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Preface

T HE Java' programming language was originally called Oak, and was designed
for use in embedded consumer-electronic applications by James Gosling. After
several years of experience with the language, and significant contributions by Ed
Frank, Patrick Naughton, Jonathan Payne, and Chris Warth it was retargeted to the
Internet, renamed, and substantially revised to be the language specified here. The
final form of the language was defined by James Gosling, Bill Joy, Guy Steele,
Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham Hamil-
ton, Tim Lindholm, and many other friends and colleagues.

The Java programming language is a general-purpose concurrent class-based
object-oriented programming language, specifically designed to have as few
implementation dependencies as possible. It allows application developers to
write a program once and then be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of
the language. We intend that the behavior of every language construct is specified
here, so that all implementations will accept the same programs. Except for timing
dependencies or other non-determinisms and given sufficient time and sufficient
memory space, a program written in the Java programming language should com-
pute the same result on all machines and in all implementations.

We believe that the Java programming language is a mature language, ready
for widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications. To do this, we intend to make relatively few
new versions of the language, and to distinguish each new version with a different
filename extension. Compilers and systems will be able to support the several ver-
sions simultannously, with complete compatibility.

Much research and experimentation with the Java platform is already under-
way. We encourage this work, and will continue to cooperate with external groups
to explore improvements to the language and platform. For example, we have
already received several interesting proposals for parameterized types. In techni-
cally difficult areas, near the state of the art, this kind of research collaboration is
essential.

XiX



XX

PREFACE

We acknowledge and thank the many people who have contributed to this
book through their excellent feedback, assistance and encouragement:

Particularly thorough, careful, and thoughtful reviews of drafts were provided
by Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki Ida, David Moon, Steven
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wadler,
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordinary
volunteer efforts.

We are also grateful for reviews, questions, comments, and suggestions from
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbuzov, Kim Bruce,
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David Dill,
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles Gust,
Warren Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Roger
Hoover, Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Kacker,
Peter Kessler, James Larus, Derek Lieber, Bill McKeeman, Steve Naroff,
Evi Nemeth, Robert O’Callahan, Dave Papay, Craig Partridge, Scott Pfeffer,
Eric Raymond, Jim Roskind, Jim Russell, William Scherlis, Edith Schonberg,
Anthony Scian, Matthew Self, Janice Shepherd, Kathy Stark, Barbara Steele, Rob
Strom, William Waite, Greg Weeks, and Bob Wilson. (This list was generated
semi-automatically from our E-mail records. We apologize if we have omitted
anyone.)

The feedback from all these reviewers was invaluable to us in improving the
definition of the language as well as the form of the presentation in this book. We
thank them for their diligence. Any remaining errors in this book—we hope they
are few—are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with matters
of typography and layout. We thank Dan Mills of Adobe Systems Incorporated for
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped us in one way or
another. Lisa Friendly, our series editor, managed our relationship with Addison-
Wesley. Susan Stambaugh managed the distribution of many hundreds of copies
of drafts to reviewers. We received valuable assistance and technical advice from
Ben Adida, Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Hardy,
Steve Heller, David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Akira
Tanaka, Greg Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant, and
Derek White. We thank Alan Baratz, David Bowen, Mike Clary, John Doerr, Jon
Kannegaard, Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNealy for
leadership and encouragement.

The on-line Bartleby Library of Columbia University, at URL:

http://www.cc.columbia.edu/acis/bartleby/



PREFACE

was invaluable to us during the process of researching and verifying many of the
guotations that are scattered throughout this book. Here is one example:

They lard their lean books with the fat of others’ works.
—Robert Burton (1576—-1640)

We are grateful to those who have toiled on Project Bartleby, for saving us a great
deal of effort and reawakening our appreciation for the works of Walt Whitman.

We are thankful for the tools and services we had at our disposal in writing
this book: telephones, overnight delivery, desktop workstations, laser printers,
photocopiers, text formatting and page layout software, fonts, electronic mail, the
World Wide Web, and, of course, the Internet. We live in three different states,
scattered across a continent, but collaboration with each other and with our
reviewers has seemed almost effortless. Kudos to the thousands of people who
have worked over the years to make these excellent tools and services work
quickly and reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonzalez
of Addison-Wesley were very helpful, encouraging, and patient during the long
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on a very tight schedule, to create the index.
We got into the act at the last minute, however; blame us and not her for any jokes
you may find hidden therein.

Finally, we are grateful to our families and friends for their love and support
during this last, crazy, year.

In their bookThe C Programming Languag®rian Kernighan and Dennis
Ritchie said that they felt that the C language “wears well as one’s experience with
it grows.” If you like C, we think you will like the Java programming language.
We hope that it, too, wears well for you.

James Gosling
Cupertino, California

Bill Joy
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Guy Steele
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Preface to the Second Edition

OVER the past few years, the Javgrogramming language has enjoyed
unprecedented success. This success has brought a challenge: along with explo-
sive growth in popularity, there has been explosive growth in the demands made
on the language and its libraries. To meet this challenge, the language has grown
as well (fortunately, not explosively) and so have the libraries.

This second edition ofhe Javd Language Specificatiarflects these devel-
opments. It integrates all the changes made to the Java programming language
since the publication of the first edition in 1996. The bulk of these changes were
made in the 1.1 release of the Java platform in 1997, and revolve around the addi-
tion of nested type declarations. Later modifications pertained to floating-point
operations. In addition, this edition incorporates important clarifications and
amendments involving method lookup and binary compatibility.

This specification defines the language as it exists today. The Java program-
ming language is likely to continue to evolve. At this writing, there are ongoing
initiatives through the Java Community Process to extend the language with
generic types and assertions, refine the memory model, etc. However, it would be
inappropriate to delay the publication of the second edition until these efforts are
concluded.

The specifications of the libraries are now far too large to fit into this volume,
and they continue to evolve. Consequently, API specifications have been removed
from this book. The library specifications can be found on jhea.sun.com
Web site (see below); this specification now concentrates solely on the Java pro-
gramming language proper.

Readers may send comments on this specificatiofil@java. sun.com. To
learn the latest about the Java 2 platform, or to download the latest Java 2 SDK
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release, visihttp://java.sun.com. Updated information about the Java Series,
including errata foiThe Javar Language Specification, Second Editiand pre-
views of forthcoming books, may be founchatp://java.sun.com/Series.
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CHAPTER 1

Introduction

T he Javd programming language is a general-purpose, concurrent, class-based,
object-oriented language. It is designed to be simple enough that many program-
mers can achieve fluency in the language. The Java programming language is
related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is
intended to be a production language, not a research language, and so, as C. A. R.
Hoare suggested in his classic paper on language design, the design has avoided
including new and untested features.

The Java programming language is strongly typed. This specification clearly
distinguishes between theompile-time errorghat can and must be detected at
compile time, and those that occur at run time. Compile time normally consists of
translating programs into a machine-independent byte code representation. Run-
time activities include loading and linking of the classes needed to execute a pro-
gram, optional machine code generation and dynamic optimization of the pro-
gram, and actual program execution.

The Java programming language is a relatively high-level language, in that
details of the machine representation are not available through the language. It
includes automatic storage management, typically using a garbage collector, to
avoid the safety problems of explicit deallocation (as in €tse or C++’s
delete). High-performance garbage-collected implementations can have bound-
ed pauses to support systems programming and real-time applications. The lan-
guage does not include any unsafe constructs, such as array accesses without
index checking, since such unsafe constructs would cause a program to behave in
an unspecified way.

The Java programming language is normally compiled to the bytecoded
instruction set and binary format definedTlihe Javd' Virtual Machine Specifica-
tion, Second EditiofAddison-Wesley, 1999).
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This specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language,
which is based on C and C++. The language is written in the Unicode character
set. It supports the writing of Unicode characters on systems that support only
ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two’s-complement integers, single- and
double-precision IEEE 754 standard floating-point numbebspadean type, and
a Unicode charactethar type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types.
The reference types are implemented by dynamically created objects that are
either instances of classes or arrays. Many references to each object can exist. All
objects (including arrays) support the methods of the dagect, which is the
(single) root of the class hierarchy. A predefirfadring class supports Unicode
character strings. Classes exist for wrapping primitive values inside of objects.

Variables are typed storage locations. A variable of a primitive type holds a
value of that exact primitive type. A variable of a class type can hold a null refer-
ence or a reference to an object whose type is that class type or any subclass of
that class type. A variable of an interface type can hold a null reference or a refer-
ence to an instance of any class that implements the interface. A variable of an
array type can hold a null reference or a reference to an array. A variable of class
typeObject can hold a null reference or a reference to any object, whether class
instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions
change the compile-time type and, sometimes, the value of an expression.
Numeric promotions are used to convert the operands of a numeric operator to a
common type where an operation can be performed. There are no loopholes in the
language; casts on reference types are checked at run time to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what
names mean (denote). The language does not require types or their members to be
declared before they are used. Declaration order is significant only for local vari-
ables, local classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes, and
interfaces. This helps in writing large programs by distinguishing the implementa-
tion of a type from its users and those who extend it. Recommended naming con-
ventions that make for more readable programs are described here.
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Chapter 7 describes the structure of a program, which is organized into pack-
ages similar to the modules of Modula. The members of a package are classes,
interfaces, and subpackages. Packages are divided into compilation units. Compi-
lation units contain type declarations and can import types from other packages to
give them short names. Packages have names in a hierarchical name space, and
the Internet domain name system can usually be used to form unique package
names.

Chapter 8 describes classes. The members of classes are classes, interfaces,
fields (variables) and methods. Class variables exist once per class. Class methods
operate without reference to a specific object. Instance variables are dynamically
created in objects that are instances of classes. Instance methods are invoked on
instances of classes; such instances become the current ofsjectiuring their
execution, supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementa-
tion of each class is derived from that of a single superclass, and ultimately from
the clas®bject. Variables of a class type can reference an instance of that class
or of any subclass of that class, allowing new types to be used with existing meth-
ods, polymorphically.

Classes support concurrent programming wi¥nchronized methods.
Methods declare the checked exceptions that can arise from their execution, which
allows compile-time checking to ensure that exceptional conditions are handled.
Objects can declare finalize method that will be invoked before the objects
are discarded by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration “headers” separate from
the implementation of a class nor separate type and class hierarchies.

Although the language does not include parameterized classes, the semantics
of arrays are those of a parameterized class with some syntactic sugar. Like the
programming language Beta, the Java programming language uses a run-time type
check when storing references in arrays to ensure complete type safety.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference to
any object that implements the interface. Multiple interface inheritance is sup-
ported.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays
are dynamically created objects and may be assigned to variables @fhtjpet.

