {
Test t = new Test();
t.print();

}

}

then these classes compile andTest executes to produce the output:

Test

If the methodprint in classPoint is changed to bepublic, and then only the
Point class is recompiled, and then executed with the previously existing bin
for Test then no linkage error occurs, even though it is improper, at compile tim
for a public method to be overridden by aprotected method (as shown by the
fact that the classTest could not be recompiled using this newPoint class unless
print were changed to bepublic.)

13.4.7 Field Declarations BINARY COMPATIBILITY

262

. The
addi-

art
oft-
ith

er

no
of a

ch a
DRAFT
Allowing superclasses to changeprotected methods to bepublic without

breaking binaries of preexisting subclasses helps make binaries less fragile
alternative, where such a change would cause a linkage error, would create
tional binary incompatibilities.

13.4.7 Field Declarations

Widely distributed programs should not expose any fields to their clients. Ap
from the binary compatibility issues discussed below, this is generally good s
ware engineering practice. Adding a field to a class may break compatibility w
pre-existing binaries that are not recompiled.

Assume a reference to a fieldf with qualifying typeT. Assume further thatf
is in fact an instance (respectivelystatic) field declared in a superclass ofT, S,
and that the type off is X. If a new field of typeX with the same name asf is
added to a subclass ofS that is a superclass ofT or T itself, then a linkage error
may occur. Such a linkage error will occur only if, in addition to the above, eith
one of the following conditions hold:

• The new field is less accessible than the old one.

• The new field is astatic (respectively instance) field.

In particular, no linkage error will occur in the case where a class could
longer be recompiled because a field access previously referenced a field
superclass with an incompatible type. The previously compiled class with su
reference will continue to reference the field declared in a superclass.

Thus compiling and executing the code:

class Hyper { String h = "hyper"; }

class Super extends Hyper { String s = "super"; }

class Test {
public static void main(String[] args) {

System.out.println(new Super().h);
}

}

produces the output:

hyper

ChangingSuper to be defined as:

class Super extends Hyper {
String s = "super";
int h = 0;

}

BINARY COMPATIBILITY Field Declarations 13.4.7

e

that
tion
sur-
spe-
uld
DRAFT
recompilingHyper andSuper, and executing the resulting new binaries with th
old binary ofTest produces the output:

hyper

The fieldh of Hyper is output by the original binary ofmain. While this may
seem surprising at first, it serves to reduce the number of incompatibilities
occur at run time. (In an ideal world, all source files that needed recompila
would be recompiled whenever any one of them changed, eliminating such
prises. But such a mass recompilation is often impractical or impossible, e
cially in the Internet. And, as was previously noted, such recompilation wo
sometimes require further changes to the source code.)

As an example, if the program:

class Hyper { String h = "Hyper"; }

class Super extends Hyper { }

class Test extends Super {
public static void main(String[] args) {

String s = new Test().h;
System.out.println(s);

}
}

is compiled and executed, it produces the output:

Hyper

Suppose that a new version of classSuper is then compiled:

class Super extends Hyper { char h = 'h'; }

If the resulting binary is used with the existing binaries forHyper andTest, then
the output is still:

Hyper

even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }

class Super extends Hyper { char h = 'h'; }

class Test extends Super {
public static void main(String[] args) {

String s = new Test().h;
System.out.println(s);

}
}

263

13.4.8 final Fields and Constants BINARY COMPATIBILITY

264

g

-

s-
less
DRAFT

would result in a compile-time error, because theh in the source code formain
would now be construed as referring to thechar field declared inSuper, and a
char value can’t be assigned to aString.

Deleting a field from a class will break compatibility with any pre-existin
binaries that reference this field, and aNoSuchFieldError will be thrown when
such a reference from a pre-existing binary is linked. Onlyprivate fields may be
safely deleted from a widely distributed class.

13.4.8 final Fields and Constants

If a field that was notfinal is changed to befinal, then it can break compatibil-
ity with pre-existing binaries that attempt to assign new values to the field.

For example, if the program:

class Super { static char s; }

class Test extends Super {
public static void main(String[] args) {

s = 'a';
System.out.println(s);

}
}

is compiled and executed, it produces the output:

a

Suppose that a new version of classSuper is produced:

class Super { final static char s = ’b’; }

If Super is recompiled but notTest, then running the new binary with the exist
ing binary ofTest results in aIllegalAccessError.

Deleting the keywordfinal or changing the value to which a field is initial-
ized does not break compatibility with existing binaries.

If a field is a compile-time constant, then deleting the keywordfinal or
changing its value will not break compatibility with pre-existing binaries by cau
ing them not to run, but they will not see any new value for the constant un
they are recompiled.

If the example:

class Flags { final static boolean debug = true; }

class Test {
public static void main(String[] args) {

if (Flags.debug)
System.out.println("debug is true");

BINARY COMPATIBILITY final Fields and Constants13.4.8

-

en

on,

s

he

ib-
are

nte-
port;

nged.
make

om-
DRAFT
}

}

is compiled and executed, it produces the output:

debug is true

Suppose that a new version of classFlags is produced:

class Flags { final static boolean debug = false; }

If Flags is recompiled but notTest, then running the new binary with the exist
ing binary ofTest produces the output:

debug is true

because the value ofdebug was a compile-time constant, and could have be
used in compilingTest without making a reference to the classFlags.

This result is a side-effect of the decision to support conditional compilati
as discussed at the end of §14.20.

This behavior would not change ifFlags were changed to be an interface, a
in the modified example:

interface Flags { boolean debug = true; }

class Test {
public static void main(String[] args) {

if (Flags.debug)
System.out.println("debug is true");

}
}

(One reason for requiring inlining of constants is thatswitch statements require
constants on eachcase, and no two such constant values may be the same. T
compiler checks for duplicate constant values in aswitch statement at compile
time; theclass file format does not do symbolic linkage ofcase values.)

The best way to avoid problems with “inconstant constants” in widely-distr
uted code is to declare as compile time constants only values which truly
unlikely ever to change. Many compile time constants in interfaces are small i
ger values replacing enumerated types, which the language does not sup
these small values can be chosen arbitrarily, and should not need to be cha
Other than for true mathematical constants, we recommend that source code
very sparing use of class variables that are declaredstatic and final. If the
read-only nature offinal is required, a better choice is to declare aprivate
static variable and a suitable accessor method to get its value. Thus we rec
mend:

private static int N;
265

13.4.9 static Fields BINARY COMPATIBILITY

266

truly
at if a
idi-

mi-

s
al
ized

n

om-

ility
om-
of a

ch a
DRAFT
public static int getN() { return N; }

rather than:

public static final int N = ...;

There is no problem with:

public static int N = ...;

if N need not be read-only. We also recommend, as a general rule, that only
constant values be declared in interfaces. We note, but do not recommend, th
field of primitive type of an interface may change, its value may be expressed
omatically as in:

interface Flags {
boolean debug = new Boolean(true).booleanValue();

}

insuring that this value is not a constant. Similar idioms exist for the other pri
tive types.

One other thing to note is thatstatic final fields that have constant value
(whether of primitive orString type) must never appear to have the default initi
value for their type (§4.5.5). This means that all such fields appear to be initial
first during class initialization (§8.3.2.1, §9.3.1, §12.4.2).

13.4.9 static Fields

If a field that is not declaredprivate was not declaredstatic and is changed to
be declaredstatic, or vice versa, then a linkage time error, specifically a
IncompatibleClassChangeError, will result if the field is used by a preexisting
binary which expected a field of the other kind. Such changes are not rec
mended in code that has been widely distributed.

13.4.10 transient Fields

Adding or deleting atransient modifier of a field does not break compatibility
with pre-existing binaries.

13.4.11 Method and Constructor Declarations

Adding a method or constructor declaration to a class will not break compatib
with any pre-existing binaries, in the case where a type could no longer be rec
piled because an invocation previously referenced a method or constructor
superclass with an incompatible type. The previously compiled class with su

BINARY COMPATIBILITY Method Result Type13.4.13

per-

ne

ith

y is
nd

com-
ore
fault
tor,
g the
rs is
ement
s is

not
rmal
ng a
struc-
d or
the

and
DRAFT
reference will continue to reference the method or constructor declared in a su
class.

Assume a reference to a methodm with qualifying typeT. Assume further that
m is in fact an instance (respectivelystatic) method declared in a superclass ofT,
S. If a new method of typeX with the same signature and return type asm is added
to a subclass ofS that is a superclass ofT or T itself, then a linkage error may
occur. Such a linkage error will occur only if, in addition to the above, either o
of the following conditions hold:

• The new method is less accessible than the old one.

• The new method is astatic (respectively instance) method.

Deleting a method or constructor from a class may break compatibility w
any pre-existing binary that referenced this method or constructor; aNoSuch-
MethodError may be thrown when such a reference from a pre-existing binar
linked. Such an error will occur only if no method with a matching signature a
return type is declared in a superclass.

If the source code for a class contains no declared constructors, the Java
piler automatically supplies a constructor with no parameters. Adding one or m
constructor declarations to the source code of such a class will prevent this de
constructor from being supplied automatically, effectively deleting a construc
unless one of the new constructors also has no parameters, thus replacin
default constructor. The automatically supplied constructor with no paramete
given the same access modifier as the class of its declaration, so any replac
should have as much or more access if compatibility with pre-existing binarie
to be preserved.

13.4.12 Method and Constructor Parameters

Changing the name of a formal parameter of a method or constructor does
impact pre-existing binaries. Changing the name of a method, the type of a fo
parameter to a method or constructor, or adding a parameter to or deleti
parameter from a method or constructor declaration creates a method or con
tor with a new signature, and has the combined effect of deleting the metho
constructor with the old signature and adding a method or constructor with
new signature (see §13.4.11).

13.4.13 Method Result Type

Changing the result type of a method, replacing a result type withvoid, or replac-
ing void with a result type has the combined effect of deleting the old method
267

13.4.14 abstract Methods BINARY COMPATIBILITY

268

e

-

DRAFT
adding a new method with the new result type or newlyvoid result (see
§13.4.11).

13.4.14 abstract Methods

Changing a method that is declaredabstract to no longer be declaredabstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declaredabstract to be declaredabstract
will break compatibility with pre-existing binaries that previously invoked th
method, causing anAbstractMethodError.

If the example program:

class Super { void out() { System.out.println("Out"); } }

class Test extends Super {
public static void main(String[] args) {

Test t = new Test();
System.out.println("Way ");
t.out();

}
}

is compiled and executed, it produces the output:

Way
Out

Suppose that a new version of classSuper is produced:

abstract class Super {
abstract void out();

}

If Super is recompiled but notTest, then running the new binary with the exist
ing binary ofTest results in aAbstractMethodError, because classTest has no
implementation of the methodout, and is therefore is (or should be) abstract.

13.4.15 final Methods

Changing an instance method that is notfinal to befinal may break compati-
bility with existing binaries that depend on the ability to override the method.

If the test program:

class Super { void out() { System.out.println("out"); } }

class Test extends Super {

public static void main(String[] args) {
Test t = new Test();

BINARY COMPATIBILITY static Methods13.4.17

-

ave

y

y

with
t not

,
ult-

ended
DRAFT
t.out();

}

void out() { super.out(); }

}

is compiled and executed, it produces the output:

out

Suppose that a new version of classSuper is produced:

class Super { final void out() { System.out.println("!"); } }

If Super is recompiled but notTest, then running the new binary with the exist
ing binary ofTest results in aVerifyError because the classTest improperly
tries to override the instance methodout.

Changing a class (static) method that is notfinal to befinal does not
break compatibility with existing binaries, because the method could not h
been overridden.

Removing thefinal modifier from a method does not break compatibilit
with pre-existing binaries.

13.4.16 native Methods

Adding or deleting anative modifier of a method does not break compatibilit
with pre-existing binaries.

The impact of changes to types on preexistingnative methods that are not
recompiled is beyond the scope of this specification and should be provided
the description of an implementation. Implementations are encouraged, bu
required, to implementnative methods in a way that limits such impact.

13.4.17 static Methods

If a method that is not declaredprivate was declaredstatic (that is, a class
method) and is changed to not be declaredstatic (that is, to an instance method)
or vice versa, then compatibility with pre-existing binaries may be broken, res
ing in a linkage time error, namely anIncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recomm
in code that has been widely distributed.
269

13.4.18 synchronized Methods BINARY COMPATIBILITY

270

t-

ti-

ith

fely
that
uc-

ode

truc-
be

com-
n if
nally

pile-
s no
curs
ution
DRAFT

13.4.18 synchronized Methods

Adding or deleting asynchronized modifier of a method does not break compa
ibility with existing binaries.

13.4.19 Method and Constructor Throws

Changes to thethrows clause of methods or constructors do not break compa
bility with existing binaries; these clauses are checked only at compile time.

13.4.20 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility w
pre-existing binaries.

We note that a compiler cannot expand a method inline at compile time.
The keywordfinal on a method does not mean that the method can be sa
inlined; it means only that the method cannot be overridden. It is still possible
a new version of that method will be provided at link time. Furthermore, the str
ture of the original program must be preserved for purposes of reflection.

In general we suggest that implementations use late-bound (run-time) c
generation and optimization.

13.4.21 Method and Constructor Overloading

Adding new methods or constructors that overload existing methods or cons
tors does not break compatibility with pre-existing binaries. The signature to
used for each invocation was determined when these existing binaries were
piled; therefore newly added methods or constructors will not be used, eve
their signatures are both applicable and more specific than the signature origi
chosen.

While adding a new overloaded method or constructor may cause a com
time error the next time a class or interface is compiled because there i
method or constructor that is most specific (§15.12.2.2), no such error oc
when a program is executed, because no overload resolution is done at exec
time.

If the example program:

class Super {
static void out(float f) { System.out.println("float"); }

}

BINARY COMPATIBILITY Evolution of Interfaces 13.5

-

uper-
xist-

to a
fer-

act

e and
DRAFT
class Test {

public static void main(String[] args) {
Super.out(2);

}
}

is compiled and executed, it produces the output:

float

Suppose that a new version of classSuper is produced:

class Super {
static void out(float f) { System.out.println("float"); }
static void out(int i) { System.out.println("int"); }

}

If Super is recompiled but notTest, then running the new binary with the exist
ing binary ofTest still produces the output:

float

However, ifTest is then recompiled, using this newSuper, the output is then:

int

as might have been naively expected in the previous case.

13.4.22 Method Overriding

If an instance method is added to a subclass and it overrides a method in a s
class, then the subclass method will be found by method invocations in pre-e
ing binaries, and these binaries are not impacted. If a class method is added
class, then this method will not be found unless the qualifying type of the re
ence is the subclass type.

13.4.23 Static Initializers

Adding, deleting, or changing a static initializer (§8.7) of a class does not imp
pre-existing binaries.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interfac
its members on pre-existing binaries.
271

13.5.1 public Interfaces BINARY COMPATIBILITY

272

ot rec-

ges to
ult in

break

ing

t,

ting
DRAFT
13.5.1 public Interfaces

Changing an interface that is not declaredpublic to be declaredpublic does not
break compatibility with pre-existing binaries.

If an interface that is declaredpublic is changed to not be declaredpublic,
then anIllegalAccessError is thrown if a pre-existing binary is linked that
needs but no longer has access to the interface type, so such a change is n
ommended for widely distributed interfaces.

13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that chan
the class hierarchy do, as described in §13.4.4. In particular, changes that res
any previous superinterface of a class no longer being a superinterface can
compatibility with pre-existing binaries, resulting in aVerifyError.

13.5.3 The Interface Members

Adding a method to an interface does not break compatibility with pre-exist
binaries. A field added to a superinterface ofC may hide a field inherited from a
superclass ofC. If the original reference was to an instance field, anIncompati-
bleClassChangeError will result. If the original reference was an assignmen
anIllegalAccessError will result.

Deleting a member from an interface may cause linkage errors in pre-exis
binaries.

If the example program:

interface I { void hello(); }

class Test implements I {

public static void main(String[] args) {
I anI = new Test();
anI.hello();

}

public void hello() { System.out.println("hello"); }

}

is compiled and executed, it produces the output:

hello

Suppose that a new version of interfaceI is compiled:

interface I { }

BINARY COMPATIBILITY Abstract Method Declarations13.5.5

e as

re the
2,
DRAFT
If I is recompiled but notTest, then running the new binary with the existing
binary forTest will result in aNoSuchMethodError. (In some early implementa-
tions this program still executed; the fact that the methodhello no longer exists
in interfaceI was not correctly detected.)

13.5.4 Field Declarations

The considerations for changing field declarations in interfaces are the sam
those forstatic final fields in classes, as described in §13.4.7 and §13.4.8.

13.5.5 Abstract Method Declarations

The considerations for changing abstract method declarations in interfaces a
same as those forabstract methods in classes, as described in §13.4.1
§13.4.13, §13.4.19, and §13.4.21.
273

C H A P T E R 14

ts

er
ent

ts

and
lain
vior

.3)

pty

nt

e are

every
DRAFT
Blocks and Statemen

THE sequence of execution of a program is controlled bystatements, which are
executed for their effect and do not have values.

Some statementscontainother statements as part of their structure; such oth
statements are substatements of the statement. We say that statemS
immediately containsstatementU if there is no statementT different fromS andU
such thatS containsT andT containsU. In the same manner, some statemen
contain expressions (§15) as part of their structure.

The first section of this chapter discusses the distinction between normal
abrupt completion of statements (§14.1). Most of the remaining sections exp
the various kinds of statements, describing in detail both their normal beha
and any special treatment of abrupt completion.

Blocks are explained first (§14.2), followed by local class declarations (§14
and local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar “danglingelse”
problem (§14.5) is explained.

Statements that will be familiar to C and C++ programmers are the em
(§14.6), labeled (§14.7), expression (§14.8),if (§14.9),switch (§14.10),while
(§14.11),do (§14.12),for (§14.13),break (§14.14),continue (§14.15), and
return (§14.16) statements.

Unlike C and C++, the Java programming language has nogoto statement.
However, thebreak andcontinue statements are allowed to mention stateme
labels.

The Java programming language statements that are not in the C languag
thethrow (§14.17),synchronized (§14.18), andtry (§14.19) statements.

The last section (§14.20) of this chapter addresses the requirement that
statement bereachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements
275

14.1 Normal and Abrupt Completion of Statements BLOCKS AND STATEMENTS

276

onal
ecu-

om-

ents

tual

nsfer

e ter-
such

al

he
plete

ssion
same

ed.
tate-

the
DRAFT
Every statement has a normal mode of execution in which certain computati
steps are carried out. The following sections describe the normal mode of ex
tion for each kind of statement.

If all the steps are carried out as described, with no indication of abrupt c
pletion, the statement is said tocomplete normally. However, certain events may
prevent a statement from completing normally:

• The break (§14.14),continue (§14.15), andreturn (§14.16) statements
cause a transfer of control that may prevent normal completion of statem
that contain them.

• Evaluation of certain expressions may throw exceptions from the Java vir
machine; these expressions are summarized in §15.6. An explicitthrow
(§14.17) statement also results in an exception. An exception causes a tra
of control that may prevent normal completion of statements.

If such an event occurs, then execution of one or more statements may b
minated before all steps of their normal mode of execution have completed;
statements are said tocomplete abruptly.

An abrupt completion always has an associatedreason, which is one of the
following:

• A break with no label

• A break with a given label

• A continue with no label

• A continue with a given label

• A return with no value

• A return with a given value

• A throw with a given value, including exceptions thrown by the Java virtu
machine

The terms “complete normally” and “complete abruptly” also apply to t
evaluation of expressions (§15.6). The only reason an expression can com
abruptly is that an exception is thrown, because of either athrow with a given
value (§14.17) or a run-time exception or error (§11, §15.6).

If a statement evaluates an expression, abrupt completion of the expre
always causes the immediate abrupt completion of the statement, with the
reason. All succeeding steps in the normal mode of execution are not perform

Unless otherwise specified in this chapter, abrupt completion of a subs
ment causes the immediate abrupt completion of the statement itself, with

BLOCKS AND STATEMENTS Local Class Declarations 14.3

f the

ions

iable

ate-
se

y of
letes

as a
ation
ents

tely

e

had-
lass
DRAFT
same reason, and all succeeding steps in the normal mode of execution o
statement are not performed.

Unless otherwise specified, a statement completes normally if all express
it evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations and local var
declaration statements within braces.

Block:
{ BlockStatementsopt }

BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Statement

A block is executed by executing each of the local variable declaration st
ments and other statements in order from first to last (left to right). If all of the
block statements complete normally, then the block completes normally. If an
these block statements complete abruptly for any reason, then the block comp
abruptly for the same reason.

14.3 Local Class Declarations

A local classis a nested class (§8) that is not a member of any class and that h
name. All local classes are inner classes (§8.1.2). Every local class declar
statement is immediately contained by a block. Local class declaration statem
may be intermixed freely with other kinds of statements in the block.

The scope of a local class declared in a block is the rest of the immedia
enclosing block, including its own class declaration.

The name of a local classC may not be redeclared as a local class of th
directly enclosing method, constructor, or initializer block within the scope ofC,
or a compile-time error occurs. However, a local class declaration may be s
owed (§6.3.1) anywhere inside a class declaration nested within the local c
277

14.4 Local Variable Declaration Statements BLOCKS AND STATEMENTS

278

t have

the

ve:

(not

-

con-
s of

s.
DRAFT
declaration’s scope. A local class does not have a canonical name, nor does i
a fully qualified name.

It is a compile-time error if a local class declaration contains any one of
following access modifiers:public, protected, private, or static.

Here is an example that illustrates several aspects of the rules given abo

class Global {
class Cyclic {}
void foo() {

new Cyclic(); // create aGlobal.Cyclic
class Cyclic extends Cyclic{}; // circular definition
{

class Local{};
{

class Local{}; // compile-time error
}
class Local{}; // compile-time error
class AnotherLocal {

void bar() {
class Local {}; // ok

}
}

}
class Local{}; // ok, not in scope of priorLocal

}

The first statement of methodfoo creates an instance of the member classGlo-
bal.Cyclic rather than an instance of the local classCyclic, because the local
class declaration is not yet in scope.

The fact that the scope of a local class encompasses its own declaration
only its body) means that the definition of the local classCyclic is indeed cyclic
because it extends itself rather thanGlobal.Cyclic. Consequently, the declara
tion of the local classCyclic will be rejected at compile time.

Since local class names cannot be redeclared within the same method (or
structor or initializer, as the case may be), the second and third declaration
Local result in compile-time errors. However,Local can be redeclared in the
context of another, more deeply nested, class such asAnotherLocal.

The fourth and last declaration ofLocal is legal, since it occurs outside the
scope of any prior declaration ofLocal.

14.4 Local Variable Declaration Statements

A local variable declaration statementdeclares one or more local variable name

BLOCKS AND STATEMENTS Local Variable Declarators and Types14.4.1

y a
ther

local

se

ri-
DRAFT
LocalVariableDeclarationStatement:

LocalVariableDeclaration ;

LocalVariableDeclaration:
finalopt Type VariableDeclarators

The following are repeated from §8.3 to make the presentation here clearer:

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

Every local variable declaration statement is immediately contained b
block. Local variable declaration statements may be intermixed freely with o
kinds of statements in the block.

A local variable declaration can also appear in the header of afor statement
(§14.13). In this case it is executed in the same manner as if it were part of a
variable declaration statement.

14.4.1 Local Variable Declarators and Types

Eachdeclaratorin a local variable declaration declares one local variable, who
name is theIdentifier that appears in the declarator.

If the optional keywordfinal appears at the start of the declarator, the va
able being declared is a final variable(§4.5.4).

The type of the variable is denoted by theTypethat appears in the local vari-
able declaration, followed by any bracket pairs that follow theIdentifier in the
declarator.

Thus, the local variable declaration:

int a, b[], c[][];

is equivalent to the series of declarations:
279

14.4.2 Scope of Local Variable Declarations BLOCKS AND STATEMENTS

280

The

of

or a
nt
le of
that

the
nd

ate-

e

ectly

ck
in the

ly a
DRAFT
int a;
int[] b;
int[][] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++.
general rule, however, also means that the local variable declaration:

float[][] f[][], g[][][], h[]; // Yechh!

is equivalent to the series of declarations:

float[][][][] f;
float[][][][][] g;
float[][][] h;

We do not recommend such “mixed notation” for array declarations.
A local variable of typefloat always contains a value that is an element

the float value set (§4.2.3); similarly, a local variable of typedouble always con-
tains a value that is an element of the double value set. It is not permitted f
local variable of typefloat to contain an element of the float-extended-expone
value set that is not also an element of the float value set, nor for a local variab
typedouble to contain an element of the double-extended-exponent value set
is not also an element of the double value set.

14.4.2 Scope of Local Variable Declarations

The scope of a local variable declaration in a block (§14.4.2) is the rest of
block in which the declaration appears, starting with its own initializer (§14.4) a
including any further declarators to the right in the local variable declaration st
ment.

The name of a local variablev may not be redeclared as a local variable of th
directly enclosing method, constructor or initializer block within the scope ofv, or
a compile-time error occurs. The name of a local variablev may not be redeclared
as an exception parameter of a catch clause in a try statement of the dir
enclosing method, constructor or initializer block within the scope ofv, or a com-
pile-time error occurs. However, a local variable of a method or initializer blo
may be shadowed (§6.3.1) anywhere inside a class declaration nested with
scope of the local variable.

A local variable cannot be referred to using a qualified name (§6.6), on
simple name.

The example:

class Test {
static int x;
public static void main(String[] args) {

int x = x;

BLOCKS AND STATEMENTS Scope of Local Variable Declarations14.4.2

s:

the

on-
ari-
DRAFT

}
}

causes a compile-time error because the initialization ofx is within the scope of
the declaration ofx as a local variable, and the localx does not yet have a value
and cannot be used.

The following program does compile:

class Test {
static int x;
public static void main(String[] args) {

int x = (x=2)*2;
System.out.println(x);

}
}

because the local variablex is definitely assigned (§16) before it is used. It print

4

Here is another example:

class Test {
public static void main(String[] args) {

System.out.print("2+1=");
int two = 2, three = two + 1;
System.out.println(three);

}
}

which compiles correctly and produces the output:

2+1=3

The initializer forthree can correctly refer to the variabletwo declared in an ear-
lier declarator, and the method invocation in the next line can correctly refer to
variablethree declared earlier in the block.

The scope of a local variable declared in afor statement is the rest of thefor
statement, including its own initializer.

If a declaration of an identifier as a local variable of the same method, c
structor, or initializer block appears within the scope of a parameter or local v
able of the same name, a compile-time error occurs.

Thus the following example does not compile:

class Test {
public static void main(String[] args) {

int i;
for (int i = 0; i < 10; i++)

System.out.println(i);
281

14.4.3 Shadowing of Names by Local Variables BLOCKS AND STATEMENTS

282

ilar
ical,
have to
ng of
bles
, the

two

n that
able.

that
ided
s of
DRAFT
}

}

This restriction helps to detect some otherwise very obscure bugs. A sim
restriction on shadowing of members by local variables was judged impract
because the addition of a member in a superclass could cause subclasses to
rename local variables. Related considerations make restrictions on shadowi
local variables by members of nested classes, or on shadowing of local varia
by local variables declared within nested classes unattractive as well. Hence
following example compiles without error:

class Test {
public static void main(String[] args) {

int i;
class Local {

{
for (int i = 0; i < 10; i++)
System.out.println(i);

}
}
new Local();

}
}

On the other hand, local variables with the same name may be declared in
separate blocks orfor statements neither of which contains the other. Thus:

class Test {
public static void main(String[] args) {

for (int i = 0; i < 10; i++)
System.out.print(i + " ");

for (int i = 10; i > 0; i--)
System.out.print(i + " ");

System.out.println();
}

}

compiles without error and, when executed, produces the output:

0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1

14.4.3 Shadowing of Names by Local Variables

If a name declared as a local variable is already declared as a field name, the
outer declaration is shadowed (§6.3.1) throughout the scope of the local vari
Similarly, if a name is already declared as a variable or parameter name, then
outer declaration is shadowed throughout the scope of the local variable (prov
that the shadowing does not cause a compile-time error under the rule

BLOCKS AND STATEMENTS Statements 14.5

riately

rs

as the
for
ow-
s as

it is
rator
e is
sion,
that
sign-

he
cal
on
ini-

t cor-

ers
DRAFT
§14.4.2). The shadowed name can sometimes be accessed using an approp
qualified name.

For example, the keywordthis can be used to access a shadowed fieldx,
using the formthis.x. Indeed, this idiom typically appears in constructo
(§8.8):

class Pair {
Object first, second;
public Pair(Object first, Object second) {

this.first = first;
this.second = second;

}
}

In this example, the constructor takes parameters having the same names
fields to be initialized. This is simpler than having to invent different names
the parameters and is not too confusing in this stylized context. In general, h
ever, it is considered poor style to have local variables with the same name
fields.

14.4.4 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every time
executed, the declarators are processed in order from left to right. If a decla
has an initialization expression, the expression is evaluated and its valu
assigned to the variable. If a declarator does not have an initialization expres
then a Java compiler must prove, using exactly the algorithm given in §16,
every reference to the variable is necessarily preceded by execution of an as
ment to the variable. If this is not the case, then a compile-time error occurs.

Each initialization (except the first) is executed only if the evaluation of t
preceding initialization expression completes normally. Execution of the lo
variable declaration completes normally only if evaluation of the last initializati
expression completes normally; if the local variable declaration contains no
tialization expressions, then executing it always completes normally.

14.5 Statements

There are many kinds of statements in the Java programming language. Mos
respond to statements in the C and C++ languages, but some are unique.

As in C and C++, theif statement of the Java programming language suff
from the so-called “danglingelse problem,” illustrated by this misleadingly for-
matted example:
283

14.5 Statements BLOCKS AND STATEMENTS

284

ro-

efore

:

DRAFT
if (door.isOpen())

if (resident.isVisible())
resident.greet("Hello!");

else door.bell.ring(); // A “danglingelse”

The problem is that both the outerif statement and the innerif statement might
conceivably own theelse clause. In this example, one might surmise that the p
grammer intended theelse clause to belong to the outerif statement. The Java
programming language, like C and C++ and many programming languages b
them, arbitrarily decree that anelse clause belongs to the innermostif to which
it might possibly belong. This rule is captured by the following grammar:

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementWithoutTrailingSubstatement:
Block
EmptyStatement
ExpressionStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

The following are repeated from §14.9 to make the presentation here clearer

IfThenStatement:
if (Expression) Statement

BLOCKS AND STATEMENTS Labeled Statements14.7

that

hort

edi-
DRAFT
IfThenElseStatement:

if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

Statements are thus grammatically divided into two categories: those
might end in anif statement that has noelse clause (a “shortif statement”) and
those that definitely do not. Only statements that definitely do not end in a s
if statement may appear as an immediate substatement before the keywordelse
in anif statement that does have anelse clause.

This simple rule prevents the “danglingelse” problem. The execution behav-
ior of a statement with the “no shortif” restriction is identical to the execution
behavior of the same kind of statement without the “no shortif” restriction; the
distinction is drawn purely to resolve the syntactic difficulty.

14.6 The Empty Statement

An empty statement does nothing.

EmptyStatement:
;

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may havelabel prefixes.

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

TheIdentifier is declared to be the label of the immediately containedStatement.
Unlike C and C++, the Java programming language has nogoto statement;

identifier statement labels are used withbreak (§14.14) orcontinue (§14.15)
statements appearing anywhere within the labeled statement.

The scope of a label declared by a labeled statement is the statement imm
ately enclosed by the labeled statement.
285

14.8 Expression Statements BLOCKS AND STATEMENTS

286

r,

s the
able.
class,
e of
eter

same

ined

the

with

e
state-
tes

rms
gram-
DRAFT
Let l be a label, and letm be the immediately enclosing method, constructo

instance initializer or static initializer. It is a compile-time error ifl shadows
(§6.3.1) the declaration of another label immediately enclosed inm.

There is no restriction against using the same identifier as a label and a
name of a package, class, interface, method, field, parameter, or local vari
Use of an identifier to label a statement does not obscure (§6.3.2) a package,
interface, method, field, parameter, or local variable with the same name. Us
an identifier as a class, interface, method, field, local variable or as the param
of an exception handler (§14.19) does not obscure a statement label with the
name.

A labeled statement is executed by executing the immediately conta
Statement. If the statement is labeled by anIdentifierand the containedStatement
completes abruptly because of abreak with the sameIdentifier, then the labeled
statement completes normally. In all other cases of abrupt completion of
Statement, the labeled statement completes abruptly for the same reason.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them
semicolons:

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

An expression statementis executed by evaluating the expression; if th
expression has a value, the value is discarded. Execution of the expression
ment completes normally if and only if evaluation of the expression comple
normally.

Unlike C and C++, the Java programming language allows only certain fo
of expressions to be used as expression statements. Note that the Java pro
ming language does not allow a “cast tovoid”—void is not a type—so the tradi-
tional C trick of writing an expression statement such as:

BLOCKS AND STATEMENTS The if–then–else Statement14.9.2

s of
cation
t
) or a

nal

mak-

ecu-
DRAFT
(void) ... ; // incorrect!

does not work. On the other hand, the language allows all the most useful kind
expressions in expressions statements, and it does not require a method invo
used as an expression statement to invoke avoid method, so such a trick is almos
never needed. If a trick is needed, either an assignment statement (§15.26
local variable declaration statement (§14.4) can be used instead.

14.9 Theif Statement

The if statement allows conditional execution of a statement or a conditio
choice of two statements, executing one or the other but not both.

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

TheExpression must have typeboolean, or a compile-time error occurs.

14.9.1 Theif–then Statement

An if–then statement is executed by first evaluating theExpression. If evaluation
of the Expressioncompletes abruptly for some reason, theif–then statement
completes abruptly for the same reason. Otherwise, execution continues by
ing a choice based on the resulting value:

• If the value istrue, then the containedStatementis executed; theif–then
statement completes normally if and only if execution of theStatementcom-
pletes normally.

• If the value isfalse, no further action is taken and theif–then statement
completes normally.

14.9.2 Theif–then–else Statement

An if–then–else statement is executed by first evaluating theExpression. If
evaluation of theExpressioncompletes abruptly for some reason, then theif–
then–else statement completes abruptly for the same reason. Otherwise, ex
tion continues by making a choice based on the resulting value:
287

14.10 The switch Statement BLOCKS AND STATEMENTS

288

g on
DRAFT
• If the value istrue, then the first containedStatement(the one before the
else keyword) is executed; theif–then–else statement completes normally
if and only if execution of that statement completes normally.

• If the value isfalse, then the second containedStatement(the one after the
else keyword) is executed; theif–then–else statement completes normally
if and only if execution of that statement completes normally.

14.10 Theswitch Statement

Theswitch statement transfers control to one of several statements dependin
the value of an expression.

SwitchStatement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsopt SwitchLabelsopt }

SwitchBlockStatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

SwitchLabel:
case ConstantExpression :
default :

The type of theExpressionmust bechar, byte, short, or int, or a compile-
time error occurs.

The body of aswitch statement is known as aswitch block. Any statement
immediately contained by the switch block may be labeled with one or morecase
or default labels. These labels are said to beassociatedwith theswitch state-
ment, as are the values of the constant expressions (§15.28) in thecase labels.

All of the following must be true, or a compile-time error will result:

BLOCKS AND STATEMENTS The switch Statement14.10

te-
te-

an-

it is
ince

tinues

we

com-
DRAFT
• Everycase constant expression associated with aswitch statement must be

assignable (§5.2) to the type of theswitch Expression.

• No two of thecase constant expressions associated with aswitch statement
may have the same value.

• At most onedefault label may be associated with the sameswitch state-
ment.

In C and C++ the body of aswitch statement can be a statement and sta
ments withcase labels do not have to be immediately contained by that sta
ment. Consider the simple loop:

for (i = 0; i < n; ++i) foo();

wheren is known to be positive. A trick known asDuff ’s devicecan be used in C
or C++ to unroll the loop, but this is not valid code in the Java programming l
guage:

int q = (n+7)/8;
switch (n%8) {
case 0: do { foo(); // Great C hack, Tom,
case 7: foo(); // but it’s not valid here.
case 6: foo();
case 5: foo();
case 4: foo();
case 3: foo();
case 2: foo();
case 1: foo();

} while (--q >= 0);
}

Fortunately, this trick does not seem to be widely known or used. Moreover,
less needed nowadays; this sort of code transformation is properly in the prov
of state-of-the-art optimizing compilers.

When theswitch statement is executed, first theExpressionis evaluated. If
evaluation of theExpressioncompletes abruptly for some reason, theswitch
statement completes abruptly for the same reason. Otherwise, execution con
by comparing the value of theExpressionwith eachcase constant. Then there is a
choice:

• If one of thecase constants is equal to the value of the expression, then
say that thecase matches, and all statements after the matchingcase label in
the switch block, if any, are executed in sequence. If all these statements
289

14.10 The switch Statement BLOCKS AND STATEMENTS

290

e
e.

after

.

e
brupt
r

gh

ode

DRAFT

plete normally, or if there are no statements after the matchingcase label,
then the entireswitch statement completes normally.

• If no case matches but there is adefault label, then all statements after th
matchingdefault label in the switch block, if any, are executed in sequenc
If all these statements complete normally, or if there are no statements
thedefault label, then the entireswitch statement completes normally.

• If no case matches and there is nodefault label, then no further action is
taken and theswitch statement completes normally.

If any statement immediately contained by theBlock body of theswitch
statement completes abruptly, it is handled as follows:

• If execution of theStatementcompletes abruptly because of abreak with no
label, no further action is taken and theswitch statement completes normally

• If execution of theStatementcompletes abruptly for any other reason, th
switch statement completes abruptly for the same reason. The case of a
completion because of abreak with a label is handled by the general rule fo
labeled statements (§14.7).

As in C and C++, execution of statements in a switch block “falls throu
labels.”

For example, the program:

class Toomany {

static void howMany(int k) {
switch (k) {
case 1: System.out.print("one ");
case 2: System.out.print("too ");
case 3: System.out.println("many");
}

}

public static void main(String[] args) {
howMany(3);
howMany(2);
howMany(1);

}

}

contains a switch block in which the code for each case falls through into the c
for the next case. As a result, the program prints:

many
too many
one too many

BLOCKS AND STATEMENTS The while Statement14.11

mak-

DRAFT

If code is not to fall through case to case in this manner, thenbreak statements
should be used, as in this example:

class Twomany {

static void howMany(int k) {
switch (k) {
case 1: System.out.println("one");

break; // exit the switch
case 2: System.out.println("two");

break; // exit the switch
case 3: System.out.println("many");

break; // not needed, but good style
}

}

public static void main(String[] args) {
howMany(1);
howMany(2);
howMany(3);

}

}

This program prints:

one
two
many

14.11 Thewhile Statement

Thewhile statement executes anExpressionand aStatementrepeatedly until the
value of theExpression is false.

WhileStatement:
while (Expression) Statement

WhileStatementNoShortIf:
while (Expression) StatementNoShortIf

TheExpression must have typeboolean, or a compile-time error occurs.
A while statement is executed by first evaluating theExpression. If evalua-

tion of theExpressioncompletes abruptly for some reason, thewhile statement
completes abruptly for the same reason. Otherwise, execution continues by
ing a choice based on the resulting value:
291

14.11.1 Abrupt Completion BLOCKS AND STATEMENTS

292

e
case
DRAFT
• If the value istrue, then the containedStatementis executed. Then there is a

choice:

◆ If execution of theStatementcompletes normally, then the entirewhile
statement is executed again, beginning by re-evaluating theExpression.

◆ If execution of theStatement completes abruptly, see §14.11.1 below.

• If the value of theExpressionis false, no further action is taken and the
while statement completes normally.

If the value of theExpressionis false the first time it is evaluated, then the
Statementis not executed.

14.11.1 Abrupt Completion

Abrupt completion of the containedStatementis handled in the following manner:

• If execution of theStatementcompletes abruptly because of abreak with no
label, no further action is taken and thewhile statement completes normally.

◆ If execution of theStatementcompletes abruptly because of acontinue
with no label, then the entirewhile statement is executed again.

◆ If execution of theStatementcompletes abruptly because of acontinue
with labelL, then there is a choice:

❖ If the while statement has labelL, then the entirewhile statement is exe-
cuted again.

❖ If the while statement does not have labelL, thewhile statement com-
pletes abruptly because of acontinue with labelL.

◆ If execution of theStatementcompletes abruptly for any other reason, th
while statement completes abruptly for the same reason. Note that the
of abrupt completion because of abreak with a label is handled by the gen-
eral rule for labeled statements (§14.7).

14.12 Thedo Statement

The do statement executes aStatementand anExpressionrepeatedly until the
value of theExpression is false.

BLOCKS AND STATEMENTS Abrupt Completion14.12.1

e
is a

.

the
DRAFT
DoStatement:

do Statement while (Expression) ;

TheExpression must have typeboolean, or a compile-time error occurs.
A do statement is executed by first executing theStatement. Then there is a

choice:

• If execution of theStatementcompletes normally, then theExpressionis eval-
uated. If evaluation of theExpressioncompletes abruptly for some reason, th
do statement completes abruptly for the same reason. Otherwise, there
choice based on the resulting value:

◆ If the value istrue, then the entiredo statement is executed again.

◆ If the value isfalse, no further action is taken and thedo statement com-
pletes normally.

• If execution of theStatement completes abruptly, see §14.12.1 below.

Executing ado statement always executes the containedStatement at least once.

14.12.1 Abrupt Completion

Abrupt completion of the containedStatementis handled in the following manner:

• If execution of theStatementcompletes abruptly because of abreak with no
label, then no further action is taken and thedo statement completes normally

• If execution of theStatementcompletes abruptly because of acontinue with
no label, then theExpressionis evaluated. Then there is a choice based on
resulting value:

◆ If the value istrue, then the entiredo statement is executed again.

◆ If the value isfalse, no further action is taken and thedo statement com-
pletes normally.

• If execution of theStatementcompletes abruptly because of acontinue with
labelL, then there is a choice:

◆ If the do statement has labelL, then theExpressionis evaluated. Then there
is a choice:

❖ If the value of theExpressionis true, then the entiredo statement is exe-
cuted again.

❖ If the value of theExpressionis false, no further action is taken and the
do statement completes normally.
293

14.12.2 Example of do statement BLOCKS AND STATEMENTS

294

mple-
DRAFT
◆ If the do statement does not have labelL, the do statement completes

abruptly because of acontinue with labelL.

• If execution of theStatementcompletes abruptly for any other reason, thedo
statement completes abruptly for the same reason. The case of abrupt co
tion because of abreak with a label is handled by the general rule (§14.7).

14.12.2 Example ofdo statement

The following code is one possible implementation of thetoHexString method
of classInteger:

public static String toHexString(int i) {
StringBuffer buf = new StringBuffer(8);
do {

buf.append(Character.forDigit(i & 0xF, 16));
i >>>= 4;

} while (i != 0);
return buf.reverse().toString();

}

Because at least one digit must be generated, thedo statement is an appropriate
control structure.

14.13 Thefor Statement

Thefor statement executes some initialization code, then executes anExpression,
a Statement, and some update code repeatedly until the value of theExpressionis
false.

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

Statement

ForStatementNoShortIf:
for (ForInitopt ; Expressionopt ; ForUpdateopt)

StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

BLOCKS AND STATEMENTS Iteration of for statement14.13.2

ions
ded.

ted.

a
of a

l

ea-

a-
DRAFT
StatementExpressionList:

StatementExpression
StatementExpressionList , StatementExpression

TheExpression must have typeboolean, or a compile-time error occurs.

14.13.1 Initialization offor statement

A for statement is executed by first executing theForInit code:

• If the ForInit code is a list of statement expressions (§14.8), the express
are evaluated in sequence from left to right; their values, if any, are discar
If evaluation of any expression completes abruptly for some reason, thefor
statement completes abruptly for the same reason; anyForInit statement
expressions to the right of the one that completed abruptly are not evalua

If the ForInit code is a local variable declaration, it is executed as if it were
local variable declaration statement (§14.4) appearing in a block. The scope
local variable declared in theForInit part of afor statement (§14.13) includes al
of the following:

• Its own initializer

• Any further declarators to the right in theForInit part of thefor statement

• TheExpression andForUpdate parts of thefor statement

• The containedStatement

If execution of the local variable declaration completes abruptly for any r
son, thefor statement completes abruptly for the same reason.

• If the ForInit part is not present, no action is taken.

14.13.2 Iteration offor statement

Next, afor iteration step is performed, as follows:

• If the Expressionis present, it is evaluated, and if evaluation of theExpression
completes abruptly, thefor statement completes abruptly for the same re
295

14.13.3 Abrupt Completion of for statement BLOCKS AND STATEMENTS

296

of the

m

in
ua-

not

is
.

in
he
DRAFT

son. Otherwise, there is then a choice based on the presence or absence
Expression and the resulting value if theExpression is present:

◆ If the Expressionis not present, or it is present and the value resulting fro
its evaluation istrue, then the containedStatementis executed. Then there
is a choice:

❖ If execution of theStatementcompletes normally, then the following two
steps are performed in sequence:

✣ First, if theForUpdatepart is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If eval
tion of any expression completes abruptly for some reason, thefor
statement completes abruptly for the same reason; anyForUpdatestate-
ment expressions to the right of the one that completed abruptly are
evaluated. If theForUpdate part is not present, no action is taken.

✣ Second, anotherfor iteration step is performed.

❖ If execution of theStatement completes abruptly, see §14.13.3 below.

◆ If the Expressionis present and the value resulting from its evaluation
false, no further action is taken and thefor statement completes normally

If the value of theExpressionis false the first time it is evaluated, then the
Statement is not executed.

If the Expressionis not present, then the only way afor statement can com-
plete normally is by use of abreak statement.

14.13.3 Abrupt Completion offor statement

Abrupt completion of the containedStatementis handled in the following manner:

• If execution of theStatementcompletes abruptly because of abreak with no
label, no further action is taken and thefor statement completes normally.

• If execution of theStatementcompletes abruptly because of acontinue with
no label, then the following two steps are performed in sequence:

◆ First, if the ForUpdate part is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If t
ForUpdatepart is not present, no action is taken.

◆ Second, anotherfor iteration step is performed.

• If execution of theStatementcompletes abruptly because of acontinue with
labelL, then there is a choice:

BLOCKS AND STATEMENTS The break Statement14.14

d

in
he

brupt
r

ost
g

he

.

od

r

DRAFT
◆ If the for statement has labelL, then the following two steps are performe

in sequence:

❖ First, if the ForUpdatepart is present, the expressions are evaluated
sequence from left to right; their values, if any, are discarded. If t
ForUpdate is not present, no action is taken.

❖ Second, anotherfor iteration step is performed.

◆ If the for statement does not have labelL, the for statement completes
abruptly because of acontinue with labelL.

• If execution of theStatementcompletes abruptly for any other reason, thefor
statement completes abruptly for the same reason. Note that the case of a
completion because of abreak with a label is handled by the general rule fo
labeled statements (§14.7).

14.14 Thebreak Statement

A break statement transfers control out of an enclosing statement.

BreakStatement:
break Identifieropt ;

A break statement with no label attempts to transfer control to the innerm
enclosingswitch, while, do, or for statement of the immediately enclosin
method or initializer block; this statement, which is called thebreak target, then
immediately completes normally.