The language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated
with the language semantics and concurrency mechanisms. There are three kinds
of exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method

3
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or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist,
and aids programming in the large. Most user-defined exceptions should be
checked exceptions. Invalid operations in the program detected by the Java virtual
machine result in run-time exceptions, suchNa31PointerException. Errors

result from failures detected by the virtual machine, sucbua®fMemoryError.

Most simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and inter-
faces. These binary files can be loaded into a Java virtual machine, linked to other
classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some
classes may be instantiated to create new objects of the class type. Objects that are
class instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the
object is reclaimed to give the object a last chance to clean up resources that
would not otherwise be released. When a class is no longer needed, it may be
unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes
to types on other types that use the changed types but have not been recompiled.
These considerations are of interest to developers of types that are to be widely
distributed, in a continuing series of versions, often through the Internet. Good
program development environments automatically recompile dependent code
whenever a type is changed, so most programmers need not be concerned about
these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has ngoto statement, but includes labelédeak andcontinue
statements. Unlike C, the Java programming language recduitdan expres-
sions in control-flow statements, and does not convert typésddean implic-
itly, in the hope of catching more errors at compile time.spnchronized
statement provides basic object-level monitor locking.tAy statement can
includecatch andfinally clauses to protect against non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (appar-
ent) order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that local
variables are definitely set before use. While all other variables are automatically
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initialized to a default value, the Java programming language does not automati-
cally initialize local variables in order to avoid masking programming errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

The book concludes with an index, credits for quotations used in the book,
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i]
System.out.println(Q);

+ args[il);

}
}
On a Sun workstation using Sun’s JDKr Java 2 SDK software, this class,
stored in the fileTest. java, can be compiled and executed by giving the com-
mands:

javac Test.java
java Test Hello, world.

producing the output:
Hello, world.

1.2 Notation

Throughout this book we refer to classes and interfaces drawn from the Java and
Java 2 platforms. Whenever we refer to a class or interface which is not defined in
an example in this book using a single identifiethe intended reference is to the
class or interface namedin the packaggava. 1ang. We use the canonical name
(86.7) for classes or interfaces from packages otherjthan 1ang.
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1.3 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java and Java 2
platforms. In particular, some classes have a special relationship with the Java
programming language. Examples include classes suclobgsct, Class,
ClassLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. The language definition constrains the
behavior of these classes and interfaces, but this document does not provide a
complete specification for them. The reader is referred to other parts of the Java
platform specification for such detailed API specifications.

Thus this document does not describe reflection in any detail. Many linguistic
constructs have analogues in the reflection API, but these are generally not dis-
cussed here. So, for example, when we list the ways in which an object can be cre-
ated, we generally do not include the ways in which the reflective API can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in this text.
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Document 88-002R, June 1988; appears as Chapter 28 of Steel&;@uamon Lisp:

The Language?nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770—-864.

Ellis, Margaret A., and Bjarne Stroustrufthe Annotated C++ Reference Manual
Addison-Wesley, Reading, Massachusetts, 1990, reprinted with corrections October
1992, ISBN 0-201-51459-1.
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Harbison, SamueModula-3 Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
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CHAPTER2

Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammaronsists of a number gfroductions Each production has
an abstract symbol calledreonterminalas itsleft-hand sideand a sequence of
one or more nonterminal artérminal symbols as itgight-hand side For each
grammar, the terminal symbols are drawn from a speafmthbet

Starting from a sentence consisting of a single distinguished nonterminal,
called thegoal symbal a given context-free grammar specifieslaamguage
namely, the set of possible sequences of terminal symbols that can result from
repeatedly replacing any nonterminal in the sequence with a right-hand side of a
production for which the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammarfor the Java programming language is given in (83). This
grammar has as its terminal symbols the characters of the Unicode character set. It
defines a set of productions, starting from the goal symbput (83.5), that
describe how sequences of Unicode characters (83.1) are translated into a
sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) dis-
carded, form the terminal symbols for the syntactic grammar for the Java pro-
gramming language and are calliedkens(83.5). These tokens are the identifiers
(83.8), keywords (83.9), literals (83.10), separators (83.11), and operators (83.12)
of the Java programming language.
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2.3 The Syntactic Grammar

Thesyntactic grammafor the Java programming language is given in Chapters 4,
6-10, 14, and 15. This grammar has tokens defined by the lexical grammar as its
terminal symbols. It defines a set of productions, starting from the goal symbol
CompilationUnit(87.3), that describe how sequences of tokens can form syntacti-
cally correct programs.

2.4 Grammar Notation

Terminal symbols are shown ffi xed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shownitalic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a colon.
One or more alternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if ( Expression) Statement

states that the nonterminél henStatememepresents the tokeif, followed by a
left parenthesis token, followed by &xpressionfollowed by a right parenthesis
token, followed by &tatement

As another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList, Argument

states that armArgumentListmay represent either a singldrgumentor an
ArgumentListfollowed by a comma, followed by afsrgument This definition of
ArgumentLisis recursive that is to say, it is defined in terms of itself. The result
is that anArgumentListmay contain any positive number of arguments. Such
recursive definitions of nonterminals are common.

The subscripted suffixdpt”, which may appear after a terminal or nontermi-
nal, indicates amptional symbalThe alternative containing the optional symbol
actually specifies two right-hand sides, one that omits the optional element and
one that includes it.

This means that:
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BreakStatement:
break ldentifiegy, ;

is a convenient abbreviation for:

BreakStatement:
break ;
break ldentifier ;

and that:

ForStatement:
for ( Forlnitep ; Expressiogpt ; ForUpdatgp ) Statement

is a convenient abbreviation for:

ForStatement:
for ( ; Expressiogy ; ForUpdatgyp: ) Statement
for ( Forlnit ; Expressiogp ; ForUpdatgy ) Statement

which in turn is an abbreviation for:

ForStatement:
for ( ; ; ForUpdatgp ) Statement
for ( ; Expression; ForUpdatgy: ) Statement
for ( Forlnit ; ; ForUpdatgp; ) Statement
for ( Forlnit ; Expression; ForUpdatgy: ) Statement

which in turn is an abbreviation for:

ForStatement:
for ( ; ; ) Statement
for ( ; ; ForUpdate) Statement
for ( ; Expression; ) Statement
for ( ; Expression; ForUpdate) Statement
for ( Forlnit ; ; ) Statement
for ( Forlnit ; ; ForUpdate ) Statement
for ( Forlnit ; Expression; ) Statement

for ( Forlnit ; Expression; ForUpdate ) Statement

so the nontermindtorStatemenactually has eight alternative right-hand sides.

2.4

A very long right-hand side may be continued on a second line by substan-

tially indenting this second line, as in:

ConstructorDeclaration:
ConstructorModifiers, ConstructorDeclarator
Throwsgyp: ConstructorBody

11
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which defines one right-hand side for the nontermimistructorDeclaration

When the words “one of” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or lines is an alterna-
tive definition. For example, the lexical grammar contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3

When an alternative in a lexical production appears to be a token, it represents
the sequence of characters that would make up such a token. Thus, the definition:

BooleanLiteral: one of
true false

in a lexical grammar production is shorthand for:

BooleanLiteral:
true
false

The right-hand side of a lexical production may specify that certain expan-
sions are not permitted by using the phrase “but not” and then indicating the
expansions to be excluded, as in the productiondriputCharacter(83.4) and
Identifier (83.8):

InputCharacter:
UnicodelnputCharactebut notCR or LF

Identifier:
IdentifierNamebut not aKeywordor BooleanLiteralor NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase in
roman type in cases where it would be impractical to list all the alternatives:

RawlnputCharacter:
any Unicode character



CHAPTER3

Lexical Structure

T HIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided
(83.2) so that Unicode escapes (83.3) can be used to include any Unicode charac-
ter using only ASCII characters. Line terminators are defined (83.4) to support the
different conventions of existing host systems while maintaining consistent line
numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (83.5), which are white space (83.6), comments
(83.7), and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals
(83.10), separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
encoding may be found at:

http://www.unicode.org

Versions of the Java programming language prior to 1.1 used Unicode version
1.1.5 (seeThe Unicode Standard: Worldwide Character Encodif&l..4) and
updates). Later versions prior to JDK version 1.1.7 used Unicode version 2.0.
Since JDK version 1.1.7, Unicode 2.1 has been in use. The Java platform will
track the Unicode specification as it evolves. The precise version of Unicode used
by a given release is specified in the documentation of the(tlasscter.

Except for comments (83.7), identifiers, and the contents of character and
string literals (83.10.4, §3.10.5), all input elements (83.5) in a program are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCII
characters). ASCII (ANSI X3.4) is the American Standard Code for Information
Interchange. The first 128 characters of the Unicode character encoding are the
ASCII characters.

13
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3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of tokens, using the
following three lexical translation steps, which are applied in turn:

1. Atranslation of Unicode escapes (83.3) in the raw stream of Unicode charac-
ters to the corresponding Unicode character. A Unicode escape of the form
\uxxxx, wherexxxx is a hexadecimal value, represents the Unicode character
whose encoding isxxxx. This translation step allows any program to be
expressed using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of
input characters and line terminators (83.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (83.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical translation would. Thus
the input characters--b are tokenized (83.5) as --, b, which is not part of any
grammatically correct program, even though the tokenization -, b could be
part of a grammatically correct program.

3.3 Unicode Escapes

Implementations first recognizgnicode escapem their input, translating the
ASCII charactersu followed by four hexadecimal digits to the Unicode character
with the indicated hexadecimal value, and passing all other characters unchanged.
This translation step results in a sequence of Unicode input characters:

UnicodelnputCharacter:
UnicodeEscape
RawlnputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarkeru
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RawlnputCharacter:
any Unicode character

HexDigit: one of
@ 1 2 3 456 7 8 9 abocdefABT CDTEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input char-
acter that is a backslashinput processing must consider how many othehar-
acters contiguously precede it, separating it from a Yaoharacter or the start of
the input stream. If this number is even, then this eligible to begin a Unicode
escape; if the number is odd, then this not eligible to begin a Unicode escape.
For example, the raw input\\u2297=\u2297" results in the eleven characters
"\\u2297=0"(\u2297 is the Unicode encoding of the charactét ).

If an eligible\ is not followed byu, then it is treated asRawlnputCharacter
and remains part of the escaped Unicode stream. If an eligiisiéollowed byu,
or more than one, and the last is not followed by four hexadecimal digits, then
a compile-time error occurs.

The character produced by a Unicode escape does not participate in further
Unicode escapes. For example, the raw inyudi@5cu@05a results in the six char-
acters\ u 0 0 5 a, becaus®05c is the Unicode value fox. It does not result in
the charactez, which is Unicode charact@@5a, because thg that resulted from
the\u@o5c is not interpreted as the start of a further Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an
extrau—for example \uxxxx becomes,uuxxxx—while simultaneously convert-
ing non-ASCII characters in the source text tyuexxxx escape containing a sin-
gleu.

This transformed version is equally acceptable to a compiler for the Java pro-
gramming language ("Java compiler") and represents the exact same program.
The exact Unicode source can later be restored from this ASCII form by convert-
ing each escape sequence where multifdare present to a sequence of Unicode
characters with one feweu, while simultaneously converting each escape
sequence with a singleto the corresponding single Unicode character.

Implementations should use thexxxx notation as an output format to dis-
play Unicode characters when a suitable font is not available.

15
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3.4 Line Terminators

Implementations next divide the sequence of Unicode input characters into lines
by recognizindine terminators This definition of lines determines the line num-
bers produced by a Java compiler or other system component. It also specifies the
termination of the// form of a comment (83.7).

LineTerminator:
the ASCIILF character, also known as “newline”
the ASCIIcR character, also known as “return”
the ASCIIcR character followed by the ASQIF character

InputCharacter:
UnicodelnputCharactebut notCR or LF

Lines are terminated by the ASCII characters or LF, or CR LF. The two
character£R immediately followed by F are counted as one line terminator, not
two.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequenopuifelements
Those input elements that are not white space (83.6) or comments (83.7) are
tokens The tokens are the terminal symbols of the syntactic grammar (82.3).

This process is specified by the following productions:

Input:
InputElementg,; Sulyp;

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token
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Token:
Identifier
Keyword
Literal
Separator
Operator

Sub:
the ASCIIsuB character, also known as “control-Z”

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII charac-
ters- and= in the input can form the operator tokea (83.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the
ASCII suB character\u@e1la, or control-Z) is ignored if it is the last character in
the escaped input stream.

Consider two tokenx andy in the resulting input stream. i precedey,
then we say that isto the left ofy and thaty is to the right ofx.

For example, in this simple piece of code:

class Empty {
}

we say that thé token is to the right of thg token, even though it appears, in this
two-dimensional representation on paper, downward and to the left gfttien.

This convention about the use of the words left and right allows us to speak, for
example, of the right-hand operand of a binary operator or of the left-hand side of
an assignment.

3.6 White Space

White spaces defined as the ASCII space, horizontal tab, and form feed charac-
ters, as well as line terminators (83.4).

WhiteSpace:
the ASClIspcharacter, also known as “space”
the ASCIIHT character, also known as “horizontal tab”
the ASCIIFF character, also known as “form feed”
LineTerminator

17
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3.7 Comments

LEXICAL STRUCTURE

There are two kinds a@fomments

/* text */

// text

A traditional commentall the text from the ASCII
characterg* to the ASCII characters/ is ignored
(as in C and C++).

A end-of-line commenall the text from the ASCII
characterg/ to the end of the line is ignored (as in
C++).

These comments are formally specified by the following productions:

Comment:
TraditionalComment
EndOfLineComment

TraditionalComment:
/ * NotStar CommentTail

EndOfLineComment:
/ / CharactersinLingy; LineTerminator

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacterbut not*
LineTerminator

NotStarNotSlash:
InputCharacterbut not* or /
LineTerminator

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productions imply all of the following properties:
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* Comments do not nest.
» /*and*/ have no special meaning in comments that begin Ayith
» // has no special meaning in comments that begin fwitbr /.
As a result, the text:
/* this comment /* // /** ends here: */

is a single complete comment.
The lexical grammar implies that comments do not occur within character lit-
erals (83.10.4) or string literals (§3.10.5).

3.8 lIdentifiers

An identifieris an unlimited-length sequence ddva lettersand Java digits the

first of which must be a Java letter. An identifier cannot have the same spelling
(Unicode character sequence) as a keyword (83.9), boolean literal (§83.10.3), or
the null literal (83.10.7).

Identifier:
IdentifierCharsbut not akeywordor BooleanLiteralor NullLiteral

IdentifierChars:
Javaletter
IdentifierChars JavaletterOrDigit

Javal etter:
any Unicode character that is a Java letter (see below)

Javal etterOrDigit:
any Unicode character that is a Java letter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in
their programs that are written in their native languages.

A “Java letter” is a character for which the meth@thracter.isJavaIden-
tifierStart returnstrue. A “Java letter-or-digit” is a character for which the
methodCharacter.isJavaldentifierPart returnstrue.

The Java letters include uppercase and lowercase ASCII Latin |at@rs
(\u0041-\u005a), and a—z (\u@061-\u007a), and, for historical reasons, the
ASCII underscore_(, or \uee5sf) and dollar sign {, or \ue@24). The $ character
should be used only in mechanically generated source code or, rarely, to access
preexisting names on legacy systems.

19
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The “Java digits” include the ASCII digies-9 (\u0030—\u0039).

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit

Identifiers that have the same external appearance may yet be different. For
example, the identifiers consisting of the single letteY8N CAPITAL LETTER A
(A, \u0@041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL LETTER ALPHA
(A, \u@391), andCYRILLIC SMALL LETTER A (a, \u0430) are all different.

Unicode composite characters are different from the decomposed characters.
For example, &ATIN CAPITAL LETTER A ACUTE (A, \u@0c1) could be considered
to be the same asLlaTIN CAPITAL LETTER A (A, \u0041) immediately followed
by a NON-SPACING ACUTE (", \u@301) when sorting, but these are different in
identifiers. Se€lhe Unicode Standard/olume 1, pages 412ff for details about
decomposition, and see pages 626—627 of that work for details about sorting.

Examples of identifiers are:

String i3 apETN MAX_VALUE isLetterOrDigit

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use akeywordsand cannot be used as identifiers (83.8):

Keyword: one of

abstract default if private this
boolean do implements protected throw
break double import pubTic throws
byte else instanceof return transient
case extends int short try

catch final interface static void

char finally Tong strictfp volatile
class float native super while
const for new switch

continue goto package synchronized

The keywordsconst andgoto are reserved, even though they are not cur-
rently used. This may allow a Java compiler to produce better error messages if
these C++ keywords incorrectly appear in programs.

While true and false might appear to be keywords, they are technically
Boolean literals (83.10.3). Similarly, whileu11 might appear to be a keyword, it
is technically the null literal (83.10.7).
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3.10 Literals

A literal is the source code representation of a value of a primitive type (84.2), the
String type (84.3.3), or the null type (84.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

3.10.1 Integer Literals

See 84.2.1 for a general discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecimal

(base 16), or octal (base 8):

IntegerLiteral:
DecimalintegerLiteral
HexIntegerLiteral
OctallntegerLiteral

DecimalintegerLiteral:
DecimalNumeral IntegerTypeSuffix

HexIntegerLiteral:
HexNumeral IntegerTypeSuffix

OctallntegerLiteral:
OctalNumeral IntegerTypeSuffjx

IntegerTypeSuffix: one of
T L

An integer literal is of typ€long if it is suffixed with an ASCII letter. or 1
(ell); otherwise it is of typeint (84.2.1). The suffix is preferred, because the let-
ter1 (ell) is often hard to distinguish from the digi{one).

A decimal numeral is either the single ASCII charaderepresenting the
integer zero, or consists of an ASCII digit fratrto 9, optionally followed by one
or more ASCII digits fron® to 9, representing a positive integer:

21
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DecimalNumeral:

0

NonZeroDigit Digitg
Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
123 456 7 89

A hexadecimal numeral consists of the leading ASCII charaetews 0X fol-
lowed by one or more ASCII hexadecimal digits and can represent a positive,
zero, or negative integer. Hexadecimal digits with values 10 through 15 are repre-
sented by the ASCII letters throughf or A throughF, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits

The following production from 83.3 is repeated here for clarity:

HexDigit: one of
@ 1 2 3 4567 8 9 abocdefABTC CDEF

An octal numeral consists of an ASCII digitfollowed by one or more of the
ASCII digits@ through7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigits

OctalDigits:
OctalDigit
OctalDigit OctalDigits

OctalDigit: one of
1 2 3 456 7
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Note that octal numerals always consist of two or more digitss always
considered to be a decimal numeral—not that it matters much in practice, for the
numeral®, 00, andox all represent exactly the same integer value.

The largest decimal literal of typint is 2147483648 (231). All decimal liter-
als fromo to 2147483647 may appear anywhere amt literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negation
operator-.

The largest positive hexadecimal and octal literals of typex are
ox7fffffff and 017777777777, respectively, which equal2147483647
(231-1). The most negative hexadecimal and octal literals of type are
0x80000000 and020000000000, respectively, each of which represents the deci-
mal value-2147483648 (-23!). The hexadecimal and octal literalsffffffff
ande37777777777, respectively, represent the decimal vale

A compile-time error occurs if a decimal literal of typget is larger than
2147483648 (231), or if the literal 2147483648 appears anywhere other than as
the operand of the unary operator, or if a hexadecimal or octalt literal does
not fit in 32 bits.

Examples ofint literals:

0 2 0372 0OxDadaCafe 1996 OxQOFFQOFF

The largest decimal literal of typgong is 9223372036854775808L (253).
All decimal literals fromoL t0 9223372036854775807L may appear anywhere a
Tong literal may appear, but the literaP23372036854775808L may appear only
as the operand of the unary negation operator

The largest positive hexadecimal and octal literals of tyfmg are
Ox7TEFffffrffffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (263—1). The literals 0x8000000000000000L
and 01000000000000000000000L are the most negativeong hexadecimal and
octal literals, respectively. Each has the decimal vala223372036854775808L
(-2%%). The hexadecimal and octal literal@xfffffffFfFFFFFFfL and
01777777777777777777777L, respectively, represent the decimal value.

A compile-time error occurs if a decimal literal of tydeng is larger than
9223372036854775808L (263), or if the literal9223372036854775808L appears
anywhere other than as the operand of the unargerator, or if a hexadecimal or
octalTong literal does not fit in 64 bits.

Examples oflong literals:

01 0777L 0x100000000L 2147483648L 0xCoBOL

23
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3.10.2 Floating-Point Literals

See 84.2.3 for a general discussion of the floating-point types and values.

A floating-point literalhas the following parts: a whole-number part, a deci-
mal point (represented by an ASCII period character), a fractional part, an expo-
nent, and a type suffix. The exponent, if present, is indicated by the ASCI| éetter
or E followed by an optionally signed integer.