To be precise, abreak statement with no label always completes abruptly, t
reason being abreak with no label. If noswitch, while, do, or for statement
encloses thebreak statement, a compile-time error occurs.

A break statement with labelIdentifier attempts to transfer control to the
enclosing labeled statement (§14.7) that has the sameIdentifier as its label; this
statement, which is called thebreak target, then immediately completes normally
In this case, thebreak target need not be awhile, do, for, or switch statement.
A break statement must refer to a label within the immediately enclosing meth
or initializer block. There are no non-local jumps.

To be precise, abreak statement with labelIdentifier always completes
abruptly, the reason being abreak with label Identifier. If no labeled statement
with Identifieras its label encloses thebreak statement, a compile-time erro
occurs.

It can be seen, then, that abreak statement always completes abruptly.
297

14.14 The break Statement BLOCKS AND STATEMENTS

298

just

ost,

y of
arrow
this

nodes
DRAFT
The preceding descriptions say “attempts to transfer control” rather than

“transfers control” because if there are anytry statements (§14.19) within the
break target whosetry blocks contain thebreak statement, then anyfinally
clauses of thosetry statements are executed, in order, innermost to outerm
before control is transferred to the break target. Abrupt completion of afinally
clause can disrupt the transfer of control initiated by abreak statement.

In the following example, a mathematical graph is represented by an arra
arrays. A graph consists of a set of nodes and a set of edges; each edge is an
that points from some node to some other node, or from a node to itself. In
example it is assumed that there are no redundant edges; that is, for any two
P andQ, whereQ may be the same asP, there is at most one edge fromP to Q.
Nodes are represented by integers, and there is an edge from nodei to node
edges[i][j] for every i and j for which the array referenceedges[i][j]
does not throw anIndexOutOfBoundsException.

The task of the methodloseEdges, given integersi andj, is to construct a
new graph by copying a given graph but omitting the edge from nodei to nodej,
if any, and the edge from nodej to nodei, if any:

class Graph {
int edges[][];

public Graph(int[][] edges) { this.edges = edges; }

public Graph loseEdges(int i, int j) {
int n = edges.length;
int[][] newedges = new int[n][];
for (int k = 0; k < n; ++k) {

edgelist: {
int z;

search: {
if (k == i) {

for (z = 0; z < edges[k].length; ++z)
if (edges[k][z] == j)

break search;
} else if (k == j) {

for (z = 0; z < edges[k].length; ++z)
if (edges[k][z] == i)

break search;
}
// No edge to be deleted; share this list.
newedges[k] = edges[k];
break edgelist;

} //search

// Copy the list, omitting the edge at positionz.
int m = edges[k].length - 1;

BLOCKS AND STATEMENTS The continue Statement14.15

hared

er-
d

a-

t

no
DRAFT
int ne[] = new int[m];
System.arraycopy(edges[k], 0, ne, 0, z);
System.arraycopy(edges[k], z+1, ne, z, m-z);
newedges[k] = ne;

} //edgelist

}
return new Graph(newedges);

}

}

Note the use of two statement labels,edgelist andsearch, and the use ofbreak
statements. This allows the code that copies a list, omitting one edge, to be s
between two separate tests, the test for an edge from nodei to nodej, and the test
for an edge from nodej to nodei.

14.15 Thecontinue Statement

A continue statement may occur only in awhile, do, or for statement; state-
ments of these three kinds are callediteration statements. Control passes to the
loop-continuation point of an iteration statement.

ContinueStatement:
continue Identifieropt ;

A continue statement with no label attempts to transfer control to the inn
most enclosingwhile, do, or for statement of the immediately enclosing metho
or initializer block; this statement, which is called thecontinue target, then imme-
diately ends the current iteration and begins a new one.

To be precise, such acontinue statement always completes abruptly, the re
son being acontinue with no label. If nowhile, do, or for statement of the
immediately enclosing method or initializer block encloses thecontinue state-
ment, a compile-time error occurs.

A continue statement with labelIdentifierattempts to transfer control to the
enclosing labeled statement (§14.7) that has the sameIdentifier as its label; that
statement, which is called thecontinue target, then immediately ends the curren
iteration and begins a new one. The continue target must be awhile, do, or for
statement or a compile-time error occurs. Acontinue statement must refer to a
label within the immediately enclosing method or initializer block. There are
non-local jumps.

More precisely, acontinue statement with labelIdentifieralways completes
abruptly, the reason being acontinue with label Identifier. If no labeled state-
299

14.15 The continue Statement BLOCKS AND STATEMENTS

300

tion

just

ut-
of a
DRAFT
ment withIdentifieras its label contains thecontinue statement, a compile-time
error occurs.

It can be seen, then, that acontinue statement always completes abruptly.
See the descriptions of thewhile statement (§14.11),do statement (§14.12),

andfor statement (§14.13) for a discussion of the handling of abrupt termina
because ofcontinue.

The preceding descriptions say “attempts to transfer control” rather than
“transfers control” because if there are anytry statements (§14.19) within the
continue target whosetry blocks contain thecontinue statement, then any
finally clauses of thosetry statements are executed, in order, innermost to o
ermost, before control is transferred to the continue target. Abrupt completion
finally clause can disrupt the transfer of control initiated by acontinue state-
ment.

In theGraph example in the preceding section, one of thebreak statements is
used to finish execution of the entire body of the outermostfor loop. Thisbreak
can be replaced by acontinue if thefor loop itself is labeled:

class Graph {
. . .
public Graph loseEdges(int i, int j) {

int n = edges.length;
int[][] newedges = new int[n][];

edgelists: for (int k = 0; k < n; ++k) {
int z;

search: {
if (k == i) {

. . .
} else if (k == j) {

. . .
}
newedges[k] = edges[k];
continue edgelists;

} // search
. . .

} // edgelists

return new Graph(newedges);
}

}

Which to use, if either, is largely a matter of programming style.

BLOCKS AND STATEMENTS The return Statement14.16

) or

e

-
The

of

t

xpo-

uble-

just

to
ruc-
DRAFT
14.16 Thereturn Statement

A return statement returns control to the invoker of a method (§8.4, §15.12
constructor (§8.8, §15.9).

ReturnStatement:
return Expressionopt ;

A return statement with noExpressionmust be contained in the body of a
method that is declared, using the keywordvoid, not to return any value (§8.4), or
in the body of a constructor (§8.8). A compile-time error occurs if areturn state-
ment appears within an instance initializer or a static initializer (§8.7). Areturn
statement with noExpressionattempts to transfer control to the invoker of th
method or constructor that contains it.

To be precise, areturn statement with noExpressionalways completes
abruptly, the reason being areturn with no value.

A return statement with anExpressionmust be contained in a method decla
ration that is declared to return a value (§8.4) or a compile-time error occurs.
Expressionmust denote a variable or value of some typeT, or a compile-time
error occurs. The typeT must be assignable (§5.2) to the declared result type
the method, or a compile-time error occurs.

A return statement with anExpressionattempts to transfer control to the
invoker of the method that contains it; the value of theExpressionbecomes the
value of the method invocation. More precisely, execution of such areturn state-
ment first evaluates theExpression. If the evaluation of theExpressioncompletes
abruptly for some reason, then thereturn statement completes abruptly for tha
reason. If evaluation of theExpressioncompletes normally, producing a valueV,
then thereturn statement completes abruptly, the reason being areturn with
valueV. If the expression is of typefloat and is not FP-strict (§15.4), then the
value may be an element of either the float value set or the float-extended-e
nent value set (§4.2.3). If the expression is of typedouble and is not FP-strict,
then the value may be an element of either the double value set or the do
extended-exponent value set.

It can be seen, then, that areturn statement always completes abruptly.
The preceding descriptions say “attempts to transfer control” rather than

“transfers control” because if there are anytry statements (§14.19) within the
method or constructor whosetry blocks contain thereturn statement, then any
finally clauses of thosetry statements will be executed, in order, innermost
outermost, before control is transferred to the invoker of the method or const
301

14.17 The throw Statement BLOCKS AND STATEMENTS

302

i-

me-
iple
s,
e
d

.

ef-

rue,

fol-

e

and
he

-

DRAFT
tor. Abrupt completion of afinally clause can disrupt the transfer of control in
tiated by areturn statement.

14.17 Thethrow Statement

A throw statement causes an exception (§11) to be thrown. The result is an im
diate transfer of control (§11.3) that may exit multiple statements and mult
constructor, instance initializer, static initializer and field initializer evaluation
and method invocations until atry statement (§14.19) is found that catches th
thrown value. If no suchtry statement is found, then execution of the threa
(§17) that executed thethrow is terminated (§11.3) after invocation of the
uncaughtException method for the thread group to which the thread belongs

ThrowStatement:
throw Expression ;

TheExpressionin a throw statement must denote a variable or value of a r
erence type which is assignable (§5.2) to the typeThrowable, or a compile-time
error occurs. Moreover, at least one of the following three conditions must be t
or a compile-time error occurs:

• The exception is not a checked exception (§11.2)—specifically, one of the
lowing situations is true:

◆ The type of theExpressionis the classRuntimeException or a subclass of
RuntimeException.

◆ The type of theExpression is the classError or a subclass ofError.

• The throw statement is contained in thetry block of a try statement
(§14.19) and the type of theExpressionis assignable (§5.2) to the type of th
parameter of at least onecatch clause of thetry statement. (In this case we
say the thrown value iscaught by thetry statement.)

• Thethrow statement is contained in a method or constructor declaration
the type of theExpressionis assignable (§5.2) to at least one type listed in t
throws clause (§8.4.4, §8.8.4) of the declaration.

A throw statement first evaluates theExpression. If the evaluation of the
Expressioncompletes abruptly for some reason, then thethrow completes
abruptly for that reason. If evaluation of theExpressioncompletes normally, pro-
ducing a non-null valueV, then thethrow statement completes abruptly, the rea
son being athrow with value V. If evaluation of theExpressioncompletes
normally, producing anull value, then an instanceV’ of classNullPointerEx-

BLOCKS AND STATEMENTS The synchronized Statement14.18

that
d

not
od

e is
tion
the

ile-
or its
,

m-
on or
e

d to

alf
ecut-

rs.
DRAFT
ception is created and thrown instead ofnull. Thethrow statement then com-
pletes abruptly, the reason being athrow with value V’.

It can be seen, then, that athrow statement always completes abruptly.
If there are any enclosingtry statements (§14.19) whosetry blocks contain

thethrow statement, then anyfinally clauses of thosetry statements are exe-
cuted as control is transferred outward, until the thrown value is caught. Note
abrupt completion of afinally clause can disrupt the transfer of control initiate
by athrow statement.

If a throw statement is contained in a method declaration, but its value is
caught by sometry statement that contains it, then the invocation of the meth
completes abruptly because of thethrow.

If a throw statement is contained in a constructor declaration, but its valu
not caught by sometry statement that contains it, then the class instance crea
expression that invoked the constructor will complete abruptly because of
throw.

If a throw statement is contained in a static initializer (§8.7), then a comp
time check ensures that either its value is always an unchecked exception
value is always caught by sometry statement that contains it. If at run-time
despite this check, the value is not caught by sometry statement that contains the
throw statement, then the value is rethrown if it is an instance of classError or
one of its subclasses; otherwise, it is wrapped in anExceptionInInitializer-
Error object, which is then thrown (§12.4.2).

If a throw statement is contained in an instance initializer (§8.6), then a co
pile-time check ensures that either its value is always an unchecked excepti
its value is always caught by sometry statement that contains it, or the type of th
thrown exception (or one of its superclasses) occurs in thethrows clause of every
constructor of the class.

By convention, user-declared throwable types should usually be declare
be subclasses of classException, which is a subclass of classThrowable
(§11.5).

14.18 Thesynchronized Statement

A synchronized statement acquires a mutual-exclusion lock (§17.13) on beh
of the executing thread, executes a block, then releases the lock. While the ex
ing thread owns the lock, no other thread may acquire the lock.

SynchronizedStatement:
synchronized (Expression) Block

The type ofExpression must be a reference type, or a compile-time error occu
303

14.19 The try statement BLOCKS AND STATEMENTS

304

e

her
ods

n.
ks

ock

the
DRAFT
A synchronized statement is executed by first evaluating theExpression.
If evaluation of theExpressioncompletes abruptly for some reason, then th

synchronized statement completes abruptly for the same reason.
Otherwise, if the value of theExpressionis null, aNullPointerException

is thrown.
Otherwise, let the non-null value of theExpressionbe V. The executing

thread locks the lock associated withV. Then theBlock is executed. If execution
of theBlockcompletes normally, then the lock is unlocked and thesynchronized
statement completes normally. If execution of theBlock completes abruptly for
any reason, then the lock is unlocked and thesynchronized statement then com-
pletes abruptly for the same reason.

Acquiring the lock associated with an object does not of itself prevent ot
threads from accessing fields of the object or invoking unsynchronized meth
on the object. Other threads can also usesynchronized methods or the
synchronized statement in a conventional manner to achieve mutual exclusio

The locks acquired bysynchronized statements are the same as the loc
that are acquired implicitly bysynchronized methods; see §8.4.3.6. A single
thread may hold a lock more than once.

The example:

class Test {
public static void main(String[] args) {

Test t = new Test();
synchronized(t) {

synchronized(t) {
System.out.println("made it!");

}
}

}
}

prints:

made it!

This example would deadlock if a single thread were not permitted to lock a l
more than once.

14.19 Thetry statement

A try statement executes a block. If a value is thrown and thetry statement has
one or morecatch clauses that can catch it, then control will be transferred to
first suchcatch clause. If thetry statement has afinally clause, then another

BLOCKS AND STATEMENTS The try statement14.19

lass

as a
os-

de-
nor
ment

or
DRAFT
block of code is executed, no matter whether thetry block completes normally or
abruptly, and no matter whether acatch clause is first given control.

TryStatement:
try Block Catches
try Block Catchesopt Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

The following is repeated from §8.4.1 to make the presentation here clearer:

FormalParameter:
finalopt Type VariableDeclaratorId

The following is repeated from §8.3 to make the presentation here clearer:

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

The Block immediately after the keywordtry is called thetry block of the
try statement. TheBlock immediately after the keywordfinally is called the
finally block of thetry statement.

A try statement may havecatch clauses (also calledexception handlers).
A catch clause must have exactly one parameter (which is called anexception
parameter); the declared type of the exception parameter must be the c
Throwable or a subclass ofThrowable, or a compile-time error occurs. The
scope of the parameter variable is theBlock of thecatch clause.

An exception parameter of a catch clause must not have the same name
local variable or parameter of the method or initializer block immediately encl
ing the catch clause, or a compile-time error occurs.

The scope of a parameter of an exception handler that is declared in acatch
clause of atry statement (§14.19) is the entire block associated with thecatch.
Within theBlockof thecatch clause, the name of the parameter may not be re
clared as a local variable of the directly enclosing method or initializer block,
may it be redeclared as an exception parameter of a catch clause in a try state
of the directly enclosing method or initializer block, or a compile-time err
305

14.19.1 Execution of try–catch BLOCKS AND STATEMENTS

306

here

only

ible
rown

es

is

-
k

n
DRAFT
occurs. However, an exception parameter may be shadowed (§6.3.1) anyw
inside a class declaration nested within theBlock of thecatch clause.

It is a compile-time error if an exception parameter that is declaredfinal is
assigned to within the body of the catch clause.

Exception parameters cannot be referred to using qualified names (§6.6),
by simple names.

Exception handlers are considered in left-to-right order: the earliest poss
catch clause accepts the exception, receiving as its actual argument the th
exception object.

A finally clause ensures that thefinally block is executed after thetry
block and anycatch block that might be executed, no matter how control leav
thetry block orcatch block.

Handling of thefinally block is rather complex, so the two cases of atry
statement with and without afinally block are described separately.

14.19.1 Execution oftry–catch

A try statement without afinally block is executed by first executing thetry
block. Then there is a choice:

• If execution of thetry block completes normally, then no further action
taken and thetry statement completes normally.

• If execution of thetry block completes abruptly because of athrow of a
valueV, then there is a choice:

◆ If the run-time type ofV is assignable (§5.2) to theParameterof anycatch
clause of thetry statement, then the first (leftmost) suchcatch clause is
selected. The valueV is assigned to the parameter of the selectedcatch
clause, and theBlock of that catch clause is executed. If that block com
pletes normally, then thetry statement completes normally; if that bloc
completes abruptly for any reason, then thetry statement completes
abruptly for the same reason.

◆ If the run-time type ofV is not assignable to the parameter of anycatch
clause of thetry statement, then thetry statement completes abruptly
because of athrow of the valueV.

• If execution of thetry block completes abruptly for any other reason, the
thetry statement completes abruptly for the same reason.

In the example:

class BlewIt extends Exception {

BLOCKS AND STATEMENTS Execution of try–catch–finally14.19.2

is
DRAFT
BlewIt() { }

BlewIt(String s) { super(s); }

}

class Test {

static void blowUp() throws BlewIt { throw new BlewIt(); }

public static void main(String[] args) {

try {
blowUp();

} catch (RuntimeException r) {
System.out.println("RuntimeException:" + r);

} catch (BlewIt b) {
System.out.println("BlewIt");

}
}

}

the exceptionBlewIt is thrown by the methodblowUp. Thetry–catch statement
in the body ofmain has twocatch clauses. The run-time type of the exception
BlewIt which is not assignable to a variable of typeRuntimeException, but is
assignable to a variable of typeBlewIt, so the output of the example is:

BlewIt

14.19.2 Execution oftry–catch–finally

A try statement with afinally block is executed by first executing thetry
block. Then there is a choice:

• If execution of thetry block completes normally, then thefinally block is
executed, and then there is a choice:

◆ If the finally block completes normally, then thetry statement completes
normally.

◆ If the finally block completes abruptly for reasonS , then thetry state-
ment completes abruptly for reasonS.

• If execution of thetry block completes abruptly because of athrow of a
valueV, then there is a choice:

◆ If the run-time type ofV is assignable to the parameter of anycatch clause
of thetry statement, then the first (leftmost) suchcatch clause is selected.
307

14.19.2 Execution of try–catch–finally BLOCKS AND STATEMENTS

308
DRAFT
The valueV is assigned to the parameter of the selectedcatch clause, and
theBlock of thatcatch clause is executed. Then there is a choice:

❖ If the catch block completes normally, then thefinally block is exe-
cuted. Then there is a choice:

✣ If the finally block completes normally, then thetry statement com-
pletes normally.

✣ If the finally block completes abruptly for any reason, then thetry
statement completes abruptly for the same reason.

❖ If the catch block completes abruptly for reasonR, then thefinally
block is executed. Then there is a choice:

✣ If the finally block completes normally, then thetry statement com-
pletes abruptly for reasonR.

✣ If the finally block completes abruptly for reasonS, then thetry
statement completes abruptly for reasonS (and reasonR is discarded).

◆ If the run-time type ofV is not assignable to the parameter of anycatch
clause of thetry statement, then thefinally block is executed. Then there
is a choice:

❖ If the finally block completes normally, then thetry statement com-
pletes abruptly because of athrow of the valueV.

❖ If the finally block completes abruptly for reasonS, then thetry state-
ment completes abruptly for reasonS (and thethrow of valueV is dis-
carded and forgotten).

• If execution of thetry block completes abruptly for any other reasonR, then
thefinally block is executed. Then there is a choice:

◆ If the finally block completes normally, then thetry statement completes
abruptly for reasonR.

◆ If the finally block completes abruptly for reasonS , then thetry state-
ment completes abruptly for reasonS (and reasonR is discarded).

The example:

class BlewIt extends Exception {

BlewIt() { }

BlewIt(String s) { super(s); }

}

BLOCKS AND STATEMENTS Unreachable Statements14.20

ught
ple

ified

The
f the
ate-
tate-

e

DRAFT
class Test {

static void blowUp() throws BlewIt {
throw new NullPointerException();

}

public static void main(String[] args) {
try {

blowUp();
} catch (BlewIt b) {

System.out.println("BlewIt");
} finally {

System.out.println("Uncaught Exception");
}

}

}

produces the output:

Uncaught Exception
java.lang.NullPointerException

at Test.blowUp(Test.java:7)
at Test.main(Test.java:11)

The NullPointerException (which is a kind ofRuntimeException) that is
thrown by methodblowUp is not caught by thetry statement inmain, because a
NullPointerException is not assignable to a variable of typeBlewIt. This
causes thefinally clause to execute, after which the thread executingmain,
which is the only thread of the test program, terminates because of an unca
exception, which typically results in printing the exception name and a sim
backtrace.

14.20 Unreachable Statements

It is a compile-time error if a statement cannot be executed because it isunreach-
able. Every Java compiler must carry out the conservative flow analysis spec
here to make sure all statements are reachable.

This section is devoted to a precise explanation of the word “reachable.”
idea is that there must be some possible execution path from the beginning o
constructor, method, instance initializer or static initializer that contains the st
ment to the statement itself. The analysis takes into account the structure of s
ments. Except for the special treatment ofwhile, do, andfor statements whose
condition expression has the constant valuetrue, the values of expressions ar
not taken into account in the flow analysis.

For example, a Java compiler will accept the code:
309

14.20 Unreachable Statements BLOCKS AND STATEMENTS

310

n.

ble.
is

or

is
or-

t in
ch-
s

le.

ch-

is

le.

l
ion.
DRAFT
{

int n = 5;
while (n > 7) k = 2;

}

even though the value ofn is known at compile time and in principle it can be
known at compile time that the assignment tok can never be executed.

A Java compiler must operate according to the rules laid out in this sectio
The rules in this section define two technical terms:

• whether a statement isreachable

• whether a statementcan complete normally

The definitions here allow a statement to complete normally only if it is reacha
To shorten the description of the rules, the customary abbreviation “iff”

used to mean “if and only if.”
The rules are as follows:

• The block that is the body of a constructor, method, instance initializer
static initializer is reachable.

• An empty block that is not a switch block can complete normally iff it
reachable. A nonempty block that is not a switch block can complete n
mally iff the last statement in it can complete normally. The first statemen
a nonempty block that is not a switch block is reachable iff the block is rea
able. Every other statementS in a nonempty block that is not a switch block i
reachable iff the statement precedingS can complete normally.

• A local class declaration statement can complete normally iff it is reachab

• A local variable declaration statement can complete normally iff it is rea
able.

• An empty statement can complete normally iff it is reachable.

• A labeled statement can complete normally if at least one of the following
true:

◆ The contained statement can complete normally.

◆ There is a reachablebreak statement that exits the labeled statement.

The contained statement is reachable iff the labeled statement is reachab

• An expression statement can complete normally iff it is reachable.

• Theif statement, whether or not it has anelse part, is handled in an unusua
manner. For this reason, it is discussed separately at the end of this sect

BLOCKS AND STATEMENTS Unreachable Statements14.20

is

up.

is

on-

ue:

res-

n-

-

DRAFT

• A switch statement can complete normally iff at least one of the following
true:

◆ The last statement in the switch block can complete normally.

◆ The switch block is empty or contains only switch labels.

◆ There is at least one switch label after the last switch block statement gro

◆ The switch block does not contain adefault label.

◆ There is a reachablebreak statement that exits theswitch statement.

• A switch block is reachable iff itsswitch statement is reachable.

• A statement in a switch block is reachable iff itsswitch statement is reach-
able and at least one of the following is true:

◆ It bears acase or default label.

◆ There is a statement preceding it in theswitch block and that preceding
statement can complete normally.

• A while statement can complete normally iff at least one of the following
true:

◆ Thewhile statement is reachable and the condition expression is not a c
stant expression with valuetrue.

◆ There is a reachablebreak statement that exits thewhile statement.

The contained statement is reachable iff thewhile statement is reachable and
the condition expression is not a constant expression whose value isfalse.

• A do statement can complete normally iff at least one of the following is tr

◆ The contained statement can complete normally and the condition exp
sion is not a constant expression with valuetrue.

◆ The do statement contains a reachablecontinue statement with no label,
and thedo statement is the innermostwhile, do, or for statement that con-
tains thatcontinue statement, and the condition expression is not a co
stant expression with valuetrue.

◆ Thedo statement contains a reachablecontinue statement with a labelL,
and thedo statement has labelL, and the condition expression is not a con
stant expression with valuetrue.

◆ There is a reachablebreak statement that exits thedo statement.

The contained statement is reachable iff thedo statement is reachable.
311

14.20 Unreachable Statements BLOCKS AND STATEMENTS

312

is

con-

.

te-
the

ent

f

ut

t

ot a
DRAFT
• A for statement can complete normally iff at least one of the following

true:

◆ Thefor statement is reachable, there is a condition expression, and the
dition expression is not a constant expression with valuetrue.

◆ There is a reachablebreak statement that exits thefor statement.

The contained statement is reachable iff thefor statement is reachable and
the condition expression is not a constant expression whose value isfalse.

• A break, continue, return, orthrow statement cannot complete normally

• A synchronized statement can complete normally iff the contained sta
ment can complete normally. The contained statement is reachable iff
synchronized statement is reachable.

• A try statement can complete normally iff both of the following are true:

◆ The try block can complete normally or anycatch block can complete
normally.

◆ If the try statement has afinally block, then thefinally block can com-
plete normally.

• Thetry block is reachable iff thetry statement is reachable.

• A catch blockC is reachable iff both of the following are true:

◆ Some expression orthrow statement in thetry block is reachable and can
throw an exception whose type is assignable to the parameter of thecatch
clauseC. (An expression is considered reachable iff the innermost statem
containing it is reachable.)

◆ There is no earliercatch blockA in thetry statement such that the type o
C ’s parameter is the same as or a subclass of the type ofA’s parameter.

• If a finally block is present, it is reachable iff thetry statement is reach-
able.

One might expect theif statement to be handled in the following manner, b
these are not the rules that the Java programming language actually uses:

• HYPOTHETICAL: An if–then statement can complete normally iff at leas
one of the following istrue:

◆ The if–then statement is reachable and the condition expression is n
constant expression whose value istrue.

◆ Thethen–statement can complete normally.

BLOCKS AND STATEMENTS Unreachable Statements14.20

f

ssion

pres-

ruc-
for

e.

-

hat
for

ne
DRAFT
Thethen–statement is reachable iff theif–then statement is reachable and
the condition expression is not a constant expression whose value isfalse.

• HYPOTHETICAL: An if–then–else statement can complete normally if
the then–statement can complete normally or theelse–statement can com-
plete normally. Thethen-statement is reachable iff theif–then–else state-
ment is reachable and the condition expression is not a constant expre
whose value isfalse. Theelse statement is reachable iff theif–then–else
statement is reachable and the condition expression is not a constant ex
sion whose value istrue.

This approach would be consistent with the treatment of other control st
tures. However, in order to allow the if statement to be used conveniently
“conditional compilation” purposes, the actual rules differ.

The actual rules for the if statement are as follows:

• ACTUAL: An if–then statement can complete normally iff it is reachabl
Thethen–statement is reachable iff theif–then statement is reachable.

• ACTUAL: An if–then–else statement can complete normally iff thethen–
statement can complete normally or theelse–statement can complete nor
mally. Thethen-statement is reachable iff theif–then–else statement is
reachable. Theelse-statement is reachable iff theif–then–else statement
is reachable.

As an example, the following statement results in a compile-time error:

while (false) { x=3; }

because the statementx=3; is not reachable; but the superficially similar case:

if (false) { x=3; }

does not result in a compile-time error. An optimizing compiler may realize t
the statementx=3; will never be executed and may choose to omit the code
that statement from the generatedclass file, but the statementx=3; is not
regarded as “unreachable” in the technical sense specified here.

The rationale for this differing treatment is to allow programmers to defi
“flag variables” such as:

static final boolean DEBUG = false;

and then write code such as:

if (DEBUG) { x=3; }
313

14.20 Unreachable Statements BLOCKS AND STATEMENTS

314

r

a-
ag”
r to
n of
ith

ty as
DRAFT
The idea is that it should be possible to change the value ofDEBUG from false to
true or from true to false and then compile the code correctly with no othe
changes to the program text.

This ability to “conditionally compile” has a significant impact on, and rel
tionship to, binary compatibility (§13). If a set of classes that use such a “fl
variable are compiled and conditional code is omitted, it does not suffice late
distribute just a new version of the class or interface that contains the definitio
the flag. A change to the value of a flag is, therefore, not binary compatible w
preexisting binaries (§13.4.8). (There are other reasons for such incompatibili
well, such as the use of constants incase labels in switch statements; see
§13.4.8.)

BLOCKS AND STATEMENTS Unreachable Statements14.20
DRAFT
315

C H A P T E R 15
can
cution

eval-

pres-
opera-

on
thod
tate-
pear
t is a
case

that

DRAFT

Expressions

M UCH of the work in a program is done by evaluatingexpressions, either for
their side effects, such as assignments to variables, or for their values, which
be used as arguments or operands in larger expressions, or to affect the exe
sequence in statements, or both.

This chapter specifies the meanings of expressions and the rules for their
uation.

15.1 Evaluation, Denotation, and Result

When an expression in a program isevaluated(executed), the resultdenotes one
of three things:

• A variable (§4.5) (in C, this would be called anlvalue)

• A value (§4.2, §4.3)

• Nothing (the expression is said to bevoid)

Evaluation of an expression can also produce side effects, because ex
sions may contain embedded assignments, increment operators, decrement
tors, and method invocations.

An expression denotes nothing if and only if it is a method invocati
(§15.12) that invokes a method that does not return a value, that is, a me
declaredvoid (§8.4). Such an expression can be used only as an expression s
ment (§14.8), because every other context in which an expression can ap
requires the expression to denote something. An expression statement tha
method invocation may also invoke a method that produces a result; in this
the value returned by the method is quietly discarded.

Value set conversion (§5.1.8) is applied to the result of every expression
produces a value.
317

15.2 Variables as Values EXPRESSIONS

318

type
tor

eval-
sion

type
are

the
tible

class

t
d by
er or

sion
tions,
If
DRAFT
Each expression occurs in the declaration of some (class or interface)

that is being declared: in a field initializer, in a static initializer, in a construc
declaration, or in the code for a method.

15.2 Variables as Values

If an expression denotes a variable, and a value is required for use in further
uation, then the value of that variable is used. In this context, if the expres
denotes a variable or a value, we may speak simply of thevalueof the expression.

If the value of a variable of typefloat or double is used in this manner, then
value set conversion (§5.1.8) is applied to the value of the variable.

15.3 Type of an Expression

If an expression denotes a variable or a value, then the expression has a
known at compile time. The rules for determining the type of an expression
explained separately below for each kind of expression.

The value of an expression is always assignment compatible (§5.2) with
type of the expression, just as the value stored in a variable is always compa
with the type of the variable.

In other words, the value of an expression whose type isT is always suitable
for assignment to a variable of typeT.

Note that an expression whose type is a class typeF that is declaredfinal is
guaranteed to have a value that is either a null reference or an object whose
is F itself, becausefinal types have no subclasses.

15.4 FP-strict Expressions

If the type of an expression isfloat or double, then there is a question as to wha
value set (§4.2.3) the value of the expression is drawn from. This is governe
the rules of value set conversion (§5.1.8); these rules in turn depend on wheth
not the expression isFP-strict.

Every compile-time constant expression (§15.28) is FP-strict. If an expres
is not a compile-time constant expression, then consider all the class declara
interface declarations, and method declarations that contain the expression.any
such declaration bears thestrictfp modifier, then the expression is FP-strict.

EXPRESSIONS Expressions and Run-Time Checks15.5

ini-

e-
he

s of
trict
epre-
trict,
range
cula-
the

n is
pe,
ce to
a
efer-
from

ion
rface
ced
pe-
thod
ke

er-

om-

time
eci-
that
DRAFT
If a class, interface, or method,X, is declaredstrictfp, thenX and any class,

interface, method, constructor, instance initializer, static initializer or variable
tializer withinX is said to beFP-strict.

It follows that an expression is not FP-strict if and only if it is not a compil
time constant expressionandit does not appear within any declaration that has t
strictfp modifier.

Within an FP-strict expression, all intermediate values must be element
the float value set or the double value set, implying that the results of all FP-s
expressions must be those predicted by IEEE 754 arithmetic on operands r
sented using single and double formats. Within an expression that is not FP-s
some leeway is granted for an implementation to use an extended exponent
to represent intermediate results; the net effect, roughly speaking, is that a cal
tion might produce “the correct answer” in situations where exclusive use of
float value set or double value set might result in overflow or underflow.

15.5 Expressions and Run-Time Checks

If the type of an expression is a primitive type, then the value of the expressio
of that same primitive type. But if the type of an expression is a reference ty
then the class of the referenced object, or even whether the value is a referen
an object rather thannull, is not necessarily known at compile time. There are
few places in the Java programming language where the actual class of a r
enced object affects program execution in a manner that cannot be deduced
the type of the expression. They are as follows:

• Method invocation (§15.12). The particular method used for an invocat
o.m(...) is chosen based on the methods that are part of the class or inte
that is the type ofo. For instance methods, the class of the object referen
by the run-time value ofo participates because a subclass may override a s
cific method already declared in a parent class so that this overriding me
is invoked. (The overriding method may or may not choose to further invo
the original overriddenm method.)

• The instanceof operator (§15.20.2). An expression whose type is a ref
ence type may be tested usinginstanceof to find out whether the class of the
object referenced by the run-time value of the expression is assignment c
patible (§5.2) with some other reference type.

• Casting (§5.5, §15.16). The class of the object referenced by the run-
value of the operand expression might not be compatible with the type sp
fied by the cast. For reference types, this may require a run-time check
319

15.6 Normal and Abrupt Completion of Evaluation EXPRESSIONS

320

t run

.13,

r
ast.

rror.

f the
cast

ctual
tible
13,

thod

onal
alua-
ep-

res-
ed

sion
s an
DRAFT
throws an exception if the class of the referenced object, as determined a
time, is not assignment compatible (§5.2) with the target type.

• Assignment to an array component of reference type (§10.10, §15
§15.26.1). The type-checking rules allow the array typeS[] to be treated as a
subtype ofT[] if S is a subtype ofT, but this requires a run-time check fo
assignment to an array component, similar to the check performed for a c

• Exception handling (§14.19). An exception is caught by acatch clause only
if the class of the thrown exception object is aninstanceof the type of the
formal parameter of thecatch clause.

The first two of the cases just listed ought never to result in detecting a type e
Thus, a run-time type error can occur only in these situations:

• In a cast, when the actual class of the object referenced by the value o
operand expression is not compatible with the target type specified by the
operator (§5.5, §15.16); in this case aClassCastException is thrown.

• In an assignment to an array component of reference type, when the a
class of the object referenced by the value to be assigned is not compa
with the actual run-time component type of the array (§10.10, §15.
§15.26.1); in this case anArrayStoreException is thrown.

• When an exception is not caught by anycatch handler (§11.3); in this case
the thread of control that encountered the exception first invokes the me
uncaughtException for its thread group and then terminates.

15.6 Normal and Abrupt Completion of Evaluation

Every expression has a normal mode of evaluation in which certain computati
steps are carried out. The following sections describe the normal mode of ev
tion for each kind of expression. If all the steps are carried out without an exc
tion being thrown, the expression is said tocomplete normally.

If, however, evaluation of an expression throws an exception, then the exp
sion is said tocomplete abruptly. An abrupt completion always has an associat
reason, which is always athrow with a given value.

Run-time exceptions are thrown by the predefined operators as follows:

• A class instance creation expression (§15.9), array creation expres
(§15.10), or string concatenation operatior expression (§15.18.1) throw
OutOfMemoryError if there is insufficient memory available.

EXPRESSIONS Normal and Abrupt Completion of Evaluation15.6

thod

al to

tor

s an
ith

if an
uptly.
rown
lete
the
and

ter-
uch
lly”

4.1).
e an

rupt
letion

nor-
DRAFT
• An array creation expression throws aNegativeArraySizeException if the

value of any dimension expression is less than zero (§15.10).

• A field access (§15.11) throws aNullPointerException if the value of the
object reference expression isnull.

• A method invocation expression (§15.12) that invokes an instance me
throws aNullPointerException if the target reference isnull.

• An array access (§15.13) throws aNullPointerException if the value of
the array reference expression isnull.

• An array access (§15.13) throws anArrayIndexOutOfBoundsException if
the value of the array index expression is negative or greater than or equ
thelength of the array.

• A cast (§15.16) throws aClassCastException if a cast is found to be imper-
missible at run time.

• An integer division (§15.17.2) or integer remainder (§15.17.3) opera
throws anArithmeticException if the value of the right-hand operand
expression is zero.

• An assignment to an array component of reference type (§15.26.1) throw
ArrayStoreException when the value to be assigned is not compatible w
the component type of the array.

A method invocation expression can also result in an exception being thrown
exception occurs that causes execution of the method body to complete abr
A class instance creation expression can also result in an exception being th
if an exception occurs that causes execution of the constructor to comp
abruptly. Various linkage and virtual machine errors may also occur during
evaluation of an expression. By their nature, such errors are difficult to predict
difficult to handle.

If an exception occurs, then evaluation of one or more expressions may be
minated before all steps of their normal mode of evaluation are complete; s
expressions are said to complete abruptly. The terms “complete norma
and “complete abruptly” are also applied to the execution of statements (§1
A statement may complete abruptly for a variety of reasons, not just becaus
exception is thrown.

If evaluation of an expression requires evaluation of a subexpression, ab
completion of the subexpression always causes the immediate abrupt comp
of the expression itself, with the same reason, and all succeeding steps in the
mal mode of evaluation are not performed.
321

15.7 Evaluation Order EXPRESSIONS

322

appear

e is
s its
ption

fore
per-
ins a
will

ation
and
the
DRAFT

15.7 Evaluation Order

The Java programming language guarantees that the operands of operators
to be evaluated in a specificevaluation order, namely, from left to right.

It is recommended that code not rely crucially on this specification. Cod
usually clearer when each expression contains at most one side effect, a
outermost operation, and when code does not depend on exactly which exce
arises as a consequence of the left-to-right evaluation of expressions.

15.7.1 Evaluate Left-Hand Operand First

The left-hand operand of a binary operator appears to be fully evaluated be
any part of the right-hand operand is evaluated. For example, if the left-hand o
and contains an assignment to a variable and the right-hand operand conta
reference to that same variable, then the value produced by the reference
reflect the fact that the assignment occurred first.

Thus:

class Test {
public static void main(String[] args) {

int i = 2;
int j = (i=3) * i;
System.out.println(j);

}
}

prints:

9

It is not permitted for it to print6 instead of9.
If the operator is a compound-assignment operator (§15.26.2), then evalu

of the left-hand operand includes both remembering the variable that the left-h
operand denotes and fetching and saving that variable’s value for use in
implied combining operation. So, for example, the test program:

class Test {
public static void main(String[] args) {

int a = 9;
a += (a = 3); // first example
System.out.println(a);
int b = 9;
b = b + (b = 3); // second example
System.out.println(b);

EXPRESSIONS Evaluate Operands before Operation15.7.2

of the
is

av-

tly,

t of

erator
DRAFT
}

}

prints:

12
12

because the two assignment statements both fetch and remember the value
left-hand operand, which is9, before the right-hand operand of the addition
evaluated, thereby setting the variable to3. It is not permitted for either example
to produce the result6. Note that both of these examples have unspecified beh
ior in C, according to the ANSI/ISO standard.

If evaluation of the left-hand operand of a binary operator completes abrup
no part of the right-hand operand appears to have been evaluated.

Thus, the test program:

class Test {

public static void main(String[] args) {

int j = 1;

try {
int i = forgetIt() / (j = 2);

} catch (Exception e) {
System.out.println(e);
System.out.println("Now j = " + j);

}
}

static int forgetIt() throws Exception {
throw new Exception("I’m outta here!");

}

}

prints:

java.lang.Exception: I'm outta here!
Now j = 1

That is, the left-hand operandforgetIt() of the operator/ throws an excep-
tion before the right-hand operand is evaluated and its embedded assignmen2
to j occurs.

15.7.2 Evaluate Operands before Operation

The Java programming language also guarantees that every operand of an op
(except the conditional operators&&, ||, and? :) appears to be fully evaluated
before any part of the operation itself is performed.
323

15.7.3 Evaluation Respects Parentheses and Precedence EXPRESSIONS

324

een

ro

era-

ation
. An
ocia-
less
in its
ution
lues

nd
DRAFT
If the binary operator is an integer division/ (§15.17.2) or integer remainder

% (§15.17.3), then its execution may raise anArithmeticException, but this
exception is thrown only after both operands of the binary operator have b
evaluated and only if these evaluations completed normally.

So, for example, the program:

class Test {

public static void main(String[] args) {
int divisor = 0;
try {

int i = 1 / (divisor * loseBig());
} catch (Exception e) {

System.out.println(e);
}

}

static int loseBig() throws Exception {
throw new Exception("Shuffle off to Buffalo!");

}

}

always prints:

java.lang.Exception: Shuffle off to Buffalo!

and not:

java.lang.ArithmeticException: / by zero

since no part of the division operation, including signaling of a divide-by-ze
exception, may appear to occur before the invocation ofloseBig completes, even
though the implementation may be able to detect or infer that the division op
tion would certainly result in a divide-by-zero exception.

15.7.3 Evaluation Respects Parentheses and Precedence

Java programming language implementations must respect the order of evalu
as indicated explicitly by parentheses and implicitly by operator precedence
implementation may not take advantage of algebraic identities such as the ass
tive law to rewrite expressions into a more convenient computational order un
it can be proven that the replacement expression is equivalent in value and
observable side effects, even in the presence of multiple threads of exec
(using the thread execution model in §17), for all possible computational va
that might be involved.

In the case of floating-point calculations, this rule applies also for infinity a
not-a-number (NaN) values. For example,!(x<y) may not be rewritten asx>=y,

EXPRESSIONS Argument Lists are Evaluated Left-to-Right15.7.4

sso-
ust

of
ec-

to

argu-
. Each
ment
DRAFT

because these expressions have different values if eitherx or y is NaN or both are
NaN.

Specifically, floating-point calculations that appear to be mathematically a
ciative are unlikely to be computationally associative. Such computations m
not be naively reordered.

For example, it is not correct for a Java compiler to rewrite4.0*x*0.5 as
2.0*x; while roundoff happens not to be an issue here, there are large valuesx
for which the first expression produces infinity (because of overflow) but the s
ond expression produces a finite result.

So, for example, the test program:

strictfp class Test {

public static void main(String[] args) {
double d = 8e+307;
System.out.println(4.0 * d * 0.5);
System.out.println(2.0 * d);

}
}

prints:

Infinity
1.6e+308

because the first expression overflows and the second does not.
In contrast, integer addition and multiplicationare provably associative in the

Java programming language.
For examplea+b+c, wherea, b, andc are local variables (this simplifying

assumption avoids issues involving multiple threads andvolatile variables),
will always produce the same answer whether evaluated as(a+b)+c or a+(b+c);
if the expressionb+c occurs nearby in the code, a smart compiler may be able
use this common subexpression.

15.7.4 Argument Lists are Evaluated Left-to-Right

In a method or constructor invocation or class instance creation expression,
ment expressions may appear within the parentheses, separated by commas
argument expression appears to be fully evaluated before any part of any argu
expression to its right.

Thus:

class Test {

public static void main(String[] args) {
String s = "going, ";
325

15.7.5 Evaluation Order for Other Expressions EXPRESSIONS

326

any

hese
t times
DRAFT
print3(s, s, s = "gone");

}

static void print3(String a, String b, String c) {
System.out.println(a + b + c);

}

}

always prints:

going, going, gone

because the assignment of the string"gone" to s occurs after the first two argu-
ments toprint3 have been evaluated.

If evaluation of an argument expression completes abruptly, no part of
argument expression to its right appears to have been evaluated.

Thus, the example:

class Test {

static int id;

public static void main(String[] args) {
try {

test(id = 1, oops(), id = 3);
} catch (Exception e) {

System.out.println(e + ", id=" + id);
}

}

static int oops() throws Exception {
throw new Exception("oops");

}

static int test(int a, int b, int c) {
return a + b + c;

}

}

prints:

java.lang.Exception: oops, id=1

because the assignment of3 to id is not executed.

15.7.5 Evaluation Order for Other Expressions

The order of evaluation for some expressions is not completely covered by t
general rules, because these expressions may raise exceptional conditions a

EXPRESSIONS Lexical Literals15.8.1

ation

rom
thod
yntac-
DRAFT
that must be specified. See, specifically, the detailed explanations of evalu
order for the following kinds of expressions:

• class instance creation expressions (§15.9.4)

• array creation expressions (§15.10.1)

• method invocation expressions (§15.12.4)

• array access expressions (§15.13.1)

• assignments involving array components (§15.26)

15.8 Primary Expressions

Primary expressions include most of the simplest kinds of expressions, f
which all others are constructed: literals, class literals, field accesses, me
invocations, and array accesses. A parenthesized expression is also treated s
tically as a primary expression.

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
Type . class
void . class
this
ClassName.this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

15.8.1 Lexical Literals

A literal (§3.10) denotes a fixed, unchanging value.
The following production from §3.10 is repeated here for convenience:
327

15.8.2 Class Literals EXPRESSIONS

328

oat-
le

.

ray,

nce
f it

), or

ay
DRAFT
Literal:

IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

The type of a literal is determined as follows:

• The type of an integer literal that ends withL or l is long; the type of any
other integer literal isint.

• The type of a floating-point literal that ends withF or f is float and its value
must be an element of the float value set (§4.2.3). The type of any other fl
ing-point literal isdouble and its value must be an element of the doub
value set.

• The type of a boolean literal isboolean.

• The type of a character literal ischar.

• The type of a string literal isString.

• The type of the null literalnull is the null type; its value is the null reference

Evaluation of a lexical literal always completes normally.

15.8.2 Class Literals

A class literalis an expression consisting of the name of a class, interface, ar
or primitive type followed by a ‘.’ and the tokenclass. The type of a class literal
is Class. It evaluates to theClass object for the named type (or for void) as
defined by the defining class loader of the class of the current instance.

15.8.3 this

The keywordthis may be used only in the body of an instance method, insta
initializer or constructor, or in the initializer of an instance variable of a class. I
appears anywhere else, a compile-time error occurs.

When used as a primary expression, the keywordthis denotes a value, that is
a reference to the object for which the instance method was invoked (§15.12
to the object being constructed. The type ofthis is the classC within which the
keywordthis occurs. At run time, the class of the actual object referred to m
be the classC or any subclass ofC.

EXPRESSIONS Parenthesized Expressions15.8.5

sons.
the

n

he

f the
ined
sized

r the
DRAFT
In the example:

class IntVector {

int[] v;

boolean equals(IntVector other) {
if (this == other)

return true;
if (v.length != other.v.length)

return false;
for (int i = 0; i < v.length; i++)

if (v[i] != other.v[i])
return false;

return true;
}

}

the classIntVector implements a methodequals, which compares two vectors.
If the other vector is the same vector object as the one for which theequals
method was invoked, then the check can skip the length and value compari
The equals method implements this check by comparing the reference to
other object tothis.

The keywordthis is also used in a special explicit constructor invocatio
statement, which can appear at the beginning of a constructor body (§8.8.5).

15.8.4 Qualifiedthis

Any lexically enclosing instance can be referred to by explicitly qualifying t
keywordthis.

Let C be the class denoted byClassName. Let n be an integer such thatC is the
nth lexically enclosing class of the class in which the qualifiedthis expression
appears. The value of an expression of the formClassName.this is thenth lexi-
cally enclosing instance ofthis (§8.1.2). The type of the expression isC. It is a
compile-time error if the current class is not an inner class of classC or C itself.