At least one digit, in either the whole number or the fraction part, and either a
decimal point, an exponent, or a float type suffix are required. All other parts are
optional.

A floating-point literal is of typefloat if it is suffixed with an ASCI!I letterr
or f; otherwise its type igouble and it can optionally be suffixed with an ASCII
letterD ord.

FloatingPointLiteral:
Digits . Digitsy,r ExponentPag,; FloatTypeSuffig
. Digits ExponentPag, FloatTypeSuffig,
Digits ExponentPart FloatTypeSuffjx
Digits ExponentPagy FloatTypeSuffix

ExponentPart:
Exponentindicator Signedinteger

Exponentindicator: one of
e E

Signedinteger:
Signypt Digits

Sign: one of
+ -

FloatTypeSuffix: one of
fFdD

The elements of the typegd oat anddouble are those values that can be rep-
resented using the IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of
a floating-point number to the internal IEEE 754 binary floating-point representa-
tion are described for the methods1ue0f of classFloat and clas®ouble of
the packaggava.lang.

The largest positive finitéFloat literal is 3.40282347e+38f. The smallest
positive finite nonzero literal of typ€&loat is 1.40239846e-45f. The largest
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positive finitedouble literal is1.79769313486231570e+308. The smallest posi-
tive finite nonzero literal of typeéouble iS4.94065645841246544e-324.

A compile-time error occurs if a nonzero floating-point literal is too large, so
that on rounded conversion to its internal representation it becomes an IEEE 754
infinity. A program can represent infinities without producing a compile-time
error by using constant expressions such®®f or -1d/0d or by using the pre-
defined constantBOSITIVE_INFINITY andNEGATIVE_INFINITY of the classes
Float andDouble

A compile-time error occurs if a nonzero floating-point literal is too small, so
that, on rounded conversion to its internal representation, it becomes a zero. A
compile-time error does not occur if a nonzero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the
classes1oat andDouble asFloat.NaN andDoubTe.NaN.

Examples off1oat literals:

lelf 2.f .3f of 3.14f 6.022137e+23f
Examples otlouble literals:
lel 2. .3 0.0 3.14 le-9d lel37

There is no provision for expressing floating-point literals in other than deci-
mal radix. However, methotihtBitsToFloat of classFloat and method ong-
BitsToDouble of classDouble provide a way to express floating-point values in
terms of hexadecimal or octal integer literals.

For example, the value of:

DoubTe.longBitsToDoubTe(0x400921FB54442D18L)
is equal to the value ¢fath.PI.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literadge and false,
formed from ASCII letters.
A boolean literalis always of typ&oolean.

BooleanLiteral: one of
true false

25
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3.10.4 Character Literals

A character literalis expressed as a character or an escape sequence, enclosed in
ASCII single quotes. (The single-quote, or apostrophe, charatig#da?.)
A character literal is always of typhar.

CharacterLiteral:
' SingleCharacter'
' EscapeSequence

SingleCharacter:
InputCharacterbut not' or \

The escape sequences are described in §3.10.6.

As specified in §83.4, the characta@r andLF are never annputCharacter
they are recognized as constitutingiae Terminator

It is a compile-time error for the character following tBengleCharacteior
EscapeSequente be other than a

It is a compile-time error for a line terminator to appear after the opehing
and before the closinyg

The following are examples ahar literals:

a

"\t

NE

INE

'"\u@3a9’

"\UFFFF'

"\177'

] Q ]

] D ]

Because Unicode escapes are processed very early, it is not correct to write
'\uoooa' for a character literal whose value is linefeed)( the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomes aineTerminatorin step 2 (83.4), and so the character literal is
not valid in step 3. Instead, one should use the escape seqtient¢83.10.6).
Similarly, it is not correct to write \ueeed' for a character literal whose value is
carriage returndR). Instead, usé\r'.

In C and C++, a character literal may contain representations of more than
one character, but the value of such a character literal is implementation-defined.
In the Java programming language, a character literal always represents exactly
one character.



LEXICAL STRUCTURE String Literals 3.10.5

3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Each character may be represented by an escape sequence.

A string literal is always of typ&tring (84.3.3. A string literal always refers
to the same instance (84.3.1) of classing.

StringLiteral:
" StringCharactergy "

StringCharacters:
StringCharacter
StringCharacters StringCharacter

StringCharacter:
InputCharacterbut not" or \
EscapeSequence

The escape sequences are described in 83.10.6.
As specified in 83.4, neither of the charactersandLF is ever considered to
be aninputCharacter each is recognized as constitutingime Terminator
It is a compile-time error for a line terminator to appear after the opeting
and before the closing matchifig A long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression using the
string concatenation operato(§15.18.1).
The following are examples of string literals:

// the empty string

""" // astring containing" alone

"This is a string" // astring containing 16 characters

"This is a " + // actually a string-valued constant expression,
"two-line string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write
"\u00oa" for a string literal containing a single linefeed|; the Unicode escape
\u000a is transformed into an actual linefeed in translation step 1 (83.3) and the
linefeed becomes laineTerminatoiin step 2 (83.4), and so the string literal is not
valid in step 3. Instead, one should writen" (83.10.6). Similarly, it is not correct
to write "\u0oed" for a string literal containing a single carriage retugr)
Instead usé&\r".

Each string literal is a reference (84.3) to an instance (84.3.1, 812.5) of class
String (84.3.3).String objects have a constant value. String literals—or, more
generally, strings that are the values of constant expressions (815.28)—are
“interned” so as to share unique instances, using the metirdeg.intern.
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Thus, the test program consisting of the compilation unit (§87.3):

package testPackage;

class Test {
public static void main(String[] args) {

String hello = "Hello", 1o = "1o0";
System.out.print((Chello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"10™)) + " ");
System.out.print(Chello == ("Hel"+10)) + " ");
System.out.println(hello == ("Hel"+10).intern());

}
class Other { static String hello = "Hello"; }

and the compilation unit:

package other;
public class Other { static String hello = "Hello"; }

produces the output:

true true true true false true

This example illustrates six points:

Literal strings within the same class (88) in the same package (87) represent
references to the sarSering object (84.3.1).

Literal strings within different classes in the same package represent refer-
ences to the sans&ring object.

Literal strings within different classes in different packages likewise represent
references to the sarSering object.

Strings computed by constant expressions (815.28) are computed at compile
time and then treated as if they were literals.

Strings computed at run time are newly created and therefore distinct.

The result of explicitly interning a computed string is the same string as any
pre-existing literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and stringscape sequencaflow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
characters in character literals (83.10.4) and string literals (83.10.5).
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EscapeSequence:
b * \uQ008: backspacess */

* \u0009: horizontal tabHT */

* \uQ00a: linefeedLF */

* \u00oc: form feedFF*/

* \u@ood: carriage returrcr */

* \u0022: double quote' */

* \u@027: single quote */

* \u@05c: backslash, */

* \u0000 to \uooff: from octal value*/

PP A
S h S ot

AN
OctalEscape

SIS

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It is a compile-time error if the character following a backslash in an escape is
not an ASCllb, t,n, f, r,", ',\,0,1, 2, 3,4, 5,6, 0r 7. The Unicode escapa: is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode valugs0000 through\u@oFF, so Unicode escapes are
usually preferred.)

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the fitérg|
which is formed from ASCII characters.Alll literal is always of the null type.

NullLiteral:
null

3.11 Separators

The following nine ASCII characters are teparatorgpunctuators):

Separator: one of
( ) { 3 [ ] ; ,
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3.12 Operators

The following 37 tokens are tloperators formed from ASCII characters:

Operator: one of

= > < ! ~ ? :

= <= >= I= & || + --

+ - / & | A % << >> >>>
+= -= = [J= &= |= A= %= <<= >>= >>>=



CHAPTER4

Types, Values, and Variables

THE Java programming language issaongly typedlanguage, which means

that every variable and every expression has a type that is known at compile time.
Types limit the values that a variable (84.5) can hold or that an expression can pro-
duce, limit the operations supported on those values, and determine the meaning
of the operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) arédh&ean
type and the numeric types. The numeric types are the integral bypesshort,
int, long, andchar, and the floating-point typegloat anddouble. The refer-
ence types (84.3) are class types, interface types, and array types. There is also a
special null type. An object (84.3.1) is a dynamically created instance of a class
type or a dynamically created array. The values of a reference type are references
to objects. All objects, including arrays, support the methods of @agsct
(84.3.2). String literals are representedshying objects (§4.3.3).

Names of types are used (84.4) in declarations, casts, class instance creation
expressions, array creation expressions, class literalsjmathnceof operator
expressions.

A variable (84.5) is a storage location. A variable of a primitive type always
holds a value of that exact type. A variable of a class tfgan hold a null refer-
ence or a reference to an instance of class of any class that is a subclassTof
A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interfacg.i$fa primitive type, then a
variable of type “array off ” can hold a null reference or a reference to any array
of type “array of 7”; if T is a reference type, then a variable of type “array of
can hold a null reference or a reference to any array of type “array sfich that
type S is assignable (85.2) to type A variable of typeObject can hold a null
reference or a reference to any object, whether class instance or array.
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4.1 The Kinds of Types and Values

There are two kinds dfypesin the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

There is also a specialll type the type of the expressiom11, which has no
name. Because the null type has no name, it is impossible to declare a variable of
the null type or to cast to the null type. The null reference is the only possible
value of an expression of null type. The null reference can always be cast to any
reference type. In practice, the programmer can ignore the null type and just pre-
tend thahu11 is merely a special literal that can be of any reference type.

4.2 Primitive Types and Values

A primitive typeis predefined by the Java programming language and named by
its reserved keyword (83.9):

PrimitiveType:
NumericType
boolean

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int Tong char

FloatingPointType: one of
float double

Primitive values do not share state with other primitive values. A variable
whose type is a primitive type always holds a primitive value of that same type.
The value of a variable of primitive type can be changed only by assignment oper-
ations on that variable.

Thenumeric typegre the integral types and the floating-point types.
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The integral typesarebyte, short, int, andTong, whose values are 8-bit,
16-bit, 32-bit and 64-bit signed two’s-complement integers, respectively, and
char, whose values are 16-bit unsigned integers representing Unicode characters.

Thefloating-point typesirefloat, whose values include the 32-bit IEEE 754
floating-point numbers, andouble, whose values include the 64-bit IEEE 754
floating-point numbers.

Theboolean type has exactly two valuestue andfalse.

4.2.1 Integral Types and Values
The values of the integral types are integers in the following ranges:
* Forbyte, from —128 to 127, inclusive
* Forshort, from —32768 to 32767, inclusive
e Forint, from —2147483648 to 2147483647, inclusive
» Forlong, from —9223372036854775808 to 9223372036854775807, inclusive
* Forchar, from '\u000o"' to '\uffff"' inclusive, that is, from 0 to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on inte-
gral values:

» The comparison operators, which result in a value of hgpéean:
o The numerical comparison operaters=, >, and>= (§15.20.1)
o The numerical equality operatoss and != (§15.21.1)
» The numerical operators, which result in a value of tiyeor 1ong:
o The unary plus and minus operaterand- (§15.15.3, §15.15.4)
o The multiplicative operators, /, and% (815.17)
o The additive operatorsand- (815.18.2)
o The increment operates, both prefix (§15.15.1) and postfix (815.14.1)
o The decrement operater, both prefix (§15.15.2) and postfix (§15.14.2)
o The signed and unsigned shift operators>>, and>>> (§15.19)
o The bitwise complement operato(§15.15.5)
o The integer bitwise operatogs |, anda (815.22.1)
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» The conditional operatar : (§15.25)

« The cast operator, which can convert from an integral value to a value of any
specified numeric type (85.5, §15.16)

» The string concatenation operato(815.18.1), which, when givenString
operand and an integral operand, will convert the integral operand to a
String representing its value in decimal form, and then produce a newly cre-
atedString that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, andCharacter.

If an integer operator other than a shift operator has at least one operand of
type Tong, then the operation is carried out using 64-bit precision, and the result
of the numerical operator is of typing. If the other operand is ndtong, it is
first widened (85.1.4) to typgong by numeric promotion (85.6). Otherwise, the
operation is carried out using 32-bit precision, and the result of the numerical
operator is of typent. If either operand is not aint, it is first widened to type
int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any
way. The only numeric operators that can throw an exception (811) are the integer
divide operator/ (815.17.2) and the integer remainder operata§15.17.3),
which throw amrithmeticException if the right-hand operand is zero.

The example:

class Test {
public static void main(String[] args) {
int i = 1000000;
System.out.println(i * 1i);
Tong 1 = 1;
System.out.printin(l * 1);
System.out.printin(20296 / (1 - 1i));

}
produces the output:

-727379968
1000000000000

and then encounters amithmeticException in the division byl - i, because

1 - 1 is zero. The first multiplication is performed in 32-bit precision, whereas the
second multiplication is &ong multiplication. The value- 727379968 is the deci-

mal value of the low 32 bits of the mathematical resLd®0000000000, which is

a value too large for typint.
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Any value of any integral type may be cast to or from any numeric type. There
are no casts between integral types and thedypeean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types aréloat anddouble, which are conceptually associ-
ated with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specifiedHEE Standard for Binary Floating-Point
Arithmetig ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that
consist of a sigh and magnitude, but also positive and negative zeros, positive and
negativeinfinities, and speciaNot-a-Numbewalues (hereafter abbreviated NaN).

A NaN value is used to represent the result of certain invalid operations such as
dividing zero by zero. NaN constants of boffoat and double type are pre-
defined a$1oat.NaN andDouble.NaN.

Every implementation of the Java programming language is required to sup-
port two standard sets of floating-point values, calledfibat value seand the
double value setin addition, an implementation of the Java programming lan-
guage may support either or both of two extended-exponent floating-point value
sets, called théoat-extended-exponent value sed thedouble-extended-expo-
nent value setThese extended-exponent value sets may, under certain circum-
stances, be used instead of the standard value sets to represent the values of
expressions of typ€loat ordouble (85.1.8, §15.4).

The finite nonzero values of any floating-point value set can all be expressed
in the formsOm2(e-N+1) 'wheresis +1 or —1,mis a positive integer less than
2N andeis an integer betweeB,,;, = <(2K-1-2) arg},,, = 2-1-1 ,inclu-
sive, and wher®&l andK are parameters that depend on the value set. Some values
can be represented in this form in more than one way; for example, supposing that
a valuev in a value set might be represented in this form using certain valuss for
m, ande, then if it happened thah were even ane were less thargX-1 | one
could halvemand increase by 1 to produce a second representation for the same
valuev. A representation in this form is callewbrmalizedif m=>2(N-1); other-
wise the representation is said todenormalizedIf a value in a value set cannot
be represented in such a way that 2(N-1) | then the value is said tol&ec-
malized valugbecause it has no normalized representation.

The constraints on the parameté&tsand K (and on the derived parameters
Emin andEngy) for the two required and two optional floating-point value sets are
summarized in Table 4.1.

Where one or both extended-exponent value sets are supported by an imple-
mentation, then for each supported extended-exponent value set there is a specific
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Parameter | float float-extended- |double | double-extended-
exponent exponent
N 24 24 53 53
K 8 =11 11 =15
Emax +127 =>+1023 +1023 >+16383
Emin -126 <-1022 -1022 <-16382

Table 4.1 Floating-point value set parameters

implementation-dependent constéfitwhose value is constrained by Table 4.1,
this valueK in turn dictates the values B, andEqmyax

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, nega-
tive zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be repre-
sented using the single floating-point format defined in the IEEE 754 standard.
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard. Note,
however, that the elements of the float-extended-exponent and double-extended-
exponent value sets defined heremtcorrespond to the values that can be repre-
sented using IEEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent
value sets are not types. It is always correct for an implementation of the Java pro-
gramming language to use an element of the float value set to represent a value of
type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set
instead. Similarly, it is always correct for an implementation to use an element of
the double value set to represent a value of ygpeb1e; however, it may be per-
missible in certain regions of code for an implementation to use an element of the
double-extended-exponent value set instead.

Except for NaN, floating-point values aoedered arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and neg-
ative zero, positive finite nonzero values, and positive infinity.
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IEEE 754 allows multiple distinct NaN values for each of its single and dou-
ble floating-point formats. While each hardware architecture returns a particular
bit pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java platform treats NaN values of a given type as
though collapsed into a single canonical value (and hence this specification nor-
mally refers to an arbitrary NaN as though to a canonical value). However, version
1.3 the Java platform introduced methods enabling the programmer to distinguish
between NaN values: thEloat.floatToRawIntBits and Double.double-
ToRawLongBits methods. The interested reader is referred to the specifications
for theFloat andDoubTle classes for more information.

Positive zero and negative zero compare equal; thus the result of the expres-
Sion0.0==-0.0 is true and the result 09.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for exanple/0.0 has the
value positive infinity, while the value af 0/-0.0 is negative infinity.

NaN is unordered so the numerical comparison operaters=, >, and>=
returnfalse if either or both operands are NaN (815.20.1). The equality operator
== returnsfalse if either operand is NaN, and the inequality operaterreturns
true if either operand is NaN (815.21.1). In particular=x is true if and only if
x is NaN, and(x<y) == ! (x>=y) will be false if x ory is NaN.

Any value of a floating-point type may be cast to or from any numeric type.
There are no casts between floating-point types and thédgpean.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on float-
ing-point values:

» The comparison operators, which result in a value of ligp@ean:
o The numerical comparison operatars=, >, and>= (815.20.1)
o The numerical equality operatoss and != (815.21.1)
» The numerical operators, which result in a value of fjimat or double:
o The unary plus and minus operaterand- (815.15.3, 815.15.4)
o The multiplicative operators, /, and% (815.17)
o The additive operatorsand- (815.18.2)
o The increment operate, both prefix (§815.15.1) and postfix (§15.14.1)
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o The decrement operater, both prefix (§15.15.2) and postfix (§15.14.2)
« The conditional operatar : (815.25)

» The cast operator, which can convert from a floating-point value to a value of
any specified numeric type (85.5, 815.16)

» The string concatenation operato(815.18.1), which, when givenstring
operand and a floating-point operand, will convert the floating-point operand
to aString representing its value in decimal form (without information loss),
and then produce a newly creafadring by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, andMath.

If at least one of the operands to a binary operator is of floating-point type,
then the operation is a floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is ofdgpbele, then
the operation is carried out using 64-bit floating-point arithmetic, and the result of
the numerical operator is a value of typeuble. (If the other operand is not a
double, it is first widened to typelouble by numeric promotion (85.6).) Other-
wise, the operation is carried out using 32-bit floating-point arithmetic, and the
result of the numerical operator is a value of tyfieat. If the other operand is
not afloat, it is first widened to typ€&loat by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java pro-
gramming language requires support of IEEE ‘d&hormalizedfloating-point
numbers andjradual underflowwhich make it easier to prove desirable proper-
ties of particular numerical algorithms. Floating-point operations do not “flush to
zero” if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic
behave as if every floating-point operator rounded its floating-point result to the
result precisionlnexactresults must be rounded to the representable value nearest
to the infinitely precise result; if the two nearest representable values are equally
near, the one with its least significant bit zero is chosen. This is the IEEE 754 stan-
dard’s default rounding mode knownrasind to nearest

The language usasund toward zeravhen converting a floating value to an
integer (85.1.3), which acts, in this case, as though the number were truncated,
discarding the mantissa bits. Rounding toward zero chooses at its result the for-
mat’s value closest to and no greater in magnitude than the infinitely precise
result.

Floating-point operators produce no exceptions (811). An operation that over-
flows produces a signed infinity, an operation that underflows produces a denor-
malized value or a signed zero, and an operation that has no mathematically
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definite result produces NaN. All numeric operations with NaN as an operand pro-
duce NaN as a result. As has already been described, NaN is unordered, so a
numeric comparison operation involving one or two NaNs rettierise and any
I= comparison involving NaN returnsue, includingx!=x whenx is NaN.

The example program:

class Test {
public static void main(String[] args) {

// An example of overflow:

double d = 1e308;

System.out.print("overflow produces infinity: ");
System.out.println(d + "*10==" + d*10);

// An example of gradual underflow:
d = 1e-305 * Math.PI;
System.out.print('"gradual underflow: " + d + "\n ")
for (int i =0; 1 < 4; i++)

System.out.print(" " + (d /= 100000));
System.out.println(Q);

// An example of NaN:
System.out.print("0.0/0.0 is Not-a-Number: ");
d=0.0/0.0;

System.out.printin(d);

// An example of inexact results and rounding:
System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {
float z = 1.0f / 1;
if (z * 1 1= 1.0F)
System.out.print(

+ 1i);
3
System.out.printin();

// Another example of inexact results and rounding:
System.out.print("inexact results with double:");
for (int i =0; i < 100; i++) {
double z = 1.0 / 1;
if (z * 1 1= 1.0)
System.out.print(

+ 1);
3
System.out.printin();

// An example of cast to integer rounding:
System.out.print('"cast to int rounds toward 0: ");
d = 12345.6;

System.out.printIn((int)d + " " + (Gint)(-d));
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produces the output:

overflow produces infinity: 1.0e+308*10==Infinity

gradual underflow: 3.141592653589793E-305
3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0

0.0/0.0 is Not-a-Number: NaN

inexact results with float: 0 41 47 55 61 82 83 94 97

inexact results with double: 0 49 98

cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradual underflow can

result in a gradual loss of precision.