15.8.5 Parenthesized Expressions

A parenthesized expression is a primary expression whose type is the type o
contained expression and whose value at run time is the value of the conta
expression. If the contained expression denotes a variable then the parenthe
expression also denotes that variable.

Parentheses do not affect in any way the choice of value set (§4.2.3) fo
value of an expression of typefloat or double.
329

15.9 Class Instance Creation Expressions EXPRESSIONS

330

t are

te an
em-

es of

may
sion

a
what
cre-
tance

class

cre-

f the

ct
DRAFT
15.9 Class Instance Creation Expressions

A class instance creation expression is used to create new objects tha
instances of classes.

ClassInstanceCreationExpression:
new ClassOrInterfaceType (ArgumentListopt) ClassBodyopt
Primary.new Identifier(ArgumentListopt) ClassBodyopt

ArgumentList:
Expression
ArgumentList , Expression

Class instance creation expressions have two forms:

• Unqualified class instance creation expressionsbegin with the keywordnew.
An unqualified class instance creation expression may be used to crea
instance of a class, regardless of whether the class is a top-level (§7.6), m
ber (§8.5, §9.5), local (§14.3) or anonymous class (§15.9.5).

• Qualified class instance creation expressionsbegin with aPrimary. A quali-
fied class instance creation expression enables the creation of instanc
inner member classes and their anonymous subclasses.

Both unqualified and qualified class instance creation expressions
optionally end with a class body. Such a class instance creation expres
declares ananonymous class(§15.9.5) and creates an instance of it.

We say that a class isinstantiatedwhen an instance of the class is created by
class instance creation expression. Class instantiation involves determining
class is to be instantiated, what the enclosing instances (if any) of the newly
ated instance are, what constructor should be invoked to create the new ins
and what arguments should be passed to that constructor.

15.9.1 Determining the Class being Instantiated

If the class instance creation expression ends in a class body, then the
being instantiated is an anonymous class. Then:

• If the class instance creation expression is an unqualified class instance
ation expression, then letT be theClassOrInterfaceTypeafter thenew token. It
is a compile-time error if the class or interface named byT is not accessible
(§6.6). If T is the name of a class, then an anonymous direct subclass o
class named byT is declared. It is a compile-time error if the class named byT
is a final class. IfT is the name of an interface then an anonymous dire

EXPRESSIONS Determining Enclosing Instances15.9.2

mous

tance

le
e

s-

class,

cre-

tance

ass

eing

ely

1.2),
DRAFT
subclass ofObject that implements the interface named byT is declared. In
either case, the body of the subclass is theClassBodygiven in the class
instance creation expression. The class being instantiated is the anony
subclass.

• Otherwise, the class instance creation expression is a qualified class ins
creation expression. LetT be the name of theIdentifierafter thenew token. It
is a compile-time error ifT is not the simple name (§6.2) of an accessib
(§6.6) non-final inner class (§8.1.2) that is a member of the compile-tim
type of thePrimary. It is also a compile-time error ifT is ambiguous (§8.5).
An anonymous direct subclass of the class named byT is declared. The body
of the subclass is theClassBodygiven in the class instance creation expre
sion. The class being instantiated is the anonymous subclass.

If a class instance creation expression does not declare an anonymous
then:

• If the class instance creation expression is an unqualified class instance
ation expression, then theClassOrInterfaceTypemust name a class that is
accessible (§6.6) and notabstract, or a compile-time error occurs. In this
case, the class being instantiated is the class denoted byClassOrInterface-
Type.

• Otherwise, the class instance creation expression is a qualified class ins
creation expression. It is a compile-time error ifIdentifier is not the simple
name (§6.2) of an accessible (§6.6) non-abstract inner class (§8.1.2)T that
is a member of the compile-time type of thePrimary. It is also a compile-time
error if Identifier is ambiguous (§8.5). The class being instantiated is the cl
denoted byIdentifier.

The type of the class instance creation expression is the class type b
instantiated.

15.9.2 Determining Enclosing Instances

Let C be the class being instantiated, and leti the instance being created. IfC is an
inner class theni may have an immediately enclosing instance. The immediat
enclosing instance ofi (§8.1.2) is determined as follows:

• If C is an anonymous class, then:

◆ If the class instance creation expression occurs in a static context (§8.
theni has no immediately enclosing instance.

◆ Otherwise, the immediately enclosing instance ofi is this.
331

15.9.2 Determining Enclosing Instances EXPRESSIONS

332

i-

sion

.

con-

cre-

en a

h
osing

lass

o

a

sion

con-
DRAFT
• If C is a local class (§14.3),C must be declared in a method declared in a lex

cally enclosing classO. Let n be an integer such thatO is thenth lexically
enclosing class of the class in which the class instance creation expres
appears. Then:

◆ If C occurs in a static context, theni has no immediately enclosing instance

◆ Otherwise, if the class instance creation expression occurs in a static
text, then a compile-time error occurs.

◆ Otherwise, the immediately enclosing instance ofi is the nth lexically
enclosing instance ofthis (§8.1.2).

• Otherwise,C is an inner member class (§8.5).

◆ If the class instance creation expression is an unqualified class instance
ation expression, then:

❖ If the class instance creation expression occurs in a static context, th
compile-time error occurs.

❖ Otherwise, ifC is a member of an enclosing class then letO be the inner-
most lexically enclosing class of whichC is a member, and letn be an
integer such thatO is thenth lexically enclosing class of the class in whic
the class instance creation expression appears. The immediately encl
instance ofi is thenth lexically enclosing instance ofthis.

❖ Otherwise, a compile-time error occurs.

◆ Otherwise, the class instance creation expression is a qualified c
instance creation expression. The immediately enclosing instance ofi is the
object that is the value of thePrimary expression.

In addition, ifC is an anonymous class, and the direct superclass ofC, S, is an
inner class theni may have an immediately enclosing instance with respect tS
which is determined as follows:

• If S is a local class (§14.3), thenS must be declared in a method declared in
lexically enclosing classO. Let n be an integer such thatO is thenth lexically
enclosing class of the class in which the class instance creation expres
appears. Then:

◆ If S occurs within a static context, theni has no immediately enclosing
instance with respect toS.

◆ Otherwise, if the class instance creation expression occurs in a static
text, then a compile-time error occurs.

EXPRESSIONS Choosing the Constructor and its Arguments15.9.3

cre-

en a

h
osing

lass

ts
the

the
rder

ts to
DRAFT
◆ Otherwise, the immediately enclosing instance ofi with respect toS is the

nth lexically enclosing instance ofthis.

• Otherwise,S is an inner member class (§8.5).

◆ If the class instance creation expression is an unqualified class instance
ation expression, then:

❖ If the class instance creation expression occurs in a static context, th
compile-time error occurs.

❖ Otherwise, ifS is a member of an enclosing class then letO be the inner-
most lexically enclosing class of whichS is a member, and letn be an
integer such thatO is thenth lexically enclosing class of the class in whic
the class instance creation expression appears. The immediately encl
instance ofi with respect toS is thenth lexically enclosing instance of
this.

❖ Otherwise, a compile-time error occurs.

◆ Otherwise, the class instance creation expression is a qualified c
instance creation expression. The immediately enclosing instance ofi with
respect toS is the object that is the value of thePrimary expression.

15.9.3 Choosing the Constructor and its Arguments

Let C be the class type being instantiated. To create an instance ofC, i, a construc-
tor of C is chosen at compile-time by the following rules:

• First, the actual arguments to the constructor invocation are determined.

◆ If C is an anonymous class, and the direct superclass ofC, S, is an inner
class, then:

❖ If the S is a local class andS occurs in a static context, then the argumen
in the argument list, if any, are the arguments to the constructor, in
order they appear in the expression.

❖ Otherwise, the immediately enclosing instance ofi with respect toS is
the first argument to the constructor, followed by the arguments in
argument list of the class instance creation expression, if any, in the o
they appear in the expression.

◆ Otherwise the arguments in the argument list, if any, are the argumen
the constructor, in the order they appear in the expression.
333

15.9.4 Run-time Evaluation of Class Instance Creation Expressions EXPRESSIONS

334

lect a
As
ere
ible.

ony-
ous

cre-
ing

om-
r the

ient
ssion

eci-
, it is

t. If
ns to

pletes

his
type.
8.8)

ewly
ed, a

nce
DRAFT
• Once the actual arguments have been determined, they are used to se

constructor ofC, using the same rules as for method invocations (§15.12).
in method invocations, a compile-time method matching error results if th
is no unique most-specific constructor that is both applicable and access

Note that the type of the class instance creation expression may be an an
mous class type, in which case the constructor being invoked is an anonym
constructor.

15.9.4 Run-time Evaluation of Class Instance Creation Expressions

At run time, evaluation of a class instance creation expression is as follows.
First, if the class instance creation expression is a qualified class instance

ation expression, the qualifying primary expression is evaluated. If the qualify
expression evaluates tonull, a NullPointerException is raised, and the class
instance creation expression completes abruptly. If the qualifying expression c
pletes abruptly, the class instance creation expression completes abruptly fo
same reason.

Next, space is allocated for the new class instance. If there is insuffic
space to allocate the object, evaluation of the class instance creation expre
completes abruptly by throwing anOutOfMemoryError (§15.9.6).

The new object contains new instances of all the fields declared in the sp
fied class type and all its superclasses. As each new field instance is created
initialized to its default value (§4.5.5).

Next, the actual arguments to the constructor are evaluated, left-to-righ
any of the argument evaluations completes abruptly, any argument expressio
its right are not evaluated, and the class instance creation expression com
abruptly for the same reason.

Next, the selected constructor of the specified class type is invoked. T
results in invoking at least one constructor for each superclass of the class
This process can be directed by explicit constructor invocation statements (§
and is described in detail in §12.5.

The value of a class instance creation expression is a reference to the n
created object of the specified class. Every time the expression is evaluat
fresh object is created.

15.9.5 Anonymous Class Declarations

An anonymous class declaration is automatically derived from a class insta
creation expression by the compiler.

EXPRESSIONS Anonymous Class Declarations15.9.5

, the

t,
ctual

deter-
ns
ctor

l

of
ent

class.
The
deter-
ns
ctor

the
d
uctor,

e
tate-
tions
ny-
DRAFT
An anonymous class is neverabstract (§8.1.1.1). An anonymous class is

always an inner class (§8.1.2); it is neverstatic (§8.1.1, §8.5.2). An anonymous
class is always implicitlyfinal (§8.1.1.2).

15.9.5.1 Anonymous Constructors

An anonymous class cannot have an explicitly declared constructor. Instead
compiler must automatically provide ananonymous constructorfor the anony-
mous class. The form of the anonymous constructor of an anonymous classC with
direct superclassS is as follows:

• If S is not an inner class, or ifS is a local class that occurs in a static contex
then the anonymous constructor has one formal parameter for each a
argument to the class instance creation expression in whichC is declared. The
actual arguments to the class instance creation expression are used to
mine a constructorcs of S, using the same rules as for method invocatio
(§15.12). The type of each formal parameter of the anonymous constru
must be identical to the corresponding formal parameter ofcs.

The body of the constructor consists of an explicit constructor invocation
(§8.8.5.1) of the formsuper(...), where the actual arguments are the forma
parameters of the constructor, in the order they were declared.

• Otherwise, the first formal parameter of the constructor ofC represents the
value of the immediately enclosing instance ofi with respect toS. The type of
this parameter is the class type that immediately encloses the declarationS.
The constructor has an additional formal parameter for each actual argum
to the class instance creation expression that declared the anonymous
The nth formal parameter e corresponds to the st actual argument.
actual arguments to the class instance creation expression are used to
mine a constructorcs of S, using the same rules as for method invocatio
(§15.12). The type of each formal parameter of the anonymous constru
must be identical to the corresponding formal parameter ofcs. The body of
the constructor consists of an explicit constructor invocation (§8.8.5.1) of
form o.super(...), whereo is the first formal parameter of the constructor, an
the actual arguments are the subsequent formal parameters of the constr
in the order they were declared.

In all cases, thethrows clause of an anonymous constructor must list all th
checked exceptions thrown by the explicit superclass constructor invocation s
ment contained within the anonymous constructor, and all checked excep
thrown by any instance initializers or instance variable initializers of the ano
mous class.

n 1–
335

15.9.6 Example: Evaluation Order and Out-of-Memory Detection EXPRESSIONS

336

efer
f the
m-

ient

ssion

, for
ion
DRAFT

Note that it is possible for the signature of the anonymous constructor to r
to an inaccessible type (for example, if such a type occurred in the signature o
superclass constructorcs). This does not, in itself, cause any errors at either co
pile time or run time.

15.9.6 Example: Evaluation Order and Out-of-Memory Detection

If evaluation of a class instance creation expression finds there is insuffic
memory to perform the creation operation, then anOutOfMemoryError is thrown.
This check occurs before any argument expressions are evaluated.

So, for example, the test program:

class List {
int value;
List next;
static List head = new List(0);
List(int n) { value = n; next = head; head = this; }

}

class Test {
public static void main(String[] args) {

int id = 0, oldid = 0;
try {

for (;;) {
++id;
new List(oldid = id);

}
} catch (Error e) {

System.out.println(e + ", " + (oldid==id));
}

}
}

prints:

java.lang.OutOfMemoryError: List, false

because the out-or-memory condition is detected before the argument expre
oldid = id is evaluated.

Compare this to the treatment of array creation expressions (§15.10)
which the out-of-memory condition is detected after evaluation of the dimens
expressions (§15.10.3).

EXPRESSIONS Array Creation Expressions15.10

ele-

copy

eric

t not

d

DRAFT
15.10 Array Creation Expressions

An array instance creation expression is used to create new arrays (§10).

ArrayCreationExpression:
new PrimitiveType DimExprs Dimsopt
new TypeName DimExprs Dimsopt
new PrimitiveType Dims ArrayInitializer
new TypeName Dims ArrayInitializer

DimExprs:
DimExpr
DimExprs DimExpr

DimExpr:
[Expression]

Dims:
[]
Dims []

An array creation expression creates an object that is a new array whose
ments are of the type specified by thePrimitiveTypeor TypeName. TheTypeName
may name any named reference type, even anabstract class type (§8.1.1.1) or
an interface type (§9).

The type of the creation expression is an array type that can denoted by a
of the creation expression from which thenew keyword and everyDimExpr
expression and array initializer have been deleted.

For example, the type of the creation expression:

new double[3][3][]

is:

double[][][]

The type of each dimension expression within aDimExprmust be an integral
type, or a compile-time error occurs. Each expression undergoes unary num
promotion (§5.6.1). The promoted type must beint, or a compile-time error
occurs; this means, specifically, that the type of a dimension expression mus
belong.

If an array initializer is provided, the newly allocated array will be initialize
with the values provided by the array initializer as described in §10.6.
337

15.10.1 Run-time Evaluation of Array Creation Expressions EXPRESSIONS

338

here
ue of

the
e not

f any

llo-
ly by

of
fault

s of
DRAFT
15.10.1 Run-time Evaluation of Array Creation Expressions

At run time, evaluation of an array creation expression behaves as follows. If t
are no dimension expressions, then there must be an array initializer. The val
the array initializer is the value of the array creation expression. Otherwise:

First, the dimension expressions are evaluated, left-to-right. If any of
expression evaluations completes abruptly, the expressions to the right of it ar
evaluated.

Next, the values of the dimension expressions are checked. If the value o
DimExprexpression is less than zero, then anNegativeArraySizeException is
thrown.

Next, space is allocated for the new array. If there is insufficient space to a
cate the array, evaluation of the array creation expression completes abrupt
throwing anOutOfMemoryError.

Then, if a singleDimExpr appears, a single-dimensional array is created
the specified length, and each component of the array is initialized to its de
value (§4.5.5).

If an array creation expression containsN DimExprexpressions, then it effec-
tively executes a set of nested loops of depth to create the implied array
arrays.

For example, the declaration:

float[][] matrix = new float[3][3];

is equivalent in behavior to:

float[][] matrix = new float[3][];
for (int d = 0; d < matrix.length; d++)

matrix[d] = new float[3];

and:

Age[][][][][] Aquarius = new Age[6][10][8][12][];

is equivalent to:

Age[][][][][] Aquarius = new Age[6][][][][];
for (int d1 = 0; d1 < Aquarius.length; d1++) {

Aquarius[d1] = new Age[10][][][];
for (int d2 = 0; d2 < Aquarius[d1].length; d2++) {

Aquarius[d1][d2] = new Age[8][][];
for (int d3 = 0; d3 < Aquarius[d1][d2].length; d3++) {

Aquarius[d1][d2][d3] = new Age[12][];
}

}
}

N 1–

EXPRESSIONS Example: Array Creation Evaluation Order15.10.2

ed.
of

th
the

ach

sion
ated

-

any
, the
DRAFT

with d, d1, d2 andd3 replaced by names that are not already locally declar
Thus, a singlenew expression actually creates one array of length 6, 6 arrays
length 10, arrays of length 8, and arrays of leng
12. This example leaves the fifth dimension, which would be arrays containing
actual array elements (references toAge objects), initialized only to null refer-
ences. These arrays can be filled in later by other code, such as:

Age[] Hair = { new Age("quartz"), new Age("topaz") };
Aquarius[1][9][6][9] = Hair;

A multidimensional array need not have arrays of the same length at e
level.

Thus, a triangular matrix may be created by:

float triang[][] = new float[100][];
for (int i = 0; i < triang.length; i++)

triang[i] = new float[i+1];

15.10.2 Example: Array Creation Evaluation Order

In an array creation expression (§15.10), there may be one or more dimen
expressions, each within brackets. Each dimension expression is fully evalu
before any part of any dimension expression to its right.

Thus:

class Test {
public static void main(String[] args) {

int i = 4;
int ia[][] = new int[i][i=3];
System.out.println(

"[" + ia.length + "," + ia[0].length + "]");
}

}

prints:

[4,3]

because the first dimension is calculated as4 before the second dimension expres
sion setsi to 3.

If evaluation of a dimension expression completes abruptly, no part of
dimension expression to its right will appear to have been evaluated. Thus
example:

class Test {

public static void main(String[] args) {
int[][] a = { { 00, 01 }, { 10, 11 } };
int i = 99;

6 10× 60= 6 10 8×× 480=
339

15.10.3 Example: Array Creation and Out-of-Memory Detection EXPRESSIONS

340

y to

ally.

ssion
DRAFT
try {

a[val()][i = 1]++;
} catch (Exception e) {

System.out.println(e + ", i=" + i);
}

}

static int val() throws Exception {
throw new Exception("unimplemented");

}

}

prints:

java.lang.Exception: unimplemented, i=99

because the embedded assignment that setsi to 1 is never executed.

15.10.3 Example: Array Creation and Out-of-Memory Detection

If evaluation of an array creation expression finds there is insufficient memor
perform the creation operation, then anOutOfMemoryError is thrown. This check
occurs only after evaluation of all dimension expressions has completed norm

So, for example, the test program:

class Test {
public static void main(String[] args) {

int len = 0, oldlen = 0;
Object[] a = new Object[0];
try {

for (;;) {
++len;
Object[] temp = new Object[oldlen = len];
temp[0] = a;
a = temp;

}
} catch (Error e) {

System.out.println(e + ", " + (oldlen==len));
}

}
}

prints:

java.lang.OutOfMemoryError, true

because the out-of-memory condition is detected after the dimension expre
oldlen = len is evaluated.

EXPRESSIONS Field Access Using a Primary15.11.1

t the

ce to

ple

rules
nnot

:

run

ri-

ed

DRAFT

Compare this to class instance creation expressions (§15.9), which detec
out-of-memory condition before evaluating argument expressions (§15.9.6).

15.11 Field Access Expressions

A field access expression may access a field of an object or array, a referen
which is the value of either an expression or the special keywordsuper. (It is also
possible to refer to a field of the current instance or current class by using a sim
name; see §6.5.6.)

FieldAccess:
Primary . Identifier
super . Identifier
ClassName .super . Identifier

The meaning of a field access expression is determined using the same
as for qualified names (§6.6), but limited by the fact that an expression ca
denote a package, class type, or interface type.

15.11.1 Field Access Using a Primary

The type of thePrimary must be a reference typeT, or a compile-time error
occurs. The meaning of the field access expression is determined as follows

• If the identifier names several accessible member fields of typeT, then the
field access is ambiguous and a compile-time error occurs.

• If the identifier does not name an accessible member field of typeT, then the
field access is undefined and a compile-time error occurs.

• Otherwise, the identifier names a single accessible member field of typeT and
the type of the field access expression is the declared type of the field. At
time, the result of the field access expression is computed as follows:

◆ If the field isstatic:

❖ If the field isfinal, then the result is the value of the specified class va
able in the class or interface that is the type of thePrimary expression.

❖ If the field is notfinal, then the result is a variable, namely, the specifi
class variable in the class that is the type of thePrimary expression.

◆ If the field is notstatic:
341

15.11.1 Field Access Using a Primary EXPRESSIONS

342

ce

ed

.

n the
f

ffi-
er-
DRAFT
❖ If the value of thePrimary is null, then aNullPointerException is

thrown.

❖ If the field isfinal, then the result is the value of the specified instan
variable in the object referenced by the value of thePrimary.

❖ If the field is notfinal, then the result is a variable, namely, the specifi
instance variable in the object referenced by the value of thePrimary.

Note, specifically, that only the type of thePrimaryexpression, not the class of the
actual object referred to at run time, is used in determining which field to use

Thus, the example:

class S { int x = 0; }

class T extends S { int x = 1; }

class Test {

public static void main(String[] args) {

T t = new T();
System.out.println("t.x=" + t.x + when("t", t));

S s = new S();
System.out.println("s.x=" + s.x + when("s", s));

s = t;
System.out.println("s.x=" + s.x + when("s", s));

}

static String when(String name, Object t) {
return " when " + name + " holds a "

+ t.getClass() + " at run time.";
}

}

produces the output:

t.x=1 when t holds a class T at run time.
s.x=0 when s holds a class S at run time.
s.x=0 when s holds a class T at run time.

The last line shows that, indeed, the field that is accessed does not depend o
run-time class of the referenced object; even ifs holds a reference to an object o
classT, the expressions.x refers to thex field of classS, because the type of the
expressions is S. Objects of classT contain two fields namedx, one for classT
and one for its superclassS.

This lack of dynamic lookup for field accesses allows programs to be run e
ciently with straightforward implementations. The power of late binding and ov

EXPRESSIONS Field Access Using a Primary15.11.1

ame

s

d to
DRAFT
riding is available in, but only when instance methods are used. Consider the s
example using instance methods to access the fields:

class S { int x = 0; int z() { return x; } }

class T extends S { int x = 1; int z() { return x; } }

class Test {

public static void main(String[] args) {
T t = new T();
System.out.println("t.z()=" + t.z() + when("t", t));
S s = new S();
System.out.println("s.z()=" + s.z() + when("s", s));
s = t;
System.out.println("s.z()=" + s.z() + when("s", s));

}

static String when(String name, Object t) {
return " when " + name + " holds a "

+ t.getClass() + " at run time.";
}

}

Now the output is:

t.z()=1 when t holds a class T at run time.
s.z()=0 when s holds a class S at run time.
s.z()=1 when s holds a class T at run time.

The last line shows that, indeed, the method that is accesseddoesdepend on the
run-time class of referenced object; whens holds a reference to an object of clas
T, the expressions.z() refers to thez method of classT, despite the fact that the
type of the expressions is S. Methodz of classT overrides methodz of classS.

The following example demonstrates that a null reference may be use
access a class (static) variable without causing an exception:

class Test {

static String mountain = "Chocorua";

static Test favorite(){
System.out.print("Mount ");
return null;

}

public static void main(String[] args) {
System.out.println(favorite().mountain);

}

}

343

15.11.2 Accessing Superclass Members usingsuper EXPRESSIONS

344

lue,

,
f a

s

an
DRAFT
It compiles, executes, and prints:

Mount Chocorua

Even though the result offavorite() is null, aNullPointerException is
not thrown. That “Mount ” is printed demonstrates that thePrimary expression is
indeed fully evaluated at run time, despite the fact that only its type, not its va
is used to determine which field to access (because the fieldmountain is static).

15.11.2 Accessing Superclass Members usingsuper

The special forms using the keywordsuper are valid only in an instance method
instance initializer or constructor, or in the initializer of an instance variable o
class; these are exactly the same situations in which the keywordthis may be
used (§15.8.3). The forms involvingsuper may not be used anywhere in the clas
Object, sinceObject has no superclass; ifsuper appears in classObject, then a
compile-time error results.

Suppose that a field access expressionsuper.name appears within classC,
and the immediate superclass ofC is classS. Thensuper.name is treated exactly
as if it had been the expression((S)this).name; thus, it refers to the field
namedname of the current object, but with the current object viewed as
instance of the superclass. Thus it can access the field namedname that is visible
in classS , even if that field is hidden by a declaration of a field namedname in
classC .

The use ofsuper is demonstrated by the following example:

interface I { int x = 0; }
class T1 implements I { int x = 1; }
class T2 extends T1 { int x = 2; }
class T3 extends T2 {

int x = 3;
void test() {

System.out.println("x=\t\t"+x);
System.out.println("super.x=\t\t"+super.x);
System.out.println("((T2)this).x=\t"+((T2)this).x);
System.out.println("((T1)this).x=\t"+((T1)this).x);
System.out.println("((I)this).x=\t"+((I)this).x);

}
}
class Test {

public static void main(String[] args) {
new T3().test();

}
}

which produces the output:

EXPRESSIONS Method Invocation Expressions15.12

345

e

a

.

ving
hod
sibil-

es-
pile-
the
DRAFT
x= 3
super.x= 2
((T2)this).x= 2
((T1)this).x= 1
((I)this).x= 0

Within classT3, the expressionsuper.x is treated exactly as if it were:

((T2)this).x

Suppose that a field access expressionT.super.name appears within classC,
and the immediate superclass of the class denoted byT is a class whose fully qual-
ified name isS . Then T.super.name is treated exactly as if it had been th
expression((S)T.this).name.

Thus the expressionT.super.name can access the field namedname that is
visible in the class named byS , even if that field is hidden by a declaration of
field namedname in the class named byT.

It is a compile-time error if the class denoted byT is not a lexically enclosing
class of the current class.

15.12 Method Invocation Expressions

A method invocation expression is used to invoke a class or instance method

MethodInvocation:
MethodName (ArgumentListopt)
Primary . Identifier (ArgumentListopt)
super . Identifier (ArgumentListopt)
ClassName . super . Identifier (ArgumentListopt)

The definition ofArgumentList from §15.9 is repeated here for convenience:

ArgumentList:
Expression
ArgumentList , Expression

Resolving a method name at compile time is more complicated than resol
a field name because of the possibility of method overloading. Invoking a met
at run time is also more complicated than accessing a field because of the pos
ity of instance method overriding.

Determining the method that will be invoked by a method invocation expr
sion involves several steps. The following three sections describe the com
time processing of a method invocation; the determination of the type of
method invocation expression is described in §15.12.3.

15.12.1 Compile-Time Step 1: Determine Class or Interface to Search EXPRESSIONS

346

out
for

pend-

e
type

the
en

e

ration

ol-

ss

vo-
DRAFT
15.12.1 Compile-Time Step 1: Determine Class or Interface to Search

The first step in processing a method invocation at compile time is to figure
the name of the method to be invoked and which class or interface to check
definitions of methods of that name. There are several cases to consider, de
ing on the form that precedes the left parenthesis, as follows:

• If the form isMethodName, then there are three subcases:

◆ If it is a simple name, that is, just anIdentifier, then the name of the method
is theIdentifier. If the Identifierappears within the scope (§6.3) of a visibl
method declaration with that name, then there must be an enclosing
declaration of which that method is a member. LetT be the innermost such
type declaration. The class or interface to search isT.

◆ If it is a qualified name of the formTypeName. Identifier, then the name of
the method is theIdentifierand the class to search is the one named by
TypeName. If TypeNameis the name of an interface rather than a class, th
a compile-time error occurs, because this form can invoke onlystatic
methods and interfaces have nostatic methods.

◆ In all other cases, the qualified name has the formFieldName. Identifier;
then the name of the method is theIdentifier and the class or interface to
search is the declared type of the field named by theFieldName.

• If the form is Primary . Identifier, then the name of the method is th
Identifierand the class or interface to be searched is the type of thePrimary
expression.

• If the form issuper . Identifier, then the name of the method is theIdentifier
and the class to be searched is the superclass of the class whose decla
contains the method invocation. LetT be the type declaration immediately
enclosing the method invocation. It is a compile-time error if any of the f
lowing situations occur:

◆ T is the classObject.

◆ T is an interface.

• If the form isClassName.super . Identifier, then the name of the method is
the Identifier and the class to be searched is the superclass of the claC
denoted byClassName. It is a compile-time error ifC is not a lexically enclos-
ing class of the current class. It is a compile-time error ifC is the class
Object. LetT be the type declaration immediately enclosing the method in
cation. It is a compile-time error if any of the following situations occur:

◆ T is the classObject.

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.12.2

tep for
of the

gu-
e the
ost

h.

er of

con-
tion
stants

.1 is
thod
this

tion

and
DRAFT
◆ T is an interface.

15.12.2 Compile-Time Step 2: Determine Method Signature

The second step searches the class or interface determined in the previous s
method declarations. This step uses the name of the method and the types
argument expressions to locate method declarations that are bothapplicableand
accessible, that is, declarations that can be correctly invoked on the given ar
ments. There may be more than one such method declaration, in which cas
most specificone is chosen. The descriptor (signature plus return type) of the m
specific method declaration is one used at run time to do the method dispatc

15.12.2.1 Find Methods that are Applicable and Accessible

A method declaration isapplicableto a method invocation if and only if both of
the following are true:

• The number of parameters in the method declaration equals the numb
argument expressions in the method invocation.

• The type of each actual argument can be converted by method invocation
version (§5.3) to the type of the corresponding parameter. Method invoca
conversion is the same as assignment conversion (§5.2), except that con
of typeint are never implicitly narrowed tobyte, short, orchar.

The class or interface determined by the process described in §15.12
searched for all method declarations applicable to this method invocation; me
definitions inherited from superclasses and superinterfaces are included in
search.

Whether a method declaration is accessible (§6.6) at a method invoca
depends on the access modifier (public, none,protected, or private) in the
method declaration and on where the method invocation appears.

If the class or interface has no method declaration that is both applicable
accessible, then a compile-time error occurs.

In the example program:

public class Doubler {

static int two() { return two(1); }

private static int two(int i) { return 2*i; }

}

347

15.12.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

348

ne

.

uld
nver-
he
DRAFT
class Test extends Doubler {

public static long two(long j) {return j+j; }

public static void main(String[] args) {
System.out.println(two(3));
System.out.println(Doubler.two(3)); // compile-time error

}

}

for the method invocationtwo(1) within classDoubler, there are two accessible
methods namedtwo, but only the second one is applicable, and so that is the o
invoked at run time. For the method invocationtwo(3) within classTest, there
are two applicable methods, but only the one in classTest is accessible, and so
that is the one to be invoked at run time (the argument3 is converted to type
long). For the method invocationDoubler.two(3), the classDoubler, not class
Test, is searched for methods namedtwo; the only applicable method is not
accessible, and so this method invocation causes a compile-time error.

Another example is:

class ColoredPoint {
int x, y;
byte color;
void setColor(byte color) { this.color = color; }

}

class Test {
public static void main(String[] args) {

ColoredPoint cp = new ColoredPoint();
byte color = 37;
cp.setColor(color);
cp.setColor(37); // compile-time error

}
}

Here, a compile-time error occurs for the second invocation ofsetColor, because
no applicable method can be found at compile time. The type of the literal37 is
int, and int cannot be converted tobyte by method invocation conversion
Assignment conversion, which is used in the initialization of the variablecolor,
performs an implicit conversion of the constant from typeint to byte, which is
permitted because the value37 is small enough to be represented in typebyte; but
such a conversion is not allowed for method invocation conversion.

If the methodsetColor had, however, been declared to take anint instead of
abyte, then both method invocations would be correct; the first invocation wo
be allowed because method invocation conversion does permit a widening co
sion frombyte to int. However, a narrowing cast would then be required in t
body ofsetColor:

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.12.2

thod
time

an
the

re
t

ars

ethod

pli-
ks as

o or

red
xi-
d to
the
DRAFT
void setColor(int color) { this.color = (byte)color; }

15.12.2.2 Choose the Most Specific Method

If more than one method declaration is both accessible and applicable to a me
invocation, it is necessary to choose one to provide the descriptor for the run-
method dispatch. The Java programming language uses the rule that themost spe-
cific method is chosen.

The informal intuition is that one method declaration is more specific th
another if any invocation handled by the first method could be passed on to
other one without a compile-time type error.

The precise definition is as follows. Letm be a name and suppose that the
are two declarations of methods namedm , each havingn parameters. Suppose tha
one declaration appears within a class or interfaceT and that the types of the
parameters areT1, . . . , Tn; suppose moreover that the other declaration appe
within a class or interfaceU and that the types of the parameters areU1, . . . , Un.
Then the methodm declared inT is more specificthan the methodm declared inU
if and only if both of the following are true:

• T can be converted toU by method invocation conversion.

• Tj can be converted toUj by method invocation conversion, for allj from 1
to n.

A method is said to bemaximally specificfor a method invocation if it is
applicable and accessible and there is no other applicable and accessible m
that is more specific.

If there is exactly one maximally specific method, then it is in factthe most
specificmethod; it is necessarily more specific than any other method that is ap
cable and accessible. It is then subjected to some further compile-time chec
described in §15.12.3.

It is possible that no method is the most specific, because there are tw
more maximally specific methods. In this case:

• If all the maximally specific methods have the same signature, then:

◆ If one of the maximally specific methods is not declaredabstract, it is the
most specific method.

◆ Otherwise, all the maximally specific methods are necessarily decla
abstract. The most specific method is chosen arbitrarily among the ma
mally specific methods. However, the most specific method is considere
throw a checked exception if and only if that exception is declared in
throws clauses of each of the maximally specific methods.
349

15.12.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

350

two
pe-

tion
DRAFT
• Otherwise, we say that the method invocation isambiguous, and a compile-

time error occurs.

15.12.2.3 Example: Overloading Ambiguity

Consider the example:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

static void test(ColoredPoint p, Point q) {
System.out.println("(ColoredPoint, Point)");

}

static void test(Point p, ColoredPoint q) {
System.out.println("(Point, ColoredPoint)");

}

public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
test(cp, cp); // compile-time error

}

}

This example produces an error at compile time. The problem is that there are
declarations oftest that are applicable and accessible, and neither is more s
cific than the other. Therefore, the method invocation is ambiguous.

If a third definition oftest were added:

static void test(ColoredPoint p, ColoredPoint q) {
System.out.println("(ColoredPoint, ColoredPoint)");

}

then it would be more specific than the other two, and the method invoca
would no longer be ambiguous.

15.12.2.4 Example: Return Type Not Considered

As another example, consider:

class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.12.2

r

ipate

am-

ines
lass,
not
cho-
DRAFT
static int test(ColoredPoint p) {

return p.color;
}

static String test(Point p) {
return "Point";

}

public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
String s = test(cp); // compile-time error

}

}

Here the most specific declaration of methodtest is the one taking a paramete
of typeColoredPoint. Because the result type of the method isint, a compile-
time error occurs because anint cannot be converted to aString by assignment
conversion. This example shows that the result types of methods do not partic
in resolving overloaded methods, so that the secondtest method, which returns a
String, is not chosen, even though it has a result type that would allow the ex
ple program to compile without error.

15.12.2.5 Example: Compile-Time Resolution

The most applicable method is chosen at compile time; its descriptor determ
what method is actually executed at run time. If a new method is added to a c
then source code that was compiled with the old definition of the class might
use the new method, even if a recompilation would cause this method to be
sen.

So, for example, consider two compilation units, one for classPoint:

package points;

public class Point {

public int x, y;

public Point(int x, int y) { this.x = x; this.y = y; }

public String toString() { return toString(""); }

public String toString(String s) {
return "(" + x + "," + y + s + ")";

}

}

and one for classColoredPoint:
351

15.12.2 Compile-Time Step 2: Determine Method Signature EXPRESSIONS

352

for

ble
a

DRAFT
package points;

public class ColoredPoint extends Point {

public static final int
RED = 0, GREEN = 1, BLUE = 2;

public static String[] COLORS =
{ "red", "green", "blue" };

public byte color;

public ColoredPoint(int x, int y, int color) {
super(x, y); this.color = (byte)color;

}

/** Copy all relevant fields of the argument into
thisColoredPoint object. */

public void adopt(Point p) { x = p.x; y = p.y; }

public String toString() {
String s = "," + COLORS[color];
return super.toString(s);

}

}

Now consider a third compilation unit that usesColoredPoint:

import points.*;

class Test {
public static void main(String[] args) {

ColoredPoint cp =
new ColoredPoint(6, 6, ColoredPoint.RED);

ColoredPoint cp2 =
new ColoredPoint(3, 3, ColoredPoint.GREEN);

cp.adopt(cp2);
System.out.println("cp: " + cp);

}
}

The output is:

cp: (3,3,red)

The application programmer who coded classTest has expected to see the
word green, because the actual argument, aColoredPoint, has acolor field,
andcolor would seem to be a “relevant field” (of course, the documentation
the packagePoints ought to have been much more precise!).

Notice, by the way, that the most specific method (indeed, the only applica
method) for the method invocation ofadopt has a signature that indicates

EXPRESSIONS Compile-Time Step 2: Determine Method Signature15.12.2

er of
g a

e

re
ific

on is
d by
ith
uch

ype
DRAFT
method of one parameter, and the parameter is of typePoint. This signature
becomes part of the binary representation of classTest produced by the compiler
and is used by the method invocation at run time.

Suppose the programmer reported this software error and the maintain
the points package decided, after due deliberation, to correct it by addin
method to classColoredPoint:

public void adopt(ColoredPoint p) {
adopt((Point)p); color = p.color;

}

If the application programmer then runs the old binary file forTest with the
new binary file forColoredPoint, the output is still:

cp: (3,3,red)

because the old binary file forTest still has the descriptor “one parameter, whos
type is Point; void” associated with the method callcp.adopt(cp2). If the
source code forTest is recompiled, the compiler will then discover that there a
now two applicableadopt methods, and that the signature for the more spec
one is “one parameter, whose type isColoredPoint; void”; running the program
will then produce the desired output:

cp: (3,3,green)

With forethought about such problems, the maintainer of thepoints package
could fix theColoredPoint class to work with both newly compiled and old
code, by adding defensive code to the oldadopt method for the sake of old code
that still invokes it onColoredPoint arguments:

public void adopt(Point p) {
if (p instanceof ColoredPoint)

color = ((ColoredPoint)p).color;
x = p.x; y = p.y;

}

Ideally, source code should be recompiled whenever code that it depends
changed. However, in an environment where different classes are maintaine
different organizations, this is not always feasible. Defensive programming w
careful attention to the problems of class evolution can make upgraded code m
more robust. See §13 for a detailed discussion of binary compatibility and t
evolution.
353

15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? EXPRESSIONS

354

lled
s

ile-
an-

s a

e
n
at a
that

ror

ror
DRAFT
15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate?

If there is a most specific method declaration for a method invocation, it is ca
the compile-time declarationfor the method invocation. Three further check
must be made on the compile-time declaration:

• If the method invocation has, before the left parenthesis, aMethodNameof
the formIdentifier, and the method is an instance method, then:

◆ If the invocation appears within a static context (§8.1.2), then a comp
time error occurs. (The reason is that a method invocation of this form c
not be used to invoke an instance method in places wherethis (§15.8.3) is
not defined.)

◆ Otherwise, letC be the innermost enclosing class of which the method i
member. If the invocation is not directly enclosed byC or an inner class of
C, then a compile-time error occurs

• If the method invocation has, before the left parenthesis, aMethodNameof
the formTypeName. Identifier, then the compile-time declaration should b
static. If the compile-time declaration for the method invocation is for a
instance method, then a compile-time error occurs. (The reason is th
method invocation of this form does not specify a reference to an object
can serve asthis within the instance method.)

• If the method invocation has, before the left parenthesis, aMethodNameof the
form super . Identifier, then:

◆ If the method isabstract, a compile-time error occurs

◆ If the method invocation occurs in a static context, a compile-time er
occurs

• If the method invocation has, before the left parenthesis, aMethodNameof the
form ClassName.super . Identifier, then:

◆ If the method isabstract, a compile-time error occurs

◆ If the method invocation occurs in a static context, a compile-time er
occurs

◆ Otherwise, letC be the class denoted byClassName. If the invocation is not
directly enclosed byC or an inner class ofC, then a compile-time error
occurs

• If the compile-time declaration for the method invocation isvoid, then the
method invocation must be a top-level expression, that is, theExpressionin an

EXPRESSIONS Runtime Evaluation of Method Invocation15.12.4

ch a
tion

od

is is

vo-

the

ssibil-
thod
ation
DRAFT

expression statement (§14.8) or in theForInit or ForUpdatepart of afor
statement (§14.13), or a compile-time error occurs. (The reason is that su
method invocation produces no value and so must be used only in a situa
where a value is not needed.)

The following compile-time information is then associated with the meth
invocation for use at run time:

• The name of the method.

• The qualifying type of the method invocation (§13.1).

• The number of parameters and the types of the parameters, in order.

• The result type, orvoid, as declared in the compile-time declaration.

• The invocation mode, computed as follows:

◆ If the compile-time declaration has thestatic modifier, then the invocation
mode isstatic.

◆ Otherwise, if the compile-time declaration has theprivate modifier, then
the invocation mode isnonvirtual.

◆ Otherwise, if the part of the method invocation before the left parenthes
of the formsuper . Identifieror of the formClassName.super.Identifier
then the invocation mode issuper.

◆ Otherwise, if the compile-time declaration is in an interface, then the in
cation mode isinterface.

◆ Otherwise, the invocation mode isvirtual.

If the compile-time declaration for the method invocation is notvoid, then
the type of the method invocation expression is the result type specified in
compile-time declaration.

15.12.4 Runtime Evaluation of Method Invocation

At run time, method invocation requires five steps. First, atarget referencemay be
computed. Second, the argument expressions are evaluated. Third, the acce
ity of the method to be invoked is checked. Fourth, the actual code for the me
to be executed is located. Fifth, a new activation frame is created, synchroniz
is performed if necessary, and control is transferred to the method code.
355

15.12.4 Runtime Evaluation of Method Invocation EXPRESSIONS

356

tions

is

on-

e

e

,
d, and
DRAFT

15.12.4.1 Compute Target Reference (If Necessary)

There are several cases to consider, depending on which of the four produc
for MethodInvocation (§15.12) is involved:

• If the first production forMethodInvocation, which includes aMethodName,
is involved, then there are three subcases:

◆ If the MethodNameis a simple name, that is, just anIdentifier, then there are
two subcases:

❖ If the invocation mode isstatic, then there is no target reference.

❖ Otherwise, letT be the enclosing type declaration of which the method
a member, and letn be an integer such thatT is thenth lexically enclosing
type declaration (§8.1.2) of the class whose declaration immediately c
tains the method invocation. Then the target reference is thenth lexically
enclosing instance (§8.1.2) ofthis. It is a compile-time error if thenth
lexically enclosing instance (§8.1.2) ofthis does not exist.

◆ If the MethodNameis a qualified name of the formTypeName. Identifier,
then there is no target reference.

◆ If the MethodNameis a qualified name of the formFieldName. Identifier,
then there are two subcases:

❖ If the invocation mode isstatic, then there is no target reference.

❖ Otherwise, the target reference is the value of the expressionFieldName.

• If the second production forMethodInvocation, which includes aPrimary, is
involved, then there are two subcases:

◆ If the invocation mode isstatic, then there is no target reference. Th
expressionPrimary is evaluated, but the result is then discarded.

◆ Otherwise, the expressionPrimary is evaluated and the result is used as th
target reference.

In either case, if the evaluation of thePrimary expression completes abruptly
then no part of any argument expression appears to have been evaluate
the method invocation completes abruptly for the same reason.

• If the third production forMethodInvocation, which includes the keyword
super, is involved, then the target reference is the value ofthis.

• If the fourth production forMethodInvocation, ClassName.super, is involved,
then the target reference is the value ofClassName.this.

EXPRESSIONS Runtime Evaluation of Method Invocation15.12.4

lua-
ment
ation

r-
ing

ents
the
DRAFT
15.12.4.2 Evaluate Arguments

The argument expressions are evaluated in order, from left to right. If the eva
tion of any argument expression completes abruptly, then no part of any argu
expression to its right appears to have been evaluated, and the method invoc
completes abruptly for the same reason.

15.12.4.3 Check Accessibility of Type and Method

Let C be the class containing the method invocation, and letT be the qualifying
type of the method invocation (§13.1), andm be the name of the method, as dete
mined at compile time (§15.12.3). An implementation of the Java programm
language must insure, as part of linkage, that the methodm still exists in the type
T. If this is not true, then aNoSuchMethodError (which is a subclass ofIncom-
patibleClassChangeError) occurs. If the invocation mode isinterface, then
the implementation must also check that the target reference type still implem
the specified interface. If the target reference type does not still implement
interface, then anIncompatibleClassChangeError occurs.

The implementation must also insure, during linkage, that the typeT and the
methodm are accessible. For the typeT:

• If T is in the same package asC, thenT is accessible.

• If T is in a different package thanC, andT is public, thenT is accessible.

• If T is in a different package thanC, andT is protected, thenT is accessible
if and only ifC is a subclass ofT.

For the methodm:

• If m is public, thenm is accessible. (All members of interfaces arepublic
(§9.2)).

• If m is protected, thenm is accessible if and only if eitherT is in the same
package asC, orC is T or a subclass ofT.

• If m has default (package) access, thenm is accessible if and only ifT is in the
same package asC .

• If m is private, thenm is accessible if and only ifC is T, or C enclosesT, or T
enclosesC, orT andC are both enclosed by a third class.

If eitherT or m is not accessible, then anIllegalAccessError occurs (§12.3).
357

15.12.4 Runtime Evaluation of Method Invocation EXPRESSIONS

358

g

ence.

s

s

an

ca-

s, and
com-

ed
DRAFT
15.12.4.4 Locate Method to Invoke

The strategy for method lookup depends on the invocation mode.
If the invocation mode isstatic, no target reference is needed and overridin

is not allowed. Methodm of classT is the one to be invoked.
Otherwise, an instance method is to be invoked and there is a target refer

If the target reference isnull, aNullPointerException is thrown at this point.
Otherwise, the target reference is said to refer to atarget objectand will be used as
the value of the keywordthis in the invoked method. The other four possibilitie
for the invocation mode are then considered.

If the invocation mode isnonvirtual, overriding is not allowed. Methodm of
classT is the one to be invoked.

Otherwise, the invocation mode isinterface, virtual, or super, and over-
riding may occur. Adynamic method lookupis used. The dynamic lookup proces
starts from a classS, determined as follows:

• If the invocation mode isinterface or virtual, thenS is initially the actual
run-time classR of the target object. This is true even if the target object is
array instance. (Note that for invocation modeinterface, R necessarily
implementsT; for invocation modevirtual, R is necessarily eitherT or a
subclass ofT.)

• If the invocation mode issuper, thenS is initially the qualifying type (§13.1)
of the method invocation.

The dynamic method lookup uses the following procedure to search classS, and
then the superclasses of classS, as necessary, for methodm.