The results wheri is @ involve division by zero, so that becomes positive

infinity, andz * @ is NaN, which is not equal tb. 0.

4.2.5 Theboolean Type andboolean Values

The booTean type represents a logical quantity with two possible values, indi-
cated by the literalsrue andfalse (83.10.3). The boolean operators are:

The relational operatoes- and!= (815.21.2)

The logical-complement operatb(815.15.6)

The logical operatorg, A, and| (§15.22.2)

The conditional-and and conditional-or opera®g815.23) and | (§15.24)
The conditional operatar : (815.25)

The string concatenation operato(§815.18.1), which, when given$tring
operand and a boolean operand, will convert the boolean operargttd eg
(either"true" or "false"), and then produce a newly creat®iding that is
the concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:

Theif statement (§14.9)
Thewhile statement (§14.11)
Thedo statement (§14.12)
Thefor statement (814.13)

A boolean expression also determines which subexpression is evaluated in the
conditional? : operator (§15.25).
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Only boolean expressions can be used in control flow statements and as the
first operand of the conditional operatbr:. An integerx can be converted to a
booTean, following the C language convention that any nonzero valueug, by
the expressionx!=0. An object referencebj can be converted to Boolean,
following the C language convention that any reference other & is true,
by the expressionbj!=null.

A cast of aboolean value to typeboolean is allowed (85.1.1); no other casts
on typeboolean are allowed. Aboolean can be converted to a string by string
conversion (85.4).

4.3 Reference Types and Values

There are three kinds oéference typeslass types (88), interface types (89), and
array types (810).

ReferenceType:
ClassOrinterfaceType
ArrayType

ClassOrlinterfaceType:
ClassType
InterfaceType

ClassType:
TypeName

InterfaceType:
TypeName

ArrayType:
Type [ ]

Names are described in 86; type names in 86.5 and, specifically, 86.5.5.
The sample code:

class Point { int[] metrics; }
interface Move { void move(int deltax, int deltay); }

declares a class typwint, an interface typ#ove, and uses an array typet[]
(an array ofint) to declare the fieldetrics of the clas®oint.
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4.3.1 Objects

An objectis aclass instancer an array.

The reference values (often jusferenceparepointersto these objects, and a
special null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression
(815.9). An array is explicitly created by an array creation expression (815.9).

A new class instance is implicitly created when the string concatenation oper-
ator + (815.18.1) is used in an expression, resulting in a new object of type
String (84.3.3). A new array object is implicitly created when an array initializer
expression (810.6) is evaluated; this can occur when a class or interface is initial-
ized (812.4), when a new instance of a class is created (815.9), or when a local
variable declaration statement is executed (§14.4).

Many of these cases are illustrated in the following example:

class Point {
int x, y;
Point() { System.out.printin("default"); }
Point(int x, int y) { this.x = x; this.y = vy; }

// A Point instance is explicitly created at class initialization time:
static Point origin = new Point(0,0);

// A String can be implicitly created by-aoperator:
public String toString() {
}

return "(" + x + """ +y + ")";

}

class Test {
public static void main(String[] args) {
// A Point is explicitly created usingewInstance:
Point p = null;
try {
p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {
System.out.printin(e);
}

// An array is implicitly created by an array constructor:
Point a[] = { new Point(0,0), new Point(1,1) };

// Strings are implicitly created by operators:

System.out.printin("p: " + p);

System.out.printin("a: { " + a[0Q] + ",
+afl] + " }");

// An array is explicitly created by an array creation expression:
String sa[] = new String[2];
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sa[@0] = "he"; sa[l] = "110";
System.out.printin(sa[0@] + sa[l]);
}
}

which produces the output:

default

p: (0,0)

a: { (0,0, (1,1) }
hello

The operators on references to objects are:

» Field access, using either a qualified name (86.6) or a field access expression
(815.11)

» Method invocation (§15.12)
* The cast operator (85.5, §15.16)

» The string concatenation operato(815.18.1), which, when given$tring
operand and a reference, will convert the reference3orang by invoking
thetoString method of the referenced object (ustheu11" if either the ref-
erence or the result afoString is a null reference), and then will produce a
newly createdtring that is the concatenation of the two strings

» Theinstanceof operator (§815.20.2)
» The reference equality operatess and ! = (§15.21.3)
e The conditional operatar : (815.25).

There may be many references to the same object. Most objects have state,
stored in the fields of objects that are instances of classes or in the variables that
are the components of an array object. If two variables contain references to the
same object, the state of the object can be modified using one variable’s reference
to the object, and then the altered state can be observed through the reference in
the other variable.

The example program:

class Value { int val; }

class Test {
public static void main(String[] args) {

int il = 3;
int i2 = i1;
i2 = 4;

System.out.print("il==" + il);
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System.out.println(" but i2==" + i2);
Value vl = new Value(Q);
vl.val = 5;

Value v2 = vl;

v2.val = 6;
System.out.print("vl.val=='
System.out.println(" and v2.val==

+ vl.val);
"+ v2.val);

}
produces the output:

il==3 but i2==4
vl.val==6 and v2.val==6

because/1.val andv2.val reference the same instance variable (84.5.3) in the
oneValue object created by the onlyew expression, while 1 andi2 are differ-
ent variables.

See 810 and 815.10 for examples of the creation and use of arrays.

Each object has an associated lock (817.13), which is usegixnhronized
methods (88.4.3) and theynchronized statement (814.18) to provide control
over concurrent access to state by multiple threads (817.12).

4.3.2 The Clas®bject

The classDbject is a superclass (88.1) of all other classes. A variable of type
Object can hold a reference to any object, whether it is an instance of a class or
an array (810). All class and array types inherit the methods of Clagsct,
which are summarized here:

package java.lang;

public class Object {
public final Class getClass() { ...}
public String toString() { ...}
public boolean equals(Object obj) { ...}
pubTic int hashCode() { ...}
protected Object clone()
throws CloneNotSupportedException { ...}
public final void wait(Q)
throws ITlegalMonitorStateException,
InterruptedException { ...}
pubTlic final void wait(long millis)
throws I1legalMonitorStateException,

InterruptedException { ...}
public final void wait(long millis, int nanos) { ...}
throws ITlegalMonitorStateException,
InterruptedException { ...}
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public final void notify() { ...}
throws I1legalMonitorStateException
public final void notifyAl1() { ...}
throws I1legalMonitorStateException
protected void finalize()
throws Throwable { ...}
}

The members dibject are as follows:

» The methodgetClass returns theClass object that represents the class of
the object. AClass object exists for each reference type. It can be used, for
example, to discover the fully qualified name of a class, its members, its
immediate superclass, and any interfaces that it implements. A class method
that is declaredynchronized (88.4.3.6) synchronizes on the lock associated
with theClass object of the class.

» The methodtoString returns &tring representation of the object.

* The methodsquals and hashCode are very useful in hashtables such as
java.util.Hashtable. The methodequals defines a notion of object
equality, which is based on value, not reference, comparison.

» The method:Tone is used to make a duplicate of an object.

» The methodsiait, notify, andnotifyAll are used in concurrent program-
ming using threads, as described in 817.

 The methodfinalize is run just before an object is destroyed and is
described in 8§12.6.

4.3.3 The ClasString

Instances of clasString represent sequences of Unicode characterSting
object has a constant (unchanging) value. String literals (83.10.5) are references to
instances of classtring.

The string concatenation operater (§815.18.1) implicitly creates a new
String object.

4.3.4 When Reference Types Are the Same

Two reference types are tlsame compile-time tygéthey have the same binary
name (813.1), in which case they are sometimes said to bgathe clas®sr the
same interface

At run time, several reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
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the same type declaration. Even if two such types do represent the same type dec-
laration, they are considered distinct.
Two reference types are tkame run-time typi

« They are both class or both interface types, are loaded by the same class
loader, and have the same binary name (813.1), in which case they are some-
times said to be theame run-time classr thesame run-time interface

» They are both array types, and their component types are the same run-time
type(810).

4.4 Where Types Are Used

Types are used when they appear in declarations or in certain expressions.
The following code fragment contains one or more instances of most kinds of
usage of a type:
import java.util.Random;
class MiscMath {
int divisor;

MiscMath(int divisor) {
this.divisor = divisor;

%
float ratio(long 1) {
try {
1 /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
T = Long.MAX_VALUE;
else
1 =0;
}
return (float)1;
}

double gausser() {
Random r = new Random();
doubTle[] val = new double[2];
val[@] = r.nextGaussian();
val[1l] = r.nextGaussian(Q);
return (val[0] + val[1l]) / 2;
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In this example, types are used in declarations of the following:

Imported types (87.5); here the typaandom, imported from the type
java.util.Random of the packaggava.util, is declared

Fields, which are the class variables and instance variables of classes (88.3),
and constants of interfaces (89.3); here the figidisor in the class
MiscMath is declared to be of typimt

Method parameters (88.4.1); here the parametef the methodratio is
declared to be of typkong

Method results (88.4); here the result of the methattio is declared to be of
type float, and the result of the methathusser is declared to be of type
double

Constructor parameters (88.8.1); here the parameter of the constructor for
MiscMath is declared to be of typet

Local variables (814.4, 814.13); the local variabteandval of the method
gausser are declared to be of typRsndom anddouble[] (array ofdouble)

Exception handler parameters (814.19); here the exception handler parameter
e of thecatch clause is declared to be of typpeception

and in expressions of the following kinds:

Class instance creations (815.9); here a local variabfemethodgausser is
initialized by a class instance creation expression that uses thieatyjuen

Array creations (815.10); here the local variablg of methodgausser is
initialized by an array creation expression that creates an arrapufle
with size 2

Casts (815.16); here theeturn statement of the methodatio uses the
float type in a cast

The instanceof operator (815.20.2); here thimstanceof operator tests
whethere is assignment compatible with the tyje thmeticException

4.5 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time typgthat is either a primitive type (84.2) or a reference type (84.3).