Let X be the compile-time type of the target reference of the method invo
tion.

1. If classS contains a declaration for a non-abstract method namedm with the
same descriptor (same number of parameters, the same parameter type
the same return type) required by the method invocation as determined at
pile time (§15.12.3), then:

◆ If the invocation mode issuper or interface, then this is the method to be
invoked, and the procedure terminates.

◆ If the invocation mode isvirtual, and the declaration inS overrides
(§8.4.6.1)X.m, then the method declared inS is the method to be invoked,
and the procedure terminates.

2. Otherwise, ifS has a superclass, this same lookup procedure is perform
recursively using the direct superclass ofS in place ofS; the method to be
invoked is the result of the recursive invocation of this lookup procedure.

EXPRESSIONS Runtime Evaluation of Method Invocation15.12.4

d to
nsis-
cur.
um-

will
tion
-class

y)
bles
tion

efer-
ory

The
ated
le as

to its
rsion

n-
ically

e
can

ther-

ted,
s if
DRAFT

The above procedure will always find a non-abstract, accessible metho
invoke, provided that all classes and interfaces in the program have been co
tently compiled. However, if this is not the case, then various errors may oc
The specification of the behavior of a Java virtual machine under these circ
stances is given byThe Java Virtual Machine Specification, Second Edition.

We note that the dynamic lookup process, while described here explicitly,
often be implemented implicitly, for example as a side-effect of the construc
and use of per-class method dispatch tables, or the construction of other per
structures used for efficient dispatch.

15.12.4.5 Create Frame, Synchronize, Transfer Control

A methodm in some classS has been identified as the one to be invoked.
Now a newactivation frameis created, containing the target reference (if an

and the argument values (if any), as well as enough space for the local varia
and stack for the method to be invoked and any other bookkeeping informa
that may be required by the implementation (stack pointer, program counter, r
ence to previous activation frame, and the like). If there is not sufficient mem
available to create such an activation frame, anOutOfMemoryError is thrown.

The newly created activation frame becomes the current activation frame.
effect of this is to assign the argument values to corresponding freshly cre
parameter variables of the method, and to make the target reference availab
this, if there is a target reference. Before each argument value is assigned
corresponding parameter variable, it is subjected to method invocation conve
(§5.3), which includes any required value set conversion (§5.1.8).

If the methodm is anative method but the necessary native, implementatio
dependent binary code has not been loaded or otherwise cannot be dynam
linked, then anUnsatisfiedLinkError is thrown.

If the methodm is notsynchronized, control is transferred to the body of the
methodm to be invoked.

If the methodm is synchronized, then an object must be locked before th
transfer of control. No further progress can be made until the current thread
obtain the lock. If there is a target reference, then the target must be locked; o
wise theClass object for classS, the class of the methodm, must be locked. Con-
trol is then transferred to the body of the methodm to be invoked. The object is
automatically unlocked when execution of the body of the method has comple
whether normally or abruptly. The locking and unlocking behavior is exactly a
the body of the method were embedded in asynchronized statement (§14.18).
359

15.12.4 Runtime Evaluation of Method Invocation EXPRESSIONS

360

cation

that
ated
ated.

t
DRAFT
15.12.4.6 Example: Target Reference and Static Methods

When a target reference is computed and then discarded because the invo
mode isstatic, the reference is not examined to see whether it isnull:

class Test {

static void mountain() {
System.out.println("Monadnock");

}

static Test favorite(){
System.out.print("Mount ");
return null;

}

public static void main(String[] args) {
favorite().mountain();

}

}

which prints:

Mount Monadnock

Herefavorite returnsnull, yet noNullPointerException is thrown.

15.12.4.7 Example: Evaluation Order

As part of an instance method invocation (§15.12), there is an expression
denotes the object to be invoked. This expression appears to be fully evalu
before any part of any argument expression to the method invocation is evalu

So, for example, in:

class Test {
public static void main(String[] args) {

String s = "one";
if (s.startsWith(s = "two"))

System.out.println("oops");
}

}

the occurrence ofs before “.startsWith” is evaluated first, before the argumen
expressions="two". Therefore, a reference to the string"one" is remembered as
the target reference before the local variables is changed to refer to the string
"two". As a result, thestartsWith method is invoked for target object"one"
with argument"two", so the result of the invocation isfalse, as the string"one"
does not start with"two". It follows that the test program does not print “oops”.

EXPRESSIONS Runtime Evaluation of Method Invocation15.12.4

-

of
DRAFT
15.12.4.8 Example: Overriding

In the example:

class Point {

final int EDGE = 20;
int x, y;

void move(int dx, int dy) {
x += dx; y += dy;
if (Math.abs(x) >= EDGE || Math.abs(y) >= EDGE)

clear();
}

void clear() {
System.out.println("\tPoint clear");
x = 0; y = 0;

}

}

class ColoredPoint extends Point {

int color;

void clear() {
System.out.println("\tColoredPoint clear");
super.clear();
color = 0;

}

}

the subclassColoredPoint extends theclear abstraction defined by its super
classPoint. It does so by overriding theclear method with its own method,
which invokes theclear method of its superclass, using the formsuper.clear.

This method is then invoked whenever the target object for an invocation
clear is a ColoredPoint. Even the methodmove in Point invokes theclear
method of classColoredPoint when the class ofthis is ColoredPoint, as
shown by the output of this test program:

class Test {
public static void main(String[] args) {

Point p = new Point();
System.out.println("p.move(20,20):");
p.move(20, 20);
ColoredPoint cp = new ColoredPoint();
System.out.println("cp.move(20,20):");
cp.move(20, 20);
p = new ColoredPoint();
System.out.println("p.move(20,20), p colored:");
361

15.12.4 Runtime Evaluation of Method Invocation EXPRESSIONS

362

e it

,

a in

e key-
any

is is
DRAFT
p.move(20, 20);

}
}

which is:

p.move(20,20):
Point clear

cp.move(20,20):
ColoredPoint clear
Point clear

p.move(20,20), p colored:
ColoredPoint clear
Point clear

Overriding is sometimes called “late-bound self-reference”; in this exampl
means that the reference toclear in the body ofPoint.move (which is really
syntactic shorthand forthis.clear) invokes a method chosen “late” (at run time
based on the run-time class of the object referenced bythis) rather than a method
chosen “early” (at compile time, based only on the type ofthis). This provides
the programmer a powerful way of extending abstractions and is a key ide
object-oriented programming.

15.12.4.9 Example: Method Invocation usingsuper

An overridden instance method of a superclass may be accessed by using th
word super to access the members of the immediate superclass, bypassing
overriding declaration in the class that contains the method invocation.

When accessing an instance variable,super means the same as a cast ofthis
(§15.11.2), but this equivalence does not hold true for method invocation. Th
demonstrated by the example:

class T1 {
String s() { return "1"; }

}

class T2 extends T1 {
String s() { return "2"; }

}

class T3 extends T2 {

String s() { return "3"; }

void test() {
System.out.println("s()=\t\t"+s());
System.out.println("super.s()=\t"+super.s());
System.out.print("((T2)this).s()=\t");

System.out.println(((T2)this).s());

EXPRESSIONS Array Access Expressions15.13

,
-time
n

ay.

ssion

pro-

ari-
DRAFT
System.out.print("((T1)this).s()=\t");

System.out.println(((T1)this).s());
}

}

class Test {
public static void main(String[] args) {

T3 t3 = new T3();
t3.test();

}
}

which produces the output:

s()= 3
super.s()= 2
((T2)this).s()= 3
((T1)this).s()= 3

The casts to typesT1 and T2 do not change the method that is invoked
because the instance method to be invoked is chosen according to the run
class of the object referred to bethis. A cast does not change the class of a
object; it only checks that the class is compatible with the specified type.

15.13 Array Access Expressions

An array access expression refers to a variable that is a component of an arr

ArrayAccess:
ExpressionName [Expression]
PrimaryNoNewArray [Expression]

An array access expression contains two subexpressions, thearray reference
expression(before the left bracket) and theindex expression(within the brackets).
Note that the array reference expression may be a name or any primary expre
that is not an array creation expression (§15.10).

The type of the array reference expression must be an array type (call itT[],
an array whose components are of typeT) or a compile-time error results. Then
the type of the array access expression isT.

The index expression undergoes unary numeric promotion (§5.6.1); the
moted type must beint.

The result of an array reference is a variable of typeT, namely the variable
within the array selected by the value of the index expression. This resulting v
able, which is a component of the array, is never consideredfinal, even if the
array reference was obtained from afinal variable.
363

15.13.1 Runtime Evaluation of Array Access EXPRESSIONS

364

letes
d the

etes

o an
n or

lting

fully
. For

by
DRAFT
15.13.1 Runtime Evaluation of Array Access

An array access expression is evaluated using the following procedure:

• First, the array reference expression is evaluated. If this evaluation comp
abruptly, then the array access completes abruptly for the same reason an
index expression is not evaluated.

• Otherwise, the index expression is evaluated. If this evaluation compl
abruptly, then the array access completes abruptly for the same reason.

• Otherwise, if the value of the array reference expression isnull, then a
NullPointerException is thrown.

• Otherwise, the value of the array reference expression indeed refers t
array. If the value of the index expression is less than zero, or greater tha
equal to the array’s length, then anArrayIndexOutOfBoundsException is
thrown.

• Otherwise, the result of the array access is the variable of typeT, within the
array, selected by the value of the index expression. (Note that this resu
variable, which is a component of the array, is never consideredfinal, even
if the array reference expression is afinal variable.)

15.13.2 Examples: Array Access Evaluation Order

In an array access, the expression to the left of the brackets appears to be
evaluated before any part of the expression within the brackets is evaluated
example, in the (admittedly monstrous) expressiona[(a=b)[3]], the expression
a is fully evaluated before the expression(a=b)[3]; this means that the original
value ofa is fetched and remembered while the expression(a=b)[3] is evalu-
ated. This array referenced by the original value ofa is then subscripted by a value
that is element3 of another array (possibly the same array) that was referenced
b and is now also referenced bya.

Thus, the example:

class Test {
public static void main(String[] args) {

int[] a = { 11, 12, 13, 14 };
int[] b = { 0, 1, 2, 3 };
System.out.println(a[(a=b)[3]]);

}
}

prints:

14

EXPRESSIONS Examples: Array Access Evaluation Order15.13.2

tly,
ated.

valua-

l

DRAFT
because the monstrous expression’s value is equivalent toa[b[3]] or a[3] or 14.

If evaluation of the expression to the left of the brackets completes abrup
no part of the expression within the brackets will appear to have been evalu
Thus, the example:

class Test {
public static void main(String[] args) {

int index = 1;
try {

skedaddle()[index=2]++;
} catch (Exception e) {

System.out.println(e + ", index=" + index);
}

}
static int[] skedaddle() throws Exception {

throw new Exception("Ciao");
}

}

prints:

java.lang.Exception: Ciao, index=1

because the embedded assignment of2 to index never occurs.
If the array reference expression producesnull instead of a reference to an

array, then aNullPointerException is thrown at run time, but only after all
parts of the array access expression have been evaluated and only if these e
tions completed normally. Thus, the example:

class Test {

public static void main(String[] args) {
int index = 1;
try {

nada()[index=2]++;
} catch (Exception e) {

System.out.println(e + ", index=" + index);
}

}

static int[] nada() { return null; }

}

prints:

java.lang.NullPointerException, index=2

because the embedded assignment of2 to index occurs before the check for a nul
pointer. As a related example, the program:
365

15.14 Postfix Expressions EXPRESSIONS

366

ust
that

e han-
ome

-
or a
DRAFT
class Test {

public static void main(String[] args) {
int[] a = null;
try {

int i = a[vamoose()];
System.out.println(i);

} catch (Exception e) {
System.out.println(e);

}
}

static int vamoose() throws Exception {
throw new Exception("Twenty-three skidoo!");

}

}

always prints:

java.lang.Exception: Twenty-three skidoo!

A NullPointerException never occurs, because the index expression m
be completely evaluated before any part of the indexing operation occurs, and
includes the check as to whether the value of the left-hand operand isnull.

15.14 Postfix Expressions

Postfix expressions include uses of the postfix++ and-- operators. Also, as dis-
cussed in §15.8, names are not considered to be primary expressions, but ar
dled separately in the grammar to avoid certain ambiguities. They bec
interchangeable only here, at the level of precedence of postfix expressions.

PostfixExpression:
Primary
ExpressionName
PostIncrementExpression
PostDecrementExpression

15.14.1 Postfix Increment Operator++

PostIncrementExpression:
PostfixExpression ++

A postfix expression followed by a++ operator is a postfix increment expres
sion. The result of the postfix expression must be a variable of a numeric type,

EXPRESSIONS Postfix Decrement Operator --15.14.2

the
ari-

hen
d no

eric

) to
ent

lue
sum

an
ot a
tor.

-
or a
the

vari-

hen
nd no

tion,

on-
the

lue
iffer-
DRAFT
compile-time error occurs. The type of the postfix increment expression is
type of the variable. The result of the postfix increment expression is not a v
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, t
the postfix increment expression completes abruptly for the same reason an
incrementation occurs. Otherwise, the value1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3
the type of the variable before it is stored. The value of the postfix increm
expression is the value of the variablebeforethe new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the
prior to its being stored in the variable.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix increment opera

15.14.2 Postfix Decrement Operator--

PostDecrementExpression:
PostfixExpression --

A postfix expression followed by a-- operator is a postfix decrement expres
sion. The result of the postfix expression must be a variable of a numeric type,
compile-time error occurs. The type of the postfix decrement expression is
type of the variable. The result of the postfix decrement expression is not a
able, but a value.

At run time, if evaluation of the operand expression completes abruptly, t
the postfix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtrac
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive c
version (§5.1.3) to the type of the variable before it is stored. The value of
postfix decrement expression is the value of the variablebeforethe new value is
stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the d
ence prior to its being stored in the variable.
367

15.15 Unary Operators EXPRESSIONS

368

an
ot a
ator.

s

.
om-

e of
ut a

hen
d no
DRAFT
A variable that is declaredfinal cannot be decremented, because when

access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a postfix decrement oper

15.15 Unary Operators

The unary operatorsinclude+, -, ++, --, ~, !, and cast operators. Expression
with unary operators group right-to-left, so that-~x means the same as-(~x).

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ UnaryExpression
- UnaryExpression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

The following productions from §15.16 are repeated here for convenience:

CastExpression:
(PrimitiveType) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

15.15.1 Prefix Increment Operator++

A unary expression preceded by a++ operator is a prefix increment expression
The result of the unary expression must be a variable of a numeric type, or a c
pile-time error occurs. The type of the prefix increment expression is the typ
the variable. The result of the prefix increment expression is not a variable, b
value.

At run time, if evaluation of the operand expression completes abruptly, t
the prefix increment expression completes abruptly for the same reason an

EXPRESSIONS Unary Plus Operator +15.15.3

eric

) to
ent

lue
sum

an
ot a
or.

n.
om-
e of
but a

hen
nd no

tion,

on-
pre-

lue
ence

an
ot a
tor.

.1)
pro-
DRAFT
incrementation occurs. Otherwise, the value1 is added to the value of the variable
and the sum is stored back into the variable. Before the addition, binary num
promotion (§5.6.2) is performed on the value1 and the value of the variable. If
necessary, the sum is narrowed by a narrowing primitive conversion (§5.1.3
the type of the variable before it is stored. The value of the prefix increm
expression is the value of the variableafter the new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, value set conversion is applied to the
prior to its being stored in the variable.

A variable that is declaredfinal cannot be incremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix increment operat

15.15.2 Prefix Decrement Operator--

A unary expression preceded by a-- operator is a prefix decrement expressio
The result of the unary expression must be a variable of a numeric type, or a c
pile-time error occurs. The type of the prefix decrement expression is the typ
the variable. The result of the prefix decrement expression is not a variable,
value.

At run time, if evaluation of the operand expression completes abruptly, t
the prefix decrement expression completes abruptly for the same reason a
decrementation occurs. Otherwise, the value1 is subtracted from the value of the
variable and the difference is stored back into the variable. Before the subtrac
binary numeric promotion (§5.6.2) is performed on the value1 and the value of
the variable. If necessary, the difference is narrowed by a narrowing primitive c
version (§5.1.3) to the type of the variable before it is stored. The value of the
fix decrement expression is the value of the variableafter the new value is stored.

Note that the binary numeric promotion mentioned above may include va
set conversion (§5.1.8). If necessary, format conversion is applied to the differ
prior to its being stored in the variable.

A variable that is declaredfinal cannot be decremented, because when
access of afinal variable is used as an expression, the result is a value, n
variable. Thus, it cannot be used as the operand of a prefix decrement opera

15.15.3 Unary Plus Operator+

The type of the operand expression of the unary+ operator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (§5.6
is performed on the operand. The type of the unary plus expression is the
369

15.15.4 Unary Minus Operator - EXPRESSIONS

370

vari-

of

.1)
pro-

.8).
ation
That

tion

Java
, and
axi-

er-

ero,

) is
sion

bit-
ses,
DRAFT
moted type of the operand. The result of the unary plus expression is not a
able, but a value, even if the result of the operand expression is a variable.

At run time, the value of the unary plus expression is the promoted value
the operand.

15.15.4 Unary Minus Operator-

The type of the operand expression of the unary- operator must be a primitive
numeric type, or a compile-time error occurs. Unary numeric promotion (§5.6
is performed on the operand. The type of the unary minus expression is the
moted type of the operand.

Note that unary numeric promotion performs value set conversion (§5.1
Whatever value set the promoted operand value is drawn from, the unary neg
operation is carried out and the result is drawn from that same value set.
result is then subject to further value set conversion.

At run time, the value of the unary minus expression is the arithmetic nega
of the promoted value of the operand.

For integer values, negation is the same as subtraction from zero. The
programming language uses two’s-complement representation for integers
the range of two’s-complement values is not symmetric, so negation of the m
mum negativeint or long results in that same maximum negative number. Ov
flow occurs in this case, but no exception is thrown. For all integer valuesx, -x
equals(~x)+1.

For floating-point values, negation is not the same as subtraction from z
because ifx is +0.0, then0.0-x is +0.0, but -x is -0.0. Unary minus merely
inverts the sign of a floating-point number. Special cases of interest:

• If the operand is NaN, the result is NaN (recall that NaN has no sign).

• If the operand is an infinity, the result is the infinity of opposite sign.

• If the operand is a zero, the result is the zero of opposite sign.

15.15.5 Bitwise Complement Operator~

The type of the operand expression of the unary~ operator must be a primitive
integral type, or a compile-time error occurs. Unary numeric promotion (§5.6.1
performed on the operand. The type of the unary bitwise complement expres
is the promoted type of the operand.

At run time, the value of the unary bitwise complement expression is the
wise complement of the promoted value of the operand; note that, in all ca
~x equals(-x)-1.

EXPRESSIONS Cast Expressions15.16

sion

ilar
an
an

the
led the
n if

e of

erted

n ele-

the

or at
ype.
. For
f its
some

pile
DRAFT
15.15.6 Logical Complement Operator!

The type of the operand expression of the unary! operator must beboolean, or a
compile-time error occurs. The type of the unary logical complement expres
is boolean.

At run time, the value of the unary logical complement expression istrue if
the operand value isfalse andfalse if the operand value istrue.

15.16 Cast Expressions

A cast expression converts, at run time, a value of one numeric type to a sim
value of another numeric type; or confirms, at compile time, that the type of
expression isboolean; or checks, at run time, that a reference value refers to
object whose class is compatible with a specified reference type.

CastExpression:
(PrimitiveType Dimsopt) UnaryExpression
(ReferenceType) UnaryExpressionNotPlusMinus

See §15.15 for a discussion of the distinction betweenUnaryExpressionand
UnaryExpressionNotPlusMinus.

The type of a cast expression is the type whose name appears within
parentheses. (The parentheses and the type they contain are sometimes cal
cast operator.) The result of a cast expression is not a variable, but a value, eve
the result of the operand expression is a variable.

A cast operator has no effect on the choice of value set (§4.2.3) for a valu
typefloat or typedouble. Consequently, a cast to typefloat within an expres-
sion that is not FP-strict (§15.4) does not necessarily cause its value to be conv
to an element of the float value set, and a cast to typedouble within an expression
that is not FP-strict does not necessarily cause its value to be converted to a
ment of the double value set.

At run time, the operand value is converted by casting conversion (§5.5) to
type specified by the cast operator.

Not all casts are permitted by the language. Some casts result in an err
compile time. For example, a primitive value may not be cast to a reference t
Some casts can be proven, at compile time, always to be correct at run time
example, it is always correct to convert a value of a class type to the type o
superclass; such a cast should require no special action at run time. Finally,
casts cannot be proven to be either always correct or always incorrect at com
time. Such casts require a test at run time.
371

15.17 Multiplicative Operators EXPRESSIONS

372

-

ht).

imi-
is
the

8).

r-
ave
are

of
ple-

t be

E

ave
DRAFT
A ClassCastException is thrown if a cast is found at run time to be imper

missible.

15.17 Multiplicative Operators

The operators*, /, and% are called themultiplicative operators. They have the
same precedence and are syntactically left-associative (they group left-to-rig

MultiplicativeExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

The type of each of the operands of a multiplicative operator must be a pr
tive numeric type, or a compile-time error occurs. Binary numeric promotion
performed on the operands (§5.6.2). The type of a multiplicative expression is
promoted type of its operands. If this promoted type isint or long, then integer
arithmetic is performed; if this promoted type isfloat or double, then floating-
point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (§5.1.

15.17.1 Multiplication Operator *

The binary* operator performs multiplication, producing the product of its ope
ands. Multiplication is a commutative operation if the operand expressions h
no side effects. While integer multiplication is associative when the operands
all of the same type, floating-point multiplication is not associative.

If an integer multiplication overflows, then the result is the low-order bits
the mathematical product as represented in some sufficiently large two’s-com
ment format. As a result, if overflow occurs, then the sign of the result may no
the same as the sign of the mathematical product of the two operand values.

The result of a floating-point multiplication is governed by the rules of IEE
754 arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, and negative if the operands have different signs.

• Multiplication of an infinity by a zero results in NaN.

EXPRESSIONS Division Operator /15.17.2

e

the
hen

t the

en, at

prod-
per-
se,
IEEE
pport

ur,

ds.
or.
s
ger

;

hat
ible
DRAFT
• Multiplication of an infinity by a finite value results in a signed infinity. Th

sign is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved,
exact mathematical product is computed. A floating-point value set is t
chosen:

◆ If the multiplication expression is FP-strict (§15.4):

❖ If the type of the multiplication expression isfloat, then the float value
set must be chosen.

❖ If the type of the multiplication expression isdouble, then the double
value set must be chosen.

◆ If the multiplication expression is not FP-strict:

❖ If the type of the multiplication expression isfloat, then either the float
value set or the float-extended-exponent value set may be chosen, a
whim of the implementation.

❖ If the type of the multiplication expression isdouble, then either the dou-
ble value set or the double-extended-exponent value set may be chos
the whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the
uct. If the magnitude of the product is too large to represent, we say the o
ation overflows; the result is then an infinity of appropriate sign. Otherwi
the product is rounded to the nearest value in the chosen value set using
754 round-to-nearest mode. The Java programming language requires su
of gradual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, or loss of information may occ
evaluation of a multiplication operator* never throws a run-time exception.

15.17.2 Division Operator/

The binary/ operator performs division, producing the quotient of its operan
The left-hand operand is the dividend and the right-hand operand is the divis

Integer division rounds toward0. That is, the quotient produced for operand
n and d that are integers after binary numeric promotion (§5.6.2) is an inte
value q whose magnitude is as large as possible while satisfying
moreover,q is positive when andn andd have the same sign, butq is neg-
ative when andn andd have opposite signs. There is one special case t
does not satisfy this rule: if the dividend is the negative integer of largest poss

d q⋅ n≤
n d≥

n d≥
373

15.17.2 Division Operator / EXPRESSIONS

374

e
this

of

ave

is

is

ite
ove.

he

the
hen

t

him

at the
DRAFT
magnitude for its type, and the divisor is-1, then integer overflow occurs and th
result is equal to the dividend. Despite the overflow, no exception is thrown in
case. On the other hand, if the value of the divisor in an integer division is0, then
anArithmeticException is thrown.

The result of a floating-point division is determined by the specification
IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result is positive if both operands h
the same sign, negative if the operands have different signs.

• Division of an infinity by an infinity results in NaN.

• Division of an infinity by a finite value results in a signed infinity. The sign
determined by the rule stated above.

• Division of a finite value by an infinity results in a signed zero. The sign
determined by the rule stated above.

• Division of a zero by a zero results in NaN; division of zero by any other fin
value results in a signed zero. The sign is determined by the rule stated ab

• Division of a nonzero finite value by a zero results in a signed infinity. T
sign is determined by the rule stated above.

• In the remaining cases, where neither an infinity nor NaN is involved,
exact mathematical quotient is computed. A floating-point value set is t
chosen:

◆ If the division expression is FP-strict (§15.4):

❖ If the type of the division expression isfloat, then the float value set
must be chosen.

❖ If the type of the division expression isdouble, then the double value se
must be chosen.

◆ If the division expression is not FP-strict:

❖ If the type of the division expression isfloat, then either the float value
set or the float-extended-exponent value set may be chosen, at the w
of the implementation.

❖ If the type of the division expression isdouble, then either the double
value set or the double-extended-exponent value set may be chosen,
whim of the implementation.

EXPRESSIONS Remainder Operator %15.17.3

quo-
the
er-
using
uires

a-

an
and

ut in

eric

tive

be
d is
itude

EEE
ding

uage
t of
tion
tine
DRAFT
Next, a value must be chosen from the chosen value set to represent the
tient. If the magnitude of the quotient is too large to represent, we say
operation overflows; the result is then an infinity of appropriate sign. Oth
wise, the quotient is rounded to the nearest value in the chosen value set
IEEE 754 round-to-nearest mode. The Java programming language req
support of gradual underflow as defined by IEEE 754 (§4.2.4).

Despite the fact that overflow, underflow, division by zero, or loss of inform
tion may occur, evaluation of a floating-point division operator/ never throws a
run-time exception

15.17.3 Remainder Operator%

The binary% operator is said to yield the remainder of its operands from
implied division; the left-hand operand is the dividend and the right-hand oper
is the divisor.

In C and C++, the remainder operator accepts only integral operands, b
the Java programming language, it also accepts floating-point operands.

The remainder operation for operands that are integers after binary num
promotion (§5.6.2) produces a result value such that(a/b)*b+(a%b) is equal to
a. This identity holds even in the special case that the dividend is the nega
integer of largest possible magnitude for its type and the divisor is-1 (the remain-
der is0). It follows from this rule that the result of the remainder operation can
negative only if the dividend is negative, and can be positive only if the dividen
positive; moreover, the magnitude of the result is always less than the magn
of the divisor. If the value of the divisor for an integer remainder operator is0,
then anArithmeticException is thrown.Examples:

5%3 produces 2 (note that 5/3 produces 1)
5%(-3) produces 2 (note that 5/(-3) produces -1)
(-5)%3 produces -2 (note that (-5)/3 produces -1)
(-5)%(-3) produces -2 (note that(-5)/(-3) produces1)

The result of a floating-point remainder operation as computed by the% oper-
ator isnot the same as that produced by the remainder operation defined by I
754. The IEEE 754 remainder operation computes the remainder from a roun
division, not a truncating division, and so its behavior isnot analogous to that of
the usual integer remainder operator. Instead, the Java programming lang
defines% on floating-point operations to behave in a manner analogous to tha
the integer remainder operator; this may be compared with the C library func
fmod. The IEEE 754 remainder operation may be computed by the library rou
Math.IEEEremainder.
375

15.18 Additive Operators EXPRESSIONS

376

les

nd.

N.

vi-

nd.

is

is
g the

s of

-
DRAFT
The result of a floating-point remainder operation is determined by the ru

of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• If the result is not NaN, the sign of the result equals the sign of the divide

• If the dividend is an infinity, or the divisor is a zero, or both, the result is Na

• If the dividend is finite and the divisor is an infinity, the result equals the di
dend.

• If the dividend is a zero and the divisor is finite, the result equals the divide

• In the remaining cases, where neither an infinity, nor a zero, nor NaN
involved, the floating-point remainderr from the division of a dividendn by a
divisor d is defined by the mathematical relation whereq is an
integer that is negative only if is negative and positive only if
positive, and whose magnitude is as large as possible without exceedin
magnitude of the true mathematical quotient ofn andd.

Evaluation of a floating-point remainder operator% never throws a run-time
exception, even if the right-hand operand is zero. Overflow, underflow, or los
precision cannot occur.

Examples:

5.0%3.0 produces 2.0
5.0%(-3.0) produces 2.0
(-5.0)%3.0 produces -2.0
(-5.0)%(-3.0) produces-2.0

15.18 Additive Operators

The operators+ and- are called theadditive operators. They have the same pre
cedence and are syntactically left-associative (they group left-to-right).

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

If the type of either operand of a + operator isString, then the operation is
string concatenation.

Otherwise, the type of each of the operands of the+ operator must be a primi-
tive numeric type, or a compile-time error occurs.

r n d q⋅()–=
n d⁄ n d⁄

EXPRESSIONS String Concatenation Operator +15.18.1

efer-
o
ters of

y
:

one

r may
DRAFT
In every case, the type of each of the operands of the binary- operator must

be a primitive numeric type, or a compile-time error occurs.

15.18.1 String Concatenation Operator+

If only one operand expression is of typeString, then string conversion is per-
formed on the other operand to produce a string at run time. The result is a r
ence to a newly createdString object that is the concatenation of the tw
operand strings. The characters of the left-hand operand precede the charac
the right-hand operand in the newly created string.

15.18.1.1 String Conversion

Any type may be converted to typeString by string conversion.
A value x of primitive typeT is first converted to a reference value as if b

giving it as an argument to an appropriate class instance creation expression

• If T is boolean, then usenew Boolean(x).

• If T is char, then usenew Character(x).

• If T is byte, short, orint, then usenew Integer(x).

• If T is long, then usenew Long(x).

• If T is float, then usenew Float(x).

• If T is double, then usenew Double(x).

This reference value is then converted to typeString by string conversion.
Now only reference values need to be considered. If the reference isnull, it is

converted to the string "null" (four ASCII charactersn, u, l, l). Otherwise, the
conversion is performed as if by an invocation of thetoString method of the ref-
erenced object with no arguments; but if the result of invoking thetoString
method isnull, then the string "null" is used instead.

The toString method is defined by the primordial classObject; many
classes override it, notablyBoolean, Character, Integer, Long, Float, Dou-
ble, andString.

15.18.1.2 Optimization of String Concatenation

An implementation may choose to perform conversion and concatenation in
step to avoid creating and then discarding an intermediateString object. To
increase the performance of repeated string concatenation, a Java compile
377

15.18.1 String Concatenation Operator + EXPRESSIONS

378

er-

tion

ter
ome

:

DRAFT
use theStringBuffer class or a similar technique to reduce the number of int
mediateString objects that are created by evaluation of an expression.

For primitive types, an implementation may also optimize away the crea
of a wrapper object by converting directly from a primitive type to a string.

15.18.1.3 Examples of String Concatenation

The example expression:

"The square root of 2 is " + Math.sqrt(2)

produces the result:

"The square root of 2 is 1.4142135623730952"

The + operator is syntactically left-associative, no matter whether it is la
determined by type analysis to represent string concatenation or addition. In s
cases care is required to get the desired result. For example, the expression

a + b + c

is always regarded as meaning:

(a + b) + c

Therefore the result of the expression:

1 + 2 + " fiddlers"

is:

"3 fiddlers"

but the result of:

"fiddlers " + 1 + 2

is:

"fiddlers 12"

In this jocular little example:

class Bottles {

static void printSong(Object stuff, int n) {
String plural = (n == 1) ? "" : "s";
loop: while (true) {

System.out.println(n + " bottle" + plural
+ " of " + stuff + " on the wall,");

System.out.println(n + " bottle" + plural
+ " of " + stuff + ";");

System.out.println("You take one down "
+ "and pass it around:");

EXPRESSIONS Additive Operators (+ and -) for Numeric Types15.18.2

s

ric
DRAFT
--n;
plural = (n == 1) ? "" : "s";
if (n == 0)

break loop;
System.out.println(n + " bottle" + plural

+ " of " + stuff + " on the wall!");
System.out.println();

}
System.out.println("No bottles of " +

stuff + " on the wall!");
}

}

the methodprintSong will print a version of a children’s song. Popular value
for stuff include"pop" and"beer"; the most popular value forn is 100. Here is
the output that results fromBottles.printSong("slime", 3):

3 bottles of slime on the wall,
3 bottles of slime;
You take one down and pass it around:
2 bottles of slime on the wall!

2 bottles of slime on the wall,
2 bottles of slime;
You take one down and pass it around:
1 bottle of slime on the wall!

1 bottle of slime on the wall,
1 bottle of slime;
You take one down and pass it around:
No bottles of slime on the wall!

In the code, note the careful conditional generation of the singular “bottle”
when appropriate rather than the plural “bottles”; note also how the string con-
catenation operator was used to break the long constant string:

"You take one down and pass it around:"

into two pieces to avoid an inconveniently long line in the source code.

15.18.2 Additive Operators (+ and -) for Numeric Types

The binary+ operator performs addition when applied to two operands of nume
type, producing the sum of the operands. The binary- operator performs subtrac-
tion, producing the difference of two numeric operands.
379

15.18.2 Additive Operators (+ and -) for Numeric Types EXPRESSIONS

380

e of
ands.

8).
side
type,

he
ent

n of

les

rand.

site

is
des,

hen

t
DRAFT
Binary numeric promotion is performed on the operands (§5.6.2). The typ

an additive expression on numeric operands is the promoted type of its oper
If this promoted type isint or long, then integer arithmetic is performed; if this
promoted type isfloat or double, then floating-point arithmetic is performed.

Note that binary numeric promotion performs value set conversion (§5.1.
Addition is a commutative operation if the operand expressions have no

effects. Integer addition is associative when the operands are all of the same
but floating-point addition is not associative.

If an integer addition overflows, then the result is the low-order bits of t
mathematical sum as represented in some sufficiently large two’s-complem
format. If overflow occurs, then the sign of the result is not the same as the sig
the mathematical sum of the two operand values.

The result of a floating-point addition is determined using the following ru
of IEEE arithmetic:

• If either operand is NaN, the result is NaN.

• The sum of two infinities of opposite sign is NaN.

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and a finite value is equal to the infinite operand.

• The sum of two zeros of opposite sign is positive zero.

• The sum of two zeros of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero ope

• The sum of two nonzero finite values of the same magnitude and oppo
sign is positive zero.

• In the remaining cases, where neither an infinity, nor a zero, nor NaN
involved, and the operands have the same sign or have different magnitu
the exact mathematical sum is computed. A floating-point value set is t
chosen:

◆ If the addition expression is FP-strict (§15.4):

❖ If the type of the addition expression isfloat, then the float value set
must be chosen.

❖ If the type of the addition expression isdouble, then the double value se
must be chosen.

◆ If the addition expression is not FP-strict:

EXPRESSIONS Shift Operators 15.19

him

at the

sum.
tion
um
und-
adual

of
s the
float-
s

tion.

ur,

ft-
rand
DRAFT

❖ If the type of the addition expression isfloat, then either the float value
set or the float-extended-exponent value set may be chosen, at the w
of the implementation.

❖ If the type of the addition expression isdouble, then either the double
value set or the double-extended-exponent value set may be chosen,
whim of the implementation.

Next, a value must be chosen from the chosen value set to represent the
If the magnitude of the sum is too large to represent, we say the opera
overflows; the result is then an infinity of appropriate sign. Otherwise, the s
is rounded to the nearest value in the chosen value set using IEEE 754 ro
to-nearest mode. The Java programming language requires support of gr
underflow as defined by IEEE 754 (§4.2.4).

The binary- operator performs subtraction when applied to two operands
numeric type producing the difference of its operands; the left-hand operand i
minuend and the right-hand operand is the subtrahend. For both integer and
ing-point subtraction, it is always the case thata-b produces the same result a
a+(-b).

Note that, for integer values, subtraction from zero is the same as nega
However, for floating-point operands, subtraction from zero isnot the same as
negation, because ifx is +0.0, then0.0-x is +0.0, but-x is -0.0.

Despite the fact that overflow, underflow, or loss of information may occ
evaluation of a numeric additive operator never throws a run-time exception.

15.19 Shift Operators

Theshift operatorsinclude left shift<<, signed right shift>>, and unsigned right
shift >>>; they are syntactically left-associative (they group left-to-right). The le
hand operand of a shift operator is the value to be shifted; the right-hand ope
specifies the shift distance.

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression
381

15.20 Relational Operators EXPRESSIONS

382

nte-
) is
per-
pro-

f the

in

if the

in

ger

and

-
DRAFT
The type of each of the operands of a shift operator must be a primitive i

gral type, or a compile-time error occurs. Binary numeric promotion (§5.6.2
not performed on the operands; rather, unary numeric promotion (§5.6.1) is
formed on each operand separately. The type of the shift expression is the
moted type of the left-hand operand.

If the promoted type of the left-hand operand isint, only the five lowest-
order bits of the right-hand operand are used as the shift distance. It is as i
right-hand operand were subjected to a bitwise logical AND operator& (§15.22.1)
with the mask value0x1f. The shift distance actually used is therefore always
the range 0 to 31, inclusive.

If the promoted type of the left-hand operand islong, then only the six low-
est-order bits of the right-hand operand are used as the shift distance. It is as
right-hand operand were subjected to a bitwise logical AND operator& (§15.22.1)
with the mask value0x3f. The shift distance actually used is therefore always
the range 0 to 63, inclusive.

At run time, shift operations are performed on the two’s complement inte
representation of the value of the left operand.

The value ofn<<s is n left-shifteds bit positions; this is equivalent (even if
overflow occurs) to multiplication by two to the powers.

The value ofn>>s is n right-shifteds bit positions with sign-extension. The
resulting value is . For nonnegative values ofn, this is equivalent to trun-
cating integer division, as computed by the integer division operator/, by two to
the powers.

The value ofn>>>s is n right-shifteds bit positions with zero-extension. Ifn
is positive, then the result is the same as that ofn>>s; if n is negative, the result is
equal to that of the expression(n>>s)+(2<<~s) if the type of the left-hand oper-
and isint, and to the result of the expression(n>>s)+(2L<<~s) if the type of the
left-hand operand islong. The added term(2<<~s) or (2L<<~s) cancels out the
propagated sign bit. (Note that, because of the implicit masking of the right-h
operand of a shift operator,~s as a shift distance is equivalent to31-s when shift-
ing anint value and to63-s when shifting along value.)

15.20 Relational Operators

The relational operatorsare syntactically left-associative (they group left-to
right), but this fact is not useful; for example,a<b<c parses as(a<b)<c, which is
always a compile-time error, because the type ofa<b is alwaysboolean and< is
not an operator onboolean values.

n 2
s⁄

EXPRESSIONS Numerical Comparison Operators <, <=, >, and >=15.20.1

be a
ion

is

.8).
hat

tion

all

n

les

se is

ther-
DRAFT
RelationalExpression:

ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

The type of a relational expression is alwaysboolean.

15.20.1 Numerical Comparison Operators<, <=, >, and>=

The type of each of the operands of a numerical comparison operator must
primitive numeric type, or a compile-time error occurs. Binary numeric promot
is performed on the operands (§5.6.2). If the promoted type of the operands isint
or long, then signed integer comparison is performed; if this promoted type
float or double, then floating-point comparison is performed.

Note that binary numeric promotion performs value set conversion (§5.1
Comparison is carried out accurately on floating-point values, no matter w
value sets their representing values were drawn from.

The result of a floating-point comparison, as determined by the specifica
of the IEEE 754 standard, is:

• If either operand is NaN, then the result isfalse.

• All values other than NaN are ordered, with negative infinity less than
finite values, and positive infinity greater than all finite values.

• Positive zero and negative zero are considered equal. Therefore,-0.0<0.0 is
false, for example, but-0.0<=0.0 is true. (Note, however, that the meth-
odsMath.min andMath.max treat negative zero as being strictly smaller tha
positive zero.)

Subject to these considerations for floating-point numbers, the following ru
then hold for integer operands or for floating-point operands other than NaN:

• The value produced by the< operator istrue if the value of the left-hand
operand is less than the value of the right-hand operand, and otherwi
false.

• The value produced by the<= operator istrue if the value of the left-hand
operand is less than or equal to the value of the right-hand operand, and o
wise isfalse.
383

15.20.2 Type Comparison Operator instanceof EXPRESSIONS

384

se is

and

e

he

wn

class
):
DRAFT
• The value produced by the> operator istrue if the value of the left-hand

operand is greater than the value of the right-hand operand, and otherwi
false.

• The value produced by the>= operator istrue if the value of the left-hand
operand is greater than or equal to the value of the right-hand operand,
otherwise isfalse.

15.20.2 Type Comparison Operatorinstanceof

The type of aRelationalExpressionoperand of theinstanceof operator must be
a reference type or the null type; otherwise, a compile-time error occurs. TheRef-
erenceTypementioned after theinstanceof operator must denote a referenc
type; otherwise, a compile-time error occurs.

At run time, the result of theinstanceof operator istrue if the value of the
RelationalExpressionis notnull and the reference could be cast (§15.16) to t
ReferenceTypewithout raising aClassCastException. Otherwise the result is
false.

If a cast of theRelationalExpressionto theReferenceTypewould be rejected
as a compile-time error, then theinstanceof relational expression likewise pro-
duces a compile-time error. In such a situation, the result of theinstanceof
expression could never betrue.

Consider the example program:

class Point { int x, y; }

class Element { int atomicNumber; }

class Test {
public static void main(String[] args) {

Point p = new Point();
Element e = new Element();
if (e instanceof Point) { // compile-time error

System.out.println("I get your point!");
p = (Point)e; // compile-time error

}
}

}

This example results in two compile-time errors. The cast(Point)e is incorrect
because no instance ofElement or any of its possible subclasses (none are sho
here) could possibly be an instance of any subclass ofPoint. Theinstanceof
expression is incorrect for exactly the same reason. If, on the other hand, the
Point were a subclass ofElement (an admittedly strange notion in this example

class Point extends Element { int x, y; }

EXPRESSIONS Numerical Equality Operators == and !=15.21.1

the

of

ht),

rela-

eric
f-
The

ary
e of
o-

.8).
hat

of
DRAFT
then the cast would be possible, though it would require a run-time check, and
instanceof expression would then be sensible and valid. The cast(Point)e
would never raise an exception because it would not be executed if the valuee
could not correctly be cast to typePoint.

15.21 Equality Operators

The equality operators are syntactically left-associative (they group left-to-rig
but this fact is essentially never useful; for example,a==b==c parses as
(a==b)==c. The result type ofa==b is alwaysboolean, andc must therefore be
of typeboolean or a compile-time error occurs. Thus,a==b==c doesnot test to
see whethera, b, andc are all equal.

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

The == (equal to) and the!= (not equal to) operators are analogous to the
tional operators except for their lower precedence. Thus,a<b==c<d is true when-
evera<b andc<d have the same truth value.

The equality operators may be used to compare two operands of num
type, or two operands of typeboolean, or two operands that are each of either re
erence type or the null type. All other cases result in a compile-time error.
type of an equality expression is alwaysboolean.

In all cases,a!=b produces the same result as!(a==b). The equality opera-
tors are commutative if the operand expressions have no side effects.

15.21.1 Numerical Equality Operators== and !=

If the operands of an equality operator are both of primitive numeric type, bin
numeric promotion is performed on the operands (§5.6.2). If the promoted typ
the operands isint or long, then an integer equality test is performed; if the pr
moted type isfloat or double, then a floating-point equality test is performed.

Note that binary numeric promotion performs value set conversion (§5.1
Comparison is carried out accurately on floating-point values, no matter w
value sets their representing values were drawn from.

Floating-point equality testing is performed in accordance with the rules
the IEEE 754 standard:
385

15.21.2 Boolean Equality Operators == and != EXPRESSIONS

386

a

the
fin-

ly to

les

ult is

the

null

er
val-
DRAFT
• If either operand is NaN, then the result of== is false but the result of!= is
true. Indeed, the testx!=x is true if and only if the value ofx is NaN. (The
methodsFloat.isNaN andDouble.isNaN may also be used to test whether
value is NaN.)

• Positive zero and negative zero are considered equal. Therefore,-0.0==0.0 is
true, for example.

• Otherwise, two distinct floating-point values are considered unequal by
equality operators. In particular, there is one value representing positive in
ity and one value representing negative infinity; each compares equal on
itself, and each compares unequal to all other values.

Subject to these considerations for floating-point numbers, the following ru
then hold for integer operands or for floating-point operands other than NaN:

• The value produced by the== operator istrue if the value of the left-hand
operand is equal to the value of the right-hand operand; otherwise, the res
false.

• The value produced by the!= operator istrue if the value of the left-hand
operand is not equal to the value of the right-hand operand; otherwise,
result isfalse.

15.21.2 Boolean Equality Operators== and !=

If the operands of an equality operator are both of typeboolean, then the opera-
tion is boolean equality. Theboolean equality operators are associative.

The result of== is true if the operands are bothtrue or bothfalse; other-
wise, the result isfalse.

The result of!= is false if the operands are bothtrue or bothfalse; other-
wise, the result istrue. Thus!= behaves the same as^ (§15.22.2) when applied
to boolean operands.

15.21.3 Reference Equality Operators== and !=

If the operands of an equality operator are both of either reference type or the
type, then the operation is object equality.

A compile-time error occurs if it is impossible to convert the type of eith
operand to the type of the other by a casting conversion (§5.5). The run-time
ues of the two operands would necessarily be unequal.

At run time, the result of== is true if the operand values are bothnull or
both refer to the same object or array; otherwise, the result isfalse.

EXPRESSIONS Integer Bitwise Operators &, ^, and |15.22.1

t
.
ght).
fects.

s of

bit-

DRAFT

The result of!= is false if the operand values are bothnull or both refer to
the same object or array; otherwise, the result istrue.

While == may be used to compare references of typeString, such an equal-
ity test determines whether or not the two operands refer to the sameString
object. The result isfalse if the operands are distinctString objects, even if
they contain the same sequence of characters. The contents of two stringss andt
can be tested for equality by the method invocations.equals(t). See also
§3.10.5.

15.22 Bitwise and Logical Operators

The bitwise operatorsand logical operatorsinclude the AND operator&, exclu-
sive OR operator̂ , and inclusive OR operator|. These operators have differen
precedence, with& having the highest precedence and| the lowest precedence
Each of these operators is syntactically left-associative (each groups left-to-ri
Each operator is commutative if the operand expressions have no side ef
Each operator is associative.

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

The bitwise and logical operators may be used to compare two operand
numeric type or two operands of typeboolean. All other cases result in a com-
pile-time error.

15.22.1 Integer Bitwise Operators&, ^, and|

When both operands of an operator&, ^, or | are of primitive integral type, binary
numeric promotion is first performed on the operands (§5.6.2). The type of the
wise operator expression is the promoted type of the operands.

For&, the result value is the bitwise AND of the operand values.
For^, the result value is the bitwise exclusive OR of the operand values.
For|, the result value is the bitwise inclusive OR of the operand values.
387

15.22.2 Boolean Logical Operators &, ^, and | EXPRESSIONS

388

,

if

nd

cur-

e is

of the

ated
DRAFT
For example, the result of the expression0xff00 & 0xf0f0 is 0xf000. The

result of0xff00 ^ 0xf0f0 is 0x0ff0.The result of0xff00 | 0xf0f0 is 0xfff0.

15.22.2 Boolean Logical Operators&, ^, and|

When both operands of a&, ^, or | operator are of typeboolean, then the type of
the bitwise operator expression isboolean.

For&, the result value istrue if both operand values aretrue; otherwise, the
result isfalse.

For ^, the result value istrue if the operand values are different; otherwise
the result isfalse.

For |, the result value isfalse if both operand values arefalse; otherwise,
the result istrue.

15.23 Conditional-And Operator&&

The&& operator is like& (§15.22.2), but evaluates its right-hand operand only
the value of its left-hand operand istrue. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects a
result value; that is, for any expressionsa, b, andc, evaluation of the expression
((a)&&(b))&&(c) produces the same result, with the same side effects oc
ring in the same order, as evaluation of the expression(a)&&((b)&&(c)).

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

Each operand of&& must be of typeboolean, or a compile-time error occurs.
The type of a conditional-and expression is alwaysboolean.

At run time, the left-hand operand expression is evaluated first; if its valu
false, the value of the conditional-and expression isfalse and the right-hand
operand expression is not evaluated. If the value of the left-hand operand istrue,
then the right-hand expression is evaluated and its value becomes the value
conditional-and expression. Thus,&& computes the same result as& on boolean
operands. It differs only in that the right-hand operand expression is evalu
conditionally rather than always.

EXPRESSIONS Conditional Operator ? : 15.25

if

nd

cur-

e is

of the

than

ide

to-

rd

.
third
DRAFT
15.24 Conditional-Or Operator||

The|| operator is like| (§15.22.2), but evaluates its right-hand operand only
the value of its left-hand operand isfalse. It is syntactically left-associative (it
groups left-to-right). It is fully associative with respect to both side effects a
result value; that is, for any expressionsa, b, andc, evaluation of the expression
((a)||(b))||(c) produces the same result, with the same side effects oc
ring in the same order, as evaluation of the expression(a)||((b)||(c)).

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

Each operand of|| must be of typeboolean, or a compile-time error occurs.
The type of a conditional-or expression is alwaysboolean.

At run time, the left-hand operand expression is evaluated first; if its valu
true, the value of the conditional-or expression istrue and the right-hand oper-
and expression is not evaluated. If the value of the left-hand operand isfalse,
then the right-hand expression is evaluated and its value becomes the value
conditional-or expression.

Thus,|| computes the same result as| on boolean operands. It differs only
in that the right-hand operand expression is evaluated conditionally rather
always.

15.25 Conditional Operator? :

The conditional operator? : uses the boolean value of one expression to dec
which of two other expressions should be evaluated.

The conditional operator is syntactically right-associative (it groups right-
left), so thata?b:c?d:e?f:g means the same asa?b:(c?d:(e?f:g)).

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

The conditional operator has three operand expressions;? appears between
the first and second expressions, and: appears between the second and thi
expressions.

The first expression must be of typeboolean, or a compile-time error occurs
The conditional operator may be used to choose between second and

operands of numeric type, or second and third operands of typeboolean, or sec-
389

15.25 Conditional Operator ? : EXPRESSIONS

390

. All

res-
-

null

e are

nd
f the
rms

the
that

ust
e
is
he

val-
ird

is

s

DRAFT
ond and third operands that are each of either reference type or the null type
other cases result in a compile-time error.

Note that it is not permitted for either the second or the third operand exp
sion to be an invocation of avoid method. In fact, it is not permitted for a condi
tional expression to appear in any context where an invocation of avoid method
could appear (§14.8).

The type of a conditional expression is determined as follows:

• If the second and third operands have the same type (which may be the
type), then that is the type of the conditional expression.

• Otherwise, if the second and third operands have numeric type, then ther
several cases:

◆ If one of the operands is of typebyte and the other is of typeshort, then
the type of the conditional expression isshort.

◆ If one of the operands is of typeT whereT is byte, short, or char, and the
other operand is a constant expression of typeint whose value is represent-
able in typeT, then the type of the conditional expression isT.

◆ Otherwise, binary numeric promotion (§5.6.2) is applied to the opera
types, and the type of the conditional expression is the promoted type o
second and third operands. Note that binary numeric promotion perfo
value set conversion (§5.1.8).

• If one of the second and third operands is of the null type and the type of
other is a reference type, then the type of the conditional expression is
reference type.

• If the second and third operands are of different reference types, then it m
be possible to convert one of the types to the other type (call this latter typT)
by assignment conversion (§5.2); the type of the conditional expressionT.
It is a compile-time error if neither type is assignment compatible with t
other type.

At run time, the first operand expression of the conditional expression is e
uated first; itsboolean value is then used to choose either the second or the th
operand expression:

• If the value of the first operand istrue, then the second operand expression
chosen.

• If the value of the first operand isfalse, then the third operand expression i
chosen.

EXPRESSIONS Assignment Operators15.26

con-
tated
eval-

le, or
as a
ari-

). The

able
is not

k

e first
DRAFT
The chosen operand expression is then evaluated and the resulting value is
verted to the type of the conditional expression as determined by the rules s
above. The operand expression not chosen is not evaluated for that particular
uation of the conditional expression.

15.26 Assignment Operators

There are 12assignment operators; all are syntactically right-associative (they
group right-to-left). Thus,a=b=c meansa=(b=c), which assigns the value ofc to
b and then assigns the value ofb to a.

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
ExpressionName
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

The result of the first operand of an assignment operator must be a variab
a compile-time error occurs. This operand may be a named variable, such
local variable or a field of the current object or class, or it may be a computed v
able, as can result from a field access (§15.11) or an array access (§15.13
type of the assignment expression is the type of the variable.

At run time, the result of the assignment expression is the value of the vari
after the assignment has occurred. The result of an assignment expression
itself a variable.

A variable that is declaredfinal cannot be assigned to (unless it is a blan
final variable (§4.5.4)), because when an access of afinal variable is used as an
expression, the result is a value, not a variable, and so it cannot be used as th
operand of an assignment operator.
391

15.26.1 Simple Assignment Operator = EXPRESSIONS

392

on-

nd
s are

lua-
uptly
sign-

etes
rea-

f the
pro-
result

, then

ccess
sign-
pres-
hand

cess
sign-
hand

etes
rea-

to an
ater
DRAFT
15.26.1 Simple Assignment Operator=

A compile-time error occurs if the type of the right-hand operand cannot be c
verted to the type of the variable by assignment conversion (§5.2).

At run time, the expression is evaluated in one of two ways. If the left-ha
operand expression is not an array access expression, then three step
required:

• First, the left-hand operand is evaluated to produce a variable. If this eva
tion completes abruptly, then the assignment expression completes abr
for the same reason; the right-hand operand is not evaluated and no as
ment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation compl
abruptly, then the assignment expression completes abruptly for the same
son and no assignment occurs.

• Otherwise, the value of the right-hand operand is converted to the type o
left-hand variable, is subjected to value set conversion (§5.1.8) to the ap
priate standard value set (not an extended-exponent value set), and the
of the conversion is stored into the variable.

If the left-hand operand expression is an array access expression (§15.13)
many steps are required:

• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index subex
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array ac
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and the right-
operand is not evaluated and no assignment occurs.

• Otherwise, the right-hand operand is evaluated. If this evaluation compl
abruptly, then the assignment expression completes abruptly for the same
son and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gre

EXPRESSIONS Simple Assignment Operator =15.26.1

d an

nent
This

.

po-
tan-
f the

po-

of
that

16),

n

the

ow-
DRAFT
than or equal to the length of the array, then no assignment occurs an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a compo
of the array referred to by the value of the array reference subexpression.
component is a variable; call its typeSC. Also, letTC be the type of the left-
hand operand of the assignment operator as determined at compile time

◆ If TC is a primitive type, thenSC is necessarily the same asTC. The value of
the right-hand operand is converted to the type of the selected array com
nent, is subjected to value set conversion (§5.1.8) to the appropriate s
dard value set (not an extended-exponent value set), and the result o
conversion is stored into the array component.

◆ If TC is a reference type, thenSC may not be the same asTC, but rather a
type that extends or implementsTC . Let RC be the class of the object
referred to by the value of the right-hand operand at run time.

The compiler may be able to prove at compile time that the array com
nent will be of typeTC exactly (for example,TC might befinal). But if the
compiler cannot prove at compile time that the array component will be
typeTC exactly, then a check must be performed at run time to ensure
the classRC is assignment compatible (§5.2) with the actual typeSC of the
array component. This check is similar to a narrowing cast (§5.5, §15.
except that if the check fails, anArrayStoreException is thrown rather
than aClassCastException. Therefore:

❖ If classRC is not assignable to typeSC, then no assignment occurs and a
ArrayStoreException is thrown.

Otherwise, the reference value of the right-hand operand is stored into
selected array component.

The rules for assignment to an array component are illustrated by the foll
ing example program:

class ArrayReferenceThrow extends RuntimeException { }

class IndexThrow extends RuntimeException { }

class RightHandSideThrow extends RuntimeException { }

class IllustrateSimpleArrayAssignment {

static Object[] objects = { new Object(), new Object() };

static Thread[] threads = { new Thread(), new Thread() };
393

15.26.1 Simple Assignment Operator = EXPRESSIONS

394
DRAFT
static Object[] arrayThrow() {

throw new ArrayReferenceThrow();
}

static int indexThrow() { throw new IndexThrow(); }

static Thread rightThrow() {
throw new RightHandSideThrow();

}

static String name(Object q) {
String sq = q.getClass().getName();
int k = sq.lastIndexOf('.');
return (k < 0) ? sq : sq.substring(k+1);

}

static void testFour(Object[] x, int j, Object y) {
String sx = x == null ? "null" : name(x[0]) + "s";
String sy = name(y);
System.out.println();
try {

System.out.print(sx + "[throw]=throw => ");
x[indexThrow()] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[throw]=" + sy + " => ");
x[indexThrow()] = y;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]=throw => ");
x[j] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]=" + sy + " => ");
x[j] = y;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
}

public static void main(String[] args) {
try {

System.out.print("throw[throw]=throw => ");
arrayThrow()[indexThrow()] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]=Thread => ");
arrayThrow()[indexThrow()] = new Thread();

EXPRESSIONS Simple Assignment Operator =15.26.1
DRAFT
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]=throw => ");
arrayThrow()[1] = rightThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]=Thread => ");
arrayThrow()[1] = new Thread();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

testFour(null, 1, new StringBuffer());
testFour(null, 1, new StringBuffer());
testFour(null, 9, new Thread());
testFour(null, 9, new Thread());
testFour(objects, 1, new StringBuffer());
testFour(objects, 1, new Thread());
testFour(objects, 9, new StringBuffer());
testFour(objects, 9, new Thread());
testFour(threads, 1, new StringBuffer());
testFour(threads, 1, new Thread());
testFour(threads, 9, new StringBuffer());
testFour(threads, 9, new Thread());

}

}

This program prints:

throw[throw]=throw => ArrayReferenceThrow
throw[throw]=Thread => ArrayReferenceThrow
throw[1]=throw => ArrayReferenceThrow
throw[1]=Thread => ArrayReferenceThrow

null[throw]=throw => IndexThrow
null[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=StringBuffer => IndexThrow
null[1]=throw => RightHandSideThrow
null[1]=StringBuffer => NullPointerException

null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
null[9]=Thread => NullPointerException
395

15.26.1 Simple Assignment Operator = EXPRESSIONS

396

e of
DRAFT
null[throw]=throw => IndexThrow
null[throw]=Thread => IndexThrow
null[9]=throw => RightHandSideThrow
null[9]=Thread => NullPointerException

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=StringBuffer => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[1]=throw => RightHandSideThrow
Objects[1]=Thread => Okay!

Objects[throw]=throw => IndexThrow
Objects[throw]=StringBuffer => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=StringBuffer => ArrayIndexOutOfBoundsException

Objects[throw]=throw => IndexThrow
Objects[throw]=Thread => IndexThrow
Objects[9]=throw => RightHandSideThrow
Objects[9]=Thread => ArrayIndexOutOfBoundsException

Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=StringBuffer => ArrayStoreException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[1]=throw => RightHandSideThrow
Threads[1]=Thread => Okay!

Threads[throw]=throw => IndexThrow
Threads[throw]=StringBuffer => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=StringBuffer => ArrayIndexOutOfBoundsException

Threads[throw]=throw => IndexThrow
Threads[throw]=Thread => IndexThrow
Threads[9]=throw => RightHandSideThrow
Threads[9]=Thread => ArrayIndexOutOfBoundsException

The most interesting case of the lot is the one thirteenth from the end:

Threads[1]=StringBuffer => ArrayStoreException

which indicates that the attempt to store a reference to aStringBuffer into an
array whose components are of typeThread throws anArrayStoreException.
The code is type-correct at compile time: the assignment has a left-hand sid
typeObject[] and a right-hand side of typeObject. At run time, the first actual

EXPRESSIONS Compound Assignment Operators15.26.2

ype,
ft-

fol-

nd
quired:

lua-
uptly
sign-

hand
ign-
ment

ght-
om-
nly
ent

ccurs.

the
pri-
ult of
DRAFT
argument to methodtestFour is a reference to an instance of “array ofThread”
and the third actual argument is a reference to an instance of classStringBuffer.

15.26.2 Compound Assignment Operators

All compound assignment operators require both operands to be of primitive t
except for+=, which allows the right-hand operand to be of any type if the le
hand operand is of typeString.

A compound assignment expression of the formE1 op= E2 is equivalent to
E1 = (T)((E1) op (E2)), whereT is the type ofE1, except thatE1 is evaluated
only once. Note that the implied cast to typeT may be either an identity conver-
sion (§5.1.1) or a narrowing primitive conversion (§5.1.3). For example, the
lowing code is correct:

short x = 3;
x += 4.6;

and results inx having the value7 because it is equivalent to:

short x = 3;
x = (short)(x + 4.6);

At run time, the expression is evaluated in one of two ways. If the left-ha
operand expression is not an array access expression, then four steps are re

• First, the left-hand operand is evaluated to produce a variable. If this eva
tion completes abruptly, then the assignment expression completes abr
for the same reason; the right-hand operand is not evaluated and no as
ment occurs.

• Otherwise, the value of the left-hand operand is saved and then the right-
operand is evaluated. If this evaluation completes abruptly, then the ass
ment expression completes abruptly for the same reason and no assign
occurs.

• Otherwise, the saved value of the left-hand variable and the value of the ri
hand operand are used to perform the binary operation indicated by the c
pound assignment operator. If this operation completes abruptly (the o
possibility is an integer division by zero—see §15.17.2), then the assignm
expression completes abruptly for the same reason and no assignment o

• Otherwise, the result of the binary operation is converted to the type of
left-hand variable, subjected to value set conversion (§5.1.8) to the appro
ate standard value set (not an extended-exponent value set), and the res
the conversion is stored into the variable.
397

15.26.2 Compound Assignment Operators EXPRESSIONS

398

, then

ccess
sign-
pres-
hand

cess
sign-
hand

to an
ater
d an

nent
The

ated.
om-
imple
efore
ssion,
and

hose

ed at

and
om-
nly

ign-
sign-
DRAFT
If the left-hand operand expression is an array access expression (§15.13)
many steps are required:

• First, the array reference subexpression of the left-hand operand array a
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason; the index subex
sion (of the left-hand operand array access expression) and the right-
operand are not evaluated and no assignment occurs.

• Otherwise, the index subexpression of the left-hand operand array ac
expression is evaluated. If this evaluation completes abruptly, then the as
ment expression completes abruptly for the same reason and the right-
operand is not evaluated and no assignment occurs.

• Otherwise, if the value of the array reference subexpression isnull, then no
assignment occurs and aNullPointerException is thrown.

• Otherwise, the value of the array reference subexpression indeed refers
array. If the value of the index subexpression is less than zero, or gre
than or equal to the length of the array, then no assignment occurs an
ArrayIndexOutOfBoundsException is thrown.

• Otherwise, the value of the index subexpression is used to select a compo
of the array referred to by the value of the array reference subexpression.
value of this component is saved and then the right-hand operand is evalu
If this evaluation completes abruptly, then the assignment expression c
pletes abruptly for the same reason and no assignment occurs. (For a s
assignment operator, the evaluation of the right-hand operand occurs b
the checks of the array reference subexpression and the index subexpre
but for a compound assignment operator, the evaluation of the right-h
operand occurs after these checks.)

• Otherwise, consider the array component selected in the previous step, w
value was saved. This component is a variable; call its typeS. Also, letT be
the type of the left-hand operand of the assignment operator as determin
compile time.

◆ If T is a primitive type, thenS is necessarily the same asT.

❖ The saved value of the array component and the value of the right-h
operand are used to perform the binary operation indicated by the c
pound assignment operator. If this operation completes abruptly (the o
possibility is an integer division by zero—see §15.17.2), then the ass
ment expression completes abruptly for the same reason and no as
ment occurs.

EXPRESSIONS Compound Assignment Operators15.26.2

the
8) to
set),

d for

and
tion)
arily
sion

y

d by
DRAFT
❖ Otherwise, the result of the binary operation is converted to the type of

selected array component, subjected to value set conversion (§5.1.
the appropriate standard value set (not an extended-exponent value
and the result of the conversion is stored into the array component.

◆ If T is a reference type, then it must beString. Because classString is a
final class,S must also beString. Therefore the run-time check that is
sometimes required for the simple assignment operator is never require
a compound assignment operator.

❖ The saved value of the array component and the value of the right-h
operand are used to perform the binary operation (string concatena
indicated by the compound assignment operator (which is necess
+=). If this operation completes abruptly, then the assignment expres
completes abruptly for the same reason and no assignment occurs.

Otherwise, theString result of the binary operation is stored into the arra
component.

The rules for compound assignment to an array component are illustrate
the following example program:

class ArrayReferenceThrow extends RuntimeException { }

class IndexThrow extends RuntimeException { }

class RightHandSideThrow extends RuntimeException { }

class IllustrateCompoundArrayAssignment {

static String[] strings = { "Simon", "Garfunkel" };

static double[] doubles = { Math.E, Math.PI };

static String[] stringsThrow() {
throw new ArrayReferenceThrow();

}

static double[] doublesThrow() {
throw new ArrayReferenceThrow();

}

static int indexThrow() { throw new IndexThrow(); }

static String stringThrow() {
throw new RightHandSideThrow();

}

static double doubleThrow() {
throw new RightHandSideThrow();

}

399

15.26.2 Compound Assignment Operators EXPRESSIONS

400
DRAFT
static String name(Object q) {

String sq = q.getClass().getName();
int k = sq.lastIndexOf('.');
return (k < 0) ? sq : sq.substring(k+1);

}

static void testEight(String[] x, double[] z, int j) {
String sx = (x == null) ? "null" : "Strings";
String sz = (z == null) ? "null" : "doubles";
System.out.println();
try {

System.out.print(sx + "[throw]+=throw => ");
x[indexThrow()] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[throw]+=throw => ");
z[indexThrow()] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print(sx + "[throw]+=\"heh\" => ");
x[indexThrow()] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[throw]+=12345 => ");
z[indexThrow()] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]+=throw => ");
x[j] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[" + j + "]+=throw => ");
z[j] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sx + "[" + j + "]+=\"heh\" => ");
x[j] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print(sz + "[" + j + "]+=12345 => ");
z[j] += 12345;

EXPRESSIONS Compound Assignment Operators15.26.2
DRAFT
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
}

public static void main(String[] args) {
try {

System.out.print("throw[throw]+=throw => ");
stringsThrow()[indexThrow()] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]+=throw => ");
doublesThrow()[indexThrow()] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[throw]+=\"heh\" => ");
stringsThrow()[indexThrow()] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

try {
System.out.print("throw[throw]+=12345 => ");
doublesThrow()[indexThrow()] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=throw => ");
stringsThrow()[1] += stringThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=throw => ");
doublesThrow()[1] += doubleThrow();
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=\"heh\" => ");
stringsThrow()[1] += "heh";
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }
try {

System.out.print("throw[1]+=12345 => ");
doublesThrow()[1] += 12345;
System.out.println("Okay!");

} catch (Throwable e) { System.out.println(name(e)); }

testEight(null, null, 1);
testEight(null, null, 9);
testEight(strings, doubles, 1);
401

15.26.2 Compound Assignment Operators EXPRESSIONS

402
DRAFT
testEight(strings, doubles, 9);

}

}

This program prints:

throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+=throw => ArrayReferenceThrow
throw[throw]+="heh" => ArrayReferenceThrow
throw[throw]+=12345 => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+=throw => ArrayReferenceThrow
throw[1]+="heh" => ArrayReferenceThrow
throw[1]+=12345 => ArrayReferenceThrow

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[1]+=throw => NullPointerException
null[1]+=throw => NullPointerException
null[1]+="heh" => NullPointerException
null[1]+=12345 => NullPointerException

null[throw]+=throw => IndexThrow
null[throw]+=throw => IndexThrow
null[throw]+="heh" => IndexThrow
null[throw]+=12345 => IndexThrow
null[9]+=throw => NullPointerException
null[9]+=throw => NullPointerException
null[9]+="heh" => NullPointerException
null[9]+=12345 => NullPointerException

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow
Strings[1]+="heh" => Okay!
doubles[1]+=12345 => Okay!

Strings[throw]+=throw => IndexThrow
doubles[throw]+=throw => IndexThrow
Strings[throw]+="heh" => IndexThrow
doubles[throw]+=12345 => IndexThrow
Strings[9]+=throw => ArrayIndexOutOfBoundsException
doubles[9]+=throw => ArrayIndexOutOfBoundsException
Strings[9]+="heh" => ArrayIndexOutOfBoundsException
doubles[9]+=12345 => ArrayIndexOutOfBoundsException

EXPRESSIONS Expression 15.27

gets
This
er the

ide

tor.
DRAFT
The most interesting cases of the lot are tenth and eleventh from the end:

Strings[1]+=throw => RightHandSideThrow
doubles[1]+=throw => RightHandSideThrow

They are the cases where a right-hand side that throws an exception actually
to throw the exception; moreover, they are the only such cases in the lot.
demonstrates that the evaluation of the right-hand operand indeed occurs aft
checks for a null array reference value and an out-of-bounds index value.

The following program illustrates the fact that the value of the left-hand s
of a compound assignment is saved before the right-hand side is evaluated:

class Test {
public static void main(String[] args) {

int k = 1;
int[] a = { 1 };
k += (k = 4) * (k + 2);
a[0] += (a[0] = 4) * (a[0] + 2);
System.out.println("k==" + k + " and a[0]==" + a[0]);

}
}

This program prints:

k==25 and a[0]==25

The value1 of k is saved by the compound assignment operator+= before its
right-hand operand(k = 4) * (k + 2) is evaluated. Evaluation of this right-hand
operand then assigns4 to k, calculates the value6 for k + 2, and then multiplies
4 by 6 to get24. This is added to the saved value1 to get25, which is then stored
into k by the+= operator. An identical analysis applies to the case that usesa[0].
In short, the statements

k += (k = 4) * (k + 2);
a[0] += (a[0] = 4) * (a[0] + 2);

behave in exactly the same manner as the statements:

k = k + (k = 4) * (k + 2);
a[0] = a[0] + (a[0] = 4) * (a[0] + 2);

15.27 Expression

An Expression is any assignment expression:

Expression:
AssignmentExpression

Unlike C and C++, the Java programming language has no comma opera
403

15.28 Constant Expression EXPRESSIONS

404

f

t

.4),
con-
DRAFT

15.28 Constant Expression

ConstantExpression:
Expression

A compile-time constant expressionis an expression denoting a value o
primitive type or aString that is composed using only the following:

• Literals of primitive type and literals of typeString

• Casts to primitive types and casts to typeString

• The unary operators+, -, ~, and! (but not++ or --)

• The multiplicative operators*, /, and%

• The additive operators+ and-

• The shift operators<<, >>, and>>>

• The relational operators<, <=, >, and>= (but notinstanceof)

• The equality operators== and!=

• The bitwise and logical operators&, ^, and|

• The conditional-and operator&& and the conditional-or operator||

• The ternary conditional operator? :

• Simple names that refer tofinal variables whose initializers are constan
expressions

• Qualified names of the formTypeName. Identifier that refer tofinal vari-
ables whose initializers are constant expressions

Compile-time constant expressions are used incase labels inswitch statements
(§14.10) and have a special significance for assignment conversion (§5.2).

A compile-time constant expression is always treated as FP-strict (§15
even if it occurs in a context where a non-constant expression would not be
sidered to be FP-strict.

Examples of constant expressions:

true

(short)(1*2*3*4*5*6)

Integer.MAX_VALUE / 2

2.0 * Math.PI

EXPRESSIONS Constant Expression15.28
DRAFT
"The integer " + Long.MAX_VALUE + " is mighty big."
405

15.28 Constant Expression EXPRESSIONS

406
DRAFT

C H A P T E R 16
407

t

va
that,

st
st

sign-
he

ords

iable
ss.

o the
an
and
DRAFT
Definite Assignmen

EACH local variable (§14.4) and every blankfinal (§4.5.4) field (§8.3.1.2)
must have adefinitely assignedvalue when any access of its value occurs. A Ja
compiler must carry out a specific conservative flow analysis to make sure
for every access of a local variable or blankfinal field f, f is definitely assigned
before the access; otherwise a compile-time error must occur.

Similarly, every blankfinal variable must be assigned at most once; it mu
be definitely unassignedwhen an assignment to it occurs. A Java compiler mu
carry out a specific conservative flow analysis to make sure that, for every as
ment to a blankfinal variable, the variable is definitely unassigned before t
assignment; otherwise a compile-time error must occur.

The remainder of this chapter is devoted to a precise explanation of the w
“definitely assigned before” and “definitely unassigned before”.

The idea behind definite assignment is that an assignment to the local var
or blankfinal field must occur on every possible execution path to the acce
Similarly, the idea behind definite unassignment is that no other assignment t
blank final variable is permitted to occur on any possible execution path to
assignment. The analysis takes into account the structure of statements
expressions; it also provides a special treatment of the expression operators!, &&,
||, and? :, and of boolean-valued constant expressions.

For example, a Java compiler recognizes thatk is definitely assigned before
its access (as an argument of a method invocation) in the code:

{
int k;
if (v > 0 && (k = System.in.read()) >= 0)

System.out.println(k);
}

because the access occurs only if the value of the expression:

v > 0 && (k = System.in.read()) >= 0

is true, and the value can betrue only if the assignment tok is executed (more
properly, evaluated).

Similarly, a Java compiler will recognize that in the code:

16 Definite Assignment DEFINITE ASSIGNMENT

408

n

t are

sions

ode:

e

out
, the
DRAFT
{

int k;
while (true) {

k = n;
if (k >= 5) break;
n = 6;

}
System.out.println(k);

}

the variablek is definitely assigned by thewhile statement because the conditio
expressiontrue never has the valuefalse, so only thebreak statement can
cause thewhile statement to complete normally, andk is definitely assigned
before thebreak statement.

On the other hand, the code

{
int k;
while (n < 4) {

k = n;
if (k >= 5) break;
n = 6;

}
System.out.println(k);// k is not “definitely assigned” before this

}

must be rejected by a Java compiler, because in this case thewhile statement is
not guaranteed to execute its body as far as the rules of definite assignmen
concerned.

Except for the special treatment of the conditional boolean operators&&, ||,
and ? : and of boolean-valued constant expressions, the values of expres
are not taken into account in the flow analysis.

For example, a Java compiler must produce a compile-time error for the c

{
int k;
int n = 5;
if (n > 2)

k = 3;
System.out.println(k); // k is not “definitely assigned” before this

}

even though the value ofn is known at compile time, and in principle it can b
known at compile time that the assignment tok will always be executed (more
properly, evaluated). A Java compiler must operate according to the rules laid
in this section. The rules recognize only constant expressions; in this example
expressionn > 2 is not a constant expression as defined in §15.28.

DEFINITE ASSIGNMENT Definite Assignment 16

is

iler

is
no
:
DRAFT

As another example, a Java compiler will accept the code:

void flow(boolean flag) {
int k;
if (flag)

k = 3;
else

k = 4;
System.out.println(k);

}

as far as definite assignment ofk is concerned, because the rules outlined in th
section allow it to tell thatk is assigned no matter whether the flag istrue or
false. But the rules do not accept the variation:

void flow(boolean flag) {
int k;
if (flag)

k = 3;
if (!flag)

k = 4;
System.out.println(k); // k is not “definitely assigned” before here

}

and so compiling this program must cause a compile-time error to occur.
A related example illustrates rules of definite unassignment. A Java comp

will accept the code:

void unflow(boolean flag) {
final int k;
if (flag) {

k = 3;
System.out.println(k);

}
else {

k = 4;
System.out.println(k);

}
}

as far as definite unassignment ofk is concerned, because the rules outlined in th
section allow it to tell thatk is assigned at most once (indeed, exactly once)
matter whether the flag istrue or false. But the rules do not accept the variation

void unflow(boolean flag) {
final int k;
if (flag) {

k = 3;
System.out.println(k);
409

16 Definite Assignment DEFINITE ASSIGNMENT

410

s in

tion

u-

and
efini-

n is
DRAFT
}
if (!flag) {

k = 4; // k is not “definitely unassigned” before here
System.out.println(k);

}
}

and so compiling this program must cause a compile-time error to occur.
In order to precisely specify all the cases of definite assignment, the rule

this section define several technical terms:

• whether a variable isdefinitely assigned before a statement or expression;

• whether a variable isdefinitely unassigned before a statement or expression;

• whether a variable isdefinitely assigned aftera statement or expression; and

• whether a variable isdefinitely unassigned aftera statement or expression.

For boolean-valued expressions, the last two are refined into four cases:

• whether a variable isdefinitely assigned after the expressionwhen true;

• whether a variable isdefinitely unassigned after the expressionwhen true;

• whether a variable isdefinitely assigned after the expressionwhen false; and

• whether a variable isdefinitely unassigned after the expressionwhen false.

Herewhen true andwhen false refer to the value of the expression.
For example, the local variable k is definitely assigned a value after evalua

of the expression

a && ((k=m) > 5)

when the expression istrue but not when the expression isfalse (because ifa is
false, then the assignment tok is not necessarily executed (more properly, eval
ated)).

The phrase “V is definitely assigned afterX ” (whereV is a local variable andX
is a statement or expression) means “V is definitely assigned afterX if X completes
normally”. If X completes abruptly, the assignment need not have occurred,
the rules stated here take this into account. A peculiar consequence of this d
tion is that “V is definitely assigned afterbreak;” is always true! Because a
break statement never completes normally, it is vacuously true thatV has been
assigned a value if thebreak statement completes normally.

Similarly, the statement “V is definitely unassigned afterX ” (whereV is a vari-
able andX is a statement or expression) means “V is definitely unassigned afterX
if X completes normally”. An even more peculiar consequence of this definitio

DEFINITE ASSIGNMENT Definite Assignment 16

is

-

nd
ore
cur-
ery

the

ed

as-

prob-

r
r

te
DRAFT
that “V is definitely unassigned afterbreak;” is always true! Because abreak
statement never completes normally, it is vacuously true thatV has not been
assigned a value if thebreak statement completes normally. (For that matter, it
also vacuously true that the moon is made of green cheese if thebreak statement
completes normally.)

In all, there are four possibilities for a variableV after a statement or expres
sion has been executed:

• V is definitely assigned and is not definitely unassigned.
(The flow analysis rules prove that an assignment toV has occurred.)

• V is definitely unassigned and is not definitely assigned.
(The flow analysis rules prove that an assignment toV has not occurred.)

• V is not definitely assigned and is not definitely unassigned.
(The rules cannot prove whether or not an assignment toV has occurred.)

• V is definitely assigned and is definitely unassigned.
(It is impossible for the statement or expression to complete normally.)

To shorten the rules, the customary abbreviation “iff” is used to mean “if a
only if”. We also use an abbreviation convention: if a rule contains one or m
occurrences of “[un]assigned” then it stands for two rules, one with every oc
rence of “[un]assigned” replaced by “definitely assigned” and one with ev
occurrence of “[un]assigned” replaced by “definitely unassigned”.

For example:

• V is [un]assigned after an empty statement iff it is [un]assigned before
empty statement.

should be understood to stand for two rules:

• V is definitely assigned after an empty statement iff it is definitely assign
before the empty statement.

• V is definitely unassigned after an empty statement iff it is definitely un
signed before the empty statement.

The definite unassignment analysis of loop statements raises a special
lem. Consider the statementwhile (e) S. In order to determine whetherV is defi-
nitely unassigned within some subexpression ofe, we need to determine whethe
V is definitely unassigned beforee. One might argue, by analogy with the rule fo
definite assignment (§16.2.9), thatV is definitely unassigned beforee iff it is defi-
nitely unassigned before thewhile statement. However, such a rule is inadequa
for our purposes. Ifeevaluates to true, the statementS will be executed. Later, ifV
411

16.1 Definite Assignment and Expressions DEFINITE ASSIGNMENT

412

ssi-
by

nas-

ise,

-

sions
DRAFT
is assigned byS, then in the following iteration(s)V will have already been
assigned whene is evaluated. Under the rule suggested above, it would be po
ble to assignV multiple times, which is exactly what we have sought to avoid
introducing these rules.

A revised rule would be: “V is definitely unassigned beforee iff it is definitely
unassigned before the while statement and definitely unassigned afterS”. How-
ever, when we formulate the rule forS, we find: “V is definitely unassigned before
S iff it is definitely unassigned aftere when true”. This leads to a circularity. In
effect, V is definitely unassignedbefore the loop conditione only if it is unas-
signedafter the loop as a whole!

We break this vicious circle using ahypotheticalanalysis of the loop condi-
tion and body. For example, if we assume thatV is definitely unassigned beforee
(regardless of whetherV really is definitely unassigned beforee), and can then
prove thatV was definitely unassigned aftere then we know thate does not assign
V. This is stated more formally as:

AssumingV is definitely unassigned beforee, V is definitely unassigned after
e.

Variations on the above analysis are used to define well founded definite u
signment rules for all loop statements in the language.

Throughout the rest of this chapter, we will, unless explicitly stated otherw
write V to represent a local variable or a blankfinal field (for rules of definite
assignment) or a blankfinal variable (for rules of definite unassignment). Like
wise, we will usea, b, c, ande to represent expressions, andS andT to represent
statements.

16.1 Definite Assignment and Expressions

16.1.1 Boolean Constant Expressions

• V is [un]assigned after any constant expression whose value istrue when
false.

• V is [un]assigned after any constant expression whose value isfalse when
true.

Because a constant expression whose value istrue never has the valuefalse,
and a constant expression whose value isfalse never has the valuetrue, the two
preceding rules are vacuously satisfied. They are helpful in analyzing expres
involving the operators&& (§16.1.2),|| (§16.1.3),! (§16.1.4), and? : (§16.1.5).

DEFINITE ASSIGNMENT The Boolean Operator !16.1.4
DRAFT
• V is [un]assigned after any constant expression whose value istrue when true

iff V is [un]assigned before the constant expression.

• V is [un]assigned after any constant expression whose value isfalse when
false iff V is [un]assigned before the constant expression.

• V is [un]assigned after a boolean-valued constant expressione iff V is
[un]assigned aftere when true andV is [un]assigned aftere when false. (This
is equivalent to saying thatV is [un]assigned aftere iff V is [un]assigned
beforee.)

16.1.2 The Boolean Operator&&

• V is [un]assigned aftera && b when true iffV is [un]assigned afterb when
true.

• V is [un]assigned aftera && b when false iffV is [un]assigned aftera when
false andV is [un]assigned afterb when false.

• V is [un]assigned beforea iff V is [un]assigned beforea && b.

• V is [un]assigned beforeb iff V is [un]assigned aftera when true.

• V is [un]assigned aftera && b iff V is [un]assigned aftera && b when true and
V is [un]assigned aftera && b when false.

16.1.3 The Boolean Operator||

• V is [un]assigned aftera || b when true iffV is [un]assigned aftera when true
andV is [un]assigned afterb when true.

• V is [un]assigned aftera || b when false iffV is [un]assigned afterb when
false.

• V is [un]assigned beforea iff V is [un]assigned beforea || b.

• V is [un]assigned beforeb iff V is [un]assigned aftera when false.

• V is [un]assigned aftera || b iff V is [un]assigned aftera || b when true and
V is [un]assigned aftera || b when false.

16.1.4 The Boolean Operator!

• V is [un]assigned after!a when true iffV is [un]assigned aftera when false.

• V is [un]assigned after!a when false iffV is [un]assigned aftera when true.
413

16.1.5 The Boolean Operator ? : DEFINITE ASSIGNMENT

414
DRAFT
• V is [un]assigned beforea iff V is [un]assigned before!a.

• V is [un]assigned after!a iff V is [un]assigned after!a when true andV is
[un]assigned after!a when false. (This is equivalent to saying thatV is
[un]assigned after!a iff V is [un]assigned aftera.)

16.1.5 The Boolean Operator? :

Suppose thatb andc are boolean-valued expressions.

• V is [un]assigned aftera ? b : c when true iffV is [un]assigned afterb when
true andV is [un]assigned afterc when true.

• V is [un]assigned aftera ? b : c when false iffV is [un]assigned afterb when
false andV is [un]assigned afterc when false.

• V is [un]assigned beforea iff V is [un]assigned beforea ? b : c.

• V is [un]assigned beforeb iff V is [un]assigned aftera when true.

• V is [un]assigned beforec iff V is [un]assigned aftera when false.

• V is [un]assigned aftera ? b : c iff V is [un]assigned aftera ? b : c when true
andV is [un]assigned aftera ? b : c when false.

16.1.6 The Conditional Operator? :

Suppose thatb andc are expressions that are not boolean-valued.

• V is [un]assigned aftera ? b : c iff V is [un]assigned afterb and V is
[un]assigned afterc.

• V is [un]assigned beforea iff V is [un]assigned beforea ? b : c.

• V is [un]assigned beforeb iff V is [un]assigned aftera when true.

• V is [un]assigned beforec iff V is [un]assigned aftera when false.

16.1.7 Assignment Expressions

Consider an assignment expressiona = b, a += b, a -= b, a *= b, a /= b, a %= b, a
<<= b, a >>= b, a >>>= b, a &= b, a |= b, ora ^= b.

DEFINITE ASSIGNMENT Other Expressions16.1.9

s-

n-
st

ding
is

prove
n-

ply:

ment
DRAFT
• V is definitely assigned after the assignment expression iff eithera is V or V is

definitely assigned afterb.

• V is definitely unassigned after the assignment expression iffa is notV andV
is definitely unassigned afterb.

• V is [un]assigned beforea iff V is [un]assigned before the assignment expre
sion.

• V is [un]assigned beforeb iff V is [un]assigned aftera.

Note that ifa is V andV is not definitely assigned before a compound assig
ment such asa &= b, then a compile-time error will necessarily occur. The fir
rule for definite assignment stated above includes the disjunct “a is V ” even for
compound assignment expressions, not just simple assignments, so thatV will be
considered to have been definitely assigned at later points in the code. Inclu
the disjunct “a is V ” does not affect the binary decision as to whether a program
acceptable or will result in a compile-time error, but it affectshow manydifferent
points in the code may be regarded as erroneous, and so in practice it can im
the quality of error reporting. A similar remark applies to the inclusion of the co
junct “a is notV ” in the first rule for definite unassignment stated above.

If the assignment expression is boolean-valued, then these rules also ap

• V is [un]assigned after the assignment expression when true iffV is
[un]assigned after the assignment expression.

• V is [un]assigned after the assignment expression when false iffV is
[un]assigned after the assignment expression.

16.1.8 Operators++ and --

• V is definitely assigned after++a, --a, a++, or a-- iff either a is V or V is def-
initely assigned after the operand expression.

• V is definitely unassigned after++a, --a, a++, or a-- iff a is not V andV is
definitely unassigned after the operand expression.

• V is [un]assigned beforea iff V is [un]assigned before++a, --a, a++, ora--.

16.1.9 Other Expressions

If an expression is not a boolean constant expression, and is not a preincre
expression++a, predecrement expression--a, postincrement expressiona++,
postdecrement expressiona--, logical complement expression!a, conditional-
415

16.1.9 Other Expressions DEFINITE ASSIGNMENT

416

n
als,
re-
ions
cess
lified

f

lf, at
ause
t, for
sign-

ts to
s

-
ion
ts and
ns.
DRAFT
and expressiona && b, conditional-or expressiona || b, conditional expressiona
? b : c, or assignment expression, then the following rules apply:

• If the expression has no subexpressions,V is [un]assigned after the expressio
iff V is [un]assigned before the expression. This case applies to liter
names,this (both qualified and unqualified), unqualified class instance c
ation expressions with no arguments, initialized array creation express
whose initializers contain no expressions, unqualified superclass field ac
expressions, named method invocations with no arguments, and unqua
superclass method invocations with no arguments.

• If the expression has subexpressions,V is [un]assigned after the expression if
V is [un]assigned after its rightmost immediate subexpression.

There is a piece of subtle reasoning behind the assertion that a variableV can
be known to be definitely unassigned after a method invocation. Taken by itse
face value and without qualification, such an assertion is not always true, bec
an invoked method can perform assignments. But it must be remembered tha
the purposes of the Java programming language, the concept of definite unas
ment is appliedonly to blankfinal variables. IfV is a blankfinal local variable,
then only the method to which its declaration belongs can perform assignmen
V. If V is a blankfinal field, then only a constructor or an initializer for the clas
containing the declaration forV can perform assignments toV; no method can per-
form assignments toV. Finally, explicit constructor invocations (§8.8.5) are han
dled specially (§16.8); although they are syntactically similar to express
statements containing method invocations, they are not expression statemen
therefore the rules of this section do not apply to explicit constructor invocatio

For any immediate subexpressiony of an expressionx, V is [un]assigned
beforey iff one of the following situations is true:

• y is the leftmost immediate subexpression ofx andV is [un]assigned beforex.

• y is the right-hand operand of a binary operator andV is [un]assigned after the
left-hand operand.

• x is an array access,y is the subexpression within the brackets, andV is
[un]assigned after the subexpression before the brackets.

• x is a primary method invocation expression,y is the first argument expression
in the method invocation expression, andV is [un]assigned after the primary
expression that computes the target object.

DEFINITE ASSIGNMENT Blocks 16.2.2

on;

t

r;
s-

the

-
the

ly
od,

tor,

f

DRAFT
• x is a method invocation expression or a class instance creation expressiy

is an argument expression, but not the first; andV is [un]assigned after the
argument expression to the left ofy.

• x is a qualified class instance creation expression,y is the first argument
expression in the class instance creation expression, andV is [un]assigned
after the primary expression that computes the qualifying object.

• x is an array instance creation expression;y is a dimension expression, but no
the first; andV is [un]assigned after the dimension expression to the left ofy.

• x is an array instance creation expression initialized via an array initializey
is the array initializer inx; andV is [un]assigned after the dimension expre
sion to the left ofy.

16.2 Definite Assignment and Statements

16.2.1 Empty Statements

• V is [un]assigned after an empty statement iff it is [un]assigned before
empty statement.

16.2.2 Blocks

• A blank final member fieldV is definitely assigned (and moreover is not defi
nitely unassigned) before the block that is the body of any method in
scope ofV.

• A local variableV is definitely unassigned (and moreover is not definite
assigned) before the block that is the body of the constructor, meth
instance initializer or static initializer that declaresV.

• Let C be a class declared within the scope ofV. Then:

◆ V is definitely assigned before the block that is the body of any construc
method, instance initializer or static initializer declared inC iff V is defi-
nitely assigned before the declaration ofC.

Note that there are no rules that would allow us to conclude thatV is definitely
unassigned before the block that is the body of any constructor, method,
instance initializer or static initializer declared inC. We can informally con-
clude thatV is not definitely unassigned before the block that is the body o
417

16.2.3 Local Class Declaration Statements DEFINITE ASSIGNMENT

418

pty

ast

ed

ned

s no
on

on-
the
last

con-
ast
ari-

d
DRAFT
any constructor, method, instance initializer or static initializer declared inC,
but there is no need for such a rule to be stated explicitly.

• V is [un]assigned after an empty block iff it is [un]assigned before the em
block.

• V is [un]assigned after a nonempty block iff it is [un]assigned after the l
statement in the block.

• V is [un]assigned before the first statement of the block iff it is [un]assign
before the block.

• V is [un]assigned before any other statementS of the block iff it is
[un]assigned after the statement immediately precedingS in the block.

16.2.3 Local Class Declaration Statements

• V is [un]assigned after a local class declaration statement iff it is [un]assig
before the local class declaration statement.

16.2.4 Local Variable Declaration Statements

• V is [un]assigned after a local variable declaration statement that contain
variable initializers iff it is [un]assigned before the local variable declarati
statement.

• V is definitely assigned after a local variable declaration statement that c
tains at least one variable initializer iff either it is definitely assigned after
last variable initializer in the local variable declaration statement or the
variable initializer in the declaration is in the declarator that declaresV.

• V is definitely unassigned after a local variable declaration statement that
tains at least one variable initializer iff it is definitely unassigned after the l
variable initializer in the local variable declaration statement and the last v
able initializer in the declaration is not in the declarator that declaresV.

• V is [un]assigned before the first variable initializer iff it is [un]assigne
before the local variable declaration statement.

• V is definitely assigned before any variable initializereother than the first one
in the local variable declaration statement iff eitherV is definitely assigned
after the variable initializer to the left ofe or the initializer expression to the
left of e is in the declarator that declaresV.

• V is definitely unassigned before any variable initializere other than the first
one in the local variable declaration statement iffV is definitely unassigned

DEFINITE ASSIGNMENT switch Statements16.2.8
DRAFT
after the variable initializer to the left ofe and the initializer expression to the
left of e is not in the declarator that declaresV.

16.2.5 Labeled Statements

• V is [un]assigned after a labeled statementL:S (whereL is a label) iff V is
[un]assigned afterS andV is [un]assigned before everybreak statement that
may exit the labeled statementL:S.

• V is [un]assigned beforeS iff V is [un]assigned beforeL:S.

16.2.6 Expression Statements

• V is [un]assigned after an expression statemente; iff it is [un]assigned aftere.

• V is [un]assigned beforee iff it is [un]assigned beforee;.

16.2.7 if Statements

The following rules apply to a statementif (e) S:

• V is [un]assigned afterif (e) S iff V is [un]assigned afterS and V is
[un]assigned aftere when false.

• V is [un]assigned beforee iff V is [un]assigned beforeif (e) S.

• V is [un]assigned beforeS iff V is [un]assigned aftere when true.

The following rules apply to a statementif (e) S else T:

• V is [un]assigned afterif (e) S else T iff V is [un]assigned afterS andV is
[un]assigned afterT.

• V is [un]assigned beforee iff V is [un]assigned beforeif (e) S else T.

• V is [un]assigned beforeS iff V is [un]assigned aftere when true.

• V is [un]assigned beforeT iff V is [un]assigned aftere when false.

16.2.8 switch Statements

• V is [un]assigned after aswitch statement iff all of the following are true:

◆ Either there is adefault label in theswitch block or V is [un]assigned
after the switch expression.
419

16.2.9 while Statements DEFINITE ASSIGNMENT

420

tely

ent-

ing

ent-

ent-
d
ate-

ck-
-

DRAFT
◆ Either there are no switch labels in theswitch block that do not begin a

block-statement-group (that is, there are no switch labels immedia
before the “}” that ends the switch block) orV is [un]assigned after the
switch expression.