A variable always contains a value that is assignment compatible (85.2) with its
type. A variable’s value is changed by an assignment (§815.26) or by a prefix or
postfix ++ (increment) or-- (decrement) operator (§15.14.1, §15.14.2, 815.15.1,
§15.15.2).
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Compatibility of the value of a variable with its type is guaranteed by the
design of the Java programming language. Default values are compatible (84.5.5)
and all assignments to a variable are checked for assignment compatibility (85.2),
usually at compile time, but, in a single case involving arrays, a run-time check is
made (810.10).

4.5.1 Variables of Primitive Type

A variable of a primitive type always holds a value of that exact primitive type.

4.5.2 Variables of Reference Type

A variable of reference type can hold either of the following:
* A null reference

» A reference to any object (84.3) whose class (84.5.6) is assignment compati-
ble (85.2) with the type of the variable

4.5.3 Kinds of Variables

There are seven kinds of variables:

1. A class variableis a field declared using the keywosdatic within a class
declaration (88.3.1.1), or with or without the keywarthtic within an inter-
face declaration (89.3). A class variable is created when its class or interface is
prepared (812.3.2) and is initialized to a default value (84.5.5). The class vari-
able effectively ceases to exist when its class or interface is unloaded (812.7).

2. An instance variables a field declared within a class declaration without
using the keywordstatic (88.3.1.1). If a clasg has a fielda that is an
instance variable, then a new instance variabie created and initialized to a
default value (84.5.5) as part of each newly created object of Tlas®f any
class that is a subclass ©f(88.1.3). The instance variable effectively ceases
to exist when the object of which it is a field is no longer referenced, after any
necessary finalization of the object (812.6) has been completed.

3. Array componentsre unnamed variables that are created and initialized to
default values (84.5.5) whenever a new object that is an array is created
(815.10). The array components effectively cease to exist when the array is no
longer referenced. See 810 for a description of arrays.

4. Method parameter$88.4.1) name argument values passed to a method. For
every parameter declared in a method declaration, a new parameter variable is
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created each time that method is invoked (815.12). The new variable is initial-
ized with the corresponding argument value from the method invocation. The
method parameter effectively ceases to exist when the execution of the body
of the method is complete.

5. Constructor parameterég8.8.1) name argument values passed to a construc-
tor. For every parameter declared in a constructor declaration, a new parame-
ter variable is created each time a class instance creation expression (815.9) or
explicit constructor invocation (88.8.5) invokes that constructor. The new
variable is initialized with the corresponding argument value from the cre-
ation expression or constructor invocation. The constructor parameter effec-
tively ceases to exist when the execution of the body of the constructor is
complete.

6. An exception-handler parametés created each time an exception is caught
by acatch clause of atry statement (814.19). The new variable is initialized
with the actual object associated with the exception (811.3, 8§14.17). The
exception-handler parameter effectively ceases to exist when execution of the
block associated with theatch clause is complete.

7. Local variablesare declared by local variable declaration statements (§14.4).
Whenever the flow of control enters a block (814.2) farr statement
(814.13), a new variable is created for each local variable declared in a local
variable declaration statement immediately contained within that blo€kror
statement. A local variable declaration statement may contain an expression
which initializes the variable. The local variable with an initializing expres-
sion is not initialized, however, until the local variable declaration statement
that declares it is executed. (The rules of definite assignment (§16) prevent the
value of a local variable from being used before it has been initialized or oth-
erwise assigned a value.) The local variable effectively ceases to exist when
the execution of the block dbr statement is complete.

Were it not for one exceptional situation, a local variable could always be
regarded as being created when its local variable declaration statement is exe-
cuted. The exceptional situation involves theitch statement (§14.10),
where it is possible for control to enter a block but bypass execution of a local
variable declaration statement. Because of the restrictions imposed by the
rules of definite assignment (816), however, the local variable declared by
such a bypassed local variable declaration statement cannot be used before it
has been definitely assigned a value by an assignment expression (815.26).

The following example contains several different kinds of variables:
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class Point {

static int numPoints; // numPoints is a class variable
int x, y; // x andy are instance variables
int[] w = new int[10]; // w[0] is an array component
int setX(int x) { // xis a method parameter

int oldx = this.x; // oldx is a local variable

this.x = Xx;
return oldx;

45.4 final Variables

A variable can be declarefinal. A final variable may only be assigned to once.
It is a compile time error if a final variable is assigned to unless it is definitely
unassigned (816) immediately prior to the assignment.

A blank finalis a final variable whose declaration lacks an initializer.

Once afinal variable has been assigned, it always contains the same value.
If a final variable holds a reference to an object, then the state of the object may
be changed by operations on the object, but the variable will always refer to the
same object. This applies also to arrays, because arrays are objecfsinidla
variable holds a reference to an array, then the components of the array may be
changed by operations on the array, but the variable will always refer to the same
array.

Declaring a variableéfinal can serve as useful documentation that its value
will not change and can help avoid programming errors.

In the example:

class Point {
int x, y;
int useCount;
Point(int x, int y) { this.x = x; this.y = y; }
final static Point origin = new Point(0, 0);

}

the classPoint declares afinal class variableorigin. The origin variable
holds a reference to an object that is an instance of elaist whose coordinates
are (0, 0). The value of the varial®teint.origin can never change, so it always
refers to the sameoint object, the one created by its initializer. However, an
operation on thi®oint object might change its state—for example, modifying its
useCount or even, misleadingly, ite ory coordinate.

4.5.5 |Initial Values of Variables

Every variable in a program must have a value before its value is used:
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» Each class variable, instance variable, or array component is initialized with a
default valuewvhen it is created (815.9, §15.10):

o For typebyte, the default value is zero, that is, the valuémfte) 0.

o For typeshort, the default value is zero, that is, the valu€gifort) 0.
o For typeint, the default value is zero, that és,

o For typelong, the default value is zero, that @4,

v For typefloat, the default value is positive zero, thatisgf.

o For typedouble, the default value is positive zero, thatisgd.

o For typechar, the default value is the null character, that \$,0000'.
o For typeboolean, the default value ialse.

o For all reference types (84.3), the default valueuis! .

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

» Each constructor parameter (88.8.1) is initialized to the corresponding argu-
ment value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.5).

» An exception-handler parameter (814.19) is initialized to the thrown object
representing the exception (§11.3, §14.17).

» A local variable (814.4, §14.13) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in a way that can
be verified by the compiler using the rules for definite assignment (816).

The example program:

class Point {
static int npoints;
int x, y;
Point root;

}

class Test {
public static void main(String[] args) {
System.out.printin("npoints=" + Point.npoints);
Point p = new Point();
System.out.printin("p.x=" + p.x + ", p.y='
System.out.printin("p.root=" + p.root);

+ Pp.y);
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prints:

npoints=0

p.x=0, p.y=0

p.root=null
illustrating the default initialization ofpoints, which occurs when the class
Point is prepared (§12.3.2), and the default initializatioxpf, androot, which
occurs when a newoint is instantiated. See 812 for a full description of all
aspects of loading, linking, and initialization of classes and interfaces, plus a
description of the instantiation of classes to make new class instances.

4.5.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has a type
that can be determined at compile time. The type may be a primitive type or a ref-
erence type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the tgpato refer to either a

class or an interface.

Every object belongs to some particular class: the class that was mentioned in
the creation expression that produced the object, the class vifiase object
was used to invoke a reflective method to produce the object, aitiing class
for objects implicitly created by the string concatenation operat(§15.18.1).

This class is called thelass of the objeci(Arrays also have a class, as described
at the end of this section.) An object is said to be an instance of its class and of all
superclasses of its class.

Sometimes a variable or expression is said to have a “run-time type”. This
refers to the class of the object referred to by the value of the variable or expres-
sion at run time, assuming that the value isnudf .

The compile time type of a variable is always declared, and the compile time
type of an expression can be deduced at compile time. The compile time type lim-
its the possible values that the variable can hold or the expression can produce at
run time. If a run-time value is a reference that is mat1, it refers to an object or
array that has a class, and that class will necessarily be compatible with the com-
pile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
type is an interface type can reference any object whose class implements (§88.1.4)
that interface.

Here is an example of creating new objects and of the distinction between the
type of a variable and the class of an object:
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public interface Colorable {
void setColor(byte r, byte g, byte b);
}

class Point { int x, y; }
class ColoredPoint extends Point implements Colorable {
byte r, g, b;

public void setColor(byte rv, byte gv, byte bv) {
r=rv; g=gv; b= bv;
}

}

class Test {
public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
p = cp;
Colorable c = cp;

}

In this example:

The local variable of the methodnain of classTest has typePoint and is
initially assigned a reference to a new instance of Glaist.

The local variablecp similarly has as its typ€oloredPoint, and is initially
assigned a reference to a new instance of ClassredPoint.

The assignment of the value op to the variablep cause to hold a refer-
ence to LoloredPoint object. This is permitted becauéeloredPoint is a
subclass ofPoint, so the clasoloredPoint is assignment compatible
(85.2) with the typePoint. A ColoredPoint object includes support for all
the methods of &oint. In addition to its particular fields, g, andb, it has
the fields of clasBoint, namelyx andy.

The local variablec has as its type the interface typelorable, so it can
hold a reference to any object whose class implemésitsrable; specifi-
cally, it can hold a reference taaloredPoint.

Note that an expression such agW Colorable()”is not valid because it is
not possible to create an instance of an interface, only of a class.

Every array also has a class; the methedClass, when invoked for an array

object, will return a class object (of clag§3ass) that represents the class of the
array.
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The classes for arrays have strange names that are not valid identifiers; for
example, the class for an array oft components has the namgI” and so the
value of the expression:

new int[10].getClass().getName()
is the string'[I"; see the specification Qilass.getName for details.



CHAPTER5

Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in a context where the type of the expression is not appropri-
ate. In some cases, this leads to an error at compile time; for example, if the
expression in ari f statement (814.9) has any type other thanlean, a com-
pile-time error occurs. In other cases, the context may be able to accept a type that
is related to the type of the expression; as a convenience, rather than requiring the
programmer to indicate a type conversion explicitly, the language performs an
implicit conversiorfrom the type of the expression to a type acceptable for its sur-
rounding context.

A specific conversion from typé to type T allows an expression of typeto
be treated at compile time as if it had typeinstead. In some cases this will
require a corresponding action at run time to check the validity of the conversion
or to translate the run-time value of the expression into a form appropriate for the
new typeT. For example:

» A conversion from typ@®bject to typeThread requires a run-time check to
make sure that the run-time value is actually an instance of Tlassad or
one of its subclasses; if it is not, an exception is thrown.

» A conversion from typ&hread to typeObject requires no run-time action;
Thread is a subclass ddbject, so any reference produced by an expression
of typeThread is a valid reference value of typeject.