◆ Either the switch block contains no block-statement-groups orV is
[un]assigned after the last block-statement of the last block-statem
group.

◆ V is [un]assigned before everybreak statement that may exit theswitch
statement.

• V is [un]assigned before the switch expression iffV is [un]assigned before the
switch statement.

If a switch block contains at least one block-statement-group, then the follow
rules also apply:

• V is [un]assigned before the first block-statement of the first block-statem
group in the switch block iffV is [un]assigned after the switch expression.

• V is [un]assigned before the first block-statement of any block-statem
group other than the first iffV is [un]assigned after the switch expression an
V is [un]assigned after the last block-statement of the preceding block-st
ment-group.

• V is [un]assigned before any block-statement other than the first of any blo
statement-group in the switch block iffV is [un]assigned after the last block
statement of the preceding block-statement-group.

16.2.9 while Statements

• V is [un]assigned afterwhile (e) S iff V is [un]assigned aftere when false
and V is [un]assigned before everybreak statement for which thewhile
statement is the break target.

• V is definitely assigned beforee iff V is definitely assigned before thewhile
statement.

• V is definitely unassigned beforee iff all of the following conditions hold:

◆ V is definitely unassigned before thewhile statement.

◆ AssumingV is definitely unassigned beforee, V is definitely unassigned
afterS.

DEFINITE ASSIGNMENT for Statements16.2.11
DRAFT
◆ AssumingV is definitely unassigned beforee, V is definitely unassigned

before everycontinue statement for which thewhile statement is the con-
tinue target.

• V is [un]assigned beforeS iff V is [un]assigned aftere when true.

16.2.10 do Statements

• V is [un]assigned afterdo S while (e); iff V is [un]assigned aftere when
false andV is [un]assigned before everybreak statement for which thedo
statement is the break target.

• V is definitely assigned beforeS iff V is definitely assigned before thedo
statement.

• V is definitely unassigned beforeS iff all of the following conditions hold:

◆ V is definitely unassigned before thedo statement.

◆ AssumingV is definitely unassigned beforeS, V is definitely unassigned
aftere when true.

• V is [un]assigned beforee iff V is [un]assigned afterS andV is [un]assigned
before everycontinue statement for which thedo statement is the continue
target.

16.2.11 for Statements

• V is [un]assigned after afor statement iff both of the following are true:

◆ Either a condition expression is not present orV is [un]assigned after the
condition expression when false.

◆ V is [un]assigned before everybreak statement for which thefor statement
is the break target.

• V is [un]assigned before the initialization part of thefor statement iffV is
[un]assigned before thefor statement.

• V is definitely assigned before the condition part of thefor statement iffV is
definitely assigned after the initialization part of thefor statement.

• V is definitely unassigned before the condition part of thefor statement iff all
of the following conditions hold:

◆ V is definitely unassigned after the initialization part of thefor statement.
421

16.2.11 for Statements DEFINITE ASSIGNMENT

422

is

n

tion

e-
DRAFT
◆ AssumingV is definitely unassigned before the condition part of thefor

statement, V is definitely unassigned after the contained statement.

◆ AssumingV is definitely unassigned before the contained statement, V is
definitely unassigned before everycontinue statement for which thefor
statement is the continue target.

• V is [un]assigned before the contained statement iff either of the following
true:

◆ A condition expression is present andV is [un]assigned after the condition
expression when true.

◆ No condition expression is present andV is [un]assigned after the initializa-
tion part of thefor statement.

• V is [un]assigned before the incrementation part of thefor statement iffV is
[un]assigned after the contained statement andV is [un]assigned before every
continue statement for which thefor statement is the continue target.

16.2.11.1 Initialization Part

• If the initialization part of thefor statement is a local variable declaratio
statement, the rules of §16.2.4 apply.

• Otherwise, if the initialization part is empty, thenV is [un]assigned after the
initialization part iffV is [un]assigned before the initialization part.

• Otherwise, three rules apply:

◆ V is [un]assigned after the initialization part iffV is [un]assigned after the
last expression statement in the initialization part.

◆ V is [un]assigned before the first expression statement in the initializa
part iff V is [un]assigned before the initialization part.

◆ V is [un]assigned before an expression statementE other than the first in the
initialization part iffV is [un]assigned after the expression statement imm
diately precedingE.

16.2.11.2 Incrementation Part

• If the incrementation part of thefor statement is empty, thenV is
[un]assigned after the incrementation part iffV is [un]assigned before the
incrementation part.

• Otherwise, three rules apply:

DEFINITE ASSIGNMENT try Statements16.2.14

tion

nt

r”
nt or

on.
DRAFT
◆ V is [un]assigned after the incrementation part iffV is [un]assigned after the

last expression statement in the incrementation part.

◆ V is [un]assigned before the first expression statement in the incrementa
part iff V is [un]assigned before the incrementation part.

◆ V is [un]assigned before an expression statementE other than the first in the
incrementation part iffV is [un]assigned after the expression stateme
immediately precedingE.

16.2.12 break, continue, return, andthrow Statements

• By convention, we say thatV is [un]assigned after anybreak, continue,
return, orthrow statement. The notion that a variable is “[un]assigned afte
a statement or expression really means “is [un]assigned after the stateme
expression completes normally”. Because abreak, continue, return, or
throw statement never completes normally, it vacuously satisfies this noti

• In a return statement with an expressione or a throw statement with an
expressione, V is [un]assigned beforee iff V is [un]assigned before the
return or throw statement.

16.2.13 synchronized Statements

• V is [un]assigned aftersynchronized (e) S iff V is [un]assigned afterS.

• V is [un]assigned beforee iff V is [un]assigned before the statementsynchro-
nized (e) S .

• V is [un]assigned beforeS iff V is [un]assigned aftere.

16.2.14 try Statements

These rules apply to everytry statement, whether or not it has afinally block:

• V is [un]assigned before thetry block iff V is [un]assigned before thetry
statement.

• V is definitely assigned before acatch block iff V is definitely assigned
before thetry block.

• V is definitely unassigned before acatch block iff V is definitely unassigned
after thetry block andV is definitely unassigned before everyreturn state-
ment that belongs to thetry block, everythrow statement that belongs to the
try block, everybreak statement that belongs to thetry block and whose
423

16.3 Definite Assignment and Parameters DEFINITE ASSIGNMENT

424

s

d
on-

-

DRAFT

break target contains (or is) thetry statement, and everycontinue statement
that belongs to thetry block and whose continue target contains thetry
statement.

If a try statement does not have afinally block, then this rule also applies:

• V is [un]assigned after thetry statement iffV is [un]assigned after thetry
block andV is [un]assigned after everycatch block in the try statement.

If a try statement does have afinally block, then these rules also apply:

• V is definitely assigned after thetry statement iff at least one of the following
is true:

◆ V is definitely assigned after the try block andV is definitely assigned after
everycatch block in the try statement.

◆ V is definitely assigned after thefinally block.

◆ V is definitely unassigned after atry statement iffV is definitely unassigned
after thefinally block.

• V is definitely assigned before thefinally block iff V is definitely assigned
before thetry statement.

• V is definitely unassigned before thefinally block iff V is definitely unas-
signed after thetry block andV is definitely unassigned before everyreturn
statement that belongs to thetry block, everythrow statement that belongs
to thetry block, everybreak statement that belongs to thetry block and
whose break target contains (or is) thetry statement, and everycontinue
statement that belongs to thetry block and whose continue target contain
the try statement andV is definitely unassigned after everycatch block of
thetry statement.

16.3 Definite Assignment and Parameters

• A formal parameterV of a method or constructor is definitely assigned (an
moreover is not definitely unassigned) before the body of the method or c
structor.

• An exception parameterV of acatch clause is definitely assigned (and more
over is not definitely unassigned) before the body of thecatch clause.

DEFINITE ASSIGNMENT Definite Assignment and Static Initializers16.7

re

ter

it

that
s

DRAFT
16.4 Definite Assignment and Array Initializers

• V is [un]assigned after an empty array initializer iff it is [un]assigned befo
the empty array initializer.

• V is [un]assigned after a nonempty array initializer iff it is [un]assigned af
the last variable initializer in the array initializer.

• V is [un]assigned before the first variable initializer of the array initializer iff
is [un]assigned before the array initializer.

• V is [un]assigned before any other variable initializerI of the array initializer
iff it is [un]assigned after the variable initializer to the left ofI in the array
initializer.

16.5 Definite Assignment and Anonymous Classes

• V is definitely assigned before an anonymous class declaration (§15.9.5)
is declared within the scope ofV iff V is definitely assigned after the clas
instance creation expression that declares the anonymous class.

16.6 Definite Assignment and Member Types

Let C be a class declared within the scope ofV. Then:

• V is definitely assigned before a member type (§8.5, §9.5) declaration ofC iff
V is definitely assigned before the declaration ofC.

16.7 Definite Assignment and Static Initializers

Let C be a class declared within the scope ofV. Then:

• V is definitely assigned before a static variable initializer ofC iff V is definitely
assigned before the declaration ofC.

Note that there are no rules that would allow us to conclude thatV is definitely
unassigned before a static variable initializer. We can informally conclude thatV is
not definitely unassigned before any static variable initializer ofC, but there is no
need for such a rule to be stated explicitly.
425

16.8 Definite Assignment, Constructors, and Instance Initializers DEFINITE ASSIGNMENT

426

the

the

fore

that

the

zer
e
DRAFT

Let C be a class, and letV be a blankfinal static member field ofC,
declared inC. Then:

• V is definitely unassigned (and moreover is not definitely assigned) before
leftmoststatic initializer orstatic variable initializer ofC.

• V is [un]assigned before astatic initializer or static variable initializer of
C other than the leftmost iffV is [un]assigned after the precedingstatic ini-
tializer orstatic variable initializer ofC.

Let C be a class, and letV be a blankfinal static member field ofC,
declared in a superclass ofC. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before
block that is the body of a static initializer ofC.

• V is definitely assigned (and moreover is not definitely unassigned) be
every static variable initializer ofC.

16.8 Definite Assignment, Constructors, and Instance Initializers

Let C be a class declared within the scope ofV. Then:

• V is definitely assigned before an instance variable initializer ofC iff V is defi-
nitely assigned before the declaration ofC.

Note that there are no rules that would allow us to conclude thatV is definitely
unassigned before an instance variable initializer. We can informally conclude
V is not definitely unassigned before any instance variable initializer ofC, but
there is no need for such a rule to be stated explicitly.

Let C be a class, and letV be a blankfinal non-static member field ofC,
declared inC. Then:

• V is definitely unassigned (and moreover is not definitely assigned) before
leftmost instance initializer or instance variable initializer ofC.

• V is [un]assigned before an instance initializer or instance variable initiali
of C other than the leftmost iffV is [un]assigned after the preceding instanc
initializer or instance variable initializer ofC.

The following rules hold within the constructors of classC:

DEFINITE ASSIGNMENT Definite Assignment, Constructors, and Instance Initializers16.8

r an

e an

it or

iff
ble

the

fore
DRAFT
• V is definitely assigned (and moreover is not definitely unassigned) afte

alternate constructor invocation.

• V is definitely unassigned (and moreover is not definitely assigned) befor
explicit or implicit superclass constructor invocation.

• If C has no instance initializers or instance variable initializers, thenV is not
definitely assigned (and moreover is definitely unassigned) after an explic
implicit superclass constructor invocation.

• If C has at least one instance initializer or instance variable initializer thenV is
[un]assigned after an explicit or implicit superclass constructor invocation
V is [un]assigned after the rightmost instance initializer or instance varia
initializer of C.

Let C be a class, and letV be a blankfinal member field ofC, declared in a super-
class ofC. Then:

• V is definitely assigned (and moreover is not definitely unassigned) before
block that is the body of a constructor, or instance initializer ofC.

• V is definitely assigned (and moreover is not definitely unassigned) be
every instance variable initializer ofC.
427

16.8 Definite Assignment, Constructors, and Instance Initializers DEFINITE ASSIGNMENT

428
DRAFT

C H A P T E R 17

s

with
hat is,
cu-

values
hav-

or by

ough

ava
r
the

ant
but
r

ng”
e has
using

nship
ion-

may
-

not
DRAFT
Threads and Lock

WHILE most of the discussion in the preceding chapters is concerned only
the behavior of code as executed a single statement or expression at a time, t
by a singlethread, each Java virtual machine can support many threads of exe
tion at once. These threads independently execute code that operates on
and objects residing in a shared main memory. Threads may be supported by
ing many hardware processors, by time-slicing a single hardware processor,
time-slicing many hardware processors.

The Java programming language supports the coding of programs that, th
concurrent, still exhibit deterministic behavior, by providing mechanisms forsyn-
chronizing the concurrent activity of threads. To synchronize threads, the J
programming language usesmonitors, which are a high-level mechanism fo
allowing only one thread at a time to execute a region of code protected by
monitor. The behavior of monitors is explained in terms oflocks; there is a lock
associated with each object.

Thesynchronized statement (§14.18) performs two special actions relev
only to multithreaded operation: (1) after computing a reference to an object
before executing its body, itlocksa lock associated with the object, and (2) afte
execution of the body has completed, either normally or abruptly, itunlocksthat
same lock. As a convenience, a method may be declaredsynchronized; such a
method behaves as if its body were contained in asynchronized statement.

The methodswait, notify, andnotifyAll of classObject support an effi-
cient transfer of control from one thread to another. Rather than simply “spinni
(repeatedly locking and unlocking an object to see whether some internal stat
changed), which consumes computational effort, a thread can suspend itself
wait until such time as another thread awakens it usingnotify. This is especially
appropriate in situations where threads have a producer-consumer relatio
(actively cooperating on a common goal) rather than a mutual exclusion relat
ship (trying to avoid conflicts while sharing a common resource).

As a thread executes code, it carries out a sequence of actions. A thread
usethe value of a variable orassignit a new value. (Other actions include arith
metic operations, conditional tests, and method invocations, but these do
429

17.1 Terminology and Framework THREADS AND LOCKS

430

ari-
ng-
ram-
cut-

lues
ess a
em-
ared
k it
the

and
bout
n any
rely

rules
s to
eatly

of
les.

ct a
is is
For
ref-

bject
ence

ate
am-

es
rays.
is
DRAFT
involve variables directly.) If two or more concurrent threads act on a shared v
able, there is a possibility that the actions on the variable will produce timi
dependent results. This dependence on timing is inherent in concurrent prog
ming, producing one of the few places in the language where the result of exe
ing a program is not determined solely by this specification.

Each thread has a working memory, in which it may keep copies of the va
of variables from the main memory that is shared between all threads. To acc
shared variable, a thread usually first obtains a lock and flushes its working m
ory. This guarantees that shared values will thereafter be loaded from the sh
main memory to the threads working memory. When a thread unlocks a loc
guarantees the values it holds in its working memory will be written back to
main memory.

This chapter explains the interaction of threads with the main memory,
thus with each other, in terms of certain low-level actions. There are rules a
the order in which these actions may occur. These rules impose constraints o
implementation of the Java programming language, and a programmer may
on the rules to predict the possible behaviors of a concurrent program. The
do, however, intentionally give the implementor certain freedoms; the intent i
permit certain standard hardware and software techniques that can gr
improve the speed and efficiency of concurrent code.

Briefly put, these are the important consequences of the rules:

• Proper use of synchronization constructs will allow reliable transmission
values or sets of values from one thread to another through shared variab

• When a thread uses the value of a variable, the value it obtains is in fa
value stored into the variable by that thread or by some other thread. Th
true even if the program does not contain code for proper synchronization.
example, if two threads store references to different objects into the same
erence value, the variable will subsequently contain a reference to one o
or the other, not a reference to some other object or a corrupted refer
value. (There is a special exception forlong anddouble values; see §17.4.)

• In the absence of explicit synchronization, an implementation is free to upd
the main memory in an order that may be surprising. Therefore the progr
mer who prefers to avoid surprises should use explicit synchronization.

17.1 Terminology and Framework

A variable is any location within a program that may be stored into. This includ
not only class variables and instance variables but also components of ar
Variables are kept in amain memorythat is shared by all threads. Because it

THREADS AND LOCKS Terminology and Framework 17.1

other
of as
that

rates

nsfer
sa.
h

hese

e-

ain
ork-
to a

ain

nd a
hus
ead
ain
orre-

nta-

the
fol-
rred
tight”
are
DRAFT
impossible for one thread to access parameters or local variables of an
thread, it doesn’t matter whether parameters and local variables are thought
residing in the shared main memory or in the working memory of the thread
owns them.

Every thread has aworking memoryin which it keeps its ownworking copyof
variables that it must use or assign. As the thread executes a program, it ope
on these working copies. The main memory contains themaster copyof every
variable. There are rules about when a thread is permitted or required to tra
the contents of its working copy of a variable into the master copy or vice ver

The main memory also containslocks; there is one lock associated with eac
object. Threads may compete to acquire a lock.

For the purposes of this chapter, the verbsuse, assign, load, store, lock, and
unlocknameactionsthat a thread can perform. The verbsread, write, lock, and
unlockname actions that the main memory subsystem can perform. Each of t
actions isatomic (indivisible).

A useor assignaction is a tightly coupled interaction between a thread’s ex
cution engine and the thread’s working memory. Alock or unlock action is a
tightly coupled interaction between a thread’s execution engine and the m
memory. But the transfer of data between the main memory and a thread’s w
ing memory is loosely coupled. When data is copied from the main memory
working memory, two actions must occur: aread action performed by the main
memory followed some time later by a correspondingload action performed by
the working memory. When data is copied from a working memory to the m
memory, two actions must occur: astoreaction performed by the working mem-
ory followed some time later by a correspondingwrite action performed by the
main memory. There may be some transit time between main memory a
working memory, and the transit time may be different for each transaction; t
actions initiated by a thread on different variables may viewed by another thr
as occurring in a different order. For each variable, however, the actions in m
memory on behalf of any one thread are performed in the same order as the c
sponding actions by that thread. (This is explained in greater detail below.)

A single thread issues a stream ofuse, assign, lock, andunlockactions as dic-
tated by the semantics of the program it is executing. The underlying impleme
tion is then required additionally to perform appropriateload, store, read, and
write actions so as to obey a certain set of constraints, explained below. If
implementation correctly follows these rules and the application programmer
lows certain other rules of programming, then data can be reliably transfe
between threads through shared variables. The rules are designed to be “
enough to make this possible but “loose” enough to allow hardware and softw
431

17.2 Execution Order THREADS AND LOCKS

432

such

opy
en-
of a

ion
ed
to a

opy

y a

ing

he

s a

es

f a

on

ay
:

DRAFT
designers considerable freedom to improve speed and throughput through
mechanisms as registers, queues, and caches.

Here are the detailed definitions of each of the actions:

• A useaction (by a thread) transfers the contents of the thread’s working c
of a variable to the thread’s execution engine. This action is performed wh
ever a thread executes a virtual machine instruction that uses the value
variable.

• An assignaction (by a thread) transfers a value from the thread’s execut
engine into the thread's working copy of a variable. This action is perform
whenever a thread executes a virtual machine instruction that assigns
variable.

• A readaction (by the main memory) transmits the contents of the master c
of a variable to a thread’s working memory for use by a laterload action.

• A load action (by a thread) puts a value transmitted from main memory b
read action into the thread's working copy of a variable.

• A store action (by a thread) transmits the contents of the thread’s work
copy of a variable to main memory for use by a laterwrite action.

• A write action (by the main memory) puts a value transmitted from t
thread’s working memory by astoreaction into the master copy of a variable
in main memory.

• A lock action (by a thread tightly synchronized with main memory) cause
thread to acquire one claim on a particular lock.

• An unlockaction (by a thread tightly synchronized with main memory) caus
a thread to release one claim on a particular lock.

Thus the interaction of a thread with a variable over time consists o
sequence ofuse, assign, load, andstoreactions. Main memory performs aread
action for everyload and awrite action for everystore. A thread’s interactions
with a lock over time consists of a sequence oflock andunlockactions. All the
globally visible behavior of a thread thus comprises all the thread’s actions
variables and locks.

17.2 Execution Order

The rules of execution order constrain the order in which certain events m
occur. There are four general constraints on the relationships among actions

THREADS AND LOCKS Execution Order 17.2

any

ally
the

lly
the

xplic-
ons

that

red
ns of

in

ich
llow

e.
ree-
DRAFT

• The actions performed by any one thread are totally ordered; that is, for
two actions performed by a thread, one action precedes the other.

• The actions performed by the main memory for any one variable are tot
ordered; that is, for any two actions performed by the main memory on
same variable, one action precedes the other.

• The actions performed by the main memory for any one lock are tota
ordered; that is, for any two actions performed by the main memory on
same lock, one action precedes the other.

• It is not permitted for an action to follow itself.

The last rule may seem trivial, but it does need to be stated separately and e
itly for completeness. Without it, it would be possible to propose a set of acti
by two or more threads and precedence relationships among the actions
would satisfy all the other rules but would require an action to follow itself.

Threads do not interact directly; they communicate only through the sha
main memory. The relationships between the actions of a thread and the actio
main memory are constrained in three ways:

• Eachlock or unlockaction is performed jointly by some thread and the ma
memory.

• Eachloadaction by a thread is uniquely paired with areadaction by the main
memory such that theload action follows theread action.

• Eachstore action by a thread is uniquely paired with awrite action by the
main memory such that thewrite action follows thestore action.

Most of the rules in the following sections further constrain the order in wh
certain actions take place. A rule may state that one action must precede or fo
some other action. Note that this relationship is transitive: if actionA must precede
actionB, andB must precedeC, thenA must precedeC. The programmer must
remember that these rules are theonlyconstraints on the ordering of actions; if no
rule or combination of rules implies that actionA must precede actionB, then an
implementation is free to perform actionB before actionA, or to perform actionB
concurrently with actionA. This freedom can be the key to good performanc
Conversely, an implementation is not required to take advantage of all the f
doms given it.

In the rules that follow, the phrasing “B must intervene betweenA and C”
means that actionB must follow actionA and precede actionC.
433

17.3 Rules about Variables THREADS AND LOCKS

434

ons

tion

er
les

ts

in

f the
DRAFT
17.3 Rules about Variables

Let T be a thread andV be a variable. There are certain constraints on the acti
performed byT with respect toV:

• An useor assignby T of V is permitted only when dictated by execution byT
of the program according to the Java programming language’s execu
model. For example, an occurrence ofV as an operand of the+ operator
requires that a singleuseaction occur onV; an occurrence ofV as the left-
hand operand of the assignment operator= requires that a singleassignaction
occur. All useandassignactions by a given thread must occur in the ord
specified by the program being executed by the thread. If the following ru
forbid T to perform a requireduseas its next action, it may be necessary forT
to perform aloadfirst in order to make progress.

• A storeaction byT on V must intervene between anassignby T of V and a
subsequentload by T of V. (Less formally: a thread is not permitted to lose i
most recent assign.)

• An assignaction byT on V must intervene between aload or storeby T of V
and a subsequentstoreby T of V. (Less formally: a thread is not permitted to
write data from its working memory back to main memory for no reason.)

• After a thread is created, it must perform anassignor load action on a vari-
able before performing auseor storeaction on that variable. (Less formally: a
new thread starts with an empty working memory.)

• After a variable is created, every thread must perform anassignor loadaction
on that variable before performing auseor storeaction on that variable. (Less
formally: a new variable is created only in main memory and is not initially
any thread’s working memory.)

Provided that all the constraints above and below are obeyed, aload or store
action may be issued at any time by any thread on any variable, at the whim o
implementation.

There are also certain constraints on thereadandwrite actions performed by
main memory:

• For everyload action performed by any threadT on its working copy of a
variableV, there must be a corresponding precedingread action by the main
memory on the master copy ofV, and theload action must put into the work-
ing copy the data transmitted by the correspondingread action.

• For everystoreaction performed by any threadT on its working copy of a
variableV, there must be a corresponding followingwrite action by the main

THREADS AND LOCKS Nonatomic Treatment of double and long17.4

d by

of
s are

en-

tly, if

that
ndent

ly
l cur-
ns-
ory
rag-
may
yn-
DRAFT
memory on the master copy ofV, and thewrite action must put into the master
copy the data transmitted by the correspondingstore action.

• Let actionA be aload or storeby threadT on variableV, and let actionP be
the correspondingreador write by the main memory on variableV. Similarly,
let actionB be some otherload or storeby threadT on that same variableV,
and let actionQ be the correspondingread or write by the main memory on
variableV. If A precedesB, thenP must precedeQ. (Less formally: actions on
the master copy of any given variable on behalf of a thread are performe
the main memory in exactly the order that the thread requested.)

Note that this last rule appliesonly to actions by a thread on thesamevariable.
However, there is a more stringent rule forvolatile variables (§17.7).

17.4 Nonatomic Treatment ofdouble and long

If a double or long variable is not declaredvolatile, then for the purposes of
load, store, read, andwrite actions they are treated as if they were two variables
32 bits each: wherever the rules require one of these actions, two such action
performed, one for each 32-bit half. The manner in which the 64 bits of adouble
or long variable are encoded into two 32-bit quantities is implementation-dep
dent. Theload, store, read, andwrite actions onvolatile variables are atomic,
even if the type of the variable isdouble or long.

This matters only because areador write of a double or long variable may
be handled by an actual main memory as two 32-bitreador write actions that may
be separated in time, with other actions coming between them. Consequen
two threads concurrently assign distinct values to the same shared non-volatile
double or long variable, a subsequent use of that variable may obtain a value
is not equal to either of the assigned values, but some implementation-depe
mixture of the two values.

An implementation is free to implementload, store, read, andwrite actions
for double and long values as atomic 64-bit actions; in fact, this is strong
encouraged. The model divides them into 32-bit halves for the sake of severa
rently popular microprocessors that fail to provide efficient atomic memory tra
actions on 64-bit quantities. It would have been simpler to define all mem
transactions on single variables as atomic; this more complex definition is a p
matic concession to current hardware practice. In the future this concession
be eliminated. Meanwhile, programmers are cautioned always to explicitly s
chronize access to shareddouble andlong variables.
435

17.5 Rules about Locks THREADS AND LOCKS

436

er-

d
ul-
of

g
a

con-

-

in

ust
DRAFT
17.5 Rules about Locks

Let T be a thread andL be a lock. There are certain constraints on the actions p
formed byT with respect toL:

• A lockaction byT onL may occur only if, for every threadS other thanT, the
number of precedingunlockactions byS onL equals the number of preceding
lock actions byS on L. (Less formally: only one thread at a time is permitte
to lay claim to a lock, and moreover a thread may acquire the same lock m
tiple times and doesn’t relinquish ownership of it until a matching number
unlock actions have been performed.)

• An unlockaction by threadT on lockL may occur only if the number of pre-
cedingunlockactions byT on L is strictly less than the number of precedin
lock actions byT on L. (Less formally: a thread is not permitted to unlock
lock it doesn’t own.)

With respect to a lock, thelock and unlock actions performed by all the
threads are performed in some total sequential order. This total order must be
sistent with the total order on the actions of each thread.

17.6 Rules about the Interaction of Locks and Variables

Let T be any thread, letV be any variable, and letL be any lock. There are certain
constraints on the actions performed byT with respect toV andL:

• Between anassignaction byT onV and a subsequentunlockaction byT onL,
a store action byT on V must intervene; moreover, thewrite action corre-
sponding to thatstoremust precede theunlockaction, as seen by main mem
ory. (Less formally: if a thread is to perform anunlockaction onany lock, it
must first copyall assigned values in its working memory back out to ma
memory.)

• Between alock action byT onL and a subsequentuseor storeaction byT on
a variableV, anassignor load action onV must intervene; moreover, if it is a
load action, then theread action corresponding to thatload must follow the
lockaction, as seen by main memory. (Less formally: alockaction acts as if it
flushesall variables from the thread’s working memory; before use they m
be assigned or loaded from main memory.)

THREADS AND LOCKS Prescient Store Actions 17.8

s

les
rder

re
e

s to
prop-
ory

at
DRAFT
17.7 Rules for Volatile Variables

If a variable is declaredvolatile, then additional constraints apply to the action
of each thread.

Let T be a thread and letV andW be volatile variables.

• A useaction byT onV is permitted only if the previous action byT onV was
load, and aloadaction byT onV is permitted only if the next action byT onV
is use. Theuseaction is said to be “associated” with thereadaction that corre-
sponds to theload.

• A storeaction byT onV is permitted only if the previous action byT onV was
assign, and anassignaction byT onV is permitted only if the next action byT
onV is store. Theassignaction is said to be “associated” with thewrite action
that corresponds to thestore.

• Let actionA be auseor assignby threadT on variableV, let actionF be the
load or storeassociated withA, and let actionP be thereador write of V that
corresponds toF. Similarly, let actionB be auseor assignby threadT on
variableW, let actionG be theload or storeassociated withB, and let actionQ
be thereador write of W that corresponds toG. If A precedesB, thenP must
precedeQ . (Less formally: actions on the master copies of volatile variab
on behalf of a thread are performed by the main memory in exactly the o
that the thread requested.)

The load, store, read, andwrite actions onvolatile variables are atomic,
even if the type of the variable isdouble or long.

17.8 Prescient Store Actions

If a variable is not declaredvolatile, then the rules in the previous sections a
relaxed slightly to allowstore actions to occur earlier than would otherwise b
permitted. The purpose of this relaxation is to allow optimizing Java compiler
perform certain kinds of code rearrangement that preserve the semantics of
erly synchronized programs but might be caught in the act of performing mem
actions out of order by programs that are not properly synchronized.

Suppose that astore by T of V would follow a particularassignby T of V
according to the rules of the previous sections, with no interveningload or assign
by T of V. Then thatstoreaction would send to the main memory the value th
the assignaction put into the working memory of threadT. The special rule
allows thestoreaction to instead occur before theassignaction, if the following
restrictions are obeyed:
437

17.9 Discussion THREADS AND LOCKS

438

re
. No

ch
ide
, for

any
d

t or a
ys to
syn-
pli-

arge

ock
will

ed to
-
itted

e

exe-
DRAFT
• If the storeaction occurs, theassignis bound to occur. (Remember, these a

restrictions on what actually happens, not on what a thread plans to do
fair performing astore and then throwing an exception before theassign
occurs!)

• No lock action intervenes between the relocatedstore and theassign.

• No load of V intervenes between the relocatedstore and theassign.

• No otherstore of V intervenes between the relocatedstore and theassign.

• The storeaction sends to the main memory the value that theassignaction
will put into the working memory of threadT.

This last property inspires us to call such an earlystoreactionprescient: it has to
know ahead of time, somehow, what value will be stored by theassignthat it
should have followed. In practice, optimized compiled code will compute su
values early (which is permitted if, for example, the computation has no s
effects and throws no exceptions), store them early (before entering a loop
example), and keep them in working registers for later use within the loop.

17.9 Discussion

Any association between locks and variables is purely conventional. Locking
lock conceptually flushesall variables from a thread’s working memory, an
unlocking any lock forces the writing out to main memory ofall variables that the
thread has assigned. That a lock may be associated with a particular objec
class is purely a convention. In some applications, it may be appropriate alwa
lock an object before accessing any of its instance variables, for example;
chronized methods are a convenient way to follow this convention. In other ap
cations, it may suffice to use a single lock to synchronize access to a l
collection of objects.

If a thread uses a particular shared variable only after locking a particular l
and before the corresponding unlocking of that same lock, then the thread
read the shared value of that variable from main memory after thelock action, if
necessary, and will copy back to main memory the value most recently assign
that variable before theunlockaction. This, in conjunction with the mutual exclu
sion rules for locks, suffices to guarantee that values are correctly transm
from one thread to another through shared variables.

The rules forvolatile variables effectively require that main memory b
touched exactly once for eachuseor assignof a volatile variable by a thread,
and that main memory be touched in exactly the order dictated by the thread

THREADS AND LOCKS Example: Possible Swap17.10

ct to

he

all
DRAFT
cution semantics. However, such memory actions are not ordered with respe
read andwrite actions on nonvolatile variables.

17.10 Example: Possible Swap

Consider a class that has class variablesa andb and methodshither andyon:

class Sample {
int a = 1, b = 2;
void hither() {

a = b;
}
void yon() {

b = a;
}

}

Now suppose that two threads are created, and that one thread callshither while
the other thread callsyon. What is the required set of actions and what are t
ordering constraints?

Let us consider the thread that callshither. According to the rules, this
thread must perform anuseof b followed by anassignof a. That is the bare mini-
mum required to execute a call to the methodhither.

Now, the first action on variableb by the thread cannot beuse. But it may be
assignor load. An assignto b cannot occur because the program text does not c
for such anassignaction, so aloadof b is required. Thisloadaction by the thread
in turn requires a precedingread action forb by the main memory.

The thread may optionallystorethe value ofa after theassignhas occurred. If
it does, then thestoreaction in turn requires a followingwrite action fora by the
main memory.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.
439

17.10 Example: Possible Swap THREADS AND LOCKS

440

aint

m
not

its

e

DRAFT
The total set of actions may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the actions by the main memory occur? The only constr

is that it is not possible both for thewrite of a to precede thereadof a and for the
write of b to precede theread of b, because the causality arrows in the diagra
would form a loop so that an action would have to precede itself, which is
allowed. Assuming that the optionalstoreandwrite actions are to occur, there are
three possible orderings in which the main memory might legitimately perform
actions. Letha andhb be the working copies ofa andb for thehither thread, let
ya andyb be the working copies for theyon thread, and letma andmb be the mas-
ter copies in main memory. Initiallyma=1 and mb=2. Then the three possible
orderings of actions and the resulting states are as follows:

• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

• reada→write a, readb→write b (thenha=2, hb=2, ma=2, mb=1, ya=1, yb=1)

Thus the net result might be that, in main memory,b is copied intoa, a is copied
into b, or the values ofa andb are swapped; moreover, the working copies of th

loadb

useb

assigna

[storea]

readb

[write a]

loada

usea

assignb

[storeb]

reada

[write b]

hither thread main memory yon thread

THREADS AND LOCKS Example: Possible Swap17.10

that
hich

s.

f
ll to
DRAFT
variables might or might not agree. It would be incorrect, of course, to assume
any one of these outcomes is more likely than another. This is one place in w
the behavior of a program is necessarily timing-dependent.

Of course, an implementation might also choose not to perform thestoreand
write actions, or only one of the two pairs, leading to yet other possible result

Now suppose that we modify the example to usesynchronized methods:

class SynchSample {
int a = 1, b = 2;
synchronized void hither() {

a = b;
}
synchronized void yon() {

b = a;
}

}

Let us again consider the thread that callshither. According to the rules, this
thread must perform alock action (on the instance of classSynchSample on
which thehither method is being called) before the body of methodhither is
executed. This is followed by auseof b and then anassignof a. Finally, anunlock
action on that same instance ofSynchSample must be performed after the body o
methodhither completes. That is the bare minimum required to execute a ca
the methodhither.

As before, aload of b is required, which in turn requires a precedingread
action forb by the main memory. Because theload follows the lock action, the
correspondingread must also follow thelock action.

Because anunlockaction follows theassignof a, a storeaction ona is man-
datory, which in turn requires a followingwrite action fora by the main memory.
Thewrite must precede theunlock action.

The situation for the thread that callsyon is similar, but with the roles ofa and
b exchanged.
441

17.10 Example: Possible Swap THREADS AND LOCKS

442

ns

le:

eads
DRAFT
The total set of actions may be pictured as follows:

The lockandunlockactions provide further constraints on the order of actio
by the main memory; thelock action by one thread cannot occur between thelock
andunlockactions of the other thread. Moreover, theunlockactions require that
thestore andwrite actions occur. It follows that only two sequences are possib

• write a→reada, readb→write b (thenha=2, hb=2, ma=2, mb=2, ya=2, yb=2)

• reada→write a, write b→readb (thenha=1, hb=1, ma=1, mb=1, ya=1, yb=1)

While the resulting state is timing-dependent, it can be seen that the two thr
will necessarily agree on the values ofa andb.

loadb

useb

assigna

storea

readb

write a

loada

usea

assignb

storeb

reada

write b

hither thread main memory yon thread

lock classSynchSample lock classSynchSample

unlock classSynchSample unlock classSynchSample

THREADS AND LOCKS Example: Out-of-Order Writes17.11

thod
ider a

er-

it

n
DRAFT
17.11 Example: Out-of-Order Writes

This example is similar to that in the preceding section, except that one me
assigns to both variables and the other method reads both variables. Cons
class that has class variablesa andb and methodsto andfro:

class Simple {
int a = 1, b = 2;
void to() {

a = 3;
b = 4;

}
void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

Now suppose that two threads are created, and that one thread callsto while the
other thread callsfro. What is the required set of actions and what are the ord
ing constraints?

Let us consider the thread that callsto. According to the rules, this thread
must perform anassignof a followed by anassignof b. That is the bare minimum
required to execute a call to the methodto. Because there is no synchronization,
is at the option of the implementation whether or not tostorethe assigned values
back to main memory! Therefore the thread that callsfro may obtain either1 or 3
for the value ofa, and independently may obtain either2 or 4 for the value ofb.

Now suppose thatto is synchronized butfro is not:

class SynchSimple {
int a = 1, b = 2;
synchronized void to() {

a = 3;
b = 4;

}
void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

In this case the methodto will be forced tostorethe assigned values back to mai
memory before theunlockaction at the end of the method. The methodfro must,
of course,usea andb (in that order) and so mustload values fora andb from
main memory.
443

17.11 Example: Out-of-Order Writes THREADS AND LOCKS

444

ules

d
.)

d
DRAFT
The total set of actions may be pictured as follows:

Here an arrow from actionA to actionB indicates thatA must precedeB.
In what order may the actions by the main memory occur? Note that the r

do not require thatwrite a occur beforewrite b; neither do they require thatreada
occur beforereadb. Also, even though methodto is synchronized, methodfro
is notsynchronized, so there is nothing to prevent thereadactions from occur-
ring between thelock andunlockactions. (The point is that declaring one metho
synchronized does not of itself make that method behave as if it were atomic

As a result, the methodfro could still obtain either1 or 3 for the value ofa,
and independently could obtain either2 or 4 for the value ofb. In particular,fro
might observe the value1 for a and4 for b. Thus, even thoughto does anassign
to a and then anassignto b, thewrite actions to main memory may be observe
by another thread to occur as if in the opposite order.

assigna

assignb

storeb

reada

write a

loada

usea

useb

printing

readb

write b

to thread main memory fro thread

loadblock classSynchSimple

unlock classSynchSimple

storea

THREADS AND LOCKS Locks and Synchronization17.13

s

re-
hen

g
e to
t the
sed

uage

uch

t; it
er

ting
DRAFT
Finally, suppose thatto andfro are bothsynchronized:

class SynchSynchSimple {
int a = 1, b = 2;
synchronized void to() {

a = 3;
b = 4;

}
synchronized void fro() {

System.out.println("a= " + a + ", b=" + b);
}

}

In this case, the actions of methodfro cannot be interleaved with the action
of methodto, and sofro will print either “a=1, b=2” or “a=3, b=4”.

17.12 Threads

Threads are created and managed by the built-in classesThread and Thread-
Group. Creating aThread object creates a thread and that is the only way to c
ate a thread. When the thread is created, it is not yet active; it begins to run w
its start method is called.

Every thread has apriority. When there is competition for processin
resources, threads with higher priority are generally executed in preferenc
threads with lower priority. Such preference is not, however, a guarantee tha
highest priority thread will always be running, and thread priorities cannot be u
to reliably implement mutual exclusion.

17.13 Locks and Synchronization

There is a lock associated with every object. The Java programming lang
does not provide a way to perform separatelock andunlockactions; instead, they
are implicitly performed by high-level constructs that arrange always to pair s
actions correctly.

Note, however, that the Java virtual machine provides separatemonitorenter
andmonitorexit instructions that implement thelock andunlock actions.

Thesynchronized statement (§14.18) computes a reference to an objec
then attempts to perform alock action on that object and does not proceed furth
until the lock action has successfully completed. (Alock action may be delayed
because the rules about locks can prevent the main memory from participa
until some other thread is ready to perform one or moreunlockactions.) After the
lock action has been performed, the body of thesynchronized statement is exe-
445

17.14 Wait Sets and Notification THREADS AND LOCKS

446

, an

with
as

h
ither
e

used
ed in

n of,
on
cre-

.

ads.
ad

cur-

:

e

dul-
ual
DRAFT
cuted. If execution of the body is ever completed, either normally or abruptly
unlock action is automatically performed on that same lock.

A synchronized method (§8.4.3.6) automatically performs alock action
when it is invoked; its body is not executed until thelock action has successfully
completed. If the method is an instance method, it locks the lock associated
the instance for which it was invoked (that is, the object that will be known
this during execution of the body of the method). If the method isstatic, it
locks the lock associated with theClass object that represents the class in whic
the method is defined. If execution of the method’s body is ever completed, e
normally or abruptly, anunlockaction is automatically performed on that sam
lock.

Best practice is that if a variable is ever to be assigned by one thread and
or assigned by another, then all accesses to that variable should be enclos
synchronized methods orsynchronized statements.

The Java programming language does not prevent, nor require detectio
deadlock conditions. Programs where threads hold (directly or indirectly) locks
multiple objects should use conventional techniques for deadlock avoidance,
ating higher-level locking primitives that don’t deadlock, if necessary.

17.14 Wait Sets and Notification

Every object, in addition to having an associated lock, has an associatedwait set,
which is a set of threads. When an object is first created, its wait set is empty

Wait sets are used by the methodswait, notify, andnotifyAll of class
Object. These methods also interact with the scheduling mechanism for thre

The methodwait should be called for an object only when the current thre
(call it T) has already locked the object’s lock. Suppose that threadT has in fact
performedN lockactions that have not been matched byunlockactions. Thewait
method then adds the current thread to the wait set for the object, disables the
rent thread for thread scheduling purposes, and performsN unlockactions to relin-
quish the lock. The threadT then lies dormant until one of three things happens

• Some other thread invokes thenotify method for that object and threadT
happens to be the one arbitrarily chosen as the one to notify.

• Some other thread invokes thenotifyAll method for that object.

• If the call by threadT to thewait method specified a timeout interval, th
specified amount of real time has elapsed.

The threadT is then removed from the wait set and re-enabled for thread sche
ing. It then locks the object again (which may involve competing in the us

THREADS AND LOCKS Wait Sets and Notification17.14

rms

s

nt
not
d re-
ceed

nt
the
(Of

elin-
DRAFT
manner with other threads); once it has gained control of the lock, it perfo

additional lock actions and then returns from the invocation of thewait
method. Thus, on return from thewait method, the state of the object’s lock i
exactly as it was when thewait method was invoked.

The notify method should be called for an object only when the curre
thread has already locked the object’s lock. If the wait set for the object is
empty, then some arbitrarily chosen thread is removed from the wait set an
enabled for thread scheduling. (Of course, that thread will not be able to pro
until the current thread relinquishes the object’s lock.)

ThenotifyAll method should be called for an object only when the curre
thread has already locked the object’s lock. Every thread in the wait set for
object is removed from the wait set and re-enabled for thread scheduling.
course, those threads will not be able to proceed until the current thread r
quishes the object’s lock.)

N 1–
447

C H A P T E R 18
449

etter
pre-
DRAFT
 Syntax

THIS chapter presents a grammar for the Java programming language.
The grammar presented piecemeal in the preceding chapters is much b

for exposition, but it is not ideally suited as a basis for a parser. The grammar
sented in this chapter is the basis for the reference implementation.

The grammar below uses the following BNF-style conventions:

• [x] denotes zero or one occurrences ofx.

• {x} denotes zero or more occurrences ofx.

• x | y means one of eitherx or y.

18.1 The Grammar of the Java Programming Language

Identifier:
IDENTIFIER

QualifiedIdentifier:
Identifier {. Identifier }

Literal:
IntegerLiteral
FloatingPointLiteral
CharacterLiteral
StringLiteral
BooleanLiteral
NullLiteral

Expression:
Expression1 [AssignmentOperator Expression1]]

18.1 The Grammar of the Java Programming Language SYNTAX

450
DRAFT
AssignmentOperator:

=
+=
-=
*=
/=
&=
|=
^=
%=
<<=
>>=
>>>=

Type:
Identifier { . Identifier } BracketsOpt
BasicType

StatementExpression:
Expression

ConstantExpression:
Expression

Expression1:
Expression2 [Expression1Rest]

Expression1Rest:
[? Expression : Expression1]

Expression2 :
Expression3 [Expression2Rest]

Expression2Rest:
{Infixop Expression3}
Expression3instanceof Type

Infixop:
||
&&
|
^
&
==
!=

SYNTAX The Grammar of the Java Programming Language18.1
DRAFT
<
>
<=
>=
<<
>>
>>>
+
-
*
/
%

Expression3:
PrefixOp Expression3
(Expr | Type) Expression3
Primary {Selector} {PostfixOp}

Primary:
(Expression)
this [Arguments]
super SuperSuffix
Literal
new Creator
Identifier {. Identifier }[IdentifierSuffix]
BasicType BracketsOpt.class
void.class

IdentifierSuffix:
[(] BracketsOpt .class | Expression])
Arguments
. (class | this | super Arguments |new InnerCreator)

PrefixOp:
++
--
!
~
+
-

PostfixOp:
++
--
451

18.1 The Grammar of the Java Programming Language SYNTAX

452
DRAFT
Selector:

. Identifier [Arguments]

. this

. super SuperSuffix

. new InnerCreator
[Expression]

SuperSuffix:
Arguments
. Identifier [Arguments]

BasicType:
byte
short
char
int
long
float
double
boolean

ArgumentsOpt:
[Arguments]

Arguments:
([Expression {, Expression }])

BracketsOpt:
{[]}

Creator:
QualifiedIdentifier (ArrayCreatorRest | ClassCreatorRest)

InnerCreator:
Identifier ClassCreatorRest

ArrayCreatorRest:
[(] BracketsOpt ArrayInitializer | Expression] {[Expression]}

BracketsOpt)

ClassCreatorRest:
Arguments [ClassBody]

ArrayInitializer:
{ [VariableInitializer {, VariableInitializer} [,]] }

SYNTAX The Grammar of the Java Programming Language18.1
DRAFT
VariableInitializer:

ArrayInitializer
Expression

ParExpression:
(Expression)

Block:
{ BlockStatements}

BlockStatements:
{ BlockStatement }

BlockStatement :
LocalVariableDeclarationStatement
ClassOrInterfaceDeclaration
[Identifier :] Statement

LocalVariableDeclarationStatement:
[final] Type VariableDeclarators;

Statement:
Block
if ParExpression Statement [else Statement]
for (ForInitOpt ; [Expression] ; ForUpdateOpt) Statement
while ParExpression Statement
do Statementwhile ParExpression ;
try Block (Catches | [Catches]finally Block)
switch ParExpression{ SwitchBlockStatementGroups}
synchronized ParExpression Block
return [Expression];
throw Expression ;
break [Identifier]
continue [Identifier]
;
ExpressionStatement
Identifier : Statement

Catches:
CatchClause {CatchClause}

CatchClause:
catch (FormalParameter) Block

SwitchBlockStatementGroups:
{ SwitchBlockStatementGroup }
453

18.1 The Grammar of the Java Programming Language SYNTAX

454
DRAFT
SwitchBlockStatementGroup:

SwitchLabel BlockStatements

SwitchLabel:
case ConstantExpression:
default :

MoreStatementExpressions:
{ , StatementExpression }

ForInit:
StatementExpression MoreStatementExpressions
[final] Type VariableDeclarators

ForUpdate:
StatementExpression MoreStatementExpressions

ModifiersOpt:
{ Modifier }

Modifier:
public
protected
private
static
abstract
final
native
synchronized
transient
volatile
strictfp

VariableDeclarators:
VariableDeclarator {, VariableDeclarator }

VariableDeclaratorsRest:
VariableDeclaratorRest {, VariableDeclarator }

ConstantDeclaratorsRest:
ConstantDeclaratorRest {, ConstantDeclarator }

VariableDeclarator:
Identifier VariableDeclaratorRest

ConstantDeclarator:
Identifier ConstantDeclaratorRest

SYNTAX The Grammar of the Java Programming Language18.1
DRAFT
VariableDeclaratorRest:

BracketsOpt [= VariableInitializer]

ConstantDeclaratorRest:
BracketsOpt = VariableInitializer

VariableDeclaratorId:
Identifier BracketsOpt

CompilationUnit:
[package QualifiedIdentifier ;] {ImportDeclaration}

{TypeDeclaration}

ImportDeclaration:
import Identifier { . Identifier } [. *] ;

TypeDeclaration:
ClassOrInterfaceDeclaration
;

ClassOrInterfaceDeclaration:
ModifiersOpt (ClassDeclaration | InterfaceDeclaration)

ClassDeclaration:
class Identifier [extends Type] [implements TypeList] ClassBody

InterfaceDeclaration:
interface Identifier [extends TypeList] InterfaceBody

TypeList:
Type { , Type}

ClassBody:
{ {ClassBodyDeclaration}}

InterfaceBody:
{ {InterfaceBodyDeclaration}}

ClassBodyDeclaration:
;
[static] Block
ModifiersOpt MemberDecl

MemberDecl:
MethodOrFieldDecl
void Identifier MethodDeclaratorRest
Identifier ConstructorDeclaratorRest
ClassOrInterfaceDeclaration
455

18.1 The Grammar of the Java Programming Language SYNTAX

456
DRAFT
MethodOrFieldDecl:

Type Identifier MethodOrFieldRest

MethodOrFieldRest:
VariableDeclaratorRest
MethodDeclaratorRest

InterfaceBodyDeclaration:
;
ModifiersOpt InterfaceMemberDecl

InterfaceMemberDecl:
InterfaceMethodOrFieldDecl
void Identifier VoidInterfaceMethodDeclaratorRest
ClassOrInterfaceDeclaration

InterfaceMethodOrFieldDecl:
Type Identifier InterfaceMethodOrFieldRest

InterfaceMethodOrFieldRest:
ConstantDeclaratorsRest;
InterfaceMethodDeclaratorRest

MethodDeclaratorRest:
FormalParameters BracketsOpt [throws QualifiedIdentifierList] (

MethodBody | ;)

VoidMethodDeclaratorRest:
FormalParameters [throws QualifiedIdentifierList] (MethodBody |;)

InterfaceMethodDeclaratorRest:
FormalParameters BracketsOpt [throws QualifiedIdentifierList] ;

VoidInterfaceMethodDeclaratorRest:
FormalParameters [throws QualifiedIdentifierList] ;

ConstructorDeclaratorRest:
FormalParameters [throws QualifiedIdentifierList] MethodBody

QualifiedIdentifierList:
QualifiedIdentifier {, QualifiedIdentifier}

FormalParameters:
([FormalParameter {, FormalParameter}])

FormalParameter:
[final] Type VariableDeclaratorId

MethodBody:
Block

 Index

Index
DRAFTA
abrupt completion

See completion, abrupt
abstract modifier

See also declarations; modifiers
classes

anonymous are never, 335
binary compatibility considerations, 257
declaration of, 135
definition and characteristics, 135
direct superinterface

relationship to, 142
methods

binary compatibility considerations, 268
classes, 170
declaration examples, 167, 205
interfaces, 205
overloading, 207, 208
overriding, 207
semicolon as body of, 176

andsuper method invocation, 355
access

See also scope
accessibility

determining, 105
term definition, 104

array, 211
expression evaluation order, 365

constructor, binary compatibility
considerations, 261

of fields, expression evaluation, 341
inheritance of class members, example

default, 149
private, 151
protected, 150
public, 150

interface member names, 202

access (continued)
method, binary compatibility

considerations, 267
non-public class instances, through

public superclasses and
superinterfaces, 151

overridden methods, usingsuper
keyword, 178

qualified
See alsofield access expressions; method

invocation expressions
term definition, 104

access control
See also security
classes, example, 107
constructors

default, example, 108
private, example, 111
protected, example, 110
public, example, 109

fields
default, example, 108
private, example, 111
protected, example, 110
public, example, 109

methods
default, example, 108
private, example, 111
protected, example, 110
public, example, 109

package names, limited significance
of, 120

protected, details of, 105
and qualified names, 104
term definition, 104

accessible
default for top-level types, 129
package, term definition, 105
457
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX

458
accessible (continued)
single-type import must name

a type that is, 126
type or package may not be named by

type-import-on-demand if not, 127
types, members and constructors, term

definition, 104
actions

See also methods
main memory subsystem

lock, 431
read, 431
unlock, 431
write, 431

prescient store, with threads, 438
thread

assign, 431
load, 431
lock, 431
store, 431
unlock, 431
use, 431

threads, constraints on relationships
among, 433

algebraic identities
See also expressions; mathematical

functions
limits on use of, 325

alphabet
See also syntax
components

See characters
data types

See primitive types
term definition, 9

ambiguity
See also names, ambiguous; scope
avoiding, in fields with multiple

inheritance, 166
avoiding, in types with multiple

inheritance, 188, 208
anonymous class, 135

See also inner class
and checked exceptions in initializers, 221
definite assignment before, 426
determining immediately enclosing

instance when instantiating, 332
example(s), 161, 194

anonymous class (continued)
exceptions in instance initializer, 189
in an explicit constructor invocation, 194
interaction with shadowing of parameter

names, 168
in an interface variable initializer, 204
protected accessibility of superclass

constructor, 106
supertypes classified as type names, 95
term definition, 330

argument
See also parameters
lists, evaluation order, 326
values, method invocation conversion

context, 71
arithmetic

See also floating point; integers; numbers;
operators; primitive types

integer division,
ArithmeticException, 321

operators, numeric promotion,
specification, 77

arrays
See also classes; data structures
(chapter), 209
access, 211

expression evaluation order, 364
assignment, expression evaluation

order, 394
character, distinguished from strings, 215
Class

objects, 215
obtaining, example, 53

Cloneable interface implemented by, 214
components

See also variables
assignment, run-time testing, 216, 320,

395, 400
default values, 51
initialization, 213
as a kind of variable, 48
type declaration, 213

creation, 42, 211
expression evaluation, 338

order, 338
out-of-memory detection,

example, 340
example, 210
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
arrays (continued)

exceptions,ArrayStoreException, 217
indexing of, 211
initialization, 211, 212
members, 92, 213
names, fully qualified, 111
Object as superclass of, 215
origin, 211
variables

declaration, 210
initialization, 210

ASCII characters
See also characters; Unicode

character set
Unicode character set relationship to, 14

assignment
See also fields; initialization
array, expression evaluation order, 394,

399
assignable to, term definition, 66
compatible, term definition, 66
compound

evaluation order, 323
operators, evaluation, 398

conversion context, specification, 56, 66
definite, (chapter), 407
expressions

boolean, definite assignment, 412
definite assignment, 412
as statements, 287

operation, to change value of primitive
value, 33

simple operators, evaluation, 393

B
backslash (\)

escape sequence, 28
Unicode escape use, 15

backspace
escape sequence, 29

Bartleby
Project (Columbia University), xxii

base
See also numbers
permitted in integer literals, 21

Beta, 3, 7
biblical quotations

I Corinthians 14:40, 322
John 3:30, 369
Matthew 6:29, 209

bibliographic references
Dynamic Class Loading in the Java

Virtual Machine, 232
Polling Efficiently on Stock

Hardware, 224
Release-to-Release Binary Compatibility

in SOM, 251
binary

compatibility
See also code generation; compile-time

errors; exceptions
(chapter), 251
changes that do not break, 252
compatible with, term definition, 256
contrasted with source

compatibility, 257
file format, required properties, 253
name

See name, binary
numeric promotion, specification, 79
representation, verification of classes

and interfaces, 232
blank final

field
class variable must be assigned

by static initializer, 156
definite [un]assignment of, 418
definite assignment of, 407
instance variable must be assigned

by every constructor, 156
notation for definite assignment, 412
restrictions in an inner class, 141

variable
definite unassignment of, 407
notation for definite unassignment, 412

blocks
See also control flow; statements
(chapter), 275
definite assignment, 418
enclosing, 141
in scope of exception handler

parameters, 86, 306
in scope of local class, 86, 278
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
459

INDEX

460

6

blocks (continued)
in scope of local variable, 85, 280
specification and execution of, 277

Bobrow, Daniel G., 6
body

See also declarations
class

declarations in, 147
term definition, 147

constructor, 192
binary compatibility considerations, 270

interface, declarations, 202
method, 176

binary compatibility considerations, 270
boolean

See also numbers
literals, term definition

and specification, 25
operators, 40
types and values, term definition

and specification, 40
bootstrap loader

See class loaders, bootstrap
brackets ([])

array type declaration, 41, 209, 280
break statement

See also control flow
definite assignment, 423
as reason for abrupt completion, 276
specification, 297

Burke, Edmund, 275
Burroughs, Edgar Rice, 301
Burton, Robert, xxiii
but not phrase

grammar notation use, 12
byte type

See also integral types; numbers;
primitive types

value range, 33

C
C, 1, 2, 7
C++, 1, 2, 6
Caesar, Julius, 374
caller

of a statement, term definition, 222

carriage return (CR)
escape sequence, 29
handling in a

character literal, 26
string literal, 27

as a line terminator, not input character, 1
casting

See also conversion
boolean, 41
conversion context, 56

specification, 72
floating-point types, 38
integral types, 34
reference types, 73
run-time testing, 320
to void, not permitted, 287

catch clause, 303
See also control flow;try statement
exception handling role of, 219
exception idiom defined with, 226
scope of parameters, 86, 306

Cervantes, Migel de, 72
characters

See also numbers; primitive types; strings
array of, distinguished from strings, 215
char type, 31

See alsointegral types; numbers;
primitive types

value range, 33
line terminators, 27
literals

escape sequences for, 28
term definition and specification, 26

Unicode character set
composite, contrasted with the Unicode

decomposed characters, 20
handling in package names, 122
lexical grammar use as terminal

symbols, 9
relationship to ASCII, 14

Chase, Lincoln, 118
checking

See also exceptions, checked; throw
for exception handlers, at compile-

time, 221
Christie, Agatha, 276, 288, 347
circular declaration

of a class
compile-time error caused by, 144
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
circular declaration (continued)

of a class (continued)
example involving a local class, 278
link-time error caused by, 144

of an interface, compile-time error
caused by, 201

of types, in different compilation units,
legality of, 123

class literal, 95
class or interface name in a, 82
is a primary expression, 327
term definition, 328

class loaders
bootstrap, 248
and class unloading, 248

class(es)
See also fields; inheritance; interfaces;

methods; packages; subclasses;
superclasses; superinterfaces

(chapter), 135
abstract, 137

as array component types, 210
binary compatibility considerations, 257
overridingabstract methods in, 170
uses, 139

accessibility, 105
anonymous

See anonymous class
binary compatibility considerations, 257
binary representation

binary file format requirements, 256
verification of, 230

body
declarations, binary compatibility

considerations, 259
term definition and declarations in, 147

.class suffix, as name for compiled
files, 122

Class objects, associated with arrays, 215
constructors, binary compatibility

considerations, 267
declarations, 136

specifying direct superclasses in, 142
specifying direct superinterfaces in, 144
term definition, 136

as declared entity, 81
exceptions
ClassCastException, 75

class(es) (continued)
exceptions (continued)
Error, 221, 226
Exception, 226
RuntimeException, 222, 226
Throwable, 219, 221, 226

final

binary compatibility considerations, 258
declaration of, 139

finalization of, 258
FP-strict, 319
inaccessible, accessing members of, 151

example, 151
initialization, 236

detailed procedure, 239
example, 231

instances
See instance(s)

instantiation, preventing, 190
linking

initialization, 227, 230, 239
preparation, 227, 234, 239
process description, 234
resolution, 230
at virtual machine startup, 230

loading, 232
errors
ClassCircularityError, 233
ClassFormatError, 233
NoClassDefFoundError, 233

process description, 233
at virtual machine startup, 230

local
See local class

member
See member class

members, 90
declarations, 147

binary compatibility
considerations, 259

methods
class, 171
interface, 205
non-static, 172
static, 171

named, 135
and checked exceptions in

initializers, 221
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
461

INDEX

462
class(es) (continued)
names, fully qualified, 111
naming conventions, 114
nested

See nested classes
non-public, in example of qualified names

and access control, 107
preparation, 234

at virtual machine startup, 230
preventing instantiation of, 139
public

access control in, 105
binary compatibility considerations, 258
in example of qualified names

and access control, 107
references to, binary file format

requirements, 253
resolution

exceptions
IllegalAccessError, 235
IncompatibleClassChangeError,

235
InstantiationError, 235
NoSuchFieldError, 236
NoSuchMethodError, 236

process description, 235
at virtual machine startup, 230

scope of, 85, 125
in scope of an imported type, 85, 125
static initializers, 189

binary compatibility considerations, 271
that depend on themselves

See circular declaration, of a class
that directly depend on a reference type

See circular declaration, of a class
top-level

See top-level class
type declarations, as members of

packages, 129
unloading of, 248
variables

default values, 51
specification, 48, 155

verification, at virtual machine
startup, 230

classification
reclassification of contextually ambiguous

names, 96

classification (continued)
syntactic, of a name according to

context, 94
code generation

See also binary, compatibility;
compile-time errors; exceptions;
optimization

asynchronous exceptions,
implications for, 224

initialization, implications for, 241
symbolic reference resolution,

implications of, 235
comments

term definition and specification, 18
Common Lisp, 6
compatibility

See binary, compatibility
compilation

See also compile-time errors; exceptions;
virtual machine

CompilationUnit goal symbol, syntactic
grammar use, 10

conditional
binary compatibility considerations, 265
if statement reachability handling to

support, 314
exception handlers checked for

during, 221
unit

components, package declarations, 124
and default accessibility of top-level

types, 129
implicitly starts withimport

java.lang.*, 128
importing types into, 125
and meaning of a simple type name, 99
and name of top-level type, 129
overview, 119
and package membership, 89, 119
and package observability, 125
and scope of an import declaration, 85,

125
term definition and characteristics, 123

compile-time constant
See constants

compile-time errors
See binary, compatibility; errors;

exceptions
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
completion, 276

See also control flow, exceptions
abrupt
break statement, 297
continue statement, 299
disallowed for static initializers, 189
during expression evaluation, 320
for statement, 295
labeled statements, 286
reasons for, 276, 321
return statement, 301
synchronized statement, 304
throw statement, 302
try statement, 305
try-catch statement, 307
try-catch-finally statement, 308

normal
during expression evaluation, 320
during statement execution, 276
required for instance initializers, 189
required for static initializers, 189

component(s)
See also arrays, components
type, arrays, 210

conflicts
name

See alsohiding; obscuring; scope;
shadowing

avoiding through use of syntactic
context, 94

Conner, Michael, 251
constants

See also fields; class;final; fields,
interface; literals

are always FP-strict, 319
characteristics and binary compatibility

considerations, 264
compile-time narrowing of

by assignment conversion,
implications, 66

not permitted by method invocation
conversion, 71

expressions, 405
field, term specification, 264
may be declared in inner class, 140
named

See fields; class;final

constructors
See alsoclass(es); execution; initialization;

interfaces; methods
access, 105

binary compatibility considerations, 261
control

default, example, 108
private, example, 111
protected, example, 110
public, example, 109

hidden fields,this keyword use for, 283
accessibility, 105
allow field access through super, 344
anonymous

term definition, 335
anonymous class

cannot have explicitly declared, 335
has anonymous constructor, 335

are not members, 148
body, 192

binary compatibility considerations, 270
as components of a class body, 147
declarations, 190

binary compatibility considerations, 267
default, 195
definite assignment and unassignment

within, 427
definite assignment of variables

before, 418
deleting, binary compatibility

considerations, 267
determining arguments to, 334
each must declare exceptions

from instance initializers, 188
explicit invocation statements, 193
explicit invocations, 105
FP-strict, 319
invocation, during instance creation, 242
modifiers, 191
must assign all blank final instance

variables, 156
must assign blank final fields, 156
names of, 83, 190
as non-members of a class, 90
overloading, 195

binary compatibility considerations, 270
parameters, 191

See also arguments
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
463

INDEX

464
constructors (continued)
parameters (continued)

assignment during instance
creation, 242

binary compatibility considerations, 267
definite [un]assignment of, 425
must not be assigned iffinal, 168
shadowing, 86, 168
specification, 51, 191

private, preventing instantiation
with, 139, 197

protected, accessibility of, 105, 106
signature, 191

binary file format requirements, 255
throws clause, binary compatibility

considerations, 270
and unreachable statements, 310
when reachable, 311

context(s)
See also inheritance; scope
conversion, 56

assignment, specification, 66
casting, specification, 72
method invocation, specification, 71

reclassification of contextually ambiguous
names, 96

role in determining the meaning of a
name, 81, 93

static
See static context

syntactic classification of a name according
to, 94

context-free grammars
See grammars, context-free

continue statement
See also control flow
definite assignment, 423
as reason for abrupt completion, 276
specification, 299

contract
See also binary, compatibility
term definition, 256

control flow
See also completion; definite assignment;

exceptions; expressions;
statements; statements,
unreachable; threads

boolean expressions use for, 40

control flow (continued)
break statement, specification, 297
continue statement, specification, 299
deadlock avoidance, multiple lock

use for, 305
do statement, specification, 293
for statement, specification, 295
if statement, danglingelse

handling, 284
if-then statement, specification, 288
if-then-else statement,

specification, 288
local variable declaration andswitch

statement, 49
return statement, specification, 301
switch statement, specification, 288
synchronized statement,

specification, 304
throw statement, specification, 302
try statement, specification, 305
try-catch statement, specification, 307
try-catch-finally statement,

specification, 308
while statement, specification, 292

conventions
naming, 113

impact on obscuring of names, 89
conversion

See also casting; numbers; promotion
(chapter), 55
casting, 72
contexts

assignment, specification, 66
casting, specification, 72
method invocation, specification, 71

forbidden, specification, 64
identity

in assignment conversion context, 66
in casting conversion context, 72
in method invocation conversion

context, 71
specification, 58

kinds of, 58
in method invocations, 71
narrowing

primitive
in assignment conversion context, 66
in casting conversion context, 72
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
conversion (continued)

narrowing (continued)
primitive (continued)

not allowed in method invocation
conversion context, reasons for, 71

reference, in casting conversion
context, 72

reference
narrowing, 63
widening, 62

string, 72
specification, 64

term definition, 55
value set

in assignment conversion, 66
in binary numeric promotion, 79
in casting conversion, 72
in method invocation conversion, 71
in overview, 56
term definition, 65
in unary numeric promotion, 78

widening
primitive

in assignment conversion context, 66
in binary numeric promotion

context, 79
in casting conversion context, 72
in method invocation conversion

context, 71
in unary numeric promotion

context, 78
reference, 62

in assignment conversion context, 66
in casting conversion context, 72
in method invocation conversion

context, 71
term specification, 62

creation
See also declaration; initialization
array, 42, 211

expression evaluation
example, 339
order, 338
out-of-memory detection,

example, 340
instance, 42

expression evaluation order, 334
expressions as statements, 286

creation (continued)
instance (continued)

invocation of initializers for instance
variables during, 244

method dispatching during, 244
specification and procedure, 241

object, 42
threads, 445

Creatore, Luigi, 30

D
Danforth, Scott, 251
dangling else

See also control flow
handling of, 284

data
See also constants; fields; variables
structures

See arrays; classes; interfaces;
primitive types; vectors

types
See types

values
See values

database
storing packages in, 119

deadlock
avoidance, multiple lock use for, 305

decimal
See also numbers
base, permitted in integer literals, 21
numerals, specification, 21

declarations
See also body; execution; methods;

parameters; statements
class

(chapter), 135
body, 147
member, 147
term definition and specification, 135

constructor, 190
field(s), 153

constants in interfaces, 203
examples of, 162
interface, examples, 204
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
465

INDEX

466
declarations (continued)
identifiers in, kept separate from those

in labeled statements, 84
import

example, 128
single-type, 126
term definition, 125
type-import-on-demand, 127

instance variable, 48
interface, 200

(chapter), 199
body, 202
members, 202

local variable, definite assignment, 419
method(s), 167

examples of, 180
interface,abstract, 205

modifiers
See
abstract modifier;final modifier;
native modifier;private
modifier;protected modifier;
publicmodifier;staticmodifier;
synchronized modifier;
transient modifier;volatile
modifier

overriding, example, 180
package, in compilation units, 123
scope of, 85
shadowed, term definition, 86
shadowing, 86
subclass, 142
superclass, 142
superinterface, 144, 201
term definition, 82
type

as members of packages, 129
need not appear before use

of the type, 86
usage in, 46

variable
array, 210
local, 279

execution of, 283
declarator

in scope of local variable, 85, 86, 280, 296
definite assignment

See also exceptions; execution; scope

definite assignment(continued)
(chapter), 407
and anonymous classes, 426
of blank final class variables, 156
of instance variables, 156
and local classes, 418
of member types, 426
and parameters, 425
and qualified class instance creation, 417
requirement for locals and parameters

before an inner class, 141
and static initializers, 426
of variables with respect

to nested classes, 418
definite unassignment, 407

See also definite assignment
hypothetical analysis of, 412
and local classes, 418
and qualified class instance creation, 417
and static initializers, 426

DeMichiel, Linda G., 6
denormalized

IEEE 754 standard, support
required for, 38

digits
Java, term definition, 19

directly depends
class, term definition, 144

division
See also arithmetic; numbers
integer divide by zero, indicated by

ArithmeticException, 34, 375
do statement

See also control flow
definite assignment, 421
specification, 293

double quote
escape sequence, 29
in string literals, 27

double type
floating-point literal specification, 24

Duff’s device, 289
Dylan, 6

E
Eco, Umberto, 118
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
Eisenhower, Dwight D., 388
element type

arrays, term definition, 210
Ellis, Margaret A. , 6
Ellison, Shirley, 118
entity

declared, list of, 82
Epictetus, 203
errors

class variable initializers may not
refer to instance variables, 159

Error class, unchecked exceptions
as subclass of, 176

linking, 227, 234
resolution, 235
verification, 234

loading, 227, 233
reasons for, 220
semantic, exceptions as mechanism

for signaling, 219
types, run-time, 320
unchecked, reasons for, 221
virtual machine, 227

escapes
sequences, for character and string

literals, 28
Unicode, specification, 14

evaluation
See also execution; initialization; scope
evaluated, term definition, 317
expressions

additive operators, 377
additive operators for numeric

types, 381
array access, 364
array assignment, 393
array creation, 338
assignment operators, 392
bitwise binary operators, 388
bitwise complement, 371
boolean equality operators, 388
boolean logical operators, 389
cast, 372
compound assignment operators, 398
conditional operator, 391
conditional-and operator, 390
conditional-or operators, 390
division, 374

evaluation (continued)
expressions (continued)

equality operators, 386
field access, 341
instance creation, 334
integer bitwise operators, 389
logical binary operators, 388
logical complement, 371
method invocation, 345
method invocation, order of, 356
multiplication, 373
multiplicative operators, 373
numeric comparison, 384
numeric equality operators, 387
parenthesized, 330
postfix, 368
pre-decrement, 369
pre-increment, 369
primary, 327
reference equality operators, 388
relational operators, 384
remainder, 376
shift operators, 383
simple assignment operator, 393
string concatenation, 378
superclass access, 344
type comparison, 385
unary minus, 370
unary operators, 368
unary plus, 370

literals, 328
order

arguments left-to-right, 326
binary operators, 322
compound assignment, 323
left-hand operand first, 322
left-to-right, 322
operands evaluated before

operations, 324
parentheses and precedence

respected, 325
result of, term definition, 317

events
See also methods
execution order of, constraints

on relationships among, 433
evolution

See also binary, compatibility; reuse
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
467

INDEX

468

4

evolution (continued)
of classes, binary compatibility

considerations, 257
of interface, binary compatibility

considerations, 271
of packages, binary compatibility

considerations, 257
examples

access control, 106
fields, methods, and constructors

default, 108
private, 111
protected, 110
public, 109

arrays, 212
classes,public and non-public, 107
declarations

fields, 162
import, 128
methods, 180

default-access methods, constructors,
and fields, 108

exceptions, 224
fields

interface, ambiguous inherited, 204
interface, multiply inherited, 205
multiply inherited, 165
re-inheritance of, 166

hiding, 181
vs. overriding, 182
of variables

class, 162
instance, 163

inheritance
accessing members of inaccessible

classes, 152
class members, 149

default access, 149
public, protected, andprivate

access, 150
multiple, with superinterfaces, 146
with default access, 149
with private access, 151
with protected access, 150
with public access, 150

methods
abstract declarations, 207
invocation of hidden class, 184

examples (continued)
methods (continued)
private, 111
protected, 110
public, 109

overloading, 181
overriding, 180

vs. hiding, 182
incorrect, 181

because ofthrows, 186
large example, 185

exceptions
See also binary, compatibility;

compile-time errors; errors;
(chapter), 219
asynchronous, causes and handling of, 22
caller, determination of, 222
causes of, 220
checked

constructors, declaring withthrows
clause in method declarations, 175

defining new exception classes as, 226
Exception, 226
in an instance initializer, 188
methods, declaring withthrows clause

in method declarations, 175
in a static initializer, 189
UnsatisfiedLinkException, 236

classes
Error, 221
Exception, 226
RuntimeException, 222

unchecked exceptions found in, 176
Throwable, 219, 221

errors
AbstractMethodError, 268
ClassCircularityError, 144, 258

meaning, 233
ClassFormatError, meaning, 233
Error, 226
ExceptionInInitializerError, 241,

304
IllegalAccessError, 258, 272, 358

meaning, 235
IncompatibleClassChangeError, 26

4, 269, 272, 357
meaning, 235

InstantiationError, meaning, 235
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
exceptions (continued)

errors (continued)
LinkageError, 233, 234
loading and linkage, 227
NoClassDefFoundError, 240

meaning, 233
NoSuchFieldError, 264

meaning, 236
NoSuchMethodError, 267, 273, 357

meaning, 236
OutOfMemoryError, 176, 233, 241,

242, 321, 334, 338, 340, 360
UnsatisifedLinkError

meaning, 236
VerifyError, 269, 272

meaning, 234
VirtualMachineError, 227

example, 224
handlers

compile-time checking, 221
how established, 219
in try statements, 306

handling of, 222
asynchronous, 224
run-time testing, 320

hierarchy, 226
integer divide by zero, 34
NegativeArraySizeException, 321,

338
never thrown for

assignment conversions, 66
information loss due to narrowing

primitive conversions, 61
information loss sue to widening

primitive conversions, 59
widening reference conversions, 63

NullPointerException, 194
parameters

See also variables
declaration, 306
description, 49
initial value, 51
scope, 86, 306

precise, 223
RuntimeException, 395
synchronization integrated with

mechanism for handling, 220

exceptions (continued)
thrown for, narrowing reference

conversions, 63
uncaughtException method,

when invoked, 220
unchecked, 226
unchecked runtime
ArithmeticException, 324, 376
ArrayIndexOutOfBoundsException,

394, 399
ArrayStoreException, 217, 320, 395,

398
ClassCastException, 320, 372, 395

casting conversion requirements
that can result in, 75

IndexOutOfBoundsException, 212,
321, 364

NullPointerException, 213, 222,
321, 358, 361, 364, 366, 394, 399

RuntimeException, 226, 395
execution

See also declarations; evaluation;
initialization; linking; loading

(chapter), 229
order, thread rules, 433
of statements for their effect, 275

exit
virtual machine, criteria for, 249

exponent
See value set

expressions
See also fields; methods; statements
(chapter), 317
abrupt completion of, as reason for

abrupt statement completion, 277
additive operators

evaluation, 377
for numeric types, evaluation, 381

array
access, evaluation, 364
assignment, evaluation, 394, 399
creation, evaluation of, 337

assignment
conversion, 66
definite assignment, 407, 412
operators, evaluation, 392
as statements, 287
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
469

INDEX

470
expressions (continued)
bitwise

binary operators, evaluation, 388
complement, evaluation, 371

boolean
operators

!, definite assignment, 414
&&, definite assignment, 413
?, definite assignment, 414
||, definite assignment, 413
assignment, definite assignment, 415
constant, definite assignment, 412
equality, evaluation, 388
logical, evaluation, 389

cast, evaluation, 372
compound, assignment operators,

evaluation, 398
conditional

and operator &&, evaluation, 390
operator ? :

definite assignment, 414
evaluation, 391

or operator ||, evaluation, 390
definite assignment and, 412
division, evaluation, 374
equality operators, evaluation, 386
field access, evaluation, 341
instance creation

evaluation of, 330
as statements, 286

integer bitwise operators, evaluation, 389
logical

comparison operators, evaluation, 388
complement !, evaluation, 371

method invocation
evaluation, 345
evaluation order, 356
as statements, 287

multiplication *, evaluation, 373
multiplicative operators *, ⁄, %,

evaluation, 373
names

context in which a name is classified
as, 95

qualified, meaning of, 102
simple, meaning of, 101

numeric
comparison, evaluation, 384

expressions (continued)
numeric (continued)

equality operators, evaluation, 387
operators

++, definite assignment, 416
--, definite assignment, 416
precedence, evaluation, 325

parenthesized
evaluation of, 330
evaluation of, precedence effect of, 325

post-decrement --
evaluation of, 368
as statements, 287

postfix, evaluation, 367
post-increment ++

evaluation of, 367
as statements, 287

pre-decrement --
evaluation of, 369
as statements, 287

pre-increment ++
evaluation of, 369
as statements, 287

primary, evaluation of, 327
See also

arrays, access expressions;
arrays, creation;
expressions, parenthesized;
fields, access expressions;
instance, creation;
literals;
methods, invocations;
this keyword

reference equality operators ==, !=,
evaluation, 388

relational operators <, >, <=, >=,
evaluation, 384

remainder operator %, evaluation, 376
run-time checks of, 319
semantics and evaluation rules,

(chapter), 317
shift operators <<, >>, >>>,

evaluation, 383
simple assignment operator =,

evaluation, 393
statements

definite assignment, 417
specification, 284
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
expressions (continued)

string concatenation +, evaluation, 378
superclass access, evaluation, 344
type

vs. class of object, 52
comparisoninstanceof,

evaluation, 385
how determined, 52
usage in, 46

unary
minus -, evaluation, 370
operators, evaluation, 368
plus +, evaluation, 370

values, variable as, 318
extends clause

See also classes; implements; object-
oriented concepts

in class declaration, specifying direct
superclasses with, 142

in interface declaration, 201

F
Feeley, Mark, 224
fields

access control
default, example, 108
private, example, 111
protected, example, 110
public, example, 109

access expressions, evaluation, 341
of an array, 92, 214
of a class

binary compatibility considerations, 262
declarations, 153

examples of, 162
final, 156

binary compatibility
considerations, 264

volatile declaration not
permitted for, 158

multiply inherited, example of, 165
non-static

default values, 51
explicit constructors not

permitted to use, 193
hiding example, 163

fields (continued)
of a class (continued)

non-static (continued)
initializers for, 159
initialization of, 158
invocation of initializers during

instance creation, 242
specification, 48

re-inheritance of, example, 166
static

binary compatibility
considerations, 266, 271

andfinal, binary compatibility
considerations, 264

hiding of, example, 163
initialization of, 158, 189
initialization of, during the preparation

phase of linking, 234
specification, 48
term definition and declaration, 155

transient, 156
binary compatibility

considerations, 266
volatile, 156

declarations
binary compatibility considerations, 273
as declared entity, 81

hidden
accessing with
super keyword, 344, 345
this keyword, 283

of an interface
ambiguous inherited, example, 204
binary compatibility considerations, 273
declarations, 203

examples, 204
initialization, 204

during the preparation phase
of linking, 234

multiply inherited example, 205
public by default, 203

names, naming conventions, 115
public, by default in interface

declaration, 202
references to, binary file format

requirements, 253
references, active use, 238
shadowing, 86
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
471

INDEX

472
fifth dimension, 339
files

binary, format, 252
systems, storing packages in, 119

Finagle’s Law, 219
final modifier

See also declarations; modifiers
anonymous class is always implicitly, 335
classes

binary compatibility considerations, 258
declaration of, 139

exception parameter, may not be
assigned, 306

fields
binary compatibility considerations, 264
declaration and use, 156, 203
final by default in, interface

declaration, 203
not allowed withvolatile, 158

formal parameters, 168
methods

binary compatibility considerations, 268
declaration and use, 172
not permitted in interface method

declarations, 206
reasons why constructors cannot be, 191

finalization
See also exceptions; linking
finalizable, as object attribute, 246
finalize method, as member

of Object class, 45
finalized, as object attribute, 246
finalizer method calls,

unordered nature of, 247
finalizer-reachable, as object attribute, 246
finally clause, exception

handling use, 223
implementing, 246
of instances, 245

implementation procedures, 246
float type, 35

See also floating-point
floating-point

See also arithmetic; numbers; types
algebraic identities, limits on use of, 325
float type, floating-point literal

specification, 24, 33

floating-point (continued)
literals

largest and smallest, 24
term definition and specification, 24

operations, 37
required behavior, 38
types and values, term definition

and specification, 35
flow analysis

See also security
conservative, required for definite

assignment of local variables, 407
Foote, Samuel, 305
for statement

definite assignment, 422
ForInit part

initialization by, 295
scope of local variable declared in, 86

header, local variable declaration in, 281
in scope of a local variable, 86, 296
specification, 295

form feed
escape sequence, 29

Forman, Ira , 251
forward reference

compile-time error in
initializers, 160

forward references
to types allowed before declaration, 86

FP-strict
actual arguments, 169
and addition, 382
and casts, 372
classes, 139
classes, interfaces, methods,

constructors and initializers, 319
compile-time constant is always, 406
constructors, 191
and division, 375
expression

term definition, 318
interfaces, 200
methods, 173

overriding, 178
and multiplication, 374
andreturn statement, 302
value set conversion within, 65
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX

8

DRAFT
Franklin, Benjamin , 229
Frost, Robert, 199, 310, 315, 445

G
Gabriel, Richard P., 6
Geisel, Theodore, 132
Gilbert, W. S., 197
goal symbols

CompilationUnit, 123
syntactic grammar use, 10

Input, lexical grammar use, 9
Goldberg, Adele, 6
goto statement

See labeled statements
gradual underflow

See also exceptions; floating-point;
IEEE 754 standard; numbers

support required for, 38
grammars

See also languages; lexical; semantics
(chapter), 9
context-free, term definition, 9
difficulties with, as given in body of Java

Language Specification, 449
if statement, danglingelse handling, 284
lexical

(chapter), 13
term definition, 9

notation, 10
syntactic, term definition, 10

H
Hammerstein, Oscar, II, 133
Harbison, Samuel, 6
Harding, Warren G. , 307
hexadecimal

See also numbers
base, permitted in integer literals, 21
numerals, specification, 22

hiding
See also scope
by class methods, 178
of field declarations, in superclasses

and superinterfaces, 154

hiding (continued)
of fields, 136

bypassing using super, 345
term definition, 154

hidden class methods, invocation of,
example, 184

of interface field declarations, in
superinterfaces, 203

of interface fields, term definition, 203
of interface member type declarations, 20
of interface member types, term

definition, 208
of interfaces, 199
of member types, term definition, 187
method

example, 181
impact on checked exceptions, 176
requirements, 178

of methods, 136
vs. overriding, example, 182
of types, by member types, 136
of variables

class, example of, 162
instance, example of, 163

hierarchy
exception, 226

Higginson, Thomas Wentworth, 203
Hoare, C. A. R., 1, 6
horizontal tab

escape sequence, 29
host

and creation, storage and observability
of packages and compilation
units, 120

may not restrict packages
in a database, 130

and observable compilation units, 123
optional restriction on packages

in a file system, 129
hypothetical analysis

of definite unassignment, 412

I
identifiers

See also fields; names; scope;
variables
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
473

INDEX

474

0

identifiers (continued)
those that are not names, 83
in labeled statements, distinguished from

those in declarations, 84
term definition and specification, 19

identity
conversion

in assignment conversion context, 66
in casting conversion context, 72
in method invocation conversion

context, 71
specification, 58

IEEE 754 standard, 6
See also numbers
floating-point

conversion of numbers to, 24
types conformance to, 35

if statements
See also statements
danglingelse, handling of, 285
definite assignment, 420
if-then statement, specification, 288
if-then-else statement,

specification, 288
specification, 287

implement
See also classes;extends clause;

interfaces
implements clause, 201

class declaration, specifying direct
superinterfaces with, 144

term definition, 91, 145
import

See also packages; scope
automatic, 128
declarations

example, 128
single-type, 126
term definition, 125
type-import-on-demand, 127

imported types
as declared entity, 82
scope of, 85

as part of a compilation unit, 123
single-type

may not declare top-level type
in same compilation unit, 130

and meaning of a simple type name, 99

import (continued)
single-type (continued)

scope, 85, 125
and shadowing, 87, 126

type-import-on-demand, 96
and meaning of a simple type name, 10
scope, 85, 125
and shadowing, 87, 127

indexing
of arrays, 211

inexact results
See also numbers
rounding behavior, 38

infinity
See also numbers
representation of, 25
signed, produced by floating-point

overflow, 39
inheritance

See also object-oriented concepts; scope
in class

examples of, 149
of members, 148
of members, withpublic,

protected, andprivate access,
examples, 150

with default access, example, 149
of fields

in class declarations
multiply inherited from interfaces,

example of, 165
reinheritance of, example of, 166

in interface declarations
ambiguous inherited, example, 204
multiply inherited, example, 205

of members, 90
of methods

in class declarations, 177
with the same signatures, 179

in interface declarations, 206
multiple

See also superinterfaces
example, 146

term definition, 90
initialization

See also control flow; linking
of arrays

in creation, to default value, 338, 48
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX

4

DRAFT
initialization (continued)

of arrays (continued)
using array initializers, 212

of classes, 236
detailed procedure, 239

of classes and interfaces, when
it occurs, 236

detailed procedure, 239
of fields

in classes, 159
in interfaces, 204

of for statement, 295
of interfaces, 236

detailed procedure, 239
for variables, array, 212

initializers
See also creation; execution
array

in array creation expression, 338
arrays, 211
executing, inTest class example

initialization, 231
for fields

in class, 159
in interface, 204

instance
See instance initializer
FP-strict, 319

instance variable, 195
lacking in a blank final, 50
local variable

in scope of a local variable, 86, 296
static, 158, 189

binary compatibility considerations, 271
static

FP-strict, 319
variable

FP-strict, 319
in scope of local variable, 85, 280

for variables
class, 158

during class or interface
initialization, 159

instance, 159
during instance creation, 242

inner class
See also nested class
anonymous class is always, 335

inner class(continued)
of another class, 140
direct, 140
every local class is an, 277
in a qualified class instance creation

expression, 331
and qualifiedsuper method

invocation, 355
qualified superclass constructor

invocation of, 193
as superclass of an anonymous class, 33
term definition, 140

input
See also files
elements, term definition, 16
Input goal symbol, lexical grammar use, 9
tokens, 16

instance initializer, 135
allows field access through super, 344
anonymous class, 336
and checked exceptions, 221
as components of a class body, 147
containing a throw statement, 304
definite assignment of variables

before, 418
execution during constructor

invocation, 195
is not a member, 148
may not contain a return statement, 301
must be able to complete normally, 189
overview, 136
term definition, 188
and unreachable statements, 310
when reachable, 311

instance(s)
See alsoclasses; interfaces; object-oriented

concepts
creation, 42, 241

constructor
invocation by creation

expressions, 190
parameter assignment during, 242
use in, 190

expression evaluation, 330
order, 334

expressions as statements, 287
invocation of initializers for instance

variables during, 242
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
475

INDEX

476
instance(s) (continued)
creation (continued)

method dispatching during, 244
enclosing

determining immediate, 332
with respect to superclass, 194
with respect to superclass of

an anonymous class, 333
immediate as first argument

to constructor, 334
immediately, 141

with respect to a class, 141
nth lexical used when evaluating

method invocation, 356
nth lexically, 141
restrictions on references to, 194

finalization of, 245
implementation procedures, 246

initializer
See instance initializer

instanceof operator
testing expression types with, 320
testing expressions with, 320

instantiation
preventing, withprivate

constructors, 139, 197
methods

Seemethods, non-static
variables

See fields, class, non-static
instanceof operator

testing expression types with, 320
instantiation

term definition, 330
integers

See also arithmetic; integral types;
numbers

converting to boolean values, 41
literals

longest permitted, 23
term definition and specification, 21

operations, 33
integral types

See also arithmetic; numbers; types
byte type, 33
char type, 33
int type, 33
long type, 33

integral types (continued)
short type, 33
values and operations, 33

interfaces
See also class(es); fields; methods; pack-

ages; subclasses; superclasses;
superinterfaces

(chapter), 199
abstract methods, 205
accessibility, 105
as array element types, 210
binary compatibility considerations, 271
binary representation

binary file format requirements, 252
verification, 234

body, declarations, 202
and checked exceptions in initializers, 221
Cloneable, implemented by arrays, 214
declarations, 200
as declared entity, 81
dependent on a reference type

term definition, 201
directly dependent on a reference type

term definition, 201
fields

declarations, 203
examples, 204

inheritance
ambiguous, 204
multiply, 205

initialization, 204
FP-strict, 319
initialization, 236

detailed procedure, 239
java.io.Serializable, implemented

by arrays, 214
linking, process description, 233
loading, 232

process description, 233
members, 91

binary compatibility considerations, 272
declarations, 202
inheritance from superinterfaces, 91,

202
names, access to, 202

methods
declarations, 207

examples, 207
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
interfaces (continued)

methods (continued)
overloading, 207

example, 208
overriding, 206

example, 207
names

fully qualified, 111
naming conventions, 113

preparation of, 234
public

binary compatibility considerations, 272
declaration, 200

references to, binary file format
requirements, 255

in scope of imported type, 85, 125
Serializable, implemented by

arrays, 214
superinterfaces

binary compatibility considerations, 258
of a class, 144
declaration of, 144

that depend on themselves, 201
unloading of, 248

invocation
alternate constructor, 193
constructor

determining arguments to, 334
expression evaluation, 335
expression evaluation, order, 336
language constructs that result in, 190

of hidden class methods, example, 184
method

conversion, 71
expression evaluation, 345

order, 356
how chosen, 319

superclass constructor, 193
iteration

See also control structures
continue statement, specification, 299
do statement, specification, 293
for statement, specification, 295
while statement, specification, 292

J

Java
digits, term definition, 19
.java suffix, as name for source files, 122
java package is always in scope, 125
java.lang

example, 121
may be named in a type-import-

on-demand, 127
public type names automatically

imported from, 119, 123
java.lang package
public type names automatically

imported from, 128
public types defined in, list of, 128

letters, term definition, 19
Java programming language

See also grammars; languages; lexical;
semantics; syntax

Johnson, Samuel, 13

K
Keats, John, 217
Keene, Sonya E., 6
Kelvin, Lord (William Thompson) , 317
Kernighan, Brian W. , 7
keywords

list of, 20
as token, 10

Kiczales, Gregor, 6

L
label

shadowing, 87
labeled statements

identifiers in, kept separate from
those in declarations, 84

specification, 286
language

See also grammars; lexical; semantics;
syntax

Beta, 3, 7
C, 1, 2, 7
C++, 1, 2, 7
Common Lisp, 6
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
477

INDEX

478
language (continued)
Dylan, 6
Mesa, 5, 7
Modula-3, 3, 6
Smalltalk-80, 6

Lao-Tsu, 81
left-hand side

term definition, 9
length

of array, 213
not part of type, 210

letters
See also Unicode character set
Java, term definition, 19

lexical
See also semantics; syntax
grammar, term definition, 9
structure (chapter), 13
translations, steps involved in, 14

Liang, Sheng, 233
life cycle

See also objects
of objects, 246

line terminators, term definition, 16
linefeed (LF)

escape sequence, 29
handling in a

character literal, 26
string literal, 27

as a line terminator, not input character, 27
linking , 233

See also exceptions; execution;
initialization; loading; run-time

classes, process description, 233
errors, 227
interfaces, process description, 233
in Test class example,

at virtual machine startup, 230
literals

See also constants; fields; variables
boolean, term definition and

specification, 25
character

escape sequences for, 28
term definition and specification, 26

evaluation of, 328
floating-point

largest and smallest permitted, 24

literals (continued)
floating-point (continued)

term definition and specification, 24
integer

largest and smallest permitted, 23
term definition and specification, 21

null, term definition and specification, 29
string

escape sequences for, 28
term definition and specification, 27

term definition and specification, 21
as token, 10

loading
See alsoClassLoader class; execution;

linking
classes, 232
errors, 227
interfaces, 232
process, 233
in Test class example, at virtual machine

startup, 230
local class, 115, 135

declaration is part of a block, 277
and definite [un]assignment, 418
determining immediately enclosing

instance when instantiating, 332
example(s), 141, 278
interaction with shadowing

of parameters, 168
and meaning of a simple type name, 99
requirements for normal completion, 311
scope, 86, 278
as superclass of anonymous class

being instantiated, 333
term definition, 277

local variables
See also scope; variables
declarations

definite assignment, 419
statements, 279

declarators and types, 279
definite assignment, required for, 407
initial value, 51
naming conventions, 116
restrictions on use in an inner class, 141
scope, 85, 280
shadowing, 86
specification, 49
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
locks

See also monitors; synchronization;
threads

(chapter), 429
acquisition and release

by synchronized networks, 174
by synchronized statement, 304

interaction with variables, rules about, 436
rules about, 436
synchronization and, 445

long type, 33
See also integral types; numbers
integer literal specification, 23
value range, 33

lvalue
See variables, value of expression

M
Madsen, Ole Lehrmann, 7
magnitude

loss of information about, possibility
of in narrowing primitive
conversion, 60

Marx, Chico, 415, 423
Marx, Groucho, 148, 227, 415, 416, 417
mathematical functions

See arithmetic; numbers
Matthew, St., 209
Maybury, William , 7
member, 187
member class, 82, 113, 135, 136