» A conversion from typeint to typelong requires run-time sign-extension of
a 32-bit integer value to the 64-bliong representation. No information is
lost.

A conversion from typelouble to typelong requires a nontrivial translation
from a 64-bit floating-point value to the 64-bit integer representation. Depending
on the actual run-time value, information may be lost.
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In every conversion context, only certain specific conversions are permitted.
For convenience of description, the specific conversions that are possible in the
Java programming language are grouped into several broad categories:

« |dentity conversions
« Widening primitive conversions

< Narrowing primitive conversions
» Widening reference conversions
» Narrowing reference conversions
 String conversions

* Value set conversions

There are fiveconversion contexts which conversion of expressions may
occur. Each context allows conversions in some of the categories named above but
not others. The term “conversion” is also used to describe the process of choosing
a specific conversion for such a context. For example, we say that an expression
that is an actual argument in a method invocation is subject to “method invocation
conversion,” meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator sucloas.

The conversion process for such operands is callederic promotionPromotion
is special in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the seven categories of conversions (85.1), includ-
ing the special conversions saring allowed for the string concatenation opera-
tor +. Then the five conversion contexts are described:

» Assignment conversion (85.2, 815.26) converts the type of an expression to
the type of a specified variable. The conversions permitted for assignment are
limited in such a way that assignment conversion never causes an exception.

» Method invocation conversion (85.3, §15.9, §15.12) is applied to each argu-
ment in a method or constructor invocation and, except in one case, performs
the same conversions that assignment conversion does. Method invocation
conversion never causes an exception.

» Casting conversion (85.5) converts the type of an expression to a type explic-
itly specified by a cast operator (§15.16). It is more inclusive than assignment
or method invocation conversion, allowing any specific conversion other than
a string conversion, but certain casts to a reference type may cause an excep-
tion at run time.
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 String conversion (85.4, 815.18.1) allows any type to be converted to type
String.

* Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

Here are some examples of the various contexts for conversion:

class Test {
public static void main(String[] args) {

// Casting conversion (85.4) offdoat literal to

// typeint. Without the cast operator, this would
// be a compile-time error, because this is a

// narrowing conversion (85.1.3):

int i = (int)12.5f;

// String conversion (85.4) dfs int value:
System.out.printin("(int)12.5f==" + 1i);

// Assignment conversion (85.2) 06 value to type
// float. This is a widening conversion (85.1.2):
float f = 1;

// String conversion of's float value:
System.out.printin("after float widening: " + f);

// Numeric promotion (85.6) oif's value to type
// float. This is a binary numeric promotion.
// After promotion, the operation fSloat*float:
System.out.print(f);

f=Ff*1;

// Two string conversions df andf:
System.out.printTn("*" + i + "==" + f);

// Method invocation conversion (85.3) 6 value

// 1o typedouble, needed because the metivadh.sin
// accepts only double argument:

double d = Math.sin(f);

// Two string conversions df andd:
System.out.printin("Math.sin(" + f + ")==" + d);

}
which produces the output:

(int)12.5f==12
after float widening: 12.0
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12.0*12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kinds of Conversion

Specific type conversions in the Java programming language are divided into
seven categories.

5.1.1 Identity Conversions

A conversion from a type to that same type is permitted for any type.

This may seem trivial, but it has two practical consequences. First, it is always
permitted for an expression to have the desired type to begin with, thus allowing
the simply stated rule that every expression is subject to conversion, if only a triv-
ial identity conversion. Second, it implies that it is permitted for a program to
include redundant cast operators for the sake of clarity.

The only permitted conversion that involves the tyje1ean is the identity
conversion frombooTlean to boolean.

5.1.2 Widening Primitive Conversion
The following 19 specific conversions on primitive types are calledatitkening
primitive conversions

* byte to short, int, Tong, float, or double

e short to int, long, float, or doubTe

e char to int, long, float, or double
* int to Tong, float, or double
* Tong to float or double

¢ float to double

Widening primitive conversions do not lose information about the overall
magnitude of a numeric value. Indeed, conversions widening from an integral type
to another integral type and frofiioat to double do not lose any information at
all; the numeric value is preserved exactly. Conversions widening fitsat to
double in strictfp expressions also preserve the numeric value exactly; how-
ever, such conversions that are matrictfp may lose information about the
overall magnitude of the converted value.
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Conversion of arint or along value tofloat, or of along value todoub1e,
may result inloss of precisiop-that is, the result may lose some of the least sig-
nificant bits of the value. In this case, the resulting floating-point value will be a
correctly rounded version of the integer value, using IEEE 754 round-to-nearest
mode (84.2.4).

A widening conversion of a signed integer value to an integral fypanply
sign-extends the two’s-complement representation of the integer value to fill the
wider format. A widening conversion of a character to an integral ty@ero-
extends the representation of the character value to fill the wider format.

Despite the fact that loss of precision may occur, widening conversions
among primitive types never result in a run-time exception (811).

Here is an example of a widening conversion that loses precision:

class Test {
public static void main(String[] args) {
int big = 1234567890;
float approx = big;
System.out.printin(big - (int)approx);

3
which prints:
-46

thus indicating that information was lost during the conversion from typeto
type float because values of tygd oat are not precise to nine significant digits.

5.1.3 Narrowing Primitive Conversions

The following 23 specific conversions on primitive types are callechireowing
primitive conversions

* byte to char
e short to byte or char

e char to byte or short

* int to byte, short, or char

* long to byte, short, char, orint

* float to byte, short, char, int, or Tong

e double to byte, short, char, int, long, or float

Narrowing conversions may lose information about the overall magnitude of a
numeric value and may also lose precision.
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A narrowing conversion of a signed integer to an integral typemply dis-
cards all but then lowest order bits, whera is the number of bits used to repre-
sent typeT. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the sign of the resulting value to differ from the
sign of the input value.

A narrowing conversion of a character to an integral typékewise simply
discards all but the lowest order bits, where is the number of bits used to rep-
resent typer. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the resulting value to be a negative number,
even though characters represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral tygakes
two steps:

1. In the first step, the floating-point number is converted eitherliang, if T is
Tong, or to armint, if T isbyte, short, char, orint, as follows:

o Ifthe floating-point number is NaN (84.2.3), the result of the first step of the
conversion is afint or Tong 0.

o Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer vallterounding toward zero using IEEE
754 round-toward-zero mode (84.2.3). Then there are two cases:

o If Tis Tong, and this integer value can be represented bshg, then the
result of the first step is tHeng valueV.

o Otherwise, if this integer value can be represented asnanthen the
result of the first step is thet valueV.

o Otherwise, one of the following two cases must be true:

o The value must be too small (a negative value of large magnitude or nega-
tive infinity), and the result of the first step is the smallest representable
value of typeint or Tong.

o The value must be too large (a positive value of large magnitude or posi-
tive infinity), and the result of the first step is the largest representable
value of typeint or Tong.

2. In the second step:
o If Tisint or 1ong, the result of the conversion is the result of the first step.

o If Tis byte, char, or short, the result of the conversion is the result of a
narrowing conversion to type(85.1.3) of the result of the first step.

The example:
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class Test {
public static void main(String[] args) {
float fmin = Float.NEGATIVE_INFINITY;
float fmax = Float.POSITIVE_INFINITY;
System.out.printin("long: " + (long)fmin +
".." + (long)fmax);
"+ (Ant)fmin +
"+ (Ant) fmax)
System.out.printin("short: " + (short)fmin +
".." + (short)fmax);
System.out.printin("char: " + (int)(char)fmin +
".." + (int) (char)fmax);
System.out.printin("byte: " + (byte)fmin +
"""+ (byte)fmax);

System.out.println("int:

}
produces the output:

Tong: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647

short: 0..-1
char: 0..65535
byte: 0..-1

The results fochar, int, andlong are unsurprising, producing the minimum
and maximum representable values of the type.

The results folbyte andshort lose information about the sign and magni-
tude of the numeric values and also lose precision. The results can be understood
by examining the low order bits of the minimum and maximimt. The mini-
mumiint is, in hexadecimalkx80000000, and the maximumnt is Ox7fffffff.

This explains thahort results, which are the low 16 bits of these values, namely,
0x0000 andoxffff; it explains thechar results, which also are the low 16 bits of
these values, namely\u000o' and'\uffff'; and it explains théyte results,
which are the low 8 bits of these values, nan®@{g9 andoxff.

Despite the fact that overflow, underflow, or other loss of information may
occur, narrowing conversions among primitive types never result in a run-time
exception (811).

Here is a small test program that demonstrates a number of narrowing conver-
sions that lose information:

class Test {
public static void main(String[] args) {

// A narrowing ofint to short loses high bits:
System.out.printIn("(short)0x12345678==0x" +
Integer.toHexString((short)@x12345678));
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// A int value not fitting irbyte changes sign and magnitude:
System.out.printin(" (byte)255==" + (byte)255);

// A float value too big to fit gives largestht value:
System.out.printIn("(int)1le20f==" + (int)1le20f);

// A NaN converted tdnt yields zero:
System.out.printIn("(int)NaN==" + (int)Float.NaN);

// A double value too large fofloat yields infinity:
System.out.printin("(float)-1el1l00==" + (float)-1el00);

// A double value too small fofToat underflows to zero:
System.out.printin("(float)le-50==" + (float)le-50);

}
This test program produces the following output:

(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1e100==-Infinity
(float)1e-50==0.0

5.1.4 Widening Reference Conversions

The following conversions are called tva&lening reference conversions

» From any class typs to any class typé, provided thats is a subclass of.
(An important special case is that there is a widening conversion to the class
typeObject from any other class type.)

* From any class typ& to any interface typ#&, provided thats implements.
* From the null type to any class type, interface type, or array type.

* From any interface typé@ to any interface typ&, provided thatJ is a sub-
interface ofk.

* From any interface type to ty@éject.
» From any array type to ty@bject.
e From any array type to typ8oneable.

* From any array type to typgva.io.Serializable
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* From any array typesC[] to any array typerC[], provided thatsC and TC
are reference types and there is a widening conversionSitam7C.

Such conversions never require a special action at run time and therefore never
throw an exception at run time. They consist simply in regarding a reference as
having some other type in a manner that can be proved correct at compile time.

See 88 for the detailed specifications for classes, 89 for interfaces, and 810 for
arrays.

5.1.5 Narrowing Reference Conversions

The following conversions are called tharrowing reference conversians

* From any class typs to any class typd, provided thats is a superclass df.
(An important special case is that there is a narrowing conversion from the
class typ@®bject to an