See also member type
can have same name as a method, 167
canonical name of, 113
determining immediately enclosing

instance when instantiating, 332
example(s), 140, 142, 194, 196, 278
fully qualified name of, 112
andpublic modifier, 137
as superclass of anonymous class

being instantiated, 333
term definition, 187

member interface, 82, 111, 113, 135, 136,
187

See also member type
can have same name as a method, 167

member interface(continued)
canonical name of, 113
example(s), 140
fully qualified name of, 112
implicitly static, 188
implicitly static, 140
inner class may not declare, 140
term definition, 187

member type, 97, 99, 187, 199
See also nested type
binary name of, 253
and definite assignment, 426
in interfaces, 208
inherited by interfaces, 201
and the meaning of a qualified

type name, 100
and the meaning of a simple

type name, 99
members

See also class(es); fields; interfaces;
methods

accessibility, 105
arrays, 92, 213
classes, 90, 148

binary compatibility considerations, 259
declarations, 147
inaccessible, accessing, example, 151
inheritance, examples, 149
private, inheritance examples, 151

inheritance and, 90
interfaces, 91, 202

binary compatibility considerations, 272
declarations, 202
inheritance, 91, 202
names, access to, 202

Object class, 45
of a package, 89, 119
packages, 89, 119
protected accessibility of, 105
reference type, as declared entity, 81
static, restricted in inner classes, 140
of superclasses, accessing withsuper, 344
term definition, 89

memory
exceptions
OutOfMemoryError, 241, 242

main, term definition, 431
master, of variables, term definition, 431
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
479

INDEX

480
memory (continued)
OutOfMemoryError, 176
working, term definition, 431

Mesa, 5, 7
method(s), 167
abstract

binary compatibility considerations, 268
in classes, 170
in interfaces

overloading, 207
access control

default, example, 108
private, example, 111
protected, example, 110
public, example, 109

access, binary compatibility
considerations, 261

accessible, and method invocation, 347
of array, 92, 214
body, 176

binary compatibility considerations, 270
class

See methods,static
classes, 167
abstract, 170
binary compatibility considerations, 267
body

declarations, 176
with no executable code, 176

constructors compared with, 190
declarations, 167

examples of, 180
final, 172
hidden, invocation of, 184
hiding by, 178
modifiers, 169
native

declarations, 173
semicolon as body of, 177

private, as implicitlyfinal, 172
signature, 169
strictfp, declaration, 173
synchronized, declaration, 174
void, expression return statement

not permitted in, 177
with same signature, inheriting, 179

declarations, 167, 200
binary compatibility considerations, 267

method(s) (continued)
as declared entity, 81
definite [un]assignment of blank final

fields before, 418
definite assignment of variables

before, 418
descriptor, 347
dispatching during instance creation, 244
equals, as member ofObject class, 45
final, 172

binary compatibility considerations, 268
finalize, as member ofObject class, 45
FP-strict, 319
getClass, as member ofObject class, 45
hashCode, as member ofObject class, 45
hiding of, 178
inheritance

in arrays, 92, 214
in classes, 177
in interfaces, 91, 202

instance
See method(s), non-static

of interfaces
declarations, 205, 207
overloading, 207, 208
overriding, 206, 207
semicolon as body of, 176

invocation
See also access control
conversion, 71
expression evaluation, 345

order, 346
expressions as statements, 287
how chosen, 319
qualifying type of

See qualifying type, of a method
invocation

as members of a class, 90
method table creation during preparation

phase of linking, 230
names

context in which a name
is classified as, 94

naming conventions, 115
qualified, meaning of, 104
simple, meaning of, 104

native, 173
binary compatibility considerations, 269
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
method(s) (continued)

non-static
instance method as name for, 172
overriding by, 177

notify, as member ofObject class, 45
notifyAll, as member ofObject

class, 45
overloading, 180

binary compatibility considerations, 270
example, 181

overriding, 178
binary compatibility considerations, 271
examples, 180, 181, 182, 185, 207

parameters
See also arguments; variables
binary compatibility considerations, 267
definite [un]assignment of, 425
description, 48
initial value, 51
is assigned when final, 168
must not be assigned iffinal, 168
shadowing, 86, 168
specification of, 168

private, in example of qualified names
and access control, 111

public, interfaces, declarations, 205
references to, binary file format

requirements, 254
result type, binary compatibility

considerations, 268
scope of formal parameters, 85, 168
shadowing, 87
signatures, 169
static, binary compatibility

considerations, 269
stop, as asynchronous exception

cause, 220
synchronized, 174

binary compatibility considerations, 270
throws clause, binary compatibility

considerations, 270
toString, as member ofObject class, 45
uncaughtException

exception handling use, 223
when invoked, 220

and unreachable statements, 310
wait, as member ofObject class, 45
when reachable, 311

Mitchell, James G., 7
modifiers

See also declarations
class, 137
constructor, 191
declaration

Seeabstractmodifier;finalmodifier;
private modifier;protected
modifier;public modifier;static
modifier;strictfp modifier;
synchronized modifier;
transient modifier

field, 154
interface, 200
method, 169

Modula-3, 3, 6
Molière, 9
Møller-Pedersen, Birger, 7
monitors

See also locks; synchronization
term definition, 429

Montaigne, Michael de, 167
Moon, David A., 6
Morlay, Bernard de, 118

N
named class

exceptions in instance initializer, 188
named type, 200
names

See also identifiers; scope; Unicode
character set

(chapter), 81
ambiguous

handling of, 93, 96
reclassification of, 96

binary
implementation keeps track

of types using, 129
term definition, 253

canonical, 82
is binary name of top-level type, 253
and single-type imports, 126
term definition, 113
and type-import-on-demand, 127

class, naming conventions, 114
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
481

INDEX

482
names (continued)
conflicts

See also hiding
avoiding

in fields with multiple
inheritance, 165

through context use, 94
through naming conventions, 113

constants, naming conventions, 116
conventions, 113

impact on name obscuring, 89
expression

context in which a name
is classified as, 97

qualified, meaning of, 102
simple, meaning of, 101

fields, naming conventions, 115
fully qualified, of a top-level type, 129
interface

member, access to, 202
naming conventions, 114

meaning of, determining, 93
method, 167

context in which a name
is classified as, 96

naming conventions, 115
qualified, meaning of, 104
simple, meaning of, 104

package
in compilation units, 123
context in which a name

is classified as, 97
limited significance for access

control, 120
naming conventions, 113
qualified, meaning of, 98
scope, 125
simple, meaning of, 98
unique, 132

importance of, 132
parameters, naming conventions, 116
qualified

access control and, 104
fully, 111
term definition, 81

resolving references to, during
resolution phase of linking, 230

restrictions, types and subpackages, 120

names (continued)
rules on being the same

class members, 90
fields, 90
interface fields, 92

simple, 253
class cannot have same

as enclosing class, 137
interface cannot have same

as enclosing class, 200
term definition, 83

as subset of identifiers, 83
syntactic

categories, 93
classification of according to context, 94

term definition, 83
type

context in which a name
is classified as, 96

qualified, meaning of, 100
simple, meaning of, 99

variables, local, naming conventions, 116
NaN (Not-a-Number)

See also numbers
and addition, 381
comparison results, 39
and division, 375
and multiplication, 373
predefined constants representing, 25
preventing use of algebraic identities

in expression evaluation, 325
term definition and specification, 35

narrowing
See also conversion; numbers
primitive conversions

in assignment conversion context, 66
in casting conversion context, 72
not allowed in method invocation

conversion context, reasons for, 71
reference conversions, specification, 63

native modifier
See also declarations; modifiers
methods

binary compatibility considerations, 269
declaration, 173
semicolon as body of, 177

reasons why constructors cannot be, 191
nested class, 135, 136
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
nested class (continued)

See also nested type
and definite [un]assignment of

variables, 418
inner class is a, 140
interaction with shadowing of

parameters, 168
local class is a, 277
may declarestatic members

if non-inner, 140
name hides same name

in enclosing scopes, 148
term definition, 135

nested interface, 135, 136, 199
See also nested type, 135
term definition, 199

nested type
binary name of, 253
declaration

in scope of a class member, 85, 147
declarations

included in scope
of interface members, 85, 202

in scope of an interface member, 85, 202
Newton, Sir Isaac, 1
non-public

classes, in example of qualified names
and access control, 107

nonterminal symbols
See also grammars
definition of, notation for, 10
term definition, 9

notation
See also names, naming conventions
grammar, 10

notification
wait sets and, 446

null
literal, term definition and

specification, 29
qualifying a superclass constructor

invocation, 194
type

literal as source code representation
of the value of, 20

term definition and specification, 32
numbers

See also arithmetic; precision; types

numbers (continued)
conversions of and to

See conversions
errors in handling

See exceptions
manipulating

See arithmetic operators
numeric promotion

binary, 79
specification, 77
term definition, 56
unary, 78

primitive types
Seebyte type;char type;double type;

float type; floating-point;int
type; integers; integral type;long
type;short type

related types
See boolean; characters; strings

Nygaard, Kristen, 7

O
object-oriented concepts

See class(es); encapsulation; fields;
inheritance; method(s); objects

objects
See also arrays; classes; instances;

interfaces; types
Class, array, 215
fields that reference,final modifier

effect on changes to, 50, 156
finalization attributes, 246
life cycle, 246
Object class, 44, 215
operations on references to, 43
reachable, finalization implication, 246
reference

See references
state

impact of changes, 43
transient fields not part of, 156

term definition and specification, 42
unreachable, finalization implications, 246

obscured
declaration, term definition, 89
label, 85
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
483

INDEX

484
obscured (continued)
by labels, 286
of labels, 286

observable
all compilation units injava

andjava.lang are, 123
compilation unit

determined by host, 120
term definition, 123

package
and meaning of qualified

package name, 98
term definition, 125

Occam, William of, 373
octal

See also numbers
base, permitted in integer literals, 21
numerals, specification, 22

one of phrase
grammar notation use, 12

operators
See also constructors; expressions;

initialization; methods; numbers
arithmetic, numeric promotion,

specification, 77
assignment, as only way to change the

value of a primitive variable, 33
binary, evaluation order, 322
boolean, 40
compound assignment, evaluation

order, 323
floating-point, 37

signed infinity produced by overflow, 39
signed zero produced by underflow, 39

integer
divide, divide by zero exception

thrown by, 34
overflow not indicated by, 34
underflow not indicated by, 34

integral, 33
list of, 30
operands evaluated before, 324
precedence, in expression evaluation, 325
on reference types, 43
remainder, divide by zero exception

thrown by, 34
string concatenation

constructor invocation by, 190

operators (continued)
string concatenation (continued)

creating new instances with, 42
thread, term definition, 431

opt subscript
grammar notation use, 10

optimization
during

preparation phase of linking, 235
resolution phase of linking, 235

final method inlining, 172
finalization, 245

reachable objects reduction, 246
linking

initialization phase of, 240
resolution strategies, 234

optional symbol
term definition, 10

order
evaluation

argument lists left-to-right, 326
binary operators, 322
compound assignment, 323
left-hand operand first, 322
operands evaluated before

operations, 324
of other expressions, 327
parentheses and precedence

respected, 325
execution, thread rules, 433
field initialization, at run-time, 204
finalizer invocations, implications

of no ordering imposition, 247
of floating-point values, 37
of occurrence, initialization of types, 236
thread interaction, consequences of, 430

origin
of arrays, 211

output
See files

overflow
See also arithmetic; exceptions; numbers
floating-point operators,

signed infinity produced by, 39
not indicated by integer operators, 34

overloading
See also object-oriented concepts;

inheritance; methods
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
overloading (continued)

of abstract interface methods
declarations, 207
example, 208

of constructors, 195
binary compatibility considerations, 270

of methods, 180
binary compatibility considerations, 270
example, 181

term definition, 91, 180
overriding

See also object-oriented concepts; scope
examples, 181, 182, 185, 207

incorrect, 181
incorrect because ofthrows,

example, 186
large example, 185
methods
abstract

in abstract classes, 170
of non-abstract instance

methods, 171
binary compatibility considerations, 271
in interfaces, 206

example, 207
instance, 177

requirements in, 178
term definition, 91

P
packages

(chapter), 119
binary compatibility considerations, 257
canonical name of, 113
declarations

in compilation units, 124
shadowing, 125

as declared entity, 81
host support for, 120
importing allpublic types from a, 127
members of, 89, 119
named, in compilation units, 124
names

context in which a name
is classified as, 94

fully qualified, 111

packages (continued)
names (continued)

naming conventions, 113
qualified, meaning of, 98
simple, meaning of, 98
unique, importance of, 132

observable, 125
scope of, 85
shadowing, 87
storing in a

database, 122
file system, 121

term definition, 119
unnamed

compilation units belonging to, 123
in compilation units,

uses and cautions, 124
and fully qualified name

of top-level type, 129
Paine, Thomas, 305
parameters

See also modifiers; variable
constructor, 191

assignment during instance
creation, 242

binary compatibility considerations, 267
description, 49
initial value, 51

as declared entity, 81
definite [un]assignment of, 425
exception

description, 49
initial value, 51
scope, 86, 306

method
binary compatibility considerations, 267
description, 48
initial value, 51
specification of, 168

must not be assigned iffinal, 168
names, naming conventions, 116
scope, 85, 168
shadowing, 86, 168

Partridge, Eric , 135
Peirce, Charles, 407
Peretti, Hugo E., 30
performance

See optimization
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
485

INDEX

486
platform-dependent
native methods are, 173

pointers
See references

polling
for asynchronous exceptions, 224

precedence
See also expressions
of operators, in expression

evaluation, 325
precise

term definition, 223
precision

See also numbers
possible loss of

in narrowing primitive conversions, 60
in widening primitive conversions, 58

preparation
of classes, 234
of interfaces, 234
in Test class example,

at virtual machine startup, 230
prescient store

actions, with threads, 438
preventing

instantiation, 197
with private constructors, 139

primitive
See also numbers
conversion

narrowing
in assignment conversion context, 66
in casting conversion context, 72
not allowed in method invocation

conversion context, reasons for, 71
widening

in assignment conversion context, 66
in binary numeric promotion

context, 79
in casting conversion context, 72
in method invocation conversion

context, 71
in unary numeric promotion

context, 78
types

as array element types, 210
changing value of variables, 33
fully qualified name for, 111

primitive (continued)
types (continued)

literal as source code representation
of the value of, 21

term definition and specification, 32
variables of, specification, 48

priority
thread, 445

private modifier
See also declarations; modifiers
access

determining, 105
inheritance of class members,

example, 151
cannot be used for local classes, 278
class, pertains only to member, 137
constructors

access control, example, 111
preventing instantiation with, 139

fields, access control, example, 111
inheritance with, example, 151
and interfaces, 200
members not inherited, 148
methods
abstract not permitted with, 170
access control, example, 111
in example of qualified names

and access control, 111
as implicitlyfinal, 172
overriding and hiding

not possible with, 179
preventing instantiation

by declaring constructors as, 197
top-level type may not use, 131

productions
term definition, 9

promotion
See also numbers
(chapter), 55
numeric, 77

binary, 79
specification, 79

specification, 77
term definition, 56
unary, 78

specification, 78
protected modifier

See also declarations; modifiers
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
protected modifier (continued)

access, 105
cannot be use for local classes, 278
class, pertains only to member, 137
constructors, access control, example, 110
fields, access control, example, 110
inheritance with, example, 150
and interfaces, 200
methods, access control, example, 110
top-level type may not use, 131

public modifier
See also declarations; modifiers
access, 105

inheritance of class members,
example, 150

cannot be used for local classes, 278
classes

access control in, 105
binary compatibility considerations, 258
in example of qualified names

and access control, 107
pertains only to top-level and

member, 137
constructors, access control, example, 109
fields

access control, example, 109
interface, implicit in declaration, 203

implicit for interface member types, 208
inheritance with, example, 150
interfaces

binary compatibility considerations, 272
declarations, 200

methods
access control, example, 109
in interfaces, implicit in declaration, 205

superclasses, accessing instances of non-
public subclasses through, 151

superinterfaces, accessing instances of
non-public subclasses through, 151

Q
qualified

See also access; scope
access, term definition, 104
class instance creation, 330

and definite [un]assignment, 417

qualified (continued)
class instance creation expression, 84
protected accessibility of

constructor, 106
protected accessibility

of superclass constructor, 106
names

access control and, 104
expression, meaning of, 102
fully, 111
method, meaning of, 104
not permitted with parameters, 168
package, meaning of, 98
term definition, 81
type, meaning of, 100

super, 193
superclass constructor invocation, 193

andprotected accessibility, 106
qualifying type

of a constructor invocation
term definition, 255

of a field reference, term definition, 253
of a method invocation

as compile-time information stored
for use at run-time, 355

term definition, 254
Quayle, J. Danforth, 220

R
Raper, Larry , 251
reachable

See also scope
objects

finalization implications, 246
term definition, 246

recursive
term definition, 10

references
See also expressions; types
conversions

narrowing, 63
widening, 62

in assignment conversion context, 66
in casting conversion context, 72
in method invocation conversion

context, 71
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
487

INDEX

488
references (continued)
to fields, active use, 238
forward

permitted in
class type usage, 131
interface type usage, 199

object, value of array variables as, 210
operations, 43
symbolic

binary file format requirements, 253
resolution, 235

term definition, 42
types

array, 210
class

See class
criteria for determining when two

are the same, 45
interface

See interface
member name, scope of, 85
member, as declared entity, 81
specification, 41

in class declaration, 136
in interface declaration, 199

variables, specification, 48
release-to-release compatibility

See binary, compatibility
representation

binary, classes and interfaces,
verification of, 234

resolution
late, in class and interface linking, 234
lazy, 231
name conflicts

avoiding with multiply inherited
fields, 165

avoiding with multiply inherited
types, 188, 208

context use in avoiding, 94
static, in class and interface linking, 234
symbolic references, 235
in Test class example, at virtual

machine startup, 230
return statement

definite assignment, 423
instance initializer, 189
as reason for abrupt completion, 276

return statement (continued)
specification, 301

reuse, software
See binary, compatibility

right-hand side
term definition, 9

Ritchie, Dennis M., 7
Robson, David, 6
rounding

IEEE 754 standard default mode,
support required for, 38

round to nearest, term definition, 38
round toward zero, term definition, 38

run-time
checks of expressions, 319
errors

See exceptions
RuntimeException class

unchecked exceptions found in, 176
state, linking binary objects into, 233
type, 52
validity checks, casting conversion

requirements, 74

S
scope

See also declarations; inheritance; names;
object-oriented concepts

of declarations, 85
formal parameter, 168
of formal parameters, 85, 168
of labels, 85, 286
of a local class, 86, 278
of local variable declared

by for statement, 86, 295
member, 85, 147, 202
overview, 81
package, 125
parameters

formal, 168
shadowing rules, 86
of a top-level type, 85, 129
types declared by an import

declaration, 85, 125
exception parameters, 306
in, term definition, 85
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX

9

DRAFT
scope (continued)

initializer execution relative
to issues of, 159, 160, 189

of a local class, 278
in method invocation expressions, 346
of names

of exception handler parameters, 86,
306

local variables, 49, 85, 280
parameters, formal, 85, 168
nested classes, variables and definite

[un]assignment, 418
term definition, 85
type initialization order restrictions, 237

Sebastian, John, 288
security

See also access control; exceptions; types;
virtual machine

internal symbolic reference table,
role in maintaining, 232

type systems, verification importance
to, 259

semantics
See also grammars; lexical; syntax
errors in, exceptions as mechanism for

signaling at run-time, 219
expressions, (chapter), 317
names

context role, 94
determining, 93
expressions, 100
methods, 104
package, 98
types, 99

verifying during linking process, 234
semicolon (;)

as method body, 176
separators

list of, 29
as token, 10

sequences
escape, for character and string literals, 28

Seuss, Dr., 132
shadowing

absence of by statement labels, 286
of declarations, 86

by package declarations, 125
of exception parameters, 306

shadowing (continued)
of labels, 87, 286
of local classes, 278
by local variables, 283
of local variables, 280
and the meaning of a simple expression

name, 101
and the meaning of a simple type name, 9
by member types, 187
of members by local variables, 282
of methods, 87
by a nested class, 148
package, 125
of packages, 87
parameters, 168
by single-type import, 87, 126
by type-import-on-demand, 87, 127
of types, 86
of variables, 86

Shakespeare, William, 30, 55, 118, 249,
436

Shelley, Percy Bysshe, 376
short type

See also integral types; numbers
value range, 33

side effects
See also expressions
from expression evaluation,

reasons for, 317
signature

of constructors, 191
of methods, 169
methods with same, inheriting, 179

simple names
See also identifiers; names
expression, meaning of, 101
method, meaning of, 104
package, meaning of, 98
term definition, 83
type, meaning of, 99

single quote(’)
escape sequence, 29

Smalltalk-80, 6
sorting

Unicode, reference for details on, 20
source code

compatibility, compared with
binary compatibility, 257
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
489

INDEX

490
source code (continued)
transformations that preserve

binary compatibility, 253
Southey, Robert, 372
square brackets ([])

in array
type declaration, 210
variable declaration, 211

startup
virtual machine, 229

state
not shared by primitive values, 33
object

impact of changes, 43
transient fields not part

of persistent, 156
statements

See also constructors; control flow;
expressions; initializers; methods

(chapter), 275
break

definite assignment, 423
specification, 297

completion of
abrupt, reasons for, 276
normal, reasons for, 276

continue

definite assignment, 423
specification, 299

definite assignment, 417
do

definite assignment, 421
specification, 293

empty
definite assignment, 418
specification, 285

expression
definite assignment, 419
specification, 286

for

definite assignment, 422
specification, 295

general specification, 284
if

danglingelse handling, 285
definite assignment, 420

if-then, specification, 288
if-then-else, specification, 288

statements (continued)
labeled

definite assignment, 419
scope of, 85, 286
specification, 286

local variable declarations
execution of, 283
specification, 279

return

definite assignment, 423
specification, 301

switch

definite assignment, 420
specification, 288

synchronized

definite assignment, 424
specification, 304

throw

definite assignment, 423
specification, 302

try

definite assignment, 424
try-catch, specification, 307
try-catch-finally, specification, 308
unreachable, conservative flow

analysis detection of, 310
while

definite assignment, 421
specification, 292

static
restrictions in inner classes, 140

static context, 140
and method invocation, 355
and qualified superclass constructor

invocation, 194
static initializer

definite [un]assignment within, 426
definite assignment of variables

before, 418
inner class may not declare, 140
may not contain a return statement, 301
must assign all blank final class

variables, 156
and unreachable statements, 310
when reachable, 311

static initializers
are not members, 148
and checked exceptions, 221
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX

;

DRAFT
static initializers (continued)

overview, 136
static modifier

for fields
binary compatibility considerations, 266
creating during the preparation phase

of linking, 234
default initialization of during the

preparation phase of linking, 234
static modifier

for fields
initializers

as components of a class body, 147
for, 189

static modifier
See also declarations; modifiers
anonymous class is never, 335
cannot be used for local classes, 278
class, pertains only to member, 137
for fields, 155

declaring class variables using, 155
initialization of, 158
implicit in interface member

declarations, 203
initialization of, 189

for methods
declaring class methods with, 171
hiding by, 178
not permitted in interface

method declarations, 206
implicit for interface member types, 208
and interfaces, 200
reason why constructors do not use, 191
top-level type may not use, 131

Stein, Gertrude, 118, 370, 449
store

array, exception, 216
storing

packages
in a database, 122
in a file system, 121

strictfp modifier
constructors cannot be declared, 191
example(s), 325
for classes, 137

semantics, 139
and FP-strict expressions, 319
has no effect on method override, 178

strictfp modifier (continued)
interfaces, 200

methods may not be, 206
semantics, 200

methods, 169
semantics, 173

and widening conversion, 58
string(s)

See also characters; numbers;
primitive types

character arrays are not the same as, 215
concatenation operator (+)

constructor invocation by, 190
creating new instances with, 42

conversion
context specification, 72
specification, 64

literals
escape sequences for, 28
interning of, 27
term definition and specification, 27

String class
creating instances, with string

concatenation operator, 43
literal as source code representation

of the value of, 21
specification, 45
string literal as reference

to an instance of, 27
Stroustrup, Bjarne, 6
subclasses

See alsoclass(es); interfaces; superclasses
superinterfaces

declaration, 143
direct, extending classes with, 142
relationship to direct subclass, 143

subpackage
as package member, 89, 119
and package observability, 125

super keyword
accessing

overridden methods with, 178
superclass members with, in expression

evaluation, 344
binary compatibility considerations, 258
not permitted in

class variable initialization, 159
explicit constructor invocation, 192
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
491

INDEX

492

1

super keyword (continued)
not permitted in (continued)

interface field declarations, 204
permitted

in instance initializers, 189
permitted in instance variable

initialization, 160
superclass(es)

See also classes; fields; interfaces;
methods; packages; subclasses;
superinterfaces

accessing fields withsuper, expression
evaluation, 344

of array isObject, 215
binary compatibility considerations, 258
direct

declaration, withextends clause, 142
term definition, 142

extending classes with, 142
public, accessing instances of non-public

subclasses through, 151
superinterface(s)

See also classes; fields; interfaces;
methods; packages; subclasses

binary compatibility considerations, 258,
272

direct
declaration, withimplements

clause, 144
term definition, 145

of interface, declaration, 201
public, accessing instances of non-public

subclasses through, 151
term definition, 144

swapping
threads example, 439

Sweet, Richard, 7
switch

block, term definition, 289
switch statement

See also statements
definite assignment, 420
local variable declaration specification,

impact on, 49
specification, 288

symbolic references
binary file format requirements, 253
resolution, 235

symbols
See also identifiers; name; variables
goal

CompilationUnit, 10
Input, 9
term definition, 9

nonterminal
notation for definition of, 10
term definition, 9

optional, term definition, 10
terminal, term definition, 9

synchronization
See also locks; threads
exception mechanism

integration with, 220
initialization implications of, 239
locks, 445

use bysynchronized methods, 174
use bysynchronized statement, 304

synchronized modifier
See also modifiers
in method declarations, 174
methods, binary compatibility

considerations, 270
reason why constructors do not use, 19
specification, 446

synchronized statement
definite assignment, 424
operations, 446
specification, 304

term definition, 429
volatile fields used for,

with threads, 156
syntactic

See also lexical; semantics
classification, of a name according

to context, 94

T
term definition

abrupt completion, 276, 322
access, 81

accessible, 104
control, 104
qualified, 104

action, 431
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
term definition (continued)

action (continued)
by main memory

lock, 431, 432
read, 431, 432
unlock, 431, 432
write, 431, 432

by thread
assign, 431, 432
load, 432
lock, 432
store, 431, 432
unlock, 431
use, 431

activation frame, 359
alphabet, 9
ambiguous member, 204
anonymous class, 330
applicable, 347
array, 209

components, 48, 209
element type, 209
type, 209

element, 209
empty, 209
initializer, 212
length of, 209
type, 209

assign, as thread action, 432
assignable to, 66
assignment, 66, 395

compatible with, 66
associated labels, 289
atomic, 431
binary

compatibility, 256
numeric promotion, 79

blank final, 50
block, 277

enclosing, 141
body

of class, 147
of constructor, 192
of interface, 202
of method, 176

break binary compatibility with, 256
break target, 298
caller, 222

term definition (continued)
can complete normally, 311
cast operator, 72, 368
catch clause, 219, 305
caught, 219, 302
checked exceptions, 221
class(es), 135, 136
abstract, 137
body, 147
declaration, 136
depends on a reference type, 144
direct inner, 140
directly depends on

a reference type, 144
error, 221
exception, 222
final, 139
initialization, 236
inner, 140
inner of another class, 140
local, 277
modifiers, 137
of object, 52
runtime exception, 222
same, 46
strictfp, 139
unloading, 248
variables, 155

comments, 18
end-of-line, 18
traditional, 18

compatibility, binary, 256
compilation unit, 123

observable, 123
compile-time

declaration, 354
type, 47

compile-time type(s)
same, 45

complete
abruptly, 276, 321
normally, 276, 311, 321

component, 209
of array, 48, 209
type of array, 209

constant
expression

compile-time, 405
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
493

INDEX

494
term definition (continued)
constructor(s), 190

anonymous, 335
default, 195
parameter, 49, 191

contain, 275
immediately, 275

context
static, 140

context of conversion, 56
continue target, 300
contract, 256
control

access, 104
conversion(s), 55

assignment, 66
casting, 72
contexts, 56
identity, 58
method invocation, 71
primitive

narrowing, 59
widening, 58

reference
narrowing, 63
widening, 62

string, 378
value set, 65

declaration(s), 82
array variable, 210
class, 135

variable, 48
compile-time, 354
constructor, 190
field, 153, 203
import, 125
instance variable, 48
interface, 202
local variable, 49

statement, 279
method, 167
package, 124
parameter

exception, 49
method, 48

shadowed, 86
single-type import, 126
top-level type, 128

term definition (continued)
declaration(s) (continued)

type-import-on-demand, 127
declarator, 279
default

constructor, 195
value, 51

definite assignment, 407
definitely assigned

after, 410
when false, 410
when true, 410

before, 410
definitely unassigned

after, 410
when false, 410
when true, 410

before, 410
direct

extension, 199
subclass, 142
superclass, 142
superinterface, 144, 201

directly implement, 199
dynamic method lookup, 358
dynamically enclosed, 222
element, 209

type, 209
empty

array, 209
statement, 285

enclosed, dynamically, 222
error classes, 221
escape

sequence, character and string, 28
Unicode, 14

evaluation
evaluated, 317
expression, result of, 317
order, 322

exception
caller of, 222
caught, 219
checked, 221
classes, 221

checked, 221
runtime, 222
unchecked, 221
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
term definition (continued)

exception (continued)
handler, 306

parameter, 49
polling for, 224
precise, 223
thrown, 219
unchecked, 221

executed, 317
exit of virtual machine, 249
expression, 317

constant, 405
statement, 287

extension, direct, 199
field, 153, 203

declaration, 153
final, 156, 203
non-static, 155
static, 155, 203
transient, 156
volatile, 156

finalizable, 246
finalization, object, 245
finalized, 246
finalizer, 245
finalize-reachable, 246
formal parameter, 168, 191
FP-strict expression, 318
frame activation, 359
goal symbol, 9
gradual underflow, 38
grammar

context-free, 9
lexical, 9

handler of exception, 306
handles, 223
hide, 178

a field, 154
an interface field, 203
an interface member type, 208
a member type, 187

identifier, 19
immediately contain, 275
implement, 91, 145, 177

directly, 199
implemented, 164
import

on demand, 127

term definition (continued)
import (continued)

single type, 126
in scope, 85
inexact, 38
infinities, 35
inherited, 90, 164
inherits, 177
initializer

array, 212
static, 189
variable, 158

input elements, 16
instance

of class, 42
immediately enclosing, 141
immediately enclosing with respect to a

class, 141
initializer, 188
lexically enclosing, 141
method, 172
variables, 155

instantiation, 330
interface(s)

abstract, 200
body, 202
initialization, 236
same, 46
strictfp, 200
top-level, 199

invocation
alternate constructor, 193
superclass constructor, 193

iteration statements, 300
Java

digits, 19
letters, 19

keyword, 20
label, 286

associated, 289
language, 9
left of, to the, 17
left-hand side, 9
length of array, 209
line terminator, 16
linking, 233
literal, 21

boolean, 25
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
495

INDEX

496
term definition (continued)
literal (continued)

character, 26
floating-point, 24
integer, 21
null, 29
string, 27

load action by thread, 432
loading, 232
local variable, 49

declaration statement, 279
locks, 431

lock action
by main memory subsystem, 432
by thread, 432

unlock action
by main memory subsystem, 432
by thread, 432

lookup
dynamic method, 358

loss of precision, 59
main memory, 431
master copy, 431
maximally specific, 350
member class, 187
member interface, 187
members, 89

ambiguous, 204
dynamic lookup, 358

memory
main, 431
working, 431

method(s), 167
abstract, 170, 205
applicable, 347
body, 176
class, 171
final, 172
hidden, 178
instance, 172
interface, 205
lookup, dynamic, 358
maximally specific, 350
more specific, 350
most specific, 347, 349, 350
native, 173
non-static, 172
overloaded, 180

term definition (continued)
method(s) (continued)

parameter, 48
signature, 169, 191
static, 171
synchronized, 174

modifiers
class, 137
constructor, 191
field, 155
interface, 200
method, 169

monitors, 429
more specific, 350
most specific, 349, 350
name(s), 83

ambiguous, 93
canonical, 113
contextually ambiguous, 96
expression, 96
method, 96
package, 96
qualified, 83
simple, 83
type, 96
unique package, 132

NaN (Not-a-Number), 35
narrowing

primitive conversion, 59
reference conversion, 63

nested class, 135
non-static

field, 155
method, 172

nonterminal, 9
normal completion, 276, 321, 322
notification, 446
numeric promotion, 77
object(s), 42

class of, 52
target, 358

obscured declaration, 89
observable

package, 125
operators, 30

additive, 377
assignment, 392
bitwise, 388
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
term definition (continued)

operators (continued)
cast, 372
equality, 386
logical, 388
multiplicative, 373
relational, 384
shift, 383
unary, 368

order of evaluation, 322
ordered, 37
overload, 180, 207
override, 206
package(s)

accessible, 105
unique names, 132

parameter, 168
constructor, 49, 191
exception handler, 49, 306
formal, 168, 191
method, 48, 168

pointer, 42
polling for exceptions, 224
precise exception, 223
precision, loss of, 59
preparation, 234
prescient store, 438
primitive conversion

narrowing, 59
widening, 58

priority, threads, 445
productions, 9
promotion

numeric, 77
binary, 79
unary, 78

qualified
access, 104
name, 83

qualifying type
of a field, 253
of a method invocation, 254

reachable, 246, 275, 311
read action

by main memory, 432
reason, 220, 276, 321
recursive, 10
reference, 42

term definition (continued)
reference (continued)

conversion
narrowing, 63
widening, 62

target, 356
types, 41

resolution, 235
late, 234
lazy, 234

result, 317
right of, to the, 17
right-hand side, 9
round

to nearest, 38
toward zero, 38

runtime exception classes, 222
run-time type(s)

same, 46
same

class, 45
compile-time type, 45
interface, 45
run-time class, 46
run-time interface, 46
run-time type, 46

scope, 85
separator, 29
signature, 169, 191
simple name, 83
specific

maximally, 350
more, 350
most, 349, 350

statements, 275
empty, 285
expression, 286
iteration, 300
labeled, 286
local variable declaration, 279
unreachable, 310

static
field, 155
initializers, 189
method, 171
resolution, 234

store
action by thread, 432
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
497

INDEX

498
term definition (continued)
store (continued)

prescient, 438
strongly typed, 31
subclass, 143

direct, 142
subinterface, 202
superclass, 143

direct, 142
superinterfaces, 145, 201

direct, 144, 201
symbol

goal, 9
nonterminal, 9
optional, 10
terminal, 9

synchronizing, 429
target

break, 298
continue, 300
object, 358
reference, 356

terminal symbol, 9
thread, 429
thrown, 219, 220
throws clause, 175
token, 9, 16
top-level class, 135
type(s), 32, 52

boolean, 33
compile-time, 47
floating-point, 33, 35
import

on demand, 127
single, 125

integral, 33
null, 32
numeric, 33
primitive, 32
reference, 41

typed
strongly, 31

unary numeric promotion, 78
unchecked exception, 221

classes, 221
underflow

gradual, 38
unfinalized, 246

term definition (continued)
Unicode escapes, 14
unique package name, 132
unloading of classes, 248
unlock, 429

action
by main memory, 432
by thread, 432

unordered, 37
unreachable, 310
unreachable object, 246
use

action by thread, 432
value

default, 51
of expression, 318

value set
double, 35
double-extended-exponent, 35
float, 35
float-extended-exponent, 35

variable(s), 47, 431
class, 48, 155
final, 50
instance, 48, 155
local, 49

verification, 234
virtual machine exit, 249
visible, 87
wait set, 446
white space, 17
widening

primitive conversion, 58
reference conversions, 62

working
copy, 431
memory, 431

write action
by main memory, 432

terminal symbol
term definition, 9

terminators
line

carriage return and linefeed characters
as, 27

term definition, 27
Test

program, how to run, 5
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
this keyword

accessing hidden fields with, 283
evaluation of, 328, 329

during instance creation, 242
not permitted

in class variable initialization, 159
in explicit constructor calls, 192
in interface field declarations, 204

permitted
in instance initializers, 189
in instance variable initialization, 160

qualified, 82
Thompson, William (Lord Kelvin) , 317
threads

See also synchronization
(chapter), 429
constraints on relationships

among actions of, 433
creation, 445
initialization implications of multiple, 239
interaction order, consequences of, 430
locks acquisition and release,

by synchronized statement, 304
out-of-order writes example, 443
swapping example, 439
synchronized modifier, methods,

declaration, 174
termination and virtual machine exit, 249
volatile fields use with, 156

throw
See also control flow; exceptions
throw statement

definite assignment, 423
as reason for abrupt completion, 276
specification, 302

throws clause, 189
of an anonymous constructor, 336
checked exception classes named in, 221
constructors, 192

binary compatibility considerations, 270
incorrect overriding because of,

example, 186
methods, 175

binary compatibility considerations, 270
relation to instance initializers, 188

tokens
See also grammars
term definition, 9, 16

top-level class, 96, 111, 113
accessibility of, 105
and binary names, 253
canonical name of, 113
as package member, 89, 119
andprivate access, 105
andpublic modifier, 137
term definition, 135

top-level interface, 111
canonical name of, 113
as package member, 89, 119
term definition, 199

top-level type
binary name of, 253
fully qualified name of, 129
as part of a compilation unit, 123
scope, 85, 129

transient modifier
See also declarations; modifiers
fields, 156

binary compatibility considerations, 266
translations

lexical, steps involved in, 14
try statements

See also control flow; exceptions;
statements

definite assignment, 424
exception handling role of, 222
scope of parameters to exception

handlers, 86, 306
specification, 305
try-catch statement, specification, 307
try-catch-finally statement,

specification, 308
types

See also arrays; classes; interfaces; primi-
tive, types

(chapter), 31
argument values, method invocation con-

version context, 71
array

canonical name of, 113
members of, 92
syntax and specification, 210

binary compatibility considerations, 256
boolean

Boolean literal specification, 25
term definition and specification, 40
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
499

INDEX

500
types(continued)
char

character literal specification, 26
class

members of, 90
naming conventions, 114

compile-time, 52
data values relation to, 32
declaration of, as members of

packages, 128
double, floating-point literal

specification, 24
elements, of array, 209
errors, run-time testing, 320
expression

assignment conversion, 66
how determined, 52

of expressions, 318
float, floating-point literal

specification, 24
floating-point, term definition

and specification, 35
imported

as declared entity, 82
scope of, 85, 125

importing, compilation units, 123
int, integer literal specification, 21
integral, 33
interface

implications for variables
and expressions, 52

members of, 91
naming conventions, 114

local variables, declaration of, 279
long, integer literal specification, 21
name(s)

context in which a name
is classified as, 96

qualified, meaning of, 100
simple, meaning of, 99

named, 125
null, term definition and specification, 32
parameter, method invocation

conversion context, 71
primitive

as array element types, 210
do not share state, 33
fully qualified name, 111

types(continued)
primitive (continued)

term definition and specification, 32
variables, specification, 48

qualifying
See qualifying type

reference
as array element types, 210
criteria for determining when two

are the same, 45
member, as declared entity, 81
specifying with

class declaration, 135
interface declaration, 200

term definition and specification, 41
variables, specification, 48

run-time, 52
term definition, 52
term definition and specification, 32
usage, 46

in declarations and expressions, 47
of variable, how determined, 52
where used, 46

U
unary

numeric promotion, specification, 78
unassignment

definite
See definite unassignment, 407

unchecked
exceptions, 226

underflow
floating-point operators, signed zero

produced by, 38
integer operators, not indicated by, 34

unfinalized
as object attribute, 246
term definition, 246

Unicode character set
See also characters
character sequences, represented

by instances of classString, 45
composite characters, contrasted

with the Unicode decomposed
characters, 20
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

INDEX
DRAFT
Unicode character set(continued)

escapes, 14
specification for handling, 14
term definition, 14
use when suitable font not available, 15

handling in package names, 122
lexical grammar use in terminal

symbols, 9
sorting, reference for details on, 20
writing any character in, using

ASCII characters in escapes, 15
unloading

See also linking; loading
of classes and interfaces, 248
of interfaces, 248

unqualified
class instance creation

and definite [un]assignment, 416
class instance creation expression, 95

unreachable
See also exceptions
objects

finalization implications, 246
term definition, 246

statements, conservative flow analysis
detection of, 310

term definition, 246

V
value

return, specifying method with no, 167
value set

and contents of local variables, 280
conversion

See conversion, value set, 65
double, term definition, 35
double-extended-exponent, term

definition, 35
float, term definition, 35
float-extended-exponent, term

definition, 35
and FP-strict expressions, 318
andreturn statement, 302

values
See also assignment; initialization;

primitive, types; variable

values(continued)
(chapter), 31
boolean, term definition and

specification, 40
data, relation to types, 32
expressions, variables as, 318
floating-point, term definition and

specification, 35
integral, term definition and

specification, 33
primitive, term definition and

specification, 32
reference

See references
relation to types, 32
variables, initial and default, 50

variables
See also data structures; fields;

identifiers; scope
(chapter), 31
assignment conversion, 66
double, nonatomic treatment

of memory operations on, 435
interaction with locks, rules about, 436
kinds of

array
See arrays, components

constructor parameters
See parameters, constructor

exception-handling parameters
See exceptions, parameters

instance
See fields, class, non-static

local
See variables, local

method parameters
See parameters, method

local, 279
declaration statements, 279
as declared entity, 81
definite assignment, declarations, 419
description, 49
naming conventions, 116
scope of, 86, 296
shadowing of names by, 283

long, nonatomic treatment of,
memory operations on, 435
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRITTEN P
501

INDEX

502
variables (continued)
primitive type

changing value of, 33
specification, 48

reference type, specification, 48
term definition and specification, 47
thread use constraints, 434
type of, how determined, 52
values

of expressions, 318
held by different types, summary of, 31
initial and default, 50

volatile, rules about, 437
verification

See also security
of binary representation, of classes

and interfaces, 234
type safety dependence on existence

and use of, 259
virtual machine

See also exceptions; optimization
class file format specified in, 252, 253
errors, 227
exception handling by, 219
exit, criteria for, 249
object life cycle in, 246
startup, 229

visible, 85
method, and meaning

of method invocation, 346
term definition, 87

void keyword
See also methods
casting to, not permitted, 287
methods

expression return statement
not permitted in, 177

no return value specified by, 167
volatile modifier

See also declarations; modifiers
fields, 156

used for synchronization by threads, 157
final declaration not permitted for, 158
variables, rules about, 437

W
wait

See also synchronization
wait sets, notification and, 446

Webb, Jim, 358
Weiss, George David, 30
while statement

See also control flow
definite assignment, 421
specification, 292

white space
term definition, 17

Whitman, Walt , 31, 80, 190, 273, 308
widening

See also conversions
primitive conversion

in assignment conversion context, 66
in binary numeric promotion context, 79
in casting conversion context, 72
in method invocation conversion

context, 71
in unary numeric promotion context, 78

reference conversion, 62
in assignment conversion context, 66
in casting conversion context, 72
in method invocation conversion

context, 71
Wordsworth, William , 54, 208, 320, 429

Z
zero

See also exceptions; numbers
divide by, exceptions thrown by integer

divide and remainder operators, 34
DRAFT FOR REVIEW PURPOSES ONLY. DO NOT COPY WITHOUT WRIT-
TEN PERMISSION FROM SUN MICROSYSTEMS, INC.

uo-

ic
ved.

o

.,

I.
ed.
.

-
ts
hts
i,

er
t
n.

y

DRAFT

Credits

THE following organizations and copyright holders granted permission for q
tations used in this book.

Time after Time. Words and Music by Cyndi Lauper and Rob Hyman 1983 Rellla Music
Co. and Dub Notes. All Rights Administered by Sony/ATV Music Publishing, 8 Mus
Square West, Nashville, TN 37203. International Copyright Secured. All Rights Reser

The Lion Sleeps Tonight. New lyric and revised music by George David Weiss, Hug
Peretti and Luigi Creatore. 1961 Folkways Music Publishers, Inc. Renewed 1989 by
George David Weiss, Luigi Creatore and June Peretti. Assigned to Abilene Music, Inc.
All Rights Reserved. Used by Permission. WARNER BROS. PUBLICATIONS U.S. INC
Miami, FL 33014.

Lyric excerpt of “My Favorite Things” by Richard Rodgers and Oscar Hammerstein I
Copyright 1959 by Richard Rodgers and Oscar Hammerstein II. Copyright Renew
WILLIAMSON MUSIC owner of publication and allied rights throughout the world
International Copyright Secured. All Rights Reserved.

Up, Up and Away. Words and Music by Jimmy Webb. Copyright 1967 (Renewed 1995)
CHARLES KOPPELMAN MUSIC, MARTIN BANDIER MUSIC and JONATHAN
THREE MUSIC CO. International Copyright Secured. All Rights Reserved.

Did You Ever Have to Make Up Your Mind?Words and Music by John Sebastian. Copy
right 1965, 1966 (Copyrights Renewed) by Alley Music and Trio Music, Inc. All righ
administered by Hudson Bay Music, Inc. International Copyright Secured. All Rig
Reserved. Used by Permission. WARNER BROS. PUBLICATIONS U.S. INC., Miam
FL 33014.

Way Down Yonder in New Orleans. Words and Music by Henry Creamer and J. Turn
Layton. Copyright 1922 Shapiro, Bernstein & Co., Inc., New York. Copyrigh
Renewed. International Copyright Secured. All Rights Reserved. Used by Permissio

Lyric excerpt of “Space Oddity” by David Bowie. Used by Permission. 1969 David
Bowie.

“From Arthur a Grammar”, HOW TO WRITE, Gertrude Stein, 1931. Republished b
Dover Publications, 1975. Reprinted with permission.

A NIGHT AT THE OPERA, Groucho Marx 1935. 1935 Turner Entertainment Co. All
rights reserved.
503

CREDITS

504

d.

O-
,

DRAFT
Here Inside my Paper Cup, Everything is Looking Up. PAPER CUP. Words and Music by
Jim Webb. 1970 CHARLES KOPPELMAN MUSIC, MARTIN BANDIER MUSIC and
JONATHAN THREE MUSIC CO. All Rights Reserved. International Copyright Secure
Used by Permission.

From Ira Forman, Michael Connor, Scott Danforth, and Larry Raper, RELEASE-T
RELEASE BINARY COMPATIBILITY IN SOM, OOPSLA ‘95 Conference Proceedings
Austin, October 1995. Reprinted with permission.

rs

ons,
. The

eek

ning
les,
se it
the
Colophon

CAMERA-READY electronic copy for this book was prepared by the autho
using FrameMaker (release 5.5.6) on Sun workstations.

The body type is Times, set 11 on 13. Chapter titles, section titles, quotati
and running heads are also in Times, in various sizes, weights, and styles
index is set 9 on 10.

Some of the bullets used in bulleted lists are taken from Zapf Dingbats. Gr
and mathematical symbols are taken from the Symbol typeface.

The monospace typeface used for program code in both displays and run
text is Lucida Sans Typewriter; for code fragments in chapter titles, section tit
and first-level index entries, Lucida Sans Typewriter Bold is used. In every ca
is set at 85% of the nominal size of the surrounding Times text; for example, in
body it is 85% of 11 point.
505

	Introduction
	Grammars
	Lexical Structure
	Types, Values, and Variables
	Conversions and Promotions
	Names
	Packages
	Classes
	Interfaces
	Arrays
	Exceptions
	Execution
	Binary Compatibility
	Blocks and Statements
	Expressions
	Definite Assignment
	Threads and Locks
	Syntax